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Professor Lovász and Professor Wigderson. First, we want to con-
gratulate you on being the Abel Prize recipients for 2021. We cite
the Abel committee:

For their foundational contributions to theoretical computer
science and discrete mathematics, and their leading role in
shaping them into central fields of modern mathematics.

We would first like you to comment on the remarkable change
that has occurred over the last few decades in the attitude of,
say, mainstream mathematics towards discrete mathematics and
theoretical computer science. As you are fully aware of, not that
many years ago it was quite common among many first class
mathematicians to have a sceptical, if not condescending opinion,
of this type of mathematics. Please, could you start, Professor
Lovász?

Lovász. I think that is true. It took time before two things were
realized about theoretical computer science that are relevant for
mathematics.

One is simply that it is a source of exciting problems. When
I finished the university, together with some other young research-
ers, we started a group to study computing and computer science,
because we realized that it’s such a huge unexplored field; ques-
tions about what can be computed, how fast and how well and
so on.

The second thing is that when answers began to come, in
particular, when the notions of NP and P, i.e., nondeterministic
polynomial time and polynomial time became central, we realized
that the whole of mathematics can be viewed in a completely dif-
ferent way through these notions, through effective computation
and through short proofs of existence.

For us young people these two things were so inspiring that
we started to make connections with the rest of mathematics.
I think it took time until other areas of mathematics also realized
the significance of this, but gradually it came about. In number
theory it turned out to be very important, and also in group theory
these notions became important, and then slowly in a lot of other
areas of mathematics.

Wigderson. Yeah, I completely agree. In fact, it’s true that there
was a condescending attitude among some mathematicians to-
wards discrete mathematics. This was perhaps less so in theoretical
computer science, because it existed in the realm of computer sci-
ence as it was developing, and maybe people were less aware of it
directly? I think that Lovász is right in that the very idea of efficient
algorithms and the notions of computational complexity that were
introduced in theoretical computer science are fundamental to
mathematics, and it took time to realize that.

However, the real truth is that all mathematicians of all ages,
they all used algorithms. They needed to compute things. Gauss’
famous challenge to the mathematical community to find fast
methods to test whether a number is prime and to factor integers
is extremely eloquent, given the time it was written. It’s really
calling for fast algorithms to be developed.

Parts of discrete mathematics were viewed by some as trivial
in the sense that there are only finite number of possibilities that
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we have to test. Then, in principle, it can be done, so what is the
problem?

I think the notion of an efficient algorithm clarifies what the
problem is. There may be an exponential number of things to
try out, and you will never do it, right? If instead you have a fast
algorithm for doing it, then it makes all the difference. The question
whether such an algorithm exists becomes all important.

This understanding evolved. It caught up first with pioneers in
the 70s in the area of combinatorics and in the area of discrete
mathematics, because there it’s most natural; at least it’s easy to
formulate problems, so that you can attach complexity to them.
Gradually it spread to other parts of mathematics. Number theory is
a great example, because there too there are discrete problems and
discrete methods hiding behind a lot of famous number theoretical
results. From there it gradually dispersed. I think by now it’s pretty
universal to understand the importance of discrete mathematics
and theoretical computer science.

Turing and Hilbert

This is admittedly a naïve question, but as non-experts we have
few inhibitions, so here goes: Why is it that Turing’s notion of what
is today called a Turing machine captures the intuitive idea of an
effective procedure, and, so to speak, sets the standard for what
can be computed? How is this related to Hilbert’s Entscheidungs-
problem?

Wigderson. I think my first recommendation would be to read
Turing’s paper – in fact, to read all his papers. He writes so elo-
quently. If you read his paper on computing procedures and the
Entscheidungsproblem, you will understand everything.

There are several reasons why the Turing machine is so funda-
mental and so basic.  The first one is that it’s simple – it’s extremely
simple. That was evident to Turing and to many others at that time.
It’s so simple that it could be directly implemented. And thereby
he started the computer revolution. If you look at other notions of
computability that people studied, Gödel and others – definitely
Hilbert – with recursive functions and so on, they did not lend
themselves to being able to make a machine out of them. So this
was fundamental.

The second is that a few years later it was proved that all other
notions of efficient computability were equivalent. So the Turing
machine could simulate all of them. It encompassed all of them,
but it was much simpler to describe.

Thirdly, one way Turing motivates his model is to look at what
we humans do when we calculate to solve a problem, let’s say
multiply two long numbers. Look at what we do on a piece of
paper, we abstract it and formalize it. And when we do that, we
will automatically be lead to a model like the Turing machine.
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The fourth reason is the universality, the fact that his model is
a universal model. In a single machine you can have part of the
data be a program you want to run, and it will just emulate this
program. That is why we have laptops, computers and so on. There
is just one machine. You don’t need to have a different machine
to multiply, a different machine to integrate, a different machine
to test primality, etc. You just have one machine in which you can
write a program. It was an amazing revolution and it encapsulates
it in a really simple notion that everybody can understand and use,
so that is the power of it.

Now, you asked about the relation to the Entscheidungspro-
blem. You know, Hilbert had a dream, and the dream had two parts:
Everything that is true in mathematics is provable, and everything
provable can be automatically computed. Well, Gödel shattered
the first one – there are true facts, let’s say, about integers, that
can not be proven. And then Church and Turing shattered the
second one. They showed that there are provable things that are
not computable. Turing’s proof is not only far simpler than Gödel’s,
with Turing’s clever diagonal argument, it also implies the Gödel
result if you think about it. This is usually the way most people
teach Gödel’s incompleteness theory today; well, I don’t know if
“most people” would agree to this, but it’s using Turing’s notions.
So that’s the connection. Turing was, of course, inspired by Gödel’s
work. The whole thing that led him into working on computability
was Gödel’s work.

Lovász. I have just one thing I would like to add. A Turing machine
is really consisting of just two parts. It’s a finite automaton and
a memory. If you think about it, the memory is needed. Whatever
computation you do you need to remember the partial results.
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The memory in its simplest way is to just write it on a tape as
a string. The finite automaton is sort of the simplest thing that
you can define which will do some kind of, actually any kind of
computation. If you combine the two you get the Turing machine.
So it’s also natural from this point of view.

P versus NP

Nowwe come to a really big topic, namely the P versusNP problem,
one of the Millennium Prize Problems. What is the P versus NP
problem? Why is that problem the most important in theoretical
computer science? What would the consequences be if P = NP?
What do you envisage a proof of P ≠ NP would require of tools?

Lovász. Well, let me again go back to when I was a student.
I talked to Tibor Gallai, who was a distinguished graph theorist and
my mentor. He said: Here are two very simple graph-theoretical
problems. Does a graph have a perfect matching, that is, can the
vertices be paired so that each pair is connected by an edge? The
other one is whether the graph has a Hamiltonian cycle, i.e., does
it have a cycle which contains all the nodes?

The first problem is essentially solved; there is a lot of literature
about it. As for the other we only have superficial results, maybe
nontrivial results, but still very superficial.

Gallai said, well, you should think about it, so that maybe you
could come up with some explanation. Unfortunately, I could not
come up with an explanation for that, but with my friend, Péter
Gács, we were trying to explain it. And then we both went off –
we got different scholarships: Gács went to Moscow for a year and
I went to Nashville, Tennessee for a year. Then we came back and
we both wanted to speak first, because we both had learned about
the theory of P versus NP, which completely explains this. Peter
Gács learned it from Leonid Levin in Moscow, and I learned it
from listening in on discussions taking place at coffee tables at
conferences.

