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1 Introduction

The problem of solving polynomial equations in one variable, i.e.,
equations of the form

f(x) = 0, where f(x) = xn + a1xn−1 +⋯+ an, (1)

goes back to ancient times. Here by “solving” I mean finding a pro-
cedure or a formula which produces a solution x for a given set of
coefficients a1,…, an. The terms “procedure” and “formula” are
ambiguous; to get a well-posed problem, we need to specify what
kinds of operations we are allowed to perform to obtain x from
a1,…,an. In the simplest setting, we are only allowed to perform
the four arithmetic operations: addition, subtraction, multiplication
and division. In other words, we are asking if the polynomial (1)
has a root x which is expressible as a rational function of a1,…,an.
For a general polynomial of degree n ⩾ 2, the answer is clearly
“no”; this was already known to the ancient Greeks. The focus then
shifted to the problem of “solving polynomials in radicals”, where
one is allowed to use the four arithmetic operations and radicals
of any degree. Here the mth radical (or root) of t is a solution to

xm − t = 0. (2)

Mathematicians attempted to solve polynomial equations this way
for centuries, but only succeeded for n = 1, 2, 3 and 4. It was
shown by Ruffini, Abel and Galois in the early 19th century that
a general polynomial of degree n ⩾ 5 cannot be solved in radicals.
This was a ground-breaking discovery. However, the story does not
end there.

Suppose we allow one additional operation, namely solving

x5 + tx+ t = 0. (3)

That is, we start with a1,…,an, and at each step, we are allowed
to enlarge this collection by adding one new number, which is
the sum, difference, product or quotient of two numbers in our
collection, or a solution to (2) or (3) for any t in our collection.
In 1786, Bring [16] showed that every polynomial equation of
degree 5 can be solved using these operations.

Note that the coefficients of (2) and (3) only depend on one
parameter t. Thus roots of these equations can be thought of as

”algebraic functions” of one variable. By contrast, the coefficients
of the general polynomial equation (1) depend on n independent
parameters a1,…,an. With this in mind, we define the resolvent
degree rd(f) of a polynomial f(x) in (1) as the smallest positive
integer r such that every root of f(x) can be obtained from a1,…,an
in a finite number of steps, assuming that at each step we are
allowed to perform the four arithmetic operations and evaluate
algebraic functions of r variables. Let us denote the largest possible
value of rd(f) by rd(n), as f(x) ranges over all polynomials of
degree n. The algebraic form of Hilbert’s 13th problem asks for
the value of rd(n).

The actual wording of the 13th problem is a little different:
Hilbert asked for the minimal integer r one needs to solve every
polynomial equation of degree n, assuming that at each step one
is allowed to perform the four arithmetic operations and apply
any continuous (rather than algebraic) function in r variables. Let
us denote the maximal possible resolvent degree in this setting
by crd(n), where “c” stands for “continuous”. Specifically, Hilbert
asked whether or not crd(7) = 3. In this form, Hilbert’s 13th prob-
lem was solved by Kolmogorov [37] and Arnold [1] in 1957.¹ They
showed that, contrary to Hilbert’s expectation, crd(n) = 1 for ev-
ery n. In other words, continuous functions in 1 variable are enough
to solve any polynomial equation of any degree. Moreover, any con-
tinuous function in n variables can be expressed as a composition
of functions of one variable and addition.

In spite of this achievement, Wikipedia lists the 13th problem as
“unresolved”. While this designation is subjective, it reflects the view
of many mathematicians that Hilbert’s true intention was to ask
about rd(n), not crd(n). They point to the body of work on rd(n)
going back centuries before Hilbert (see, e.g., [21]) and to Hilbert’s
own 20th century writings, where only rd(n) was considered (see,
e.g., [31]). Arnold himself was a strong proponent of this point of
view [13, pp. 45–46], [2].

Progress on the algebraic form of Hilbert’s 13th problem has
been slow. From what I said above, rd(n) = 1when n⩽ 5; this was

¹ Arnold was a 19 year old undergraduate student in 1957. He later said
that all of his numerous subsequent contributions to mathematics were,
in one way or another, motivated by Hilbert’s 13th problem; see [2].
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known before Hilbert and even before Galois. The value of rd(n)
remains open for every n ⩾ 6, and the possibility that rd(n) = 1
for every n has not been ruled out. The best known upper bounds
on rd(n) are of the form rd(n) ⩽ n− α(n), where α(n) is an un-
bounded but very slow growing function of n. The list of people
who have proved inequalities of this form includes some of the lead-
ing mathematicians of the past two centuries: Hamilton, Sylvester,
Klein, Hilbert, Chebotarev, Segre, Brauer. Recently, their methods
have been refined and their bounds sharpened by Wolfson [63],
Sutherland [60] and Heberle–Sutherland [30].

There is another reading of the 13th problem, to the effect that
Hilbert meant to allow global multi-valued continuous functions;
see [2, p. 613]. These behave in many ways like algebraic functions.
If we denote the resolvent degree in this sense by Crd(n), where
“C” stands for “global continuous”, then

1 = crd(n) ⩽ Crd(n) ⩽ rd(n) ⩽ n− α(n).

As far as I am aware, nothing else is known about Crd(n) or rd(n)
for n ⩾ 6.

On the other hand, in recent decades, considerable progress
has been made in studying a related but different invariant, the
essential dimension.² Joe Buhler and I [14] introduced this notion
in the late 1990s. In special instances, it came up earlier, e.g., in the
work of Kronecker [38], Klein [35], Chebotarev [15], Procesi [48]³
and Kawamata [34]⁴. Our focus in [14] was on polynomials and
field extensions. It later became clear that the notion of essential
dimension is of interest in other contexts: quadratic forms, central
simple algebras, torsors, moduli stacks, representations of groups
and algebras, etc. In each case, it poses new questions about
the underlying objects and occasionally leads to solutions of pre-
existing open problems.

