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We start this short note by introducing two remarkable mathem-
atical objects: the E8 root lattice Λ8 in 8-dimensional Euclidean
space and the Leech lattice Λ24 in 24-dimensional space. These two
lattices stand out among their lattice sisters for several reasons.

The first reason is that these both lattices are related to other
unique and exceptional mathematical objects. The E8 lattice is the
root lattice of the semisimple exceptional Lie algebra E8. The quo-
tient of Λ8 by a suitable sublattice is isomorphic to the Hamming
binary code of dimension 8 and minimum distance 4, which in its
turn is an optimal error-correcting binary code with these para-
meters. The Leech lattice is famously connected to the exceptional
finite simple groups, monstrous moonshine [7] and the monster
vertex algebra [1].

Another reason is that Λ8 and Λ24 are solutions to a number
of optimization problems. The E8 and Leech lattice provide op-
timal sphere packings in their respective dimensions [5,23]. Also
both lattices are universally optimal, which means that among all
point configurations of the same density, the Λ8 and Λ24 have the
smallest possible Gaussian energy [6].

The third reason for our interest in these lattices is less obvious.
The optimality of the E8 and Leech lattices can be proven in a rather
short way, while the solutions of analogous problems in other
dimensions, even dimensions much smaller than 8 and 24, is still
wide open. Finally, this last property seems to be inherited by other
geometric objects obtained from Λ8 and Λ24, such as Hamming
code, Golay code and the sets of shortest vectors of both lattices.

1 E8 and Leech lattices

The E8 lattice Λ8 is the unique (up to an isomorphism) even unimod-
ular lattice in the Euclidean spaceℝ8. We recall that a lattice Λ⊂ℝd

is even if for every lattice vector ℓ= (ℓ1,…,ℓd) its Euclidean length
squared |ℓ|2 = ℓ2

1 +⋯+ ℓ2
d is an even integer. A lattice Λ ⊂ ℝd is

unimodular if the volume of the quotient ℝd/Λ is 1. Equivalently,
the average number of lattice points per unit of volume is 1.

The existence of an even unimodular lattice in ℝ8 was first
proven non-constructively by H. J. S. Smith in 1867 and followed
from his newly discovered mass formula for lattices. The mass

formula for even unimodular lattices in dimension d divisible by 8
states that

∑
Λ

1
|Aut(Λ)| = |Bd/2|

d ∏
1≤ j<d/2

|B2j|
4j

,

where the left-hand sum is taken over all isomorphism classes of
lattices Λ, |Aut(Λ)| denotes the size of the group of orthogonal
transformations acting on Λ, and Bk are the Bernoulli numbers. Note
that even unimodular lattices exist only in dimensions divisible by 8.
In the smallest possible dimension 8, the right-hand side of the
mass formula becomes

|B4|
8

|B2|
4
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8
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=
|− 1

30 |
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| 16 |
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8
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42 |
12

= 1
696729600

.

The mass is non-zero, and therefore there exists at least one even
unimodular lattice in dimension 8. Moreover, the formula shows
that such a lattice is highly symmetrical. The explicit Gram matrix of
the E8 lattice was first given by Korkin and Zolotarev in 1873 [14].

One remarkable property of the E8 lattice is that the corres-
ponding sphere packing has very high density. The E8-lattice sphere
packing 𝒫E8 is the union of open Euclidean balls with centers at
the lattice points and radius 1

√2
. These non-intersecting congruent

balls cover ΔE8 ≔
π4

384 ≈ 0.25367 of the volume of ℝ8. In 2016 the
author showed that this density cannot be improved.

Theorem 1. No packing of unit balls in Euclidean space ℝ8 has
density greater than that of the E8-lattice packing.

The Leech lattice Λ24 was constructed by J. Leech in 1967 [15].
This lattice is an even unimodular lattice of rank 24. There exist
24 isomorphism classes of such lattices. Among these 24, the
Leech lattice is the unique one having the shortest non-zero vector
of length 2 (in the other 23 classes, the shortest vector has min-
imal possible for even lattices length √2). As the minimal distance
between two points in Λ24 is 2, it is a good candidate for a dense
sphere packing. The Λ24-lattice sphere packing is the packing of
unit balls with centers at the points of Λ24. This packing has dens-
ity ΔΛ24 ≔

π12

12! ≈ 0.00193. In joint work with H. Cohn, A. Kumar,
S. Miller and D. Radchenko, we proved the following.