The perfect matching problem is in P and the Hamilton cycle
problem is NP-complete. This explained what really was a tough
question. It was clear that this was going to be a central topic,
and this was reinforced with the work of Karp proving the NP-
completeness of lots of everyday problems. So, summing-up, the
notions of P and NP they made order where there was such a chaos
before. That was really overwhelming.

Wigderson. The fact that it puts an order on things in a world
that looked pretty chaotic is the major reason why this problem
is important. In fact, it’s almost a dichotomy, almost all natural
problems we want to solve are either in P, as far as we know, or are
NP-complete. In the two examples Lovász gave, first the perfect
matching, which is in P, we can solve it quickly, we can characterize
it and do a lot of things, we understand it really well. The second

example, the Hamiltonian cycle problem is a representative of an
NP-complete problem.

The main point about NP-completeness is that every problem
in this class is equivalent to every other. If you solve one, you have
solved all of them. By now we know thousands of problems that
we want to solve, in logic, in number theory, in combinatorics, in
optimization and so on, that are equivalent.

So, we have these two classes that seem separate, and whether
they are equal or not is the P versus NP question; and all we need
to know is the answer to one of the NP-complete problems.

But I want to look at the importance of this problem from
a higher point of view. Related to what I said about natural prob-
lems we want to compute, I often argue in popular lectures that
problems in NP are really all the problems we humans, especially
mathematicians, can ever hope to solve, because the most basic
thing about problems we are trying to solve is that we will at least
know if we have solved them, right? This is true not only for math-
ematicians. For example, physicists don’t try to build a model for
something for which, when they find it, they will not know if they
have found it. And the same is true for engineers with designs, or
detectives with solutions to their puzzles. In every undertaking that
we seriously embark on, we assume that when we find what we
were looking for we know that we have found it. But this is the
very definition of NP: a problem is in NP exactly if you can check if
the solution you got is correct.

So now we understand what NP is. If P = NP, this means that
all these problems have an efficient algorithm, so they can be
solved very quickly on a computer. In some sense, if P = NP then
everything we are trying to do can be done. Maybe find a cure
for cancer or solve other serious problems, all these can be found
quickly by an algorithm. That is why P=NP is important and would
be so consequential. However, I think most people believe that
P ≠ NP.

Lovász. Let me add another thought on how it can be proved that
P ≠ NP. There is a nice analogy here with constructions with ruler
and compass. That is one of the oldest algorithms, but what can
you construct by ruler and compass? The Greeks formulated the
problems about trisecting the angle and doubling the cube by ruler
and compass, and they probably believed, or conjectured, that
these were not solvable by ruler and compass.  But to prove this is
not easy, even today. I mean, it can be taught in an undergraduate
class, in an advanced undergraduate class, I would say. You have
to deal with the theory of algebraic numbers and a little bit of
Galois theory in order to be able to prove this. So to prove that
these problems are not solvable by a specific algorithm took a huge
development in a completely different area of mathematics.

I expect that P ≠ NP might be similar. Of course, we probably
will not have to wait 2000 years for the solution, but it will take
a substantial development in some area which we today may not
even be aware of.
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But we take it for granted that you both think that P is different
from NP, right?

Wigderson. I do, but I must say that the reasons we have are not
very strong. The main reason is that for mathematicians it seems
obviously much easier to read proofs of theorems that are already
discovered, than to discover these proofs. This suggests that P
is different from NP. Many people have tried to find algorithms
for many of the NP-complete problems for practical reasons, for
example, various scheduling problems and optimization problems,
graph theory problems, etc. And they have failed, and these failures
may suggest that there are no such algorithms. This, however, is
a weak argument.

In other words, I intuitively feel that P ≠ NP, but I don’t think
it’s a strong argument. I just believe it as a working hypothesis.

Problems versus theory

We often characterize mathematicians as theory builders or as
problem solvers. Where would you place yourself on a scale ran-
ging from theory builder to problem solver?

Wigderson. First of all, I love solving problems. But then I ask
myself: Oh, this is how I solved it, but maybe this is a technique
that can be applied other places? Then I try to apply it in other

places, and then I write it up in its most general form, and that is
how I present it. In this way I may also be called a theory builder.
I don’t know. I don’t want to characterize myself in terms of theory
builder or problem solver.

I enjoy doing both things, finding solutions to problems and try-
ing to understand how they apply elsewhere. I love understanding
connections between different problems, and even more between
different areas. I think we are lucky in theoretical computer sci-
ence that so many seemingly dispersed areas are so intimately
connected, but not always obviously so, like with hardness and
randomness. Theory is built out of such connections.

Lovász. I have similar feelings. I like to solve problems. I started
out under the inspiration of Paul Erdős, who was really always
breaking down questions into problems. I think that was a partic-
ular strength of his mathematics, that he could formulate simple
problems that actually illustrated an underlying theory. I don’t re-
member who said this about him: it would be nice to know the
general theories that are in his head, which he breaks down into
these problems that he feeds us so that we can solve them. And,
indeed, based on his problems, whole new areas arose, extremal
graph theory, random graph theory, probabilistic combinatorics
in general, and various areas of number theory. So I started as
a problem solver, but I always liked to make connections, and tried
to build something more general out of a particular problem that
I had solved.

László Lovász. ©Hungarian Academy of Sciences/Institute for Advanced Study, Princeton, NJ, USA
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Youth in Haifa

Professor Wigderson, you were born in 1956 in Haifa, Israel.
Could you tell us when you got interested in mathematics and, in
particular, in theoretical computer science?

Wigderson. I got interested in mathematics much earlier than in
computer science. As a very young child, my father introduced
me to mathematics. He liked to ask me questions and to look at
puzzles, and I got interested. We found books that I could read, and
in these there would be more problems. This was my main early
interaction with mathematics. In high school we had a very good
mathematics teacher who came from Ukraine, and he had a special
class for interested kids. He taught us more exciting stuff, like
college level stuff, and I got even more excited about mathematics.
In college I got much more into it, but it’s actually an accident that
I got into computer science, and thereby to theoretical computer
science.

After my army service, as I was applying to colleges in Israel,
I thought that I wanted to do mathematics, but my parents sug-
gested that it might be good to also have a profession when
I graduated. So they said: “Why don’t you study computer science,
it will probably be a lot of math in it anyway, and you will enjoy
it. Also, when you graduate you will have a computer science
diploma.” Nobody was thinking about academia at that time.

So I went to the computer science department at the Technion,
and I think I was extremely lucky. I am sure that if I had gone to
a math department I would have been interested in many other
things, like analysis, combinatorics, geometry, and so on. Because
I was in the computer science department, I took several theoretical
courses. We had, in particular, a very inspiring teacher, Shimon Even,
at the Technion. His courses on algorithms and complexity were
extremely inspiring. When I applied to graduate school I applied
for continuing to do this sort of stuff. This was how I was drawn
into theoretical computer science.

But still, in an earlier interview you have described yourself as
a beach bum and a soccer devotee. That contrasts rather starkly
with what you have been telling us now, doesn’t it?

Wigderson. I don’t think there is a contrast. I mentioned that my
dad was my main intellectual contact in mathematics. The schools
in the neighbourhood of our home were not very good, it was
pretty boring. The neighbourhood was situated by the beach, so
everybody was at the beach. We were beach bums by definition.
The weather in Israel is wonderful, so you can be altogether 300
days a year on the beach and in the water. So that was one pastime
activity. The other thing you mentioned, soccer, is the easiest game
to play. You need no facilities. And that was what we did, being
involved in these two activities. When I was growing up I never
saw myself as an intellectual. I loved math, but I also loved soccer,

I loved swimming and I loved reading. And this is how I spent all
my youth. There were no contrast and, if anything, it’s probably
good to do other things.

Youth in Budapest

Professor Lovázs, you were definitely not a beach bum.

