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Is it possible to shape a piece of glass so that it refracts and concen-
trates sunlight in order to produce a given image? The modelling
of this kind of problem leads to nonlinear second-order partial dif-
ferential equations, which belong to the family of Monge–Ampère
equations. We will see how semi-discrete methods, that can be
traced back to Minkowski’s works, allow us to numerically solve
such equations.

1 Anidolic optics and Monge Ampère type equations

In anidolic optics, or non-imaging optics, one studies the design of
devices that transfer light energy between a source and a target.
The general problem is to design the shape of a mirror (or a lens)
that reflects (or refracts) the light emitted from a given source
towards a target whose geometry and intensity distributions are

prescribed (see Figures 1 and 2). Applications of anidolic optics
include the design of solar ovens, public lighting, car headlights,
and more generally the optimization of the use of light energy and
the reduction of light pollution.

Near-field and far-field light sources
There exists many different problems in anidolic optics, depending
for instance on the geometry of the light source, the type of optical
component, and the target to be illuminated. These problems are
distinguished in particular by the spatial position of the target illu-
mination. A problem is called near-field when the target is located
within a finite distance, i.e., when one wishes to illuminate an area
of space such as a screen. In Figures 1 and 2, the target illumination
is on a wall, making the problem near-field. Most of the illustrations
in this article correspond near-field targets. However, we will first
consider the far-field case, which is mathematically simpler, and

Figure 1. Mirror transforming a parallel, uniform light source into the shape of a train
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Figure 2. Lens transforming a parallel light source into a hikari

in which the target lies “at infinity”, in the space of directions. In
practice, this means that when light is reflected or refracted from a
point of the optical component, we can forget the spatial position
of the reflected or refracted ray, keeping only its direction, which
can then be encoded by a unit vector. Note that if the near-field
target illumination is far away from the optical component, each
point of the target almost corresponds to a direction, so that the
far-field problem is a good approximation of the near-field one
in this situation. We will see in Section 4.2 that one can solve a
problem involving a near-field target by iteratively solving problems
with far-field targets.

We will first present two far-field mirror problems in their
continuous form, as illustrated in Figure 3. Then, we will explain
how these continuous problems can be approached by discrete
problems, following the so-called supporting quadric method in-
troduced by Luis Caffarelli and Vladimir Oliker. This method can
be traced back to work of Hermann Minkowski and Aleksandr
Aleksandrov in convex geometry.
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Figure 3. Mirror transforming light from a point source (left) or collimated
light (right)

1.1 Mirror for a point light source
In this first problem, light is emitted from a point O, which we
assume to be located at the origin of the space ℝ3. The intensity of
the light source is modeled by a probability density 𝜇 on the sphere
of directions 𝕊2. Let X ⊂ 𝕊2 denote the support of the measure 𝜇.
For example, if the light is emitted in a solid cone, then X is a disc
on the sphere. The quantity of light emanating from a measurable
set of directions A ⊂ X is given by 𝜇(A). For the far-field problem,
the target is described by a probability measure 𝜈 on the sphere of
directions 𝕊2, which then represents the directions “at infinity”, i.e.,
after reflection. Let Y ⊂ 𝕊2 denote the support of the measure 𝜈.

The inverse problem considered here consists in constructing
the surface ℛ of a mirror which will transport the intensity 𝜇 of
the light source to the desired light distribution 𝜈 at infinity using
Snell’s law of reflection. For example, if the target measure is a
Dirac mass 𝛿y, meaning that we want to reflect all the light in
a single direction y, then the shape of the mirror is given by a
paraboloid of revolution.

Let ⟨⋅ | ⋅⟩ denote the Euclidean scalar product on ℝ3. An in-
cident ray x ∈ 𝕊2 is reflected by a surface ℛ in the direction
R(x) = x − ⟨x | n(x)⟩n(x), where n(x) is the unit vector normal to
the surface ℛ at the point touched by the direction x and oriented
so that ⟨x | n(x)⟩ ≤ 0. The surface ℛ solves the inverse mirror prob-
lem if R transports the source measure 𝜇 to the target measure 𝜈,
in the sense that for any measurable subset B of the sphere one
has

∀B ⊆ 𝕊2, 𝜈(B) = 𝜇(R−1(B)).

Note that the preservation of overall light quantity was already
ensured by having chosen probability measures, i.e., 𝜇(𝕊2) =
𝜈(𝕊2) = 1. Now assume that 𝜇 and 𝜈 are absolutely continuous
measures with respect to the area measure on the sphere. Let
𝜇(x) = 𝜌(x)dx and 𝜈(x) = 𝜎(x)dx, where 𝜌 and 𝜎 are the densi-
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ties of 𝜇 and 𝜈 respectively. The previous equation then reads

∀B ⊆ 𝕊2,
ż

B

𝜎(x)dx =
ż

R−1(B)
𝜌(x)dx. (1)

Suppose furthermore that the densities 𝜌 et 𝜎 are continuous
and that R is a diffeomorphism from X to Y . By the change
of variable y = R(x), the last equation is then equivalent to
𝜎(R(x)) det(DR(x)) = 𝜌(x) for any x ∈ X.

Since the mirror reflects rays emitted from the origin, we will
assume that the surface ℛ is radially parametrized by x ∈ 𝕊2 ↦
u(x)x, where u ∶ 𝕊2 → ℝ+ is a positive function that must be
determined. The unit normal to the surface ℛ at the point xu(x)
and the direction of the reflected ray can both be expressed as a
function of x and of the gradient ∇u(x) ∈ Tx𝕊2:

Ru(x) = x−⟨x | nu(x)⟩nu(x) and nu(x) =
∇u(x) − u(x)x

b‖
‖∇u(x)

‖
‖
2 + u(x)2

.

This allows us to formulate the problem as a system of partial dif-
ferential equations, i.e., the problem of finding a positive function
u ∶ 𝕊2 → ℝ+ of class 𝒞2 which satisfies

⎧
⎨⎩

𝜎(Ru(x)) det(DRu(x)) = 𝜌(x),
Ru be a diffeomorphism from X to Y .