This paper has two goals. The first is to survey some of the
research on essential dimension in Sections 2–7. This survey is
not comprehensive; it is only intended to convey the flavor of the
subject and sample some of its highlights. My second goal for this
paper is to define the notion of resolvent degree of an algebraic
group in Section 8, building on the work of Farb and Wolfson [25]
but focusing on connected, rather than finite groups. The quantity
rd(n) defined above is recovered in this setting as rd(Sn). For more
comprehensive surveys of essential dimension and resolvent degree,
see [41,51] and [25], respectively.

² The term “essential dimension” was coined by Joe Buhler. The term
“resolvent degree” was introduced by Richard Brauer in [8].
³ Procesi asked about the minimal number of independent parameters
required to define a generic division algebra of degree n. In modern
terminology, this number is the essential dimension of the projective
linear group PGLn.

⁴ Kawamata defined an invariant Var(f) of an algebraic fiber space
f ∶ X → S, which he informally described as “the number of moduli of
fibers of f in the sense of birational geometry”. In modern terminology,
Var(f) is the essential dimension of f.

2 Essential dimension of a polynomial

Let k be a base field, K be a field containing k and L be a finite-
dimensional K-algebra (not necessarily commutative, associative or
unital). We say that L descends to an intermediate field k ⊂ K0 ⊂ K
if there exists a finite-dimensional K0-algebra L0 such that L =
L0 ⊗K0 K. Equivalently, recall that, for any choice of an K-vector
space basis e1,…, en of L, one can encode multiplication in L into
the n3 structure constants chij ∈ K given by eiej =∑n

h=1 c
h
ijeh. Then

L descends to K0 ⊂ K if and only if there exists a basis e1,…,en such
that all of the structure constants ehij with respect to this basis lie
in K0. The essential dimension edk(L/K) is defined as the minimal
value of the transcendence degree trdegk(K0), where L descends
to K0. If the reference to the base field k is clear from the context,
we will write ed in place of edk.

If f(x) = xn + a1xn−1 + ⋯ + an is a polynomial over K, for
some a1,…, an, as in (1), we define edk(f) as edk(L/K), where
L = K[x]/(f(x)). Note that if f(x) (or equivalently, L) is separable
over K, then L descends to K0 if and only if there exists an element
y∈ L which generates L as an K-algebra and such that the minimal
polynomial g(y) = yn + b1yn−1 +⋯+ bn of y lies in K0[y].

In classical language, the passage from f(x) to g(y) is called
a Tschirnhaus transformation. Note that

y = c0 + c1x+⋯+ cn−1xn−1 (4)

for some c0,c1,…,cn−1 ∈ K. Here x∈ L is xmodulo (f(x)). Tschirn-
haus’ strategy for solving polynomial equations in radicals by
induction on degree was to transform f(x) to a simpler polyno-
mial g(y), find a root of g(y) and then recover a root of f(x)
from (4) by solving a polynomial equation of degree⩽ n− 1. In his
1683 paper [62], Tschirnhaus successfully implemented this strat-
egy for n = 3 but made a mistake in implementing it for higher n.
Tschirnhaus did not know that a general polynomial of degree ⩾ 5
cannot be solved in radicals or that his method for solving cubic
polynomials had been discovered by Cardano a century earlier.

Let us denote the maximal value of ed(f) taken over all field ex-
tensions K/k and all separable polynomials f(x) ∈ K[x] of degree n
by edk(n). Kronecker [38] and Klein [35] showed that

edℂ(5) = 2. (5)

This classical result is strengthened in [14] as follows.

Theorem 1. Assume char(k) ≠ 2. Then edk(1) = 0,

edk(2) = edk(3) = 1, edk(4) = edk(5) = 2, edk(6) = 3

and edk(n+ 2) ⩾ edk(n) + 1 for every n ⩾ 1. In particular,

⌊n
2
⌋ ⩽ edk(n) ⩽ n− 3 (6)

for every n ⩾ 5.
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I recently learned that a variant of the inequality edℂ(n) ⩾ ⌊ n2 ⌋
was known to Chebotarev [15] as far back as 1943.

The problem of finding the exact value of ed(n)may be viewed
as being analogous to Hilbert’s 13th problem with rd(n), crd(n)
or Crd(n) replaced by ed(n). Since Hilbert specifically asked about
rd(7), the case where n = 7 is of particular interest.

Theorem 2 (Duncan [23]). If char(k) = 0, then edk(7) = 4.

The proof of Theorem 2 relies on the same general strategy
as Klein’s proof of (5); I will discuss it further it in Section 6. Com-
bining Theorem 2 with the inequality edk(n + 2) ⩾ edk(n) + 1
from Theorem 1, we can slightly strengthen (6) in characteristic 0
as follows:

⌊n+ 1
2

⌋ ⩽ ed(n) ⩽ n− 3 for every n ⩾ 7. (7)

Beyond (7), nothing is known about edℂ(n) for any n ⩾ 8. I will
explain where I think the difficulty lies in Section 5.