Lovász. When I entered eighth grade, I did not have any special
subject that I was particularly interested in. In the eighth grade
I started to go to a math club, and I realized how many interesting
problems there are. Then the teacher of the math club recommen-
ded that I should go to a particular high school which had just
started and was specializing in teaching mathematically talented
kids. We had ten classes of mathematics a week, which this group
of students enjoyed very much, including myself. I appreciated very
much the fact that I was among a fairly large group of students
who had quite similar interests.

In elementary school, I was a little bit outside of the “cool”
group of the class. I was not in the mainstream of the class, but in
this new high school class I found myself much more at home. In
fact, I felt so much at home that I married one of my classmates,
Katalin Vesztergombi, and we are still together.

This high school was absolutely a great start for my life, that is
how I feel about it. Before that… you just had to survive the school.
I entered this new high school in the first half of the sixties. There
were many good mathematicians in Budapest at that time, and
they did not really have the chance to travel or to do anything
outside Hungary. So they had more time, and they came to the
high school and gave talks and they took a great interest in our
group. We learned a lot from them. I should, of course, mention
that Paul Erdős was often visiting the class and gave talks and gave
problems. So it was all very inspiring.

Professor Lovász, to quote professor Wigderson: “In the land of
prodigies and stars in Hungary, with its problem solving tradition,
he (meaning you) stands out.” We have a witness who recalls rush-
ing home from school to watch the final of one of the competitions
in which you participated on national television, where you solved
a combinatorial problem in real time and won the competition. It’s
kind of hard to imagine doing such things now and in the West.

Lovász. You are right. That was one of the things that went on
for a few years on Hungarian TV, but unfortunately it stopped.
Unfortunately, because I thought it was a very good popularization
of mathematics. You know, people like to watch competitions. The
way it worked was that there were two glass cells, and the two
students that were competing were sitting in separate cells. They
got the same problem which they had to solve, and then verbally
tell the solution; maybe there was a blackboard they could use as
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well. I think people like to watch youngsters sweating and doing
their best to win. You know, most people cannot jump over two
meters, but nevertheless we watch the Olympic Games. Even today
I meet people, of course older people, who say: “Oh, yeah, I saw
you on TV when you were in high school, and I was in the eighth
grade of elementary school, and it was so nice to watch you.” It
was really something quite special. 

A part of this story which is both funny and charming is that you
told us that the solution to the final problem, with which you
won the competition, you had previously learned from the other
competitor. Isn’t that correct?

Lovász. Yes, that’s true. But we competitors were also good
friends, and we still are very good friends. Especially the two people
with whom I competed in the semi-final and the final, are very
good friends of mine. One was Miklós Laczkovich. He came up with
the proof of Tarski’s conjecture about squaring the circle. And the
other one was Lajos Posa. He is very well known in math education.
He did a lot on developing methods to teach talented students.

Before we leave this subject, we should also mention that you
won the gold medal three years in a row 1964–65–66 at the
International Mathematical Olympiad, when you were 16–17–18
years old. These are impressive results! We don’t know of anyone
that has such record in that competition.

Lovász. Thank you, but there are others. Someone has won it five
times. You can go to the website of the International Mathematical
Olympiad, and there you find a list of achievements.

Lovász local lemma

Professor Lovász, you have published several papers – we think
six papers altogether – with your mentor Paul Erdős. We think we
know the answer to which one of these papers is your favourite,
and you can correct us if we are wrong. A weak version of the
important so-called Lovász local lemma was proven in 1975 in
a joint paper with Erdős – that’s the paper we have in mind. The
lemma itself is very important as is attested to by Robin Moser and
Gábor Tardos receiving the Gödel Prize in 2020 for their algorithmic
version of the Lovász local lemma. Anyway, could you tell us what
the Lovász local lemma is all about?

Lovász. Okay, I will try. Almost everything in mathematics, or at
least in discrete mathematics, you can formulate like this: there
are a number of bad events, and you want to avoid all of them.
The question is whether you can give a condition so you can avoid
all of these. The most basic thing is that if the probabilities of
these events add up to something less than one, then with positive

probability you will avoid all of them. That is a very basic trick in
applications of probability in discrete mathematics. But suppose
that the number is much larger, so that the probabilities add up
to something very large, how do you handle that? Another special
case is if they are independent events. If you can avoid each of
them separately, then there is a positive probability that you avoid
all of them, simply take the product of the probabilities for avoiding
each one of them.

The local lemma is some kind of combination of these two ideas.
If the events are not independent, but each of them is dependent
only on a small number of others, and if the sum of the probabilities
of those that it depends on is less than one – not the total sum,
but just those it depends on – then you can still, with positive
probability, avoid each of the bad events.

Maybe I should add one thing here. There was a problem of
Erdős which I was thinking about, and I came up with this lemma.
I was together with Erdős, actually at Ohio State for a summer
school. We solved the problem, and we wrote a long paper on that
problem and related problems, including this lemma. But Erdős
realized that this lemma was more than just a lemma for this
particular problem and made sure that it became known under my
name. Normally it would be called the Erdős–Lovász local lemma,
because it appeared in a joint paper of us, but he always promoted
young people and always wanted to make sure that it became
known if they had proved something important. I benefited from
his generosity.

The Kneser conjecture

In 1955 Kneser conjectured howmany colours you need in order to
colour a type of naturally occurring graphs, now known as Kneser
graphs. In 1978 you, professor Lovász, proved this conjecture by
encoding the problem as a question of high dimensional spaces,
which you answered by using a standard tool in homotopy theory,
and so boosted the field of combinatorial topology. How did such
a line of approach occur to you, and can you say something about
the problem and your solution?

Kneser graph K(5, 2)
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Lovász. It goes back to one of these difficult problems, the chro-
matic number problem: how many colours do you need to colour
a graph properly, where properly means that neighbouring vertices
must have different colours. That is a difficult problem in general,
it’s an NP-complete problem.

A first approach is looking at the local structure. If a graph has
many vertices which are mutually adjacent, then, of course, you
need many colours. The question is: is there always such a local
reason? It was already known at that time that there are graphs
which have absolutely no local structures, so that they don’t have
short cycles, but nevertheless you need many colours to colour
them. It was an interesting question to construct such graphs. For
example, just exclude triangles, or more generally, exclude odd
cycles from the graph. There was a well known construction for
such a graph by looking at the sphere, and then connecting two
points if they are almost antipodal. Then Borsuk–Ulam’s theorem
says that you will need more colours than the dimension, so that
the almost antipodal points have different colours. That was one
construction, and the other one was the construction where the
vertices would be a k-element subset of an n-element set, where
n > 2k, and you can connect two of these if they are disjoint.
Kneser conjectured what would be the chromatic number of such
a graph.

It was an interesting problem going around in Budapest. Simon-
ovits, a friend and colleague of mine, brought to my attention
that these problems could actually be similar, or that these two
constructions could be similar. So I came up with a reduction of
one into the other, but then it turned out that the reduction was
more general and gave a lower bound on the chromatic numbers
of any graph in terms of some topological construction. So, that is
how topology came in. It took actually quite some time to make
it work. As I remember it, I spent about two years to make these
ideas work, but eventually it worked.

Zero-knowledge proofs

Professor Wigderson, earlier in your career you made fundamental
contributions to a new concept in cryptography, namely the zero-
knowledge proof, which more than 30 years later is now being
used for example in blockchain technology. Please tell us specific-
ally what a zero-knowledge proof is, and why this concept is so
useful in cryptography?