(Mir-Ponc-C)

The first line of equation (Mir-Ponc-C) involves the determinant
of a quantity which depends on the second derivatives of u. This
equation belongs to the family of Monge–Ampère equations. Note
that the requirement that Ru is a diffeomorphism is non-standard
and difficult to handle. In practice, it is replaced by a condition on
u which is akin to convexity, and by the so-called second boundary
condition Ru(X) = Y . These two conditions ensure the ellipticity
of the problem. Caffarelli and Oliker proved in 1994 [1] the ex-
istence of weak solutions to this equation, i.e., the existence of
a locally Lipschitz function u such that the application R defined
by the last two lines of (Mir-Ponc-C) satisfies (1). The existence of
regular solutions to the problem (Mir-Ponc-C) is due to Wang and
Guan [2,6].

1.2 Mirror for a collimated light source
We now present a second inverse problem arising in anidolic op-
tics. This time the light source is collimated, which means that all
the rays of light emitted by the source are parallel. We further-
more assume that they are positively collinear to the vertical vector
ez = (0, 0, 1) and emitted from a domain of the horizontal plane
X ⊂ ℝ2 × {0}. For convenience, we will identify ℝ2 and ℝ2 × {0}.
We assume that the surface of the optical component is smooth
and parametrized by a height function u ∶ X → ℝ. The intensity
of the light source is modeled by a probability measure 𝜇 on X.
As in the previous case, the intensity of the target illumination is
modeled by a probability measure 𝜈 on the sphere of directions

at infinity. At each point (x, u(x)) of the optical component, the
gradient ∇u(x) encodes the direction of the normal to the surface
and we denote by F(∇u(x)) ∈ 𝕊2 the direction of the ray reflected
by Snell’s law. The reflector defined by u solves the inverse mirror
problem between 𝜇 and 𝜈 if for any measurable set B ⊂ 𝕊2 one
has

𝜈(B) = 𝜇((F ∘ ∇u)−1(B)).

Let us introduce the measure ̃𝜈 defined by ̃𝜈(B) = 𝜈(F(B)), which
is supported on ℝ2. We assume that 𝜇 and ̃𝜈 are absolutely con-
tinuous with respect to the Lebesgue measure, with continuous
densities 𝜌 and 𝜎, and that x ↦ ∇u(x) is a diffeomorphism on its
image. Then, with the change of variable y = ∇u(x), the inverse
mirror problem for a collimated source can also be phrased as a
partial differential equation:

⎧
⎨⎩

𝜎(∇u(x)) det(D2u(x)) = 𝜌(x),
F ∘ ∇u is a diffeomorphism from X to Y .

(Mir-Coll-C)

We finally note that if u is smooth and strongly convex (or strongly
concave), the application ∇u is a diffeomorphism on its image.

1.3 Lenses
The construction of lenses that transform a light source into a target
illumination prescribed at infinity are similar and are also described
by Monge–Ampère type equations. As with mirrors, when the light
is emitted from a point, the equation to be solved is on the sphere
and when the light source is collimated, it is on the plane. In these
problems, the light source passes through the surface of one side
of the lens, either flat or spherical, and the aim is to construct the
surface of the other side of the lens such that it refracts the light
onto a prescribed target illumination at infinity. We do not detail
the modelling of these problems here, but we will show results
with lenses at the end.

2 Geometric discretization of Monge–Ampère equations

The two inverse problems in anidolic optics described in the previ-
ous section each involve two sets X and Y , on which we have two
probability measures 𝜇 and 𝜈 respectively, representing the light
source and the desired target illumination. We saw that when these
measures are absolutely continuous, the problems of construction
of optical components correspond to partial differential equations
of Monge–Ampère type.

The most direct method to solve a partial differential equation
numerically is to approximate the domain X with a discrete grid and
to replace the partial derivatives with differences of the values of
the function at the points of the grid divided by the grid step. In the
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case of Monge–Ampère equations, the application of these meth-
ods is made difficult by the non-linearity of the Monge–Ampère
operator and by the diffeomorphism condition. We refer to the
work of Adam Oberman, Brittany Froese, Jean-David Benamou and
Jean-Marie Mirebeau for this line of research.

In recent years, alternative methods, called semi-discrete meth-
ods, have been used to discretize and numerically solve Monge–
Ampère type equations arising from optimal transport. In order
to apply this method, one assumes that one of the two mea-
sures 𝜇 or 𝜈 is absolutely continuous, while the other is finitely
supported. Here we assume that 𝜇 has a density 𝜇(x) = 𝜌(x)dx
on the space X and that 𝜈 is a discrete measure on the space
Y = {y1,…, yN}, i.e., 𝜈 = ∑1≤ i≤N 𝛿yi𝜈i where 𝛿yi is the Dirac mass
in yi.

In this section, we describe the semi-discrete variant of the
two far-field mirror problems seen in the previous section, leaving
aside the problem of convergence of the solutions to the discrete
problems towards those to the continuous problems. These con-
structions give rise to equations which can naturally be seen as
discrete Monge–Ampère equations. We also propose an economic
interpretation by addressing the bakeries problem.

2.1 Mirror for a point light source
Let us go back to the problem of constructing mirrors that trans-
form the light emitted by a point light source (see Section 1.1). As
in the previous section, the light source is modeled by a continuous
probability density 𝜌 on the sphere of directions 𝕊2, whose support
X𝜌 ∶= {x ∈ 𝕊2, 𝜌(x) > 0} corresponds to the set of directions in
which light is emitted. This time we assume that the desired target
illumination is described by a probability measure 𝜈 = ∑1≤ i≤N 𝛿yi𝜈i
supported on a set Y = {y1,…, yN} ⊂ 𝕊2 of distinct directions.
The problem is still to find the mirror surface ℛ that will reflect the
measure 𝜇 onto the measure 𝜈 under Snell’s law, but this time the
target measure 𝜈 is discrete.

Mirror composed of paraboloid pieces
We use the method of supporting paraboloids proposed by Caf-
farelli and Oliker in 1994 [1], which was originally developed to
show the existence of weak solutions in the case where both
measures are absolutely continuous. Caffarelli and Oliker’s idea
is based on a well-known property of paraboloids of revolution:
a paraboloid of revolution with focal point O and direction y re-
flects any ray coming from point O to the direction y. It is thus
natural to seek to construct a mirror whose surface is composed
of pieces of paraboloids, each paraboloid illuminating a direc-
tion yi.