Analogous questions can be asked about polynomials that are
not separable, assuming char(k) = p> 0. In this setting, the role of
the degree is played by the “generalized degree” (n, e). Here n =
[S ∶ K], where S is the separable closure of K in L= K[x]/(f(x)) and
e=(e1,…,er) is the so-called type of the purely inseparable algebra
L/S defined as follows. Given x ∈ L, let us define the exponent
exp(x, S) to be the smallest integer e such that xp

e ∈ S. Then e1 is
the largest value of exp(x, S) as x ranges over L. Choose an x1 ∈ L
of exponent e1, and define e2 as the largest value of exp(x, S[x1]).
Now choose x2 ∈ L of exponent e2, and define e3 as the largest
value of exp(x, S[x1, x2]), etc. We stop when S[x1,…, xr] = L.
By a theorem of Pickert, the resulting integer sequence e1,…, er
satisfies e1 ⩾⋯⩾ er ⩾ 1 and does not depend on the choice of the
elements x1,…, xr. One can now define edk(n, e) by analogy with
edk(n): edk(n, e) is the maximal value of edk(f), as K ranges over
all field extension of k and f(x) ∈ K[x] ranges over all polynomials
of generalized degree (n, e). Surprisingly, the case where e ≠ Ø
(i.e., the polynomials f(x) in question are not separable) turns out
to be easier. We refer the reader to [53], where an exact formula
for ed(n, e) is obtained.

3 Essential dimension of a functor

Following Merkurjev [6], we will now define essential dimension for
a broader class of objects, beyond polynomials or finite-dimensional
algebras. Let k be a base field, which we assume to be fixed
throughout, and ℱ be a covariant functor from the category of
field extensions K/k to the category of sets. Any object α ∈ ℱ(K)
in the image of the natural (“base change”) map ℱ(K0) → ℱ(K)
is said to descend to K0. The essential dimension edk(α) is defined
as the minimal value of trdegk(K0), where the minimum is taken
over all intermediate fields k ⊂ K0 ⊂ K such that α descends to K0.

For example, consider the functor Assn of n-dimensional asso-
ciative algebras given by

Assn(K) = {n-dimensional associative K-algebras,
up to K-isomorphism}.

For A ∈ Assn(K), the new definition of edk(A) is the same as
the definition in the previous section. Recall that, after choosing
a K-basis for A, we can describe A completely in terms of the n3

structure constants chij . In particular, A descends to the subfield
K0 = k(chij) of K, and consequently, edk(A) ⩽ n3.

Another interesting example is the functor of non-degenerate
n-dimensional quadratic forms,

Quadn(K) = {non-degenerate quadratic forms on Kn,
up to K-isomorphism}.

For simplicity, let us assume that the base field k is of characteristic
different from 2. Under this assumption, a quadratic form q on Kn

is the same thing as a symmetric bilinear form b. One passes back
and forth between q and b using the formulas

q(v) = b(v, v) and b(v,w) = q(v+w) − q(v) − q(w)
2

for any v,w ∈ Kn. The form q (or equivalently, b) is called degener-
ate if the linear form b(v,∗) is identically zero for some 0≠ v∈ Kn.
A variant of the Gram–Schmidt process shows that there exists an
orthogonal basis of Kn with respect to b. In other words, in some
basis e1,…, en of Kn, q can be written as

q(x1e1 +⋯+ xnen) = a1x21 +⋯+ anx2n

for some a1,…, an in K. In particular, we have that q descends
to K0 = k(a1,…, an), and thus edk(q) ⩽ n. Note that q is non-
degenerate if and only if a1,…,an ≠ 0.

Yet another interesting example is provided by the functor of
elliptic curves,

Ell(K) = {elliptic curves over K, up to K-isomorphism}.

For simplicity, assume that char(k) ≠ 2 or 3. Then every elliptic
curve X over K is isomorphic to the plane curve cut out by a Weier-
strass equation y2 = x3 + ax + b for some a, b ∈ K. Hence, X
descends to K0 = k(a,b) and ed(X) ⩽ 2.

Informally, we think of ℱ as specifying the type of algebraic
object under consideration (e.g., algebras or quadratic forms or
elliptic curves), ℱ(K) as the set of objects of this type defined
over K, and edk(α) as the minimal number of parameters required
to define α. In most cases, essential dimension varies from object
to object, and it is natural to consider what happens under a “worst
case scenario”, i.e., how many parameters are needed to define
the most general object of a given type. This number is called the
essential dimension of the functor ℱ. That is,

edk(ℱ) = sup
K,α

edk(α),
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as K varies over all fields containing k and α varies over ℱ(K).
Note that edk(ℱ) can be either a non-negative integer or ∞. In
particular, the arguments above yield

ed(Assn) ⩽ n3, ed(Quadn) ⩽ n and ed(Ell) ⩽ 2.

One can show that the last two of these inequalities are, in fact,
sharp. The exact value of ed(Assn) is unknown for most n; however,
for large n,

ed(Assn) = 4n3/27+ O(n8/3).

Similarly,

ed(Lien) = 2n3/27+ O(n8/3),

ed(Commn) = 2n3/27+ O(n8/3),

where Lien and Commn are the functors of n-dimensional Lie al-
gebras and commutative algebras, respectively. These formulas
are deduced from the formulas for the dimensions of the vari-
eties of structure constants for n-dimensional associative, Lie and
commutative algebras due to Neretin [44].⁵

This brings us to the functor H1(∗,G), where G is an algebraic
group defined over k. The essential dimension of this functor is
a numerical invariant of G. This invariant has been extensively
studied; it will be our main focus in the next section. The functor
H1(∗,G) associates to a field K/k, the set H1(K,G) of isomorphism
classes of G-torsors T over K. Recall that a G-torsor over T over K is
an algebraic variety with a G-action defined over K such that, over
the algebraic closure K, T becomes equivariantly isomorphic to G
acting on itself by left translations. If T has a K-point x, then G → T
taking g to g ⋅ x is, in fact, an isomorphism over K. In this case,
the torsor T is called “trivial” or “split”. The interesting (non-trivial)
torsors over K have no K-points. For example, if G = C2 is a cyclic
group of order 2 and char(k) ≠ 2, then every C2-torsor is of the
form Ta, where Ta is the subvariety of 𝔸1 cut out by the quadratic
equation x2 − a = 0 for some a ∈ K. Informally, Ta is a pair of
points (roots of this equation) permuted by C2; it is split if and only if
these points are defined over K (i.e., a is a complete square in K). In
fact, H1(K,C2) is in bijective correspondence with K∗/(K∗)2 given
by Ta ↦ a mod (K∗)2, where K∗ is the multiplicative group of K.
Note that, in this example, H1(K,G) is, in fact, a group. This is the
case whenever G is abelian. For a non-abelian algebraic group G,
H1(K,G) carries no natural group structure; it is only a set with
a marked element (the trivial torsor).