4 EMS MAGAZINE 121 (2021) — DOI 10.4171/MAG-47



Theorem 2. No packing of unit balls in Euclidean space ℝ24 has
density greater than that of the Λ24-lattice packing.

In the next section, we explain how these results fit into a more
general framework.

2 The sphere packing problem

The sphere packing problem asks for the maximal portion of Euclid-
ean space that can be covered with non-overlapping congruent
balls. This natural geometric question is interesting from many
points of view. The sphere packing problem is a toy model for
many physical systems [17] and a mathematical framework for
error correcting codes in communication theory [20]. The known
and putative solutions of the sphere packing problem are geomet-
rically intriguing configurations, and in many cases possess other
extremal properties and unexpected symmetries.

The recorded modern history of the sphere packing problem
goes back to the sixteenth century and is documented in the corres-
pondence between a statesman, Sir Walter Raleigh, and a scientist,
Thomas Harriot. Harriot was asked by Raleigh to find the most
efficient way to stack cannonballs on the deck of the ship. Harriot
studied various stacking patterns, computed the number of cannon-
balls in a triangular pyramid and in a pyramid with square base, and
constructed face-centered cubic and hexagonal closed packings.
In 1591, he wrote a letter to Raleigh explaining some of these
findings. At the beginning of the seventeenth century, Harriot
exchanged letters with Johannes Kepler and shared his ideas on
sphere packings. In 1611, Kepler wrote an essay “Strena Seu de
Nive Sexangula”, in which he described face-centered cubic and
hexagonal close packings and asserted that “the packing will be
the tightest possible, so that in no other arrangement could more
pellets be stuffed into the same container”. This assertion became
famously known as Kepler’s conjecture.

The quest to solve Kepler’s conjecture lasted for almost three
centuries. We briefly recall the most important landmarks on the
way to the solution. In 1863, Carl Friedrich Gauss [12] showed
that the densest lattice packings in ℝ3 are the face-centered cubic
and hexagonal closed lattices. For a long time, the proof of the
conjecture in the general case remained beyond the reach. Even
much simpler geometric questions created serious debates, for
example the so-called sphere kissing problem. The sphere kissing
problem asks for the maximal number of non-intersecting unit
balls that can simultaneously touch one unit ball. This question can
be seen as a weak local version of the sphere packing problem.
The kissing number in dimension 3 is 12. Another important step
was the rigorous solution of the packing problem for unit disks in
dimension 2 [11,21]. The final solution of Kepler’s conjecture was
famously given by Thomas Hales [13].

The sphere packing problem and the sphere kissing problem
are easily generalized to Euclidean spaces of other dimensions.
At the moment the sphere packing problem has been completely
solved in dimensions 1, 2, 3, 8 and 24. Conjectural solutions to the
sphere packing problem in dimensions from 4 to 10 are listed in [8].
Analogs of the packing problem can be formulated in other metric
spaces. A subset X of a metric space (ℳ, ρ) is called an r0-code
if the distance between any two distinct points of X is greater
than or equal to r0. One interesting example of a metric space is
the Hamming space. The binary Hamming space of dimension d
is the vector space 𝔽d

2 over the finite field 𝔽2 equipped with the
following metric: the distance between the vectors x = (x1,…, xd)
and y=(y1,…,yd) is the number of indices i between 1 and d such
that xi ≠ yi. A subset X ⊂ 𝔽d

2 is a code of length d, dimension n
and distance r if X is a vector subspace over 𝔽2 of dimension n
and an r-code with respect to Hamming distance. Then we say
that X is a (d,n, r) code. Codes in Hamming spaces are particularly
interesting for us because of their connection to the lattices in
Euclidean spaces. There are several ways to produce a Euclidean
lattice from a code in Hamming space; some of them are described
in [9, Chapter 5]. For example, the E8 lattice can be constructed
from the binary Hamming code (8, 4, 4) by applying the so-called
“construction A”, and the Leech lattice can be obtained in a more
complicated way from the binary Golay code (24, 12, 8).