More precisely, we take 𝜓 = (𝜓1,…,𝜓N) ∈ ℝN and denote by
P(yi,𝜓i) the solid (i.e. filled) paraboloid of direction yi, with focal
point at the origin O and focal distance 𝜓i. This means that

1

2
𝜓i is

the distance between O and the paraboloid’s closest point to O.

We define by ℛ𝜓 the surface bordering the intersection of the solid
paraboloids P(yi,𝜓i):

ℛ𝜓 = 𝜕⎛
⎝

⋂

1≤ i≤N

P(yi,𝜓i)⎞
⎠
.

For each i ∈ {1,…,N} we denote by Vi(𝜓) the set of rays x ∈ 𝕊2

emitted by the light source and reflected by Snell’s law in the
direction yi. This set is called the i-th visibility cell of the mirror
ℛ𝜓. By construction, it corresponds to the radial projection of
ℛ𝜓 ∩ 𝜕P(yi,𝜓i) onto the sphere (see Figure 4).

A simple calculation shows that the intersection of two con-
focal paraboloids 𝜕P(yi,𝜓i) and 𝜕P(yj,𝜓j) is included in a plane
curve. Projecting radially onto the unit sphere, this implies that
the intersection of two visibility cells Vi(𝜓) ∩ Vj(𝜓) is included in a
curve on the sphere. We deduce that the set of visibility cells forms
a partition of the sphere 𝕊2, up to a set of measure zero.

The paraboloid of revolution 𝜕P(yk,𝜓k) can be parametrized
radially by the function x ∈ 𝕊2 ↦ x𝜌k(x), where 𝜌k(x) =
𝜓k/(1 − ⟨x | yi⟩) ∈ ℝ. We deduce that x belongs to the visibil-
ity cell Vi(𝜓) if and only if the distance 𝜌i(x) is smaller than the
distances 𝜌j(x) for j ∈ {1,…,N}. Composing with the logarithm
to linearize the expression in 𝜓, we obtain an explicit expression
for the visibility cells

Vi(𝜓) = {x ∈ 𝕊2 ∣ ∀j, c(x, yi) + ln(𝜓i) ≤ c(x, yj) + ln(𝜓j)},

where c(x, y) = − ln(1 − ⟨x | y⟩).
By construction, each ray emitted by the point source and be-

longing to the cell Vi(𝜓) hits the mirrorℛ𝜓 at a point which belongs
to the paraboloid 𝜕P(yi,𝜓i) and which is reflected in the direction
yi. The quantity of light received in the direction yi is therefore
exactly the quantity of light emanating from the visibility cell Vi(𝜓),
i.e., 𝜇(Vi(𝜓)). The desired quantity of light in the direction yi is
𝜈i. The equation to be solved is therefore 𝜇(Vi(𝜓)) = 𝜈i for any
i ∈ {1,…,N}. Moreover, note that a paraboloid of revolution is
only determined by its focal point, its direction and its focal dis-
tance. The free parameter remaining for each paraboloid 𝜕P(yi,𝜓i)
is the focal distance 𝜓i.

y1
𝜕P3

V3(𝜓)

y2
0𝜕P2 𝜈 = 𝛿y1𝜈1 + 𝛿y2𝜈2 + 𝛿y3𝜈3
(𝕊2,𝜇)

(𝕊2,𝜈)𝜕P1

y3

Figure 4. Mirror composed of three pieces of paraboloides reflecting in three
directions
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Formulation of the problem
The semi-discrete far-field mirror problem for a point source can
be formulated as the problem of finding focal distances 𝜓 =
(𝜓1,…,𝜓N) ∈ ℝN that satisfy

∀i, 𝜇(Vi(𝜓)) = 𝜈i (Mir-Ponc-SD)

where c(x, y) = − ln(1 − ⟨x | y⟩) and where

Vi(𝜓) = {x ∣ ∀j, c(x, yi) + ln(𝜓i) ≤ c(x, yj) + ln(𝜓j)}.

We will see in Section 3 how to solve such systems of equations.
Note that if 𝜓 ∈ ℝN is a vector of focal distances solving the mirror
problem for a point-like source, then the surface of the mirror is
parametrized by

ℛ𝜓 ∶ x ∈ 𝕊2 ↦ min
i

𝜓i

1 − ⟨x | yi⟩
x.

In the numerical experiments, we assume that the target illumina-
tion 𝜈 is included in the half-sphere 𝕊2

− ∶= {x ∈ 𝕊2, ⟨x | ez⟩ ≤ 0},
that the support X𝜌 of 𝜌 is included in the half-sphere 𝕊2

+ ∶= {x ∈
𝕊2, ⟨x | ez⟩ ≥ 0}, and that the mirror is parametrized above the
domain X𝜌.

Remark 2.1. The mirror surface is by construction the bound-
ary of a convex set, i.e., the intersection of the solid paraboloids
P(y1,𝜓1),…, P(yN,𝜓N). It is also possible to construct a mirror
contained in the boundary of the union of solid paraboloids rather
than an intersection. This produces mirrors that are somewhat less
interesting in practice, as they are neither convex nor concave.

2.2 Mirror for a collimated light source
Let us now consider the mirror problem for a collimated light source,
already seen in Section 1.2. As before, the probability measure mod-
elling the light source has a density 𝜌 with respect to the Lebesgue
measure on the plane. However the probability measure modelling
the target illumination intensity is discrete 𝜈 = ∑1≤ i≤N 𝛿yi𝜈i, sup-
ported on a finite set Y = {y1,…, yN} ⊂ 𝕊2 of distinct directions.
The problem is, again, to find the surface ℛ of a mirror which
reflects the measure 𝜇 to the measure 𝜈.