For many linear algebraic groups G, the functor H1(∗,G) pa-
rametrizes interesting algebraic objects. For example, when G is
the orthogonal group On, H1(∗,On) is the functor Quadn we

⁵ Note the resemblance of these asymptotic formulas to the classical
theorem of Higman and Sims, which assert that the number
of finite p-groups of order pn (up to isomorphism) is asymptotically
p2n

3/27+O(n8/3). This is not an accident; see [45].

considered above. When G is the projective linear group PGLn,
H1(K, PGLn) is the set of isomorphism classes of central simple
algebras of degree n over K. When G is the exceptional group of
type G2, H1(K,G2) is the set of isomorphism classes of octonion
algebras over K.

4 Essential dimension of an algebraic group

The essential dimension of the functor H1(∗,G) is abbreviated as
edk(G). Here G is an algebraic group defined over k. This number
is always finite if G is linear but may be infinite if G is an abelian
variety [12]. If G is the symmetric group Sn, then

edk(Sn) = edk(n), (8)

where edk(n) is the quantity we defined and studied in Section 2.
Indeed, H1(K, Sn) is the set of étale algebras L/K of degree n.
Étale algebras of degree n are precisely the algebras of the form
K[x]/(f(x)), where f(x) is a separable (but not necessarily irre-
ducible) polynomial of degree n over K. Thus (8) is just a restatement
of the definition of edk(n).

Another interesting example is the general linear group G =
GLn. Elements of H1(K,GLn) are the n-dimensional vector spaces
over K. Since there is only one n-dimensional K-vector space up
to K-isomorphism, we see that H1(K,GLn) = {1}. In particular,
every object of H1(K,GLn) descends to k, and we conclude that
edk(GLn) = 0. I will now give a brief summary of three methods
for proving lower bounds on edk(G) for various linear algebraic
groups G.

4.1 Cohomological invariants
Let ℱ be a covariant functor from the category of field extensions
K/k to the category of sets, as in the previous section. A cohomo-
logical invariant of degree d for ℱ is a morphism of functors

ℱ → Hd(∗,M)

for some discrete Gal(k)-module M. In many interesting examples,
M = μm is the module of mth roots of unity with a natural Gal(k)-
action (trivial if k contains a primitive m-th root of unity). The
following observation is due to J.-P. Serre.

Theorem 3. Assume that the base field k is algebraically closed. If
ℱ has a non-trivial cohomological invariant ℱ → Hd(∗,M), then
edk(ℱ) ⩾ d.

The proof is an immediate consequence of the Serre vanishing
theorem. Cohomological invariants of an algebraic group G (or
equivalently, of the functor H1(∗,G)) were introduced by Serre and
Rost in the early 1990s, and have been extensively studied since
then; see [57]. These invariants give rise to a number of interesting
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lower bounds on edk(G) for various groups G; in particular,
(i) ed(On) ⩾ n,
(ii) ed(SOn) ⩾ n− 1 for every n ⩾ 3,
(iii) ed(G2) ⩾ 3,
(iv) ed(F4) ⩾ 5,
(v) ed(Sn) ⩾ ⌊ n2 ⌋.
Inequalities (i), (ii) and (iii) turn out to be exact; (iv) is best known,
and (v) is best known for even n; see (7).

4.2 Finite abelian subgroups
Theorem 4. Let G be a reductive group over k and A be a finite
abelian subgroup of G of rank r.
(a) [55] Assume char(k) = 0. If the centralizer CG(A) is finite, then

ed(G) ⩾ r.
(b) [29] Assume char(k) does not divide |A|. If G is connected

and the dimension of the maximal torus of CG(A) is d, then
ed(G) ⩾ r− d.

Note that both parts are vacuous if A lies in a maximal torus T
of G. Indeed, in this case, the centralizer CG(A) contains T, so
d ⩾ r. In other words, only non-toral finite abelian subgroups A
of linear algebraic groups are of interest here. These have been
much studied and catalogued, starting with the work of Borel
in the 1950s. Theorem 4 yields the best known lower bound on
ed(G) in many cases, such as ed(E7) ⩾ 7 and ed(E8) ⩾ 9, where
E7 denotes the split simply connected exceptional group of type E7
and similarly for E8.

4.3 The Brauer class bound
Consider a linear algebraic group G defined over our base field k.
Suppose G fits into a central exact sequence of algebraic groups
(again, defined over k)

1 → D → G → G → 1,

where D is diagonalizable over k. For every field extension K/k, this
sequence gives rise to the exact sequence of pointed sets

H1(K,G) → H1(K,G)
∂
→ H2(K,D).

Every element α ∈ H2(K,D) has an index, ind(α), defined as fol-
lows. If D≃𝔾m, then α is a Brauer class over K, and ind(α) denotes
the Schur index of α, as usual. In general, we consider the charac-
ter group X(D) whose elements are homomorphisms x ∶ D → 𝔾m.
Note that X(D) is a finitely generated abelian group and each
character x ∈ X(D) induces a homomorphism

x∗ ∶ H2(K,D) → H2(K,𝔾m).

The index of α ∈ H2(K,D) is defined as the minimal value of

ind(x1)∗(α) +⋯+ ind(xr)∗(α)

as {x1,…, xr} ranges over generating sets of X(D). Here each
(xi)∗(α) lies in H1(K,𝔾m), and ind(xi)∗(α) denotes its Schur in-
dex, as above. We now define ind(G,D) as the maximal index of
α ∈ ∂(H1(K,G)) ⊂ H2(K,D), where the maximum is taken over
all field extensions K/k, as α ranges over the image H1(K,G) in
H2(K,D).