3 Energy minimization

A natural generalization of the sphere packing problem is the
question of minimizing the energy of pairwise interactions between
points. In this case, we consider configurations with a fixed number
of points on a compact metric space, or configurations with fixed
point density in the non-compact case.

Let Cf be a finite subset in ℝd. Fix a potential function

p∶ (0,∞) → ℝ.

The potential p-energy of Cf is
1

|Cf|
∑

x,y∈Cf
x≠ y

p(|x− y|).

We would like to extend this definition to infinite discrete subsets
of Euclidean space.

Let C be a discrete closed subset of ℝd. We say C has density ρ
if

lim
r→∞

|C∩ Bd(0, r)|
vol(Bd(0, r))

= ρ.

The lower p-energy of C is

Ep(C) ≔ lim inf
r→∞

1
|C∩ Bd(0, r)|

∑
x,y∈C∩Bd(0,r)

x≠ y

p(|x− y|).

If the limit exists, we call Ep(C) the p-energy of C.
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4 Universal optimality

We rephrase a famous saying: “An optimal configuration is optimal
everywhere”. Is it possible that one configuration is optimal for all
potentials? The answer is obviously no; however, some configur-
ations provide an optimal solution for a wide family of potential
functions p.

One important family of potentials in Euclidean space are Gauss-
ian functions pα(r) = e−αr2 , where α is a positive real number. The
convex cone spanned by all real Gaussians is the cone of com-
pletely monotonic functions of squared distance. In [3], H. Cohn
and A. Kumar introduced the following definition.

Definition 3. Let C be a discrete subset ofℝd with density ρ, where
ρ > 0. We say that C is universally optimal if it minimizes p-energy
whenever p∶ (0,∞) → ℝ is a completely monotonic function of
squared distance.

The following result was established in [22] back in 1979.

Theorem 4. The lattice ℤ is universally optimal.

This result is also proven in [3] with the help of linear program-
ming, the proof technique which will be explained in the next
section. Moreover, in the same paper, Cohn and Kumar made the
following conjecture.

Conjecture 5. The lattices A2, Λ8 and Λ24 are universally optimal.

In joint work with H. Cohn, A. Kumar, S. Miller and D. Rad-
chenko [6], we have proved the following.

Theorem 6. The lattices Λ8 and Λ24 are universally optimal.

Not much is known about universally optimal configurations in
Euclidean space, and in particular whether the lattices in Theorem 4
and Conjecture 5 give the complete list of all universally optimal
lattices. In [4], the authors provide numerical evidence that the
root lattice D4 and the configuration D+

9 (the definition of this
configuration is given in [4]) might be universally optimal.

5 Magic functions for geometric optimization problems

In this section, we will talk about the proof techniques used in
Theorems 1, 2 and 6. Curiously, similar methods were used to
prove the optimality of the binary Hamming code (8, 4, 4), the
binary Golay code (24, 12, 8), and the optimality of the shortest
vectors of the E8 and Leech lattices as kissing configurations in their
respective dimensions. This method is often referred to as linear
programming. The key idea is to reduce a geometric optimization

problem on a spaceℳ to minimizing a linear functional on a certain
suitably constructed cone of functions on ℳ.

For packing and energy minimization problems, the following
two cones of functions play an important role. Let (ℳ, ρ) be
a metric space. We denote by Spec(ρ) the set of values taken by
ρ∶ ℳ×ℳ → ℝ≥0. A function f ∶ Spec(ρ) → ℂ is copositive if for
all finite subsets X ⊂ ℳ we have

∑
x,y∈X

f(ρ(x, y)) ≥ 0.

A function f∶ Spec(ρ)→ℂ is positive definite if for all finite subsets
X ⊂ ℳ and all complex weights (wx)x∈X we have

∑
x,y∈X

wxwy f(ρ(x, y)) ≥ 0.

The cone of copositive functions is extremely powerful, and the
possibility of effectively optimizing over it would lead to solutions of
many geometric questions. Unfortunately, this cone is very complex
and to our knowledge there is no easy way to work with it directly.
However, the cone of copositive functions contains a much simpler
one, namely the cone of positive definite functions. This cone has
a simple description in terms of harmonic analysis on ℳ. We refer
the reader to [9, Chapter 9] for details.

The following theorem is a simple yet powerful tool for bound-
ing the size of codes in compact metric spaces.