Mirror with planar faces
We choose to construct the mirror surface ℛ as the graph of affine
height functions of the form x ∈ ℝ2 ↦ maxi⟨x | pi⟩ − 𝜓i (see Fig-
ure 5). The vector pi is chosen so that the plane Pi = {(x, ⟨x | pi⟩) ∣
x ∈ ℝ2} reflects vertical rays, i.e., with direction ez, into the direc-
tion yi ∈ 𝕊2. We need to determine the heights 𝜓i of those planes.
Given a family of heights 𝜓 ∈ ℝN, we define the i-th visibility cell
as

Vi(𝜓) = {x ∈ ℝ2 × {0} ∣ ∀j, −⟨x | pi⟩ + 𝜓i ≤ −⟨x | pj⟩ + 𝜓j}.

surface ℛ plane with slope pi

X𝜌 Vi(𝜓)

̇x yi

Figure 5. Convex mirror for a collimated light source

By construction, for each i ∈ {1,…,N}, any vertical ray emitted
from a point x ∈ Vi(𝜓) hits the mirror ℛ at a height ⟨x | pi⟩−𝜓i and
is reflected in the direction yi. Thus, the amount of light reflected
in the direction yi is equal to 𝜇(Vi(𝜓)).

Formulation of the problem
Solving the semi-discrete far-field mirror problem for a collimated
light source amounts to finding the heights 𝜓 ∈ ℝN that satisfies

∀i, 𝜇(Vi(𝜓)) = 𝜈i (Mir-Colli-SD)

where c(x, y) = −⟨x | y⟩ and

Vi(𝜓) = {x ∣ ∀j, c(x, yi) + 𝜓i ≤ c(x, yj) + 𝜓j}.

A solution of the equation (Mir-Colli-SD) induces a parametrization
of the convex mirror ℛ that reflects 𝜇 onto 𝜈:

ℛ𝜓 ∶ x ∈ ℝ2 ↦ (x,max
i
⟨x | pi⟩ − 𝜓i) ∈ ℝ3.

In practice, we only consider the part of the mirror located above
the domain X𝜌 ∶= {x ∈ ℝ2 × {0}, 𝜌(x) ≠ 0}.

Remark 2.2. The function ℛ𝜓 being the maximum of affine func-
tions, it is convex. The optical component which is parametrized
by the graph of this application is also convex. Note that one could
have the same construction by replacing the max in the formula by
a min. This would result in a concave function ℛ𝜓 and a concave
mirror.

Remark 2.3. Problem (Mir-Colli-SD) is very similar (but not equiv-
alent) to Minkowski’s problem in convex geometry which is also
an inverse problem. Given a set of unit vectors yi and real num-
bers 𝜈i > 0, this problem consists in building a convex polyhedron
whose i-th facet has normal yi and area 𝜈i – which is possible only
under some assumptions on the directions and areas. We also note
that Oliker, who was the first to introduce semi-discrete methods
for the numerical resolution of Monge–Ampère equations, was
a doctoral student of the famous geometer Aleksandrov who is
known (among other) for introducing and studying the “continu-
ous” formulation of Minkowski’s problem.

20 EMS MAGAZINE 120 (2021)



2.3 The bakeries problem
We now present an economic analogy which leads to an equa-
tion having the same structure as in the two optical problems
presented above. We assume that X represents a city whose popu-
lation density is described by a probability density 𝜌, that the finite
set Y = {y1,…, yN} represents the locations of the city’s bakeries
and that 𝜈i represents the quantity of bread available in bakery
yi. Customers living at a location x in X naturally will look for the
bakery minimizing the cost of walking from x to yi, denoted c(x, yi).
This leads to a decomposition of the city space into Voronoi cells,

Vori ∶= {x ∈ ΩX ∣ ∀j, c(x, yi) ≤ c(x, yj)}.

The number of customers going to a bakery yi is equal to the inte-
gral of the density 𝜌 over Vori. Suppose that a bakery yi receives
too many customers in comparison to its bread’s production ca-
pacity 𝜈i – this could be the case in Figure 6 for the downtown
bakery y1 where the population density is high. This means we have
𝜇(Vor1) > 𝜈1, where we denote 𝜇(x) = 𝜌(x)dx. The baker y1 will
then seek to increase the price of his bread. This will reduce the
number of potential customers, but will increase the baker’s profit
as long as he manages to sell all his stock. We write 𝜈i ≥ 0 for the
proportion of the population that the bakery yi is able to serve, and
𝜓i the price of the bread in the bakery yi. If we assume that the
customers living at point x make a compromise between walking
cost and price of bread by minimizing the sum (c(x, yi) + 𝜓i), the
city is then decomposed into Laguerre cells

Lagi(𝜓) = {x ∈ X ∣ ∀j, c(x, yi) + 𝜓i ≤ c(x, yj) + 𝜓j}.

Note that we do not necessarily have yi ∈ Lagi(𝜓), and that it is
even possible to have Lagi(𝜓) = ∅: indeed, if the bread is very
expensive in a certain bakery, even people living next door may
prefer going to a more distant one.

Problem formulation
The bakeries problem therefore boils down to finding a price vector
𝜓 ∈ ℝN such that each bakery sells all its stock of bread 𝜈i. This is

described by the system of equations

𝜇(Lagi(𝜓)) = 𝜈i ∀i ∈ {1,…,N},

This equation has exactly the same structure as (Mir-Ponc-SD)
and (Mir-Colli-SD). We will see in the next section how to solve this
class of equations.

3 Numerical resolution

The discrete problems mentioned in the previous section all show
the same structure; our focus will now be on their numerical
resolution. We start by introducing the semi-discrete Monge–
Ampère equation, and show that its solution is equivalent to finding
the maximum of a concave function. Subsequently, we present
a Newton method that allows us to solve these equations effi-
ciently.

3.1 Semi-discrete Monge–Ampère equation
Let X be a compact subset of the space ℝ2 or of the sphere 𝕊2,
let Y = {y1,…, yN}, and let c ∈ 𝒞1(X × Y) be a cost function.
The Laguerre cell (which corresponds to a visibility cell in optics)
associated with a family of real numbers 𝜓 = (𝜓1,…,𝜓N) ∈ ℝN is
given by

Lagi(𝜓) = {x ∈ X ∣ ∀j, c(x, yi) + 𝜓i ≤ c(x, yj) + 𝜓j}.

Suppose that the cost function satisfies the Twist condition

∀x ∈ X, y ↦ ∇xc(x, y) is injective, (Twist)

which ensures that the Laguerre cells form a partition of the domain
X up to a negligible set.