Wigderson. As a mathematician, suppose you found the proof
of something important, like the Riemann hypothesis. And you
want to convince your colleagues that you have found this proof,
but you don’t want them to publish it before you do. You want
to convince them only of the fact that you have a proof of this
theorem, and nothing else. It seems ridiculous, it seems absolutely
ridiculous, and it’s contrary to all our intuition that there is a way

to convince someone of something they do not believe, without
giving them any shred of new information.

This very idea was raised by Goldwasser, Micali and Rackoff
in 1985, where they suggested this notion. They did not suggest
it for paranoid mathematicians, but they suggested it for cryp-
tography. They realized that in cryptography there are a lot of
situations, in fact, almost all situations, of interactions between
agents in a cryptographic protocol, in which no one trust the other
ones. Nevertheless, each of them makes claims that they are doing
something, or knowing something, which they don’t want to share
with you. For example, their private key in a public crypto system.
You know, each one is supposed to compute their public key by
multiplying two prime numbers, which they keep secret. I give
you a number and I tell you: here is a number; I multiplied two
secret prime numbers and this is the result. Why should you believe
me? Maybe I did something else, and this is going to ruin the
protocol. To fix this, it would be nice if there was a way for me to
convince you that that’s exactly what I did. Namely, there exist two
prime numbers whose product is the number I gave you. That is
a mathematical theorem, and I want to convince you of it, without
giving you any idea what my prime numbers are, or anything else.
Goldwasser, Micali and Rackoff suggested this extremely useful
notion of a zero-knowledge proof.

They gave a couple of nontrivial examples, which was already
related to existing crypto systems where this might be possible. And
they asked the question: what kind of mathematical statements can
you have a zero-knowledge proof for? A year later, with Goldreich
and Micali, we proved that it was possible for any mathematical
theorem. If you want it formally, it’s true for any NP-statement.

So this is the content of the theorem. I am not going to tell
you the proof of the theorem, though something can be said
about it. The proof uses cryptography in an essential way. It’s
a theorem which assumes the ability to encrypt. Why it’s useful in
cryptography is exactly for the reasons I described, but, in fact, it’s
much more general, as we observed in a subsequent paper. Given
a zero-knowledge proof, you can really automate the generation
of protocols that are safe against bad players. The way to get
a protocol that is resilient against bad players once you have a pro-
tocol that works if everybody is honest and doing exactly what
they should, is just to intervene every step with a zero-knowledge
proof, in which the potentially bad players will convince the others
that they are doing the right thing. It’s much more complex, zero-
knowledge is not enough, you have to have a way to computing
with secrets.

I want to stress that when we proved this theorem, it was
a theoretical result. It was clear to us from the beginning that the
protocol which enables zero-knowledge proof, is complex. We
thought it unlikely to be of any use in cryptographic protocols that
are running on machines.

The fact that they became practically useful is still an amaz-
ing thing to me, and I think that is a good point to make about
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many other theoretical results in theoretical computer science,
in particular, about algorithms. People tend to complain some-
times about the notion of P being too liberal when describing
efficient algorithms, because some algorithms, when they were
first discovered, may have a running time that looks too large. It’s
polynomial time, but maybe it’s n to the 10th power, and for n size
a thousand, or size a million, which are problems that come up
naturally in practice, it seemed useless, as useless as exponential
time algorithms. But what you learn again and again, both in the
field of cryptography and in the field of algorithms, is that once you
have a theoretical solution with ideas in it that make it very efficient,
then other people, especially if they are motivated enough, like in
cryptography or in optimization, can make it much more efficient,
and eventually practical. That’s a general point I wanted to make.

Randomness versus efficiency

It’s an amazing result, and we quote you saying: “This is probably
the most surprising, the most paradoxical of the results that my
colleagues and I have proved”. Let us continue, professor Wigder-
son, with another topic to which you have made fundamental
contributions. When you began your academic career in the late
1970s, the theory of computational complexity was in its infancy.
Your contribution in enlarging and deepening the field is arguably
greater than that of any other person. We want to focus here
on your stunning advances in the role of randomness in aiding
computation. You showed, together with co-workers Nisan and
Impagliazzo, that for any fast algorithm that can solve a hard prob-
lem using coin flipping, there exists an almost as fast algorithm
that does not use coin flipping, provided certain conditions are
met. Could you please elaborate on this?

Wigderson. Randomness has always fascinated me. Specifically,
the power of randomness in computation, but not only in compu-
tation. This is probably the area where I have invested most of my
research time. I mean, successful research time! The rest would be
trying to prove lower bounds or hardness results, like proving that P
is different from NP, where I generally – like everybody else – failed.

So, back to randomness. Ever since the 1970s, people real-
ized that randomness is an extremely powerful resource to have
in algorithms. There were initial discoveries, like primality tests.
Solovay/Strassen and Miller/Rabin discovered fast methods with
randomness to test if a number is prime. Then in coding theory,
in number theory, in graph theory, in optimization and so on, ran-
domness was used all over the place. People just realized it’s an
extremely powerful tool to solve problems that we have no idea
of how to solve efficiently without randomness. With randomness
you can find the solution very fast. Another famous class of ex-
amples is Monte Carlo methods. So you explore a large chunk of
problems using randomness. Without it, it seemed like it would

take exponential time to solve them, and it was natural to believe
that having randomness is much more powerful than not having it.

Nevertheless, mainly from motivations in cryptography, people
started in computational complexity trying to understand pseudor-
andomness. You need randomness in cryptographic protocols for
secrecy. On the other hand, sometimes random bits were not so
available, and you wanted to test when random bits are good, as
good as having independent coin flips – which you really assume
when talking about probabilistic algorithms.

So, there was a quest to understand when a distribution of
bits is as good as random. This started in cryptography with a very
powerful work by Blum, Micali and Yao. Notions began to emerge
which suggested that if you have computational hardness, if you
somehow have a hard problem, then you can generate pseudoran-
dom bits cheaply. So you can invest much less randomness in order
to generate a lot, which is still useful, let’s say for probabilistic
algorithms.

This kind of understanding started in the early 1980s. It took
about 20 years of work to really elucidate it and to be able to make
the weakest assumptions on what hardness you need in order to
have a pseudorandom outcome, which then corresponds to a full
probabilistic algorithm. Parts of this were indeed developed in my
papers with Nisan, and then with Babai and Fortnow, and then
with Impagliazzo and Kabanets.

The upshot of this development is again a conditional result,
right? You have to assume something, if you want the conclusion
you stated. What you need to assume is that some problem is diffi-
cult. You can take it to be the problem of colouring graphs, you can
take it to be any NP-complete problem you like, or even problems
that are higher up, but you need a problem that is exponentially
difficult. This is the assumption that the result is conditioned on. If
you are willing to make this assumption, then the conclusion is ex-
actly as you said, namely that every efficient probabilistic algorithm
can be replaced by a deterministic algorithm which does the same
thing. In fact, it does it without error and is roughly as efficient as
the original one.

In other words, the power of probabilistic algorithms is just
a figment of our imagination. It’s only that we are unable to find
deterministic algorithms that we can prove are as efficient. This
result suggests that there is no such power and that randomness
does not help to make efficient algorithms more efficient.

The hardness assumption that you need to make, were they some-
thing that you were expecting?

Wigderson. They are completely expected! First of all, they are
expected in the sense that they were there from the beginning,
specifically in the works of Blum, Micali and Yao that I mentioned,
which do create pseudorandom generators that are good against
efficient algorithms and which assume specific hardness assump-
tions like those used in cryptography. For example, that factoring
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is difficult, or that one way functions exist. These are very spe-
cific hardness assumptions, and these problems are unlikely to be
NP-complete.