Theorem 5.
(a) ind(G,D) is the greatest common divisor of dim(ρ), where ρ

ranges over the linear representations of G over k such that
the restriction ρ|D is faithful.

(b) Let p be a prime different from char(k). Assume that the
exponent of every element of H2(K,D) in the image of

∂∶ H1(K,G) → H2(K,D)

is a power of p for every field extension K/k. (This is automatic
if D is a p-group.) Then edk(G) ⩾ ind(G,D) − dim(G).

Part (a) is known as Merkurjev’s index formula. The inequality of
part (b) is based on Karpenko’s incompressibility theorem. Part (b)
first appeared in [9] in the special case where D = 𝔾m or μpr and
in [26] in an even more special case, where D = μp. It was proved
in full generality in [33].

Theorem 5 is responsible for some of the strongest results in
this theory, including the exact formulas for the essential dimension
of a finite p-group (Theorem 6 below), the essential p-dimension
of an algebraic torus, and the essential dimension of spinor groups
Spinn. The latter turned out to increase exponentially in n:

ed(Spinn) ⩾ 2⌊(n−1)/2⌋ − n(n− 1)
2

. (9)

This inequality was first proved in [9]. The exact value of ed(Spinn)
subsequently got pinned down in [10,18] in characteristic 0, [28]
in characteristic p ≠ 2 and [61] in characteristic 2. When n ⩾ 15,
inequality (9) is sharp for n ≢ 0 modulo 4, and is off by 2ν2(n)

otherwise. Here 2ν2(n) is the largest power of 2 dividing n.
The exponential growth of ed(Spinn) came as a surprise. Prior

to [9], the best known lower bounds on ed(Spinn) were linear
(see [19, Section 7]), on the order of n

2 . Moreover, the exact values
of ed(Spinn) for n ⩽ 14 obtained by Rost and Garibaldi [27] ap-
peared to suggest that these linear bounds should be sharp. The
fact that ed(Spinn) increases exponentially in n has found inter-
esting applications in the theory of quadratic forms. For details,
see [10,18].

5 Essential dimension at p

Once again, fix a base field k, and letℱ be a covariant functor from
the category of field extensions K/k to the category of sets. The
essential dimension edk(α;p) of an object α ∈ ℱ(K) at a prime p
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is defined as the minimal value of edk(α′;p), where the minimum
ranges over all finite field extensions K ′/K of degree prime to p and
α′ denotes the image of α under the natural map ℱ(K) → ℱ(K ′).
Finally, the essential dimension edk(ℱ;p) of ℱ at p is the maximal
value of edk(α), as K ranges over all fields containing k and α ranges
overℱ(K). Whenℱ=H1(∗,G) for an algebraic groupG, we write
edk(G;p) in place of edk(ℱ;p). Once again, if the reference to the
base field is clear from the context, we will abbreviate edk as ed.
By definition, ed(α;p) ⩽ ed(α) and ed(ℱ;p) ⩽ ed(ℱ).

The reason to consider ed(ℱ; p) in place of ed(ℱ) is that
the former is often more accessible. In fact, most of the meth-
ods we have for proving a lower bound on edk(α) (respectively,
edk(ℱ)) turn out to produce a lower bound on edk(α;p) (respec-
tively, edk(ℱ;p)) for some prime p. For example, the lower bound
in Theorem 5 (b) is really edk(G;p) ⩾ ind(G,D) − dim(G). In The-
orem 4, one can usually choose A to be a p-group, in which case
the conclusion can be strengthened to ed(G;p) ⩾ r in part (a) and
ed(G;p) ⩾ r− d in part (b). In Theorem 3, ifM is p-torsion (which
can often be arranged), then ed(G;p) ⩾ d.

This is a special case of a general meta-mathematical phe-
nomenon: many problems concerning algebraic objects (such as
finite-dimensional algebras or polynomials or algebraic varieties)
over fields K can be subdivided into two types. In type 1 problems,
we are allowed to pass from K to a finite extension K ′/K of degree
prime to p, for one prime p, whereas in type 2 problems this is not
allowed. For example, given an algebraic variety X defined over K,
deciding whether or not X has a 0-cycle of degree 1 is a type 1
problem (it is equivalent to showing that there is a 0-cycle of degree
prime to p, for every prime p), whereas deciding whether or not X
has a K-point is a type 2 problem. As I observed in [51, Section 5],
most of the technical tools we have are tailor-made for type 1 prob-
lems, whereas many long-standing open questions across several
areas of algebra and algebraic geometry are of type 2.

In the context of essential dimension, the problem of comput-
ing ed(G;p) for a given algebraic group G and a given prime p is
of type 1, whereas the problem of computing ed(G) is of type 2.
For simplicity, let us assume that G is a finite group. In this case,
edk(G; p) = edk(Gp; p), where Gp is the Sylow p-subgroup of G.
In other words, the problem of computing edk(G; p) reduces to
the case where G is a p-group. In this case, we have the following
remarkable theorem of Karpenko and Merkurjev [32].

Theorem 6. Let p be a prime and k be a field containing a primitive
pth root of unity. Then, for any finite p-group P,

edk(P) = edk(P;p) = rdimk(P),

where rdimk(P) denotes the minimal dimension of a faithful rep-
resentation of P defined over k.

Theorem 6 reduces the computation of edk(G;p) to rdimk(Gp).
For a given finite p-group P, one can often (though not always)

compute rdimk(P) in closed form using the machinery of character
theory; see, e.g., [3,36,42,43].