X
Y

y1 y1 y1

Figure 6. Bakeries: The city X with its boundary drawn in blue is endowed with a probability density
pictured in grayscale representing the population density. The set Y (in red) represents the location
of bakeries. Here, X, Y ⊆ ℝ2 and c(x, y) = |x − y|2. We see the Voronoi tessellation of the city (in
the middle, uniform price) as well as its Laguerre tessellation (on the right, only the bread price 𝜓1

has increased).
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Semi-discrete Monge–Ampère equation
Let 𝜇 be a probability measure on X with density 𝜌 with respect to
the area measure, and let 𝜈 = ∑i 𝜈i𝛿yi be a probability measure on
Y . In the following equation, the discrete probability measure 𝜈 is
conflated with the vector 𝜈 = (𝜈i)1≤ i≤N. We are seeking 𝜓 ∈ ℝN

satisfying
G(𝜓) = 𝜈, (MA)

where the function G ∶ ℝN → ℝN is defined by

G(𝜓) = (G1(𝜓),…,GN(𝜓)) and Gi(𝜓) = 𝜇(Lagi(𝜓)).

Remark 3.1. The visibility cells used in optics in (Mir-Ponc-SD) and
(Mir-Colli-SD) are Laguerre cells, with

c(x, y) = − log(1 − ⟨x | y⟩) and c(x, y) = −⟨x | y⟩

respectively. Equation (MA) is a reformulation of equa-
tions (Mir-Ponc-SD) and (Mir-Colli-SD). Note that the Laguerre
cells are invariant under addition of a constant to 𝜓, and that the
solution of (MA) is therefore defined up to an additive constant.
Optical problems have a similar invariance: for example, if a surface
ℛ is a solution of the mirror problem for a point source, then so is
𝜆ℛ for all 𝜆 > 0.

3.2 Variational formulation
The following theorem shows that the function G in the semi-
discrete Monge–Ampère equation is the gradient of a concave
function.

Theorem 3.1. We assume that the cost function c satisfies (Twist).
Then the function 𝒦 ∶ ℝN → ℝ defined by

𝒦(𝜓) = ∑
1≤ i≤N

ż

Lagi(𝜓)
(c(x, y) + 𝜓i)𝜌(x)dx − ∑

1≤ i≤N

𝜓i𝜈i

is concave, of class 𝒞1 and with gradient

∇𝒦(𝜓) = G(𝜓) − 𝜈 = (𝜇(Lagi(𝜓)) − 𝜈i)1≤ i≤N
.

As we will see in the next paragraph, the function 𝒦 is related
to the Kantorovitch duality in optimal transport theory, and we
will therefore call it the Kantorovitch functional. Moreover, since
a concave function of class 𝒞1 reaches its maximum exactly at its
critical points, we obtain the following corollary:

Corollary 3.2. Under the assumptions of Theorem 3.1, a vector
𝜓 ∈ ℝN is a solution to equation (MA) if and only if 𝜓 is a maximizer
of 𝒦.

Since the function 𝒦 is invariant under addition of a constant,
one can choose to work on the set ℳ0 of vectors whose coordi-
nates sum to zero. It can be shown that the function 𝒦 is proper
on ℳ0, i.e., lim

‖
‖𝜓

‖
‖→+∞,𝜓∈ℳ0

𝒦(𝜓) = −∞, which ensures that it
reaches its maximum: the problem (MA) thus admits a solution.

3.3 Relation to optimal transport
The variational formulation of the Monge–Ampère equation, i.e.,
the search for a maximizer of the Kantorovitch functional, corre-
sponds in fact to the dual of the Monge–Kantorovitch problem in
optimal transport theory. We discuss this link in detail below in the
semi-discrete case. The reader interested in the proofs may refer
for instance to the book chapter [4].

Monge’s problem
The image of a probability measure 𝜇 on X under a measurable
application T ∶ X → Y is the measure T#𝜇 on Y defined by
T#𝜇(B) = 𝜇(T−1(B)). If T#𝜇 = 𝜈, we say that T transports 𝜇 to
𝜈. Since the set Y is finite, we have T#𝜇 = ∑1≤ i≤N 𝜇(T

−1(yi))𝛿yi .
Monge’s optimal transport problem consists in finding a transport
map T that transports 𝜇 to 𝜈 and that minimizes the total cost
ş

X
c(x, T(x))d𝜇(x). If the cost function c satisfies the Twist condi-

tion, Brenier and Gangbo–McCann, relying on Kantorovich duality,
proved the existence of a minimizer for this problem when the
source 𝜇 is absolutely continuous. For example, one can state the
following:

Theorem 3.3 (Kantorovitch duality). Suppose that c satisfies the
condition (Twist) and that 𝜇 is absolutely continuous. Then

min
T ∶X→Y
T♯𝜇=𝜈

ż

X

c(x, T(x))d𝜇(x) = max
𝜓∈ℝN

𝒦(𝜓).

If moreover 𝜓 is a maximizer of 𝒦, then the function T𝜓 ∶ X → Y
defined 𝜇-a.e. by T𝜓|Lagy(𝜓) = y realizes the minimum in Monge’s
problem.

Remark 3.2. Not all Monge–Ampère equations derive from an
optimal transport problem and not all of them admit a variational
formulations. These two strong properties come in fact from the
very particular structure of Laguerre cells, which follows from the
functions 𝜓 ↦ c(x, y) + 𝜓(y) being affine.