In my paper with Nisan, we realized that a much weaker as-
sumption is enough. It was not enough to give the result stated
at the end, because it’s not efficient enough, but it already got
us pretty close to the understanding that random algorithms are
not as powerful as they seemingly are. It did not give the BPP = P
consequence, which is the final one. This was not surprising, the
connection paradigm between hardness and randomness came
from the very initial studies of computation of pseudorandom-
ness, and, if I remember correctly, the paper of Blum and Micali,
or perhaps even the Ph.D. thesis of Silvio Micali, is titled: Hard-
ness vs. Randomness. There is an intimate connection there –
it was there from the start – and the question is how tight the
connection is.

I should probably mention that the consequence of what we
just discussed is that hardness implies derandomization, and the
question is whether the reverse hold also. If you have a good pseu-
dorandom generator, or if you could derandomize all probabilistic
algorithms, does it mean that you can prove something like P≠NP?
The answer is that we have partial results like that. My paper with
Impagliazzo and Kabanets is one, and there is another paper with
just the two of them. So there are partial results for the converse,
and we don’t understand it fully. But it’s a fascinating connection,
because these two issues seem separate from each other. I think it’s
a very fundamental discovery of the field, this intimate connection
between computational difficulty and the power of randomness.

The LLL-algorithm

Professor Lovász, we would like to talk about the LLL-algorithm,
an algorithm which has striking applications. For instance, it’s
claimed that the only crypto systems that can withstand an attack
by a quantum computer use LLL. The algorithm appears in your
paper together with the Lenstra brothers on factorization of poly-
nomials, which more or less follows the expected path of reducing
modulo primes, and then using Hensel’s Lemma. But as far as we
understand the breakthrough from you and the Lenstra brothers
was that you were able to do the lift in polynomial time by an
algorithm giving you an approximation to the shorter vector in
a lattice. Tell us first how the collaboration with the Lenstras came
about.

Lovász. This is an interesting story about mathematics and the
role of beauty, or at least elegance, in mathematics. With Martin
Grötschel and Alexander Schrijver we were working on applications
of the ellipsoid method in combinatorial optimization. We came
up with some general theorem that stated some equivalence of
separation and optimization. Actually, these were polynomial time
equivalent problems under some mild additional conditions. But
there was a case where the algorithm did not work, and that was
when the convex body was lying in a lower dimensional linear
subspace. One could always get around this, sometimes by math-
ematical methods, for example, by lifting everything into a higher
dimensional space. But there was always some trick involved that
we wanted to avoid.
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At some point I realized that we can solve this if we can solve
some really ancient mathematical problem algorithmically. That
was Dirichlet’s result that several real numbers can be simultan-
eously approximated by rational numbers with the same denomin-
ator, and the question was whether you could solve this algorith-
mically. Now one looks at the proof and one sees immediately that
the proof is the opposite of being algorithmic; it’s a pigeonhole
principle proof, so it just shows the existence of such an approxima-
tion.  After some trial and error, I came up with an algorithm which
actually computed in polynomial time such an approximation with
rational numbers with common denominator.

A little bit earlier I heard a talk of Hendrik Lenstra, where he
talked about similar problems, but in terms of lattices and bases
reduction in lattices. Now it’s easy to reduce the Dirichlet problem
to a shortest lattice vector problem. So I wrote to them, and it
turned out that if I could solve the Dirichlet problem, then they
could factor polynomials in polynomial time.

This was actually very surprising. One would think that factor-
ing an integer should be easier than factoring a polynomial. But
it turns out that it’s the other way around, polynomials can be
factored in polynomial time. So that is how this joint paper came
about. Then a couple of years later Lagarias and Odlyzko discovered
that this algorithm can be used to break the so-called knapsack
crypto system. Since then this algorithm is used a lot in checking
the security of various crypto systems. 

As far as we understand it has applications way beyond anything
that you imagined?

Lovász. Yes, definitely. For example, shortly after it was published
it was used by Andrew Odlyzko and Herman te Riele in a very ex-
tended numerical computation to disprove the so-called Mertens
conjecture about the ζ -function in prime number theory. But the
point that I want to stress is that the whole thing started from some-
thing that was apparently not so important. Grötschel, Schriver and
I just wanted to get the nicest possible theorem about equivalence
of optimization and separation. This, however, was the motivation
for proving something that turned out to be very important.

The ellipsoid method

Indeed, in 1981 you published a paper together with coauthors
Grötschel and Schrijver entitled “The ellipsoid method and its con-
sequence in combinatorial optimization”, a paper which is widely
cited, and which you touched upon in your previous answer. There
is a prehistory to this, namely a paper by a Russian, Khachiyan,
containing a result that was regarded as sensational. Could you
comment on this, and how your joint paper is related to his?

Lovász. Khachiyan gave the first polynomial time algorithm for
linear programming using what is called the ellipsoid method today.
I should say that in the Soviet Union at that time there were several
other people who worked on similar results, but he proved the
necessary details. So it was Khachiyan who proved that linear
programming can be solved in polynomial time.

Of course, everybody got interested. In the theory of algorithms
before that there existed these mysterious problems that in prac-
tical terms could always be efficiently solved, but there was no
polynomial time algorithm known to them. So we got interested
in it, and we realized that to apply Khachyian’s method you don’t
have to have an explicit description of the linear program. It’s
enough if the linear program is given in such a way that if you ask
whether a point is a feasible point, then you should be able to tell
this, and you should be able to find them if any constraints are viol-
ated. That observation was made by several people, including Karp
and Papadimitriou, and I think Padberg and Rao. We realized that
in combinatorial optimization there are many situations like this.

Then I met Martin Grötschel, and he came up with a way to
apply these methods to another old problem, namely to find the
chromatic number of a perfect graph in polynomial time, which was
also an unsolved problem in those days. And for that it turned out
that you have to apply this ellipsoid method, not only to linear pro-
grams, but to convex programs more generally. We worked on this
together with Lex Schrijver, who visited the University of Szeged for
a year where we shared an office, and started to see what happens
in general in convex optimization and how to apply this. This is
how we came up with this result that I mentioned, the equivalence
of separation and optimization, it was sort of the main outcome of
this study. Eventually we wrote a monograph about this subject.

The zig-zag product

Expander graphs have been a recurring theme for the Abel Prize.
Last year we had Margulis, who constructed the first explicit ex-
pander graphs, after Pinsker had proven that they existed. Gromov,
who won the Abel Prize in 2009, used expanders on Cayley graphs
of fundamental groups, which were relevant for the study of the
Baum–Connes conjecture. Also Szemerédi, who won the Abel Prize
in 2012, made use of expander graphs. In 2000, you, professor
Wigderson, together with Reingold and Vadhan, presented the
zig-zag product of regular graphs, which is, as far as we under-
stand, analogous to the semidirect product in group theory, by
which you gave explicit constructions of very large and simple
expanders. Could we just start by asking: what is the zig and what
is the zag?

Wigderson. So, maybe I should start with what is an expander
graph? You should think of networks, and you should think that
one desirable property of networks is that there would be sort of
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fault tolerance. If some of the connections are severed you would
still be able to communicate. It could be computer networks, or
it could be networks of roads that you would like to be highly
connected. Of course, you don’t want to pay too much, so you
would like these networks to be sparse, that is, you don’t want
to have too many connections. You want a large graph in which
the degree of every vertex – that is, the number of connections to
every vertex – is small, let’s say constant, for example ten.

A random graph will have this property, and the whole ques-
tion – this is what Pinsker realized – becomes: can you describe
such graphs, and can you find them efficiently? Margulis gave the
first construction using this deep algebraic concept, namely Kazh-
dan’s property (T). They can also be built using results by Selberg
and others.