The situation is quite different when computing edk(G) for an
arbitrary finite group G. Clearly, edk(G) ⩾ maxp edk(G;p), where
p ranges over the prime integers. In those cases, where edk(G)
is strictly larger than maxp edk(G;p), the exact value of edk(G) is
usually difficult to establish. The only approach that has been suc-
cessful to date relies on classification results in algebraic geometry,
which are currently only available in low dimensions. I will return
to this topic in the next section.

To illustrate the distinction between type 1 and type 2 problems,
consider the symmetric group G = Sn. For simplicity, assume that
k = ℂ is the field of complex numbers. Here the type 1 problem
is solved completely: edℂ(Sn; p) = ⌊ np ⌋ for every prime p. Thus
maxp edℂ(Sn;p) = ⌊ n2 ⌋, and (7) tells us that

edℂ(Sn) > max
p

edℂ(G;p) for every odd n ⩾ 7.

The remaining type 2 problem is to bridge the gap between ⌊ n2 ⌋
and the true value of edℂ(Sn). This problem has only been solved
for n ⩽ 7; see Theorems 1, 2 and (8).

Note that the algebraic form of Hilbert’s 13th problem is also
of type 2 in the sense that

rd(f;p) ⩽ 1 (10)

for any prime p, every field K and every separable polynomial
f(x) ∈ K[x].⁶ Indeed, denote the Galois group of f(x) by G. Then,
after passing from K to a finite extension K ′/K whose degree
[K ′ ∶ K] = [G ∶ Gp] is prime to p, we may replace G by its p-Sylow
subgroup Gp. Since every p-group is solvable, this means that f(x)
becomes solvable in radicals over K ′, and hence its resolvent degree
becomes ⩽ 1, as desired.

Inequality (10) accounts, at least in part, for the difficulty of
showing that rd(n)⩾ 2 for any n. The methods used to prove lower
bounds on the essential dimension of algebraic groups in Section 4,
and anything resembling these methods, cannot possibly work
here; otherwise, we would also be able to prove that rd(f;p) ⩾ 2
for some prime p, contradicting (10).

A similar situation arises in computing the essential dimension
of a finite p-group G over a field k of characteristic p. Superfi-
cially this problem looks very different from Hilbert’s 13th problem
(where one usually works over k = ℂ); the common feature is
that both are type 2 problems. Indeed, it is shown in [54] that
edk(G;p) = 1 for every non-trivial p-group G. Using the method
described in the next section, one can often show that edk(G) ⩾ 2,
but we are not able to prove that edk(G) > 2 for any p-group G
and any field k of characteristic p. On the other hand, Ledet [39]

⁶ For the precise definitions of rd(f) and rd(f;p), see Section 8.
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conjectured that

edk(Cpn) = n (11)

for any prime p and any infinite field k of characteristic p. Here
Cpn denotes the cyclic group of order pn. Ledet showed that
edk(Cpn) ⩽ n for every n ⩾ 1 and that equality holds when n ⩽ 2.

My general feeling is that type 2 problems arising in different
contexts are linked in some way, and that solving one of them
(e.g., proving Ledet’s conjecture) can shed light on the others
(e.g., Hilbert’s 13th problem). The only bit of evidence I have in
this direction is the following theorem from [11] linking a priori
unrelated type 2 problems in characteristic p and in characteristic 0.

Theorem 7. Let p be a prime and G be a finite group satisfying
the following conditions:
(i) G does not have a non-trivial normal p-subgroup, and
(ii) G has an element of order pn.
If Ledet’s conjecture (11) holds, then edℂ(G) ⩾ n.

The following family of examples is particularly striking. Let p be
a prime and n a positive integer. Choose a positive integer m such
that q = mpn + 1 is a prime. Note that, by Dirichlet’s theorem on
primes in arithmetic progressions, there are infinitely many such m.
Let Cq be a cyclic group of order q. Then Aut(Cq) is cyclic of order
mpn; let Cpn ⊆ Aut(Cq) denote the unique subgroup of order pn.
Applying Theorem 7 to G = Cq ⋊ Cpn, we obtain the following.

Corollary 8. If Ledet’s conjecture (11) holds, then

edℂ(Cq ⋊ Cpn) ⩾ n.

Note that, since the Sylow subgroups of Cq ⋊ Cpn are all cyclic,

edℂ(Cq ⋊ Cpn; l) ⩽ 1

for every prime l, so the inequality of Corollary 8 is a type 2 result.
An unconditional proof of this inequality or even of the weaker in-
equality edℂ(Cq ⋊ Cpn) > 3 is currently out of reach for any specific
choice of q and pn.

6 Essential dimension and the Jordan property

An alternative (equivalent) definition of essential dimension of
a finite group G is as follows. An action of G on an algebraic variety
X is said to be linearizable if there exists a G-equivariant dominant
rational map V ⇢ X for some linear representation G → GL(V).
Then edk(G) is the minimal value of dim(X), as X ranges over
all linearizable varieties with a faithful G-action defined over k.
In particular, edk(G) ⩽ rdimk(G), where rdimk(G) is the minimal
dimension of a faithful linear representation of G over k, as in
Theorem 6.

This geometric interpretation of edk(G) can sometimes be used
to prove lower bounds on ed(G) by narrowing the possibilities
for X and ruling them out one by one using Theorem 4 (a). For the
remainder of this section, I will assume that G is a finite group and
the base field k is the field of complex numbers and will write ed
in place of edℂ.

Suppose ed(G) = 0. Then X is a single point, and only the trivial
group can act faithfully on a point. Thus ed(G) = 0 if and only if
G is the trivial group.