We saw that the far-field optics problems presented in Sec-
tion 2 possess this structure. On the other hand, if we consider
the mirror construction problems for a target illumination in the
near-field (i.e., we are illuminating points in ℝ3 and not directions
at infinity), we still have semi-discrete Monge–Ampère equations
to solve, but the Laguerre cells are of the form

Lagi(𝜓) = {x ∈ X ∣ ∀j, G(x, yi,𝜓i) ≤ G(x, yj,𝜓j)},

where the function G is nonlinear in 𝜓. These equations do not
derive from the optimal transport problem and in fact do not ad-
mit a variational formulation. They are called prescribed Jacobian
equations by Trudinger, and are the subject of recent research both
in analysis and in more applied fields (optics, economics).
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3.4 Laguerre cells and derivatives
Before applying Newton’s method to solve the equation G(𝜓) = 𝜈,
we need to show that the function G is of class 𝒞1 (or equivalently
that 𝒦 is of class 𝒞2), calculate its partial derivatives and study the
(strict) concavity of 𝒦. To do this, we need a genericity assumption
which is somewhat technical, but which is natural and not restric-
tive in practice. In the optical cases mentioned in this paper, this
assumption is satisfied if the intersection of three distinct Laguerre
cells is finite and if the intersection of two Laguerre cells with the
boundary of X is also finite. For more details, the reader may refer
to the book chapter [4].

Theorem 3.4 (Differental of G). Suppose that the cost satisfies
(Twist), that Y is generic (see above), and 𝜌 is continuous. Then
the application G ∶ ℝN → ℝN is of class 𝒞1 and

∀j ≠ i, 𝜕Gi

𝜕𝜓j
(𝜓) =

ż

Lagij(𝜓)

𝜌(x)‖
‖∇xc(x, yi) − ∇xc(x, yj)

‖
‖
dx,

∀i, 𝜕Gi

𝜕𝜓i
(𝜓) = −∑

j≠ i

𝜕Gi

𝜕𝜓j
(𝜓),

where Lagij(𝜓) = Lagi(𝜓) ∩ Lagj(𝜓).

The formula for the partial derivatives of G has a geometric
interpretation. In the following two figures, which are obtained for
the cost c(x, y) = ‖x − y‖2 on ℝ2, we explain why the formula for
partial derivatives involves integrals over the interfaces between La-
guerre cells and how the singularities of DG may occur depending
on the geometry of the points yi.

Figure 7 illustrates that the partial derivative 𝜕Gi/𝜕𝜓j(𝜓) is an
integral over the interface Lagij(𝜓): the value Gi(𝜓) is an integral
over the Laguerre cell Lagi(𝜓) (in grey on the left); we increase
the value 𝜓j by 𝜀 > 0 considering 𝜓 + 𝜀ej; the rate of increase
(Gi(𝜓) − Gi(𝜓 + 𝜀ej))/𝜀 is proportional to an integral over the
symmetric difference between two Laguerre cells (in grey in the
middle); passing to the limit we obtain an integral over the green
segment Lagij(𝜓). The signs that occurs in the formula for the par-
tial derivatives can also be interpreted with the bakeries metaphor:
when the price of bread 𝜓i increases, the number of customers of
the bakery yi decreases (i.e., the Laguerre cell Lagi(𝜓) shrinks) and
the number of customers for the other bakeries increases, so that
𝜕Gi/𝜕𝜓i(𝜓) ≤ 0 and 𝜕Gi/𝜕𝜓j(𝜓) ≥ 0 for j ≠ i.

In Figure 8, the genericity condition is not satisfied because
y1, y2 and y3 are aligned, and there exists 𝜓 ∈ ℝN for which
Lag1(𝜓)∩ Lag2(𝜓)∩ Lag3(𝜓) is a line segment. The partial deriva-
tive 𝜕G2/𝜕𝜓3(𝜓) is an integral on the (green) segment Lag23(𝜓).
If we simultaneously decrease 𝜓1 and 𝜓2 by the same amount,
we can see that the segment Lag23(𝜓) varies continuously and
then suddenly becomes empty when the cell Lag2(𝜓) gets empty
(bottom right of Figure 8). Thus, 𝜕G2/𝜕𝜓3(𝜓) is not continuous.
Newton’s method requires a certain regularity, and we will see
below that it converges under the above genericity assumptions.

yi yj yi yj yi yj

Gi(𝜓)
Gi(𝜓+𝜀ej)−Gi(𝜓)

𝜀
−−−−→
𝜀→ 0

𝜕Gi

𝜕𝜓j

(𝜓)

Figure 7. The partial derivatives are boundary integrals

y1 y2 y3 y1 y2 y3

y1 y3 y1 y2 y3

Figure 8. Non-continuous partial derivative: 𝜕G2/𝜕𝜓3 is an integral on the green
segment Lag23 which is discontinuous.

To establish the convergence of Newton’s method, we also
need to study the concavity of the Kantorovitch functional 𝒦, or
equivalently the monotonicity of its gradient ∇𝒦 = G − 𝜈. The
functions 𝒦 and G are invariant by addition of a constant vector
(i.e., 𝒦(𝜓 + C(1,…, 1)) = 𝒦(𝜓)), which can be seen in the defini-
tion of Laguerre cells. Thus, we can only hope to establish strong
concavity of 𝒦 in the directions orthogonal to constant vectors,
i.e., belonging to the set

ℳ0 ∶= {v ∈ ℝN ∣ ∑
1≤ i≤N

vi = 0}.

Another reason for the lack of strong concavity of 𝒦 is that if 𝜓i is
very large, then Lagi(𝜓) is empty and remains empty in a neighbor-
hood of 𝜓. In this case, Gi(𝜓) is constant equal to zero, and the
Hessian matrix D2G(𝜓) = DG has a row of zeros. We can therefore
hope to establish strong concavity only if 𝜓 belongs to the set

𝒞+ ∶= {𝜓 ∈ ℝN ∣ ∀i, Gi(𝜓) > 0}.

The next theorem shows, in a nutshell, that these are the only two
obstructions to strong concavity.
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Theorem 3.5 (Strict concavity). We assume the hypotheses of
the previous theorem hold. If the set {𝜌 > 0} is connected, the
function 𝒦 is locally strongly concave on 𝒞+ in the direction ℳ0:

∀𝜓 ∈ 𝒞+, ∀v ∈ ℳ0 ⧵ {0}, ⟨DG(𝜓)v | v⟩ < 0.

Remark 3.3 (Uniqueness). We saw above that the function 𝒦 has
a maximum, and thus equation (MA) has a solution. The previous
theorem implies that this maximum is unique if we impose that
𝜓 ∈ ℳ0, i.e., 𝜓 has zero average, since a strictly concave function
admits at most one local maximum.