Then people started to simplify the proofs. By the time I was
teaching this material there were reasonably simple proofs, like
the one given by Jimbo and Maruoka, and you could teach it in
a class in an hour or two; it’s just basically Fourier transform on
finite groups. So you have everything you want, you have a very
nice explicit construction, you can even prove it in a class to under-
graduates, but to me it was, as with many proofs based on algebra,
so mysterious. I mean, what is going on? What is really behind the
fact that these are highly connected graphs? This was sort of an
obsession of mine for years, and I did not know what to do with it.

In 2000, just after I moved to the IAS, I had two postdocs here,
Salil Vadhan and Omar Reingold. We were working on a completely
different project about pseudorandomness, where an important
notion is the notion of an extractor, which has something to do
with purifying randomness. I will not talk about that now, but
we were trying to build better extractors. As we were doing this
we realized that one of our constructions may be useful towards
creating expanders. The constructions in the extractor business
were often iterative, and they have a very different combinatorial
nature than constructions, say, of the algebraic type. Once we
realized this we understood that we had a completely different
combinatorial construction of expanders, but more than that, one
in which, for me, it was evident from the proof why these graphs
are expanding.

This is the zig-zag result; the zig-zag name was actually sug-
gested by Peter Winkler. The construction starts with a small graph
which is expanding, and one uses it to keep boosting another graph
to be an expander. So you plug this little graph in somehow, and
you get a bigger expander, and then you repeat this to get a bigger
one, and so on. So you can generate arbitrary large expanders.
This local construction has some zig-zag picture in it if you look at
it, but that is not the important thing.

There is another way of describing an expander which I think is
more intuitive. An expander is a graph such that, no matter what
distribution you have on the vertices, if you take a vertex from
this distribution and go from this vertex to a random neighbour,
the entropy of the distribution increases. That is another way to

describe expanders, and this you see almost with your eyes in the
zig-zag construction. You see how the entropy grows, and that is
what I like about this way of looking at it.

To try to get a picture of what is going on: as far as we understand
you have a graph and you place this other graph at all the vertices.
Then you have to decide how to put the edges in. Then essentially
what you are doing, just like in the semidirect product situation
where you have the multiplication rule, you move a little bit in one
of the vertices, then you jump all the way to the next vertex, and
then you do the similar jump there. Is that correct, vaguely?

Wigderson. It’s completely correct, and moreover the connection
to semidirect products was something we realized two or three
years later with Alexander Lubotzky and Noga Alon. It was sort
of a challenge that I felt early on, namely that the graphs that
we got were expanders, they were combinatorially generated, we
understood them, and I was wondering whether our construction
could be useful to construct Cayley graphs. And then with Noga
Alon and Alexander Lubotzky we realized it’s not just similar, but
the zig-zag product is a combinatorial generalization of semidirect
products of groups applied to Cayley graphs. It’s more general and
it specializes in the case of Cayley graphs to semidirect products.
For example, because of this you can prove that Cayley graphs
of groups that are not simple can be expanding with a constant
number of generators. No algebraic method is known to give that.

This has been used extensively in many situations, and one of the
things one perhaps should mention is that the symmetric logspace
and the logspace are the same, as shown by Reingold in 2004.
This seems to be an idea that really caught on. Are you still using
it yourself, or have you let your “baby” grow up and run into the
mathematical community?

Wigderson. I think it’s great that we have a mathematical com-
munity. Many of our ideas have been taken to places beyond my
imagination. There is something fundamental about this construc-
tion, and it was used like you said in this Reingold result, which
can more simply be described as the logspace algorithm for con-
nectivity in graphs. In fact, it goes back to a result of Lovász and
his collaborators, and can be viewed as a randomization result.

Lovász with Karp, Aleliunas, Lipton and Rackoff showed in 1980
that if you want to test whether a large graph is connected, but
you have no memory, you just need enough memory to remember
where you are, then by tossing coins you can explore the whole
graph. This is the random logspace algorithm for graph connectivity.
Derandomizing this algorithm was another project of mine that
I never got to do, but Reingold observed that if you take the zig-zag
product and applied it very cleverly to their randomized algorithm,
you get the deterministic logspace algorithm for the same problem.
So it’s a particular pseudorandom generator tailored to this. It was
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also used in the new PCP-theorem of Irit Dinur. So, yeah, there is
something general with this zig-zag product that other people find
extremely useful.

Mutual influence

Actually, this brings us to an interesting place in this interview,
because here we are seeing connections between what the two
of you were doing.

Wigderson. Let me mention one of the most influential things
that happened to me in my postdoc years. It was in 1985. I was
a postdoc in Berkeley, and there was a workshop going on in
Oregon in which Lovász gave ten lectures. I don’t remember ex-
actly what it was called, but there were lectures on optimization,
geometry of numbers, etc. It was a whole week of lectures and
everybody wanted to hear Lovász’ talk, and everybody appreciated
how extremely clear his presentation was.

But the most important thing I got out of this is what Lovász
described himself when you asked him the question about the
LLL-algorithm, and its relation to the work on the ellipsoid and so
on. He stressed how a high level point of view, rather than one
focused on a specific problem, can connect lots and lots of areas
of mathematics of great importance. Lovász described to you how
a question that was a bit peculiar, namely about having a more eleg-
ant solution to a problem in optimization, led to solving the lattice
basis reduction problem, and how it was connected to Diophantine
approximation, as well as how it connects to cryptography, both
to breaking crypto systems and creating crypto systems. And, you
know, you get this panoramic view where everything fits in with
everything. I was extremely influenced by this, it was an amazing
memorable event in my early career. 

Lovász. I think I have some similar memories. The zero-knowledge
proof was such a shockingly exciting thing that I learned about,
and it sort of showed me how powerful these new ideas of cryp-
tography, and theoretical computer science in general, how very
powerful they are. I was always very interested inWigderson’s work
on randomness, even though I was sometimes trying to go the op-
posite direction, and find examples where randomness really helps.

One has to add that this is sometimes a matter of the model, of
the computational model. I mentioned some results about convex
optimization, convex geometry, algorithmic results in high dimen-
sional convexity, and it’s a basic problem there that if you have
a convex body, how can you compute the volume? One of my
Ph.D. students at the time, György Elekes, came up with a beauti-
ful proof showing that you need exponential time to approximate
this volume, even within a constant factor. That was in our model
in which we formulated this equivalence of optimization and sep-
aration of convex bodies given by a separation oracle. A few years

later, and that is actually another thing that Wigderson said, Dyer,
Frieze and Kannan came up with a randomized algorithm to com-
pute the volume, or to approximate the volume, in polynomial time
with an arbitrary small relative error.

The interesting thing is the dependence on the dimension. If
the dimension is n then their algorithm took n29 steps. Obviously
this was very far from being practical, but that started their flow of
research. I was also part of it and I really liked this result, and I was
quite interested in making it more efficient and understanding why
the exponent is so high. And then the exponent went down nicely
from 29 to 17, to 10, to 7, to 5, to 4. It stood for a long time at
4, but a year ago it went down to 3. So now this is close to being
practical. It’s still not, n to the cube is still not enough to be a really
fast algorithm, but it’s definitely not ridiculously way off.

Two comments about this example. Firstly, because it’s a differ-
ent computational model, provably randomness helps. It’s provable
that without randomness it takes exponential time, and with ran-
domness it’s now down to a decent polynomial time. And the
second is that polynomial time is an indicator that this problem
has some deep structure. You explore this deep structure, and
eventually you can improve the polynomial time to something
decent.

Graphons

Here is a question to you, professor Lovász, on a subject where
you have made major contributions: what is a limit theory for
graphs, and what are graph limits good for? Also, explain what
a graphon is.