Now suppose ed(G) = 1. Then X is a curve with a dominant
map V⇢ X. By Lüroth’s theorem, X is birationally isomorphic to ℙ1

and thus G is a subgroup of PGL2. Finite subgroups of PGL2 were
classified by Klein [35]. Here is a complete list: cyclic groups Cn and
dihedral groups Dn for every n, A4, S4 and A5. Theorem 4 (a) rules
out the groups on this list which contain A = C2 × C2. We thus
obtain the following.

Theorem 9 ([14, Theorem 6.2]). Let G be a finite group. Then
ed(G) = 1 if and only if G is either cyclic or odd dihedral.

To classify groups of essential dimension d (or more realistically,
show that ed(G)> d for a particular finite group G) in a similar man-
ner, we need a classification of finite subgroups of Bir(X), extending
Klein’s classification of finite subgroups in Bir(ℙ1). Here X ranges
over the unirational complex varieties of dimension d, and Bir(X)
denotes the groups of birational automorphisms of X. In dimen-
sion 2, every unirational variety is rational, so we are talking about
classifying finite subgroups of the Cremona group Bir(ℙ2). Such
a classification exists, though it is rather complicated; see [22]. Serre
used this approach to show that ed(A6)=3 (see [59, Theorem 3.6]).
Again, this is a type 2 phenomenon since maxp ed(A6; p) = 2.
Duncan [24] subsequently extended Serre’s argument to a full
classification of finite groups of essential dimension 2.

In dimension 3, there is the additional complication that uni-
rational complex varieties do not need to be rational. Here only
a partial analogue of Klein’s classification exists, namely the classi-
fication of rationally connected 3-folds with the action of a finite
simple group G, due to Prokhorov [49]. Duncan used this classi-
fication to prove Theorem 2. More specifically, he showed that
ed(S7) = ed(A7) = 4; see (8). Subsequently, Beauville [4] showed
that the only finite simple groups of essential dimension 3 are A6

and possibly PSL2(𝔽11).⁷
In dimension d ⩾ 4, even a partial analogue of Klein’s classi-

fication of finite subgroups of Bir(ℙ1) is out of reach. However,
a recent break-through in Mori theory gives us a new insight into
the asymptotic behavior of ed(Gn) for certain infinite sequences
G1,G2,… of finite groups. Recall that an abstract group Γ is called
Jordan if there exists an integer j (called a Jordan constant of Γ)
such that every finite subgroup G ⊂ Γ has a normal abelian sub-

⁷ It is not known whether the essential dimension of PSL2(𝔽11) is 3 or 4.
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group A of index [G ∶ A] ⩽ j. This definition, due to Popov [46],
was motivated by the classical theorem of Camille Jordan which
asserts that GLn(ℂ) is Jordan, and by a theorem of Serre [58] which
asserts that the Cremona group Bir(ℙ2) is also Jordan. The follow-
ing result, due to Prokhorov, Shramov and Birkar⁸, is a far-reaching
generalization of Serre’s theorem.

I will say that a collection of abstract groups is uniformly Jordan
if they are all Jordan with the same constant.

Theorem 10. Fix d ⩾ 1. Then the groups Bir(X) are uniformly Jor-
dan, as X ranges over d-dimensional rationally connected complex
varieties.

Unirational varieties are rationally connected. The converse is
not known, though it is generally believed to be false. Rationally
connected varieties naturally arise in the context of Mori theory, and
we are forced to consider them even if we are only really interested
in unirational varieties. Note that Theorem 10 does not become
any easier to prove if one requires X to be unirational. In fact, prior
to Birkar [7] (respectively, prior to Prokhorov–Shramov [49]), it was
an open question, due to Serre [58, Section 6], whether for each
d⩾ 4 (respectively, for d= 3) there exists even a single finite group
which does not embed into Bir(ℙd).⁹

Now observe that, while every finite group is obviously Jordan,
being uniformly Jordan is a strong condition on a sequence of finite
groups

G1,G2,G3,…. (12)

Suppose sequence (12) is chosen so that no infinite subsequence
is uniformly Jordan. Then we claim that

lim
n→∞

ed(Gn) = ∞. (13)

Indeed, if ed(Gn)= d, then there exists a d-dimensional linearizable
variety X with a faithful Gn-action. In particular, Gn is contained in
Bir(X). Since X is linearizable, it is unirational and hence rationally
connected. On the other hand, since no infinite subsequence of (12)
is uniformly Jordan, Theorem 10 tells us that there are at most
finitely many groups Gn with ed(Gn) = d, and (13) follows. Here
is an interesting family of examples.

Theorem 11. For each positive integer n, let Cn be a cyclic group
of order n and Hn be a subgroup of Aut(Cn). If limn→∞|Hn| = ∞,
then limn→∞ ed(Cn ⋊ Hn) = ∞.

⁸ Prokhorov and Shramov [50] proved this theorem assuming the
Borisov–Alexeev–Borisov (BAB) conjecture. The BAB conjecture was
subsequently proved by Birkar [7].

⁹ For the current status of Serre’s questions from [58, Section 6],
see [47, Section 3].

Note that this method does not give us any information about
ed(Cn ⋊ Hn) for any particular choice of n and of Hn ⊂ Aut(Cn).
For example, while Theorem 11 tells us that

edℂ(Cp ⋊ Aut(Cp)) > 10

for all but finitely many primes p, it does not allow us to exhibit
a specific prime for which this inequality holds. The reason is that,
when d > 3, a specific Jordan constant for the family of groups
Bir(X) in Theorem 10 is out of reach. In particular, an unconditional
proof of Corollary 8 along these lines does not appear feasible.
Nevertheless, Theorem 11 represents a big step forward: previously,
it was not even known that edℂ((Cp) ⋊ Aut(Cp)) > 3 for any
prime p.