Theorem 7. Let (ℳ, ρ) be a metric space. Suppose that

f∶ Spec(ρ) → ℝ

is a copositive function such that

f(0) = 1, (1)

f(r) ≤ − 1
N− 1

for r ≥ r0. (2)

Then an r0 code in ℳ contains at most N points.

Proof. The proof of this theorem is very simple. Suppose that
X ⊂ ℳ is an r0 code. Then the copositivity of f implies

∑
x,y∈X

f(ρ(x, y)) ≥ 0. (3)

On the other hand, by conditions (1) and (2), we estimate

∑
x,y∈X

f(ρ(x, y)) = ∑
x∈X

f(ρ(x, x)) + ∑
x,y∈X
x≠ y

f(ρ(x, y))

≤ |X| − |X|(|X| − 1)
N− 1

. (4)

The two equations above imply that |X| ≤ N.

We are interested in the examples when the upper bound
provided by Theorem 7 is sharp, in particular, the cases when the
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auxiliary function f is positive definite. We have already mentioned
several configurations which are “LP-sharp”. For instance, the op-
timality of the Hamming binary code (8,4, 4) follows from the fact
that the polynomial

pH8(t) ≔
1
30

(t− 4)(t− 8) − 1
15

is positive definite with respect to Hamming distance on 𝔽8
2 ,

see [10] and [9, Chapter 9]. A positive definite auxiliary function
proving the optimality of the binary Golay code (24, 12, 8) is also
given in [9, Chapter 9]. The 240 shortest vectors of the E8-lattice
and the 196 560 shortest vectors of the Leech lattice are the op-
timal kissing configurations in their respective dimensions. In 1979,
Odlyzko and Sloane [18] and V. Levenstein [16] independently con-
structed positive definite polynomials on the sphere proving the
optimality. A survey of these results and the polynomials can be
found in [9, Chapter 9] and in [19]. Moreover, by similar techniques,
Cohn and Kumar showed that the shortest vectors of E8 and Leech
lattices are universally optimal configurations on the sphere [3].

H. Cohn and N. Elkies [2] applied the ideas of linear program-
ming to the sphere packing problem in Euclidean space. Before we
explain their method, let us introduce some notation. The Fourier
transform of an L1 function f ∶ ℝd → ℂ is defined as

ℱ(f)(y) = ̂f(y) ≔ ∫
ℝd

f(x) e−2πix⋅y dx, y ∈ ℝd,

where x ⋅ y = 1
2 |x|

2 + 1
2 |y|

2 − 1
2 |x − y|2 is the standard scalar

product in ℝd. A C∞ function f ∶ ℝd → ℂ is called a Schwartz
function if it tends to zero as |x| → ∞ faster than any inverse
power of |x|, and the same holds for all partial derivatives of f. The
following theorem is the key result of [2].

Theorem 8. Suppose that f ∶ ℝd → ℝ is a Schwartz function,
r0 ∈ ℝ>0, and they satisfy

f(x) ≤ 0 for |x| ≥ r0, (5)

̂f(x) ≥ 0 for all x ∈ ℝd, (6)

f(0) = ̂f(0) = 1. (7)

Then the density of d-dimensional sphere packings is bounded
above by

π
d
2 rd0

2dΓ( d2 + 1)
.

Note that this number is the volume of a ball of radius r0
2 in ℝd.

This theorem produces an upper bound for the density of
a sphere packing in every dimension. However, this bound is not
expected to be sharp in general. A surprising discovery made by
Cohn and Elkies was that they were able to obtain bounds numeric-
ally extremely close to the sharp ones in dimensions 1, 2, 8 and 24.

In [23], the author showed that the linear programming bound is
indeed sharp in dimension 8.

Theorem 9. There exists a radial Schwartz function fE8 ∶ ℝ8 → ℝ
which satisfies

fE8(x) ≤ 0 for |x| ≥ √2,

̂fE8(x) ≥ 0 for all x ∈ ℝ8,

fE8(0) = ̂fE8(0) = 1.

Furthermore, in joint work with H. Cohn, A. Kumar, S. D. Miller
and D. Radchenko [5], we proved the sharpness of the linear
programming bound in dimension 24.