Lovász. I will try to be not too technical. A graph is often given by
an adjacency matrix, so you can imagine it as a zero-one matrix.
And now, suppose that the graph is getting bigger and bigger,
and you have this sequence of matrices. We always think of these
as functions on the unit square, where we just cut into smaller
squares, each square carrying a zero or a one. And now these
functions in some sense tend to a function on the unit square,
which may be continuous, or, at least not discrete any more, and
that is a graphon. So, for example, if the graph is random, so each
square is randomly one or zero, then it will tend to a grey square,
that is, to an identical one half graphon. So a graphon is a function
on the unit square, which is measurable and symmetric, and it turns
out that you can exactly define what it means that a sequence of
graphs converges to such a graphon.

Now, a lot of properties of the graphs are preserved, that is,
if all the graphs in the sequence have a certain property, then the
limit will also have this property. For example, if all these graphs
have some good eigenvalue gap – a property that expanders have –
then the limit will also have a good eigenvalue gap. Here we are
considering dense graphs. So you look at this space of graphons,
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and then you have to prove – and there is a lot of technical details
there – that the space of graphons in an appropriate metric is
compact. This is very convenient to work with, because from then
on you can, for example, take a graph parameter, let’s say density
of triangles. It can be defined in the limit graphon what the density
of triangles is, and then in this limit graphon there will be a graphon
which minimizes this under certain other conditions.

So you can play the usual game which you play in analysis, that
studies the minimum, the minimizer, and then you try to determine
whether it’s a local minimum, or a global minimum. All these things
that you can do in analysis, you can do in this setting, and this all
has some translation back to the graph theory.

It’s worthwhile mentioning that the Regularity Lemma of Sze-
merédi is closely related to the topology of graphons. In particular,
compactness of the space of graphons implies a strong form of
the Regularity Lemma.

The Shannon capacity

Professor Lovász, in 1979 you published a widely cited paper
titled: “On the Shannon capacity of a graph”. In this paper you
determine the Shannon capacity of the pentagon by introducing
deep mathematical methods. Moreover, you proved that there is
a number, now called the Lovász number, which can be computed
in polynomial time. The Lovász number is the upper bound of the
Shannon capacity associated to a graph. Could you tell us a little
more about that, and explain what the Shannon capacity is?

Lovász. I will not give a formal definition of what the Shannon ca-
pacity is, but you have an alphabet and you are sending messages
composed of the letters of the alphabet. Now certain letters are
confusable or confoundable, so they are not clearly distinguished
by the recipient. You want to pick a largest subset of words which
can be sent without danger of confusion. For any two words there
should be at least one position where they are clearly distinguish-
able. So if the alphabet is described by the vertices of a graph, an
edge between two letters means that those two letters are confus-
able. Shannon came up with this model, and he determined the
capacity. If you are sending very long words, how many words can
you send without causing confusion? That number grows expo-
nentially, and the base of this exponential function is the Shannon
capacity.

The pentagon graph was the first one for which the Shannon
capacity was not known, and I introduced some technique called
the orthogonal representation, which enabled me to answer this
question.

This is an example of one of those things that occasionally
happen, namely when you answer a question, then all of a sudden
it begins to have its own life. For example, it was used to determine
the chromatic number of perfect graphs. In a very different direc-
tion, recently a group of physicists found some quite interesting
applications of it in quantum physics. So all of a sudden you hear
that something you did has inspired other people to do something
really interesting. That is very pleasing.

©Eirik Furu Baardsen/DNVA
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The Erdős–Faber–Lovász conjecture

Our last mathematical question to you, professor Lovász, is about
the so-called Erdős–Faber–Lovász conjecture, a conjecture that
was posed in 1972. How did it come about, and what were your
initial thoughts on how difficult it would be to prove it? Quite
recently the conjecture has been proved by Kang, Kelly, Kühn,
Methuku and Osthus. We should also add that apparently Erdős
considered this to be one of his three most favourite combinatorial
problems.

Lovász. The background for this problem was that there was
a meeting in August 1972 at Ohio State University, where we dis-
cussed hypergraph theory, which was just beginning to emerge
as an interesting topic. The idea is that instead of having a stand-
ard graph where an edge always has two endpoints, you can
instead look at structures where an edge has three endpoints, or
five endpoints, and so on. These are called hypergraphs, and the
question was: given any particular question in graph theory, like
chromatic number, connectivity, etc., how can this be generalized
to hypergraphs?

One of these questions was what is called the edge chromatic
number in graph theory. It’s a well known variant of the chromatic
number problem, in which case you colour the edges, not the
vertices, and you want that edges incident with the same vertex
should get different colours. And then you can ask the same ques-
tion about hypergraphs and what upper bound you can give on the
number of different colours needed. We came up with this obser-
vation that in all the known examples the number of vertices was
an upper bound on the number of colours needed to edge-colour
the hypergraph.

A few weeks after this meeting at Ohio State, I was visiting
the University of Colorado, Boulder, and so was Erdős. Then Faber
gave a party, and we began to discuss mathematics, that is what
mathematicians usually do at parties, and so we came up with this
question.

Erdős didn’t really believe this to be true. I was more optimistic
and thought maybe it is true. It certainly was a nice conjecture,
stating that the number of vertices was an upper bound on how
many colours is needed. Then we realized that the conjecture
had some nontrivial special cases, like something called the Fisher
inequality in the theory of block designs. And that is where we
got stuck. The conjecture became more and more famous, it’s
a very elementary question, very simple to ask. Nobody could
actually get a good grip on it. Eventually Jeff Kahn was able, maybe
10 years ago or so, to prove it with a factor of 1+ ε, for every
positive ε.

A year ago, Daniela Kühn and her students were able to prove
it, at least for every large enough n. One peculiar feature of this
conjecture is that you make a conjecture based on small n, and
then you can prove it for very large n. And what is in between often

remains a question mark. She gave a talk about it at the European
Congress a couple of months ago, and it was very convincing, so
I think it’s now proved. 

Quantum interactive proofs

In January 2020, five people, Ji, Natarajan, Vidick, Wright and Yuen
announced that they had proved a result in quantum complexity
theory that implied a negative answer to Connes’ embedding
problem in operator algebra theory. This came as a total surprise
to a lot of people, included the two of us, as we are somewhat
familiar with the Connes problem, a problem whose proof has
withstood all attacks over the last forty plus years. That a problem
which seems to have nothing to do with quantum complexity
theory should find its solution within the latter field is astonishing
to us. Professor Wigderson, do you have any comments?

Wigderson. Ever since this result came out I have tried to give
popular lectures about the evolution of the particular field that
is relevant to this result, namely interactive proofs, specifically
the study of quantum interactive proofs and how it connects to
the MIP∗ = RE result, as well as to particular questions, like the
Connes embedding problem and the Tsirelson problem in quantum
information theory. Of course, every particular result might be
surprising, but I am not at all surprised by this connection. By
now we have lots and lots of places all over mathematics where
ideas from theoretical computer science, algorithms and, of course,
discrete mathematics, are present and reveal their power.

As for the connection to operator algebras, and specifically
to von Neumann algebras, it’s not so mysterious as it may seem,
because of quantum measurements involving applications of op-
erators. The question of whether these operators commute is
fundamental in the understanding both of quantum information
theory and in the power of quantum interactive proofs. I was more
focused on the reason that possibly a proof could be obtained
in the realm of quantum interactive proofs, and not in classical
quantum information theory.