We will see in the next paragraph how these results of regular-
ity and monotonicity allow us to iteratively construct a sequence
(𝜓(k))k ≥ 0 converging to the unique zero-average 𝜓∗ satisfying
G(𝜓∗) = 𝜈.

3.5 Newton’s method
Newton’s method in 1D
We begin by recalling Newton’s method for solving the equa-
tion g(x) = 0, where g ∶ ℝ → ℝ is a real function. New-
ton’s method starts from x0 ∈ ℝ and constructs the sequence
xk+1 = xk − g(xk)/g′(xk) by induction. If we assume that g is
of class 𝒞1 and that there exists a ∈ ℝ such that g(a) = 0 and
g′(a) ≠ 0, then one can show, using Taylor–Lagrange formulas,
that for x0 sufficiently close to a, the sequence (xk)k ≥ 0 converges
to a. The convergence is then said to be local. Thus, under a
regularity hypothesis (g ∈ 𝒞1) and monotonicity (g′ has constant
sign in a neighborhood of a), Newton’s method converges lo-
cally.

Newton’s method (local)
Assume that we are given a zero-average vector 𝜓0 ∈ ℳ0 such
that the mass of all Laguerre cells is strictly positive:

𝜀0 ∶=
1
2
min[min

y ∈ Y
Gi(𝜓0), min

1≤ i≤N
𝜈yi] > 0.

We define 𝜓k+1 in the following way: we start by calculating the
Newton direction dk, i.e., the vector dk satisfying

DG(𝜓k)dk = −(G(𝜓k) − 𝜈) and dki ∈ ℳ0,

which exists and is unique by according to Theorem 3.5. The sec-
ond equation enables us to overcome the invariance of G and thus
the non-invertibility of DG(𝜓k). We then define 𝜓k+1 = 𝜓k +dk. As
in the 1D case, it can be shown that the method converges locally:
if 𝜓0 is chosen close enough to the 𝜓∗ solution, then the sequence
(𝜓k) converges to 𝜓∗.

Globally convergent Newton’s method
However, the condition 𝜓0 is close to the solution 𝜓∗ is impossible
to fulfill in practice. Fortunately, a very simple modification of the
method allows to ensure a global convergence, allowing us to drop
this closeness assumption. To do this, one must construct 𝜓k+1

in such a way that the kernel of the Jacobian DG(𝜓k+1) remains
equal to constant vectors, so that the system defining the direction
dk+1 admits a unique solution. For this purpose, we define the
step 𝜏k as the largest real of the form 2−ℓ (with ℓ ∈ ℕ) such that
𝜓k,ℓ ∶= 𝜓k + 2−ℓdk satisfies

⎧
⎨⎩

∀i ∈ {1,…,N}, Gi(𝜓k,ℓ) ≥ 𝜀0,‖
‖G(𝜓k,ℓ) − 𝜈

‖
‖ ≤ (1 − 2−(ℓ +1))

‖
‖G(𝜓k) − 𝜈

‖
‖.

Finally, we define 𝜓k+1 = 𝜓k + 𝜏kdk.
By using the regularity and concavity results on 𝒦, the step 𝜏k

can be bounded from below, thus ensuring the convergence of the
sequence constructed above to a solution of the optimal transport
problem [4]:

Theorem 3.6. Under the assumptions of Theorem 3.5, there exists
𝜏∗ > 0 such that

‖
‖G(𝜓k+1) − 𝜈

‖
‖ ≤ (1 − 𝜏⋆

2
)
‖
‖G(𝜓k) − 𝜈

‖
‖.

In particular, the sequence (𝜓k)k ≥ 0 converges to the unique solu-
tion 𝜓∗ of (MA) satisfying ∑i 𝜓

∗
i = 0.

Remark 3.4 (Quadratic convergence). The above theorem shows
that the convergence of Newton’s method is globally exponential.
This convergence is actually called linear convergence in optimiza-
tion. When the cost c satisfies the Ma–Trudinger–Wang (MTW)
condition that appears in the theory of optimal transport regularity,
and the density 𝜌 is Lipschitz, then the convergence is even locally
quadratic [3]: for sufficiently large k, we have

‖
‖G(𝜓k+1) − 𝜈

‖
‖ ≤ 1

2

‖
‖G(𝜓k) − 𝜈

‖
‖
2.

In practice, the convergence is very fast and the basin where
quadratic convergence occurs seems to be quite large. This last
observation is empirical, and not mathematically explained yet.
In Figure 9, X = [0, 1]2 is the large white square and Y is a set
of points in the lower left corner and c(x, y) = ‖x − y‖2. With
N = 100 points, after three iterations the error ‖G(𝜓3) − 𝜈‖1 is
already of order 10−9. Even difficult examples of size N = 107 in
dimension d = 3 can be solved to high numerical precision with
less than 20 iterations!

4 Applications to anidolic optics

In this section we present the adaptation of semi-discrete methods
to the practical resolution of inverse problems in optics. These
results were obtained in the PhD thesis of Jocelyn Meyron and the
images are taken from the article [5].
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Step 1:
‖G(ψ1)− ν‖1 ' 0.6

Step 3:
‖G(ψ3)− ν‖1 ' 10−9

X

Y
Initialization: 𝜓0 ≡ 0
‖G(𝜓0) − 𝜈‖1 ≃ 1.8

Y Initialization: ψ0 ≡ 0

X

‖G(ψ0)− ν‖1 ' 1.8

Step 1:
‖G(𝜓1) − 𝜈‖1 ≃ 0.6

Step 3:
‖G(𝜓3) − 𝜈‖1 ≃ 10−9

Figure 9. Convergence of the sequence (𝜓k). On images 2, 3 and 4 we see the
Laguerre cells Lagi(𝜓

k) for k=0,1,3.

4.1 Far-field problems
We saw in Section 2 that in several far-field problems, i.e., when
the target illumination is at infinity, solving the Monge–Ampère
equation (MA) allows us to construct an optical component. This
involves modelling mirrors or lenses, with a point or collimated
light source, and in each case there are two components that
may be produced (one of which is convex), so that in all we have
formulated eight different near-field optical problems.