Theorem 10. There exists a radial Schwartz function fΛ24 ∶ ℝ24→ℝ
which satisfies

fΛ24(x) ≤ 0 for |x| ≥ 2,

̂fΛ24(x) ≥ 0 for all x ∈ ℝ24,

fΛ24(0) = ̂fΛ24(0) = 1.

The energy minimization problem also can be addressed by lin-
ear programming. The following bound was introduced by H. Cohn
and A. Kumar.

Theorem 11. Let p∶ (0,∞) → ℝ be any function, and suppose
f ∶ ℝd → ℝ is a Schwartz function. If f(x) ≤ p(|x|) for all x ∈
ℝd ⧵ {0} and ̂f(y) ≥ 0 for all y ∈ℝd, then every subset of ℝd with
density ρ has lower p-energy at least ρ ̂f(0) − f(0).

In [5], we construct functions fΛd,α for all d ∈ 8, 24 and real
positive α such that fΛd,α(x) ≤ e−α|x|2 for all x ∈ ℝd ⧵ {0} and
̂f(y)≥0 for all y∈ℝd, and also ρ ̂fΛd,α(0)− fΛd,α(0)= Er↦ e−αr2(Λd).

The construction of these functions implies Theorem 6. Informally,
we call the auxiliary functions fE8, fΛ24, fΛd,α the “magic functions”
as they magically prove difficult geometric statements.

6 Fourier interpolation and sharp bounds

In this final section, we briefly explain the strategy for finding magic
functions. Let us first consider the case of compact spaces. Suppose
that X ⊂ ℳ is an optimal r0 code in the metric space (ℳ, ρ), and
a copositive function f ∶ Spec(M) → ℝ satisfies the conditions of
Theorem 7 for N = |X|; in other words, f proves the sharp bound
on the size of r0-codes. In this case, inequalities (3) and (4) imply
that f(ρ(x, y)) = −1

N−1 for all pairs of distinct points x, y ∈ X and

∑x,y∈X f(ρ(x, y)) = 0. Moreover, if we represent f as a sum of
copositive functions f = f1 +⋯+ fk, then ∑x,y∈X fi(ρ(x, y)) = 0
for i = 1,…, k. In many cases, these linear conditions are sufficient
to find the function f.
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Similar ideas work in the case of Euclidean space and can be
applied to magic functions for the Cohn–Elkies bound of Theorem 8
and the Cohn–Kumar bound of Theorem 11. Suppose that Λd ⊂ℝd

is a unimodular lattice and fΛd is a magic function satisfying the
conditions of Theorem 8 and thus proving the optimality of the Λd

lattice sphere packing. Without loss of generality, we may assume
that fΛd is radial and the value fΛd(x) depends only on the Euclidean
length |x|. Combining the Poisson summation formula

∑
x∈Λd

fΛd(x) = ∑
y∈Λ∗

d

̂fΛd(y)

with conditions (5)–(7) of Theorem 8, we deduce that fΛd(x)= 0 for
all x ∈ Λd ⧵ {0} and ̂fΛd(y) = 0 for all y ∈ Λ∗

d ⧵ {0} (here Λ∗
d is the

lattice dual to Λd). Moreover, since fΛd is smooth, these equalities
hold up to second order.

It turns out that we can recover the whole function fΛd from
this information on its values at lattice points. In [6], we proved
the following Fourier interpolation formula.

Theorem 12. Let (d, n0) be (8, 1) or (24, 2). There exists a col-
lection of radial Schwartz functions an, bn, ̃an, b̃n ∶ ℝd → ℝ such
that for every f ∈ 𝒮rad(ℝd) and x ∈ ℝd,

f(x) =
∞

∑
n=n0

f(√2n)an(x) +
∞

∑
n=n0

f ′(√2n)bn(x)

+
∞

∑
n=n0

̂f(√2n) ̃an(x) +
∞

∑
n=n0

̂f ′(√2n)b̃n(x),

and these series converge absolutely.

The above interpolation formula allowed us to find magic func-
tions fE8 , fΛ24 , fE8,α and fΛ24,α as explicit contour integrals, and based
on these integral representations prove the inequalities posed on
these functions by Theorems 8 and 11, respectively.

Finally, the Fourier interpolation formulas of this type seem
to be very intriguing objects in their own right, and it would be
worth searching for more such examples and more geometric
applications.
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