If you look at the formulation of quantum interactive proofs –
particularly the MIP∗ ones of multiple provers – and you com-
pare them to the EPR paper, the famous Einstein–Podolsky–Rosen
Gedankenexperiment testing quantum mechanics, you see the
same picture. You see there a two-prover interactive proof like you
see in the more recent complexity theoretic quantum interactive
proofs. If you look at the history of studying such experiments or
proofs, in the physics world the focus was on particular different
types of problems. There are several famous ones, like the Bell
inequalities. Whereas it’s very natural for people studying quantum
interactive proofs to study them as a collection. There is a collec-
tion of games, some games reducible to each other, and the proof
that MIP∗ = RE is a sequence of amazing reductions and ampli-
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fication results using various quantum coding theory techniques
and so on, even PCP techniques. This complexity-theoretic way
of looking at things builds a better understanding of how they
behave as a whole, and I think that is the source of the power of
this approach, and the applications come from the final result just
because the objects of study are operators on a Hilbert space.

Non-commutative optimization

Professor Wigderson, you are currently working on something
that appears to us to be quite different from what you have been
working on earlier. You call it noncommutative optimization, and
it seems to us that you are doing optimization in the presence
of symmetries of certain noncommutative groups, general linear
groups and stuff like that. It seems like a truly fascinating project
with connections to many areas. Would you care to comment
a little bit on what you are doing here?

Wigderson. First of all, it’s completely true that it’s very different
from anything that I have done before, because it’s more about
algorithms than about complexity. Even more, it’s using far more
mathematics that I did not know about beforehand. So I had to
learn, and I still have to learn much more mathematics, especially in-
variant theory, representation theory and some algebraic geometry
that I certainly was not aware of and never needed before.

This again shows the interconnectivity in mathematics, in par-
ticular, what is used from different areas of mathematics in order
to obtain efficient algorithms and for obtaining other results in
discrete mathematics. This connection, of course, goes in the other
direction as well and enriches these mathematical areas.

This project started from something that is very dear to me,
namely the derandomization project that I have been thinking
about for thirty years. One of the simplest problems which we
know has a probabilistic algorithm, but that we don’t know have
a deterministic counterpart – I mean without assumptions – is
the testing of algebraic identities. You can think of the Newton
identities between symmetric polynomials, you can think of the
Vandermonde identity, there are lots and lots of algebraic identities
in mathematics.

If anybody conjectures an algebraic identity, what do you do,
how do you check it? You may think about these as polynomials
with many variables. Of course, you can not expand them and
compare coefficients, because this would take exponential time
since there are exponentially many coefficients. Well, there is a sure
probabilistic way. What we do is just to plug random numbers
into the variables and evaluate the polynomials in question, and
compare the results. This will be correct with high probability. So
there is a fast probabilistic algorithm for this problem of polynomial
identity testing, and we don’t know if a fast deterministic one
exists.

About twenty years ago Kabanets and Impagliazzo realized
something absolutely fundamental, namely that if you find a de-
terministic polynomial time algorithm for this problem, you would
have proved something like P different from NP. The analogue in
algebraic complexity theory is that you would have proven that the
permanent is exponentially harder to compute than the determ-
inant. In short, a hardness result which will be a breakthrough in
computer science and mathematics!

First of all, I would like to say that this statement should be
shocking, because a fast algorithm implies hardness of a differ-
ent problem. It implies a computational hardness result, which is
amazing. Even before this result it was a basic problem to try to
derandomize, and there were various attempts in many special
cases that I worked on and others worked on. And, of course, this
result made these attempts far more important.

Some years ago the issue of what happens with polynomials
or rational functions that you are trying to prove are equivalent,
are not with commuting variables, but are rather with noncommut-
ative variables. It became evident that we needed it in a project
here with two postdocs, Pavel Hrubes and Amir Yehudayoff. We
started working on the noncommutative version of testing algeb-
raic identities; it’s basically the word problem for skew fields, so
it’s a very basic problem. It became apparent from our attempts
that invariant theory was absolutely crucial for this problem. So
understanding the invariants of certain group actions on a set of
matrices, as well as understanding the degree of the generating
invariants of such actions, became essential.

So I started learning about this and kept asking people in this
area, and then I started collaborating with two students in Prin-
ceton, Ankit Garg and Rafael Oliveira. Eventually, cutting a long
story short, together with Leonid Gurvits we found a deterministic
polynomial time algorithm for solving this problem in a noncom-
mutative domain, for noncommutative variables. Nothing like this
was known, even a randomized algorithm was not known, and it
uses essentially results in invariant theory.

And then we were trying to understand what we did. For the
last five years I have repeatedly attempted to better understand
what we did, to understand the extent of the power of these types
of algorithms. What are the problems they are related to or can
solve, and what these techniques can do, and what, in general, is
the meaning of this result?

I should say something about applications of this. It turns out
that it captures a lot of things that seemed to be unrelated. It’s
useful not just for testing identities, but also for testing inequalit-
ies, like the Brascamp–Lieb inequalities. It’s good for problems in
quantum information theory, it’s good for problems in statistics,
for problems in operator theory. It seems to be very broad.

Now all these algorithms just evolve along the orbit of a group
action on some linear space. That is the nature of all of them.
Many of these problems we are looking at are not convex, so
standard convex optimization methods don’t work for them. But
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these algorithms work. And what we understood was that these
algorithms can be viewed as doing convex optimizations, standard
first order, second order methods, that are used in convex optimiz-
ation, except, instead of taking place in Euclidean space, they take
place in some Riemannian manifold, and the convexity that you
need is the geodesic convexity of that space.

By now we have a theory of these algorithms, but, of course,
there is plenty that we don’t understand. The growing number
of application areas of this I find very fascinating. Of course, I am
hoping that eventually it will help us to solve the commutative case
and understand what works and what does not work there.

LL and AW are super heros

To our delight also some young Koreans have discovered that you
are mathematical super heroes. Your two sons have a common
Ph.D. advisor at Stanford, Jacob Fox, and this was seized upon by
a South Korean popular science journal aimed at a younger audi-
ence, where you and your sons are depicted as various characters
from Star Wars. As high profile scientists, do you feel comfortable
being actual heroes with lightsabers and what not?

Lovász. I always like a good joke, so I think this was a great
cartoon. 

Wigderson. I also loved it, and I think that it just shows that one
can always be more creative in getting younger audiences excited
about mathematics in ways that you did not expect before.

Is science under pressure?

There is a question we would like to ask that has nothing to do
as such with mathematics, and that is: do you feel that science
is under pressure and is this something that mathematicians can
and should engage in?

Lovász. I think that is true, science is under pressure. The basic
reason for that, as far as I see it, is that it has grown very fast,
and people understand less and less of what is going on in each
particular science, and that makes it frightening, that makes it
alien. Furthermore, that also makes it more difficult to distinguish
between what to believe and what not, to distinguish between
science and pseudoscience. This is a real problem. I think we have
to very carefully rethink how we teach students in high school.
Now, mathematics is one of the areas where the teaching of it is
really not up to what it could be. I guess about 90% of the people
I meet say: I have always hated mathematics.

I think we are not doing our job of teaching well. I am saying
this in spite of that some of my best friends are working on trying
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to improve mathematics education. Many people realize that there
is a problem there, but it’s very difficult to move ahead. I have less
experience with other areas, but just looking from the outside I can
see how biology today is different from what I studied in biology
in high school. It’s clear that it’s a huge task there in front of the
scientific community.

Mathematics should play central role because a lot of sciences
are using more and more mathematics, not only statistics, which
is sort of standard. For example, network theory or, of course,
analysis and differential equations, and quantum physics, which
is really also mathematics; it’s a complicated area of multilinear
algebra, so to say. I think the problem is there and that we should
do something about it.

On behalf of the Norwegian Mathematical Society and the Europ-
ean Mathematical Society, and the two of us, we would like to
thank you for this very interesting interview, and again, congratu-
lations with being awarded the Abel Prize!

Wigderson. Thank you!

Lovász. Thank you!
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