The main difficulty in implementing Newton’s algorithm to
solve (MA) lies in the evaluation of the function G and its differ-
ential DG at point 𝜓k, and more precisely in the calculation of the
set of Laguerre cells Lagi(𝜓

k). For cells from non-imaging optics
problems, also called visibility cells, it is possible to perform this
calculation in almost linear time in the number N of Dirac masses.
Take for example the mirror problem for a point source. The visi-
bility cells are obtained by projecting radially onto the sphere an
intersection of “solid” confocal paraboloids, and we have already
seen that the intersection of two confocal paraboloids is included
in a plane. Another simple calculation shows that the radial projec-
tion of such an intersection is also included in a (different) plane.
This shows that the visibility cells are separated by hyperplanes. In
fact, it can be shown that there exists a partition of ℝ3 into convex
polyhedra P1,…, PN – called a power diagram in computational ge-
ometry – such that each visibility cell is of the form Vi(𝜓) = 𝕊2∩ Pi
(Figure 10). A similar property holds for each of the eight problems.
The point of this reformulation is that there are powerful libraries –
for example Cgal or Geogram – that allow us to compute power
diagrams in dimensions 2 and 3, and thus also the Laguerre cells
associated with the optics problems. It is therefore possible to im-
plement the damped Newton algorithm, and to use it to construct
– numerically and even physically – mirrors and lenses for far-field
targets in anidolic optics.

Pi

Vi(𝜓)

X

Collimated source Point source

Figure 10. Visibility cell structure

4.2 Near-field problems
It is also possible to deal with more realistic target illuminations in
the near-field – i.e., when illuminating points at a finite distance
rather than directions – with an iterative method that solves a
far-field solution at each step [5]. The convergence is very fast,
requiring only a few iterations, as illustrated in Figure 11.

In all the experiments presented below, the light source is as-
sumed to be uniform, so that the light source 𝜇 has a constant
density on its support. The reflection or refraction of this light
on a wall is simulated in the computer by the physically realistic
rendering software LuxRender.

Generic method
The different problems of anidolic optics having the same structure
(point or collimated light sources, mirrors or lenses, convex or
concave components, near-field or far-field), it is possible to solve
them in a unified, precise and automatic manner with the same

Target Iter. 1

Iter. 2 Iter. 6

Figure 11. Convergence of far-field mirrors to near-field mirrors
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Figure 12. Mirrors for collimated (top) and point (bottom) light; visibility cells
(left), component mesh (middle) and rendering with LuxRender (right)

Figure 13. Lenses for collimated (top) and point (bottom) light; visibility cells
(left), component mesh (middle) and rendering with LuxRender (right)

Figure 14. A point light (not visible) is placed in front of the mirror and the path
of the light is simulated by the computer using the physically realistic renderer
LuxRender

Figure 15. Concave and convex lenses

algorithm (Figures 12, 13 and 14). In Figures 12 and 13, the visibility
cells on the sphere or plane are shown on the left, above which is
the surface of the optical component. Each surface is represented
in the computer by a mesh (a set of triangles) which is shown in
the middle. The simulation of the reflected or reflacted light with
LuxRender is on the left.

Convexity/concavity of the components
Some applications require the construction of optical components
with convexity properties. This is the case in the automotive indus-
try for the construction of mirrors and/or lenses. The reason for this
is both practical, as it is easier to build a convex component, and
aesthetic. In the case of collimated light sources, mirrors or lenses
can always be convex or concave, as can be seen in Figure 15.

Singularity of solutions
The optical components are by construction objects with only a 𝒞0

regularity. Indeed, they are surfaces composed of pieces of planes,
paraboloids or ellipsoids (in the case of a mirror for a point light
source) which are joined together in a manner that is continuous
but not 𝒞1. However, as the discretization of the target illumina-
tion becomes finer and finer, the surface tends towards an object
that has greater regularity. In Figure 16, we observe a 𝒞1 regular-
ity, except at points on the surface that correspond to black areas in

mirror mesh of the mirror

Singularity

Image rendered with LUXRENDER

Figure 16. Singularity and meshing (surface singularities correspond to black
areas)
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the target image. Intuitively, the lack of regularity comes from the
fact that the light must avoid the black areas, which results in a
jump in the vector field normal to the surface.

Pillows
The inner part of a car headlamp is typically made up of “pillows”,
i.e., several small components. Each patch is intended to illuminate
a fairly wide range of directions, and the lights sent out by each
pillow overlap. This ensures a certain robustness in the lighting. If
for instance a bird flies past the headlights, not too close, it does
not obstruct all the light and the road remains fully illuminated.
In Figure 17, the target illumination for each pillows is the cam-
eraman’s image. When the calculations are done in the far-field,
i.e., when illuminating directions, the images are superimposed,
but with an offset due to the size of the pillows. To obtain a clear
image, it is necessary to make the calculations in the near-field, so
as to illuminate exactly the desired points. Note that the target is
always illuminated even if an obstacle, for example a red monkey
head, is placed in front of some of the pillows.

Colored target illumination
Similarly, solving the near-field problem makes it possible to illumi-
nate a target in color. Indeed, one can build an optical component
for each channel (red, green and blue). Then each of the three
lights is sent to its associated component and the colors are added
to the target to form a color image. This is done in Figure 18 with
three lenses.

Construction of mirrors and lenses
We also built optical components. The lenses and mirrors in Fig-
ures 19, 2 and 21 were milled by the GINOVA technology platform
in Grenoble on a 3-axis CNC (computer numerical control) machine
with 10mm radius milling cutters. The path of the milling cutter
creates irregularities on the optical components (Figure 22). Note
that the convexity of the optical components allows the use of
arbitrarily large milling radii, which reduces machining irregularities.
In any case, it is necessary to grind under water and then polish the
optical components (Figure 23). Of course, this affects the optical
quality and tends to whiten the black areas in the target image.
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Figure 17. Lens composed of 9 pillows: In the far-field (top); in the near-field
(middle); with obstacle (bottom)

Figure 18. Color image

Figure 19. Lens transforming collimated light into the picture of a train
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Figure 20. Lens transforming collimated light into the picture of a cameraman

Figure 21.Mirror transforming collimated light into the picture of a cameraman

Figure 22. Mirrors and lenses after machining

Figure 23. Sanding and polishing by hand
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