A classification of the subgroups of Bir(X), as X ranges over the
unirational varieties of dimension d is a rather blunt instrument. It
would be preferable to find some topological or algebro-geometric
obstruction to the existence of a linearization map V ⇢ X, which
can be read off from the G-variety X without enumerating all
the possibilities for X. Unfortunately, all known obstructions of
this sort are of type 1: they do not distinguish between domi-
nant rational maps V ⇢ X and correspondences V ⇝ X of degree
prime to p, for a suitable prime p and thus cannot help us if
ed(G) > maxp ed(G;p).

Another draw-back of this method is that, as we mentioned in
the previous section, beyond dimension 1,¹⁰ none of the classifica-
tion theorems we need are available in prime characteristic.

7 Essential dimension of a representation

7.1 Representations of finite groups in characteristic 0
Let G be a finite group of exponent e, k be a field of characteristic 0,
K/k be a field extension, ρ∶ G → GLn(K) be a representation of G,
and χ ∶ G → K be the character of ρ. Can we realize ρ over k?
In other words, is there a representation ρ′ ∶ G → GL(k) such
that ρ and ρ′ are equivalent over K? A celebrated theorem of
Richard Brauer asserts that the answer is “yes” as long as k contains
a primitive root of unity of degree e. If it does not, there is a classical
way to quantify how far ρ is from being definable over k via the
Schur index, at least in the case where ρ is absolutely irreducible
and the character value χ(g) lies in k for every g ∈ G. The Schur
index of ρ is defined as the index of the envelope

Envk(ρ) ∶= Spank{ρ(g) ∣ g ∈ G} ⊂ Matn(K)

which, under our assumptions on ρ, is a central simple algebra
of degree n over k. The Schur index of ρ is equal to the minimal
degree [l ∶ k] of a field extension l/k such that ρ can be realized
over l.

¹⁰ Groups of essential dimension 1 have been classified over an arbitrary
field k; see [20,40]. Recall that Theorem 9 assumes that k = ℂ.
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The essential dimension edk(ρ) gives us a different way to
quantify how far ρ is from being definable over k. Here we do not
need to assume that ρ is irreducible or that its character values lie
in k. We simply think of ρ as an object of the functor

RepG ∶ K ↦ {K-representations of G, up to K-isomorphism}.

The naive upper bound on ed(ρ) is rn2, where n is the dimension
of ρ and r is the minimal number of generators of G. Indeed, if
G is generated by r elements g1,…, gr and ρ(gh) is the n × n
matrix (ah

ij), then ρ descends to the field

K0 = k(ah
ij ∣ i, j = 1,…,n; h = 1,…, r)

of transcendence degree at most rn2 over k. It is shown in [32] that,
in fact, ed(ρ) ⩽ n2/4 and, moreover, ed(RepG) ⩽ |G|/4. We have
also proved lower bounds on edk(ρ) in many cases (for details,
see [32]). Note that these are quite delicate: by Brauer’s theorem,
edk(G) = 0 as long as k contains suitable roots of unity.

7.2 Representations of finite groups in positive characteristic
Here the situation is entirely different.

Theorem 12 ([5, 32]). Let G be a finite group, k be a field of
characteristic p > 0 and Gp be the Sylow p-subgroup of G. Then

edk(RepG) =
⎧
⎨
⎩

0 if Gp is cyclic,

∞ otherwise.

Note that, by a theorem of Higman, in characteristic p, Gp is
cyclic if and only if the group algebra kG is of finite representation
type, i.e., if and only if kG (or equivalently, G) has only finitely
many indecomposable representations. Since kG is always of finite
representation type in characteristic 0, we obtain the following.

Corollary 13. Let G be a finite group and k be a field of arbitrary
characteristic. Then
• edk(RepG) < ∞ if kG is of finite representation type, and
• edk(RepG) = ∞ otherwise.

7.3 Representations of algebras
For simplicity, let us assume that the base field k is algebraically
closed. A celebrated theorem of Drozd asserts that every finite-
dimensional k-algebra A falls into one of three categories: (a) finite
representation type, (b) tame and (c) wild.

Informally speaking, A is of tame representation type if, for
every positive integer n, the n-dimensional indecomposable A-
modules occur in (at most) a finite number of one-parameter
families. On the other hand, A is of wild representation type if
the representation theory of A contains that of the free k-algebra
on two generators.

We can define the functor of representations RepA in the same
way as before: to a field K/k, it associates isomorphism classes of
finite-dimensional A⊗k K-modules. Corollary 13 tells us that, when
A= kG is a group ring, the essential dimension of the functor RepA
distinguishes between algebras A of finite representation type and
algebras of the other two types. It does not distinguish between
tame and wild representations types since ed(RepA) = ∞ in both
cases. Benson suggested that it may be possible to distinguish
between these two types of algebras by considering the rate of
growth of rA(n) = ed(RepA[n]), where RepA[n](K) is the set of
isomorphism classes of K-representations of A of dimension ⩽ n.
This is confirmed by the following theorem of Scavia [56].

Theorem 14.
(a) If A is of finite representation type, then rA(n) is bounded from

above as n → ∞.
(b) If A is tame, then there exists a constant c > 0 such that

cn− 1 ⩽ rA(n) ⩽ 2n− 1 for every n ⩾ 1.
(c) If A is wild, then there exist constants 0 < c1 < c2 such that

c1n2 − 1 ⩽ rA(n) ⩽ c2n2 for every n ⩾ 1.

This gives us three new invariants of finite-dimensional al-
gebras, ai(A) = lim supn→∞ rA(n)/ni for i = 0, 1, 2. Informally,
a2(A) (respectively, a1(A)) quantifies “how wild” (respectively,
“how tame”) A is. Scavia [56] computed a1(A) and a2(A) explicitly
in combinatorial terms in the case, where A is a quiver algebra.

8 Back to resolvent degree

8.1 The level of a field extension
Let k be a base field, K be a field containing k, and L/K be a field
extension of finite degree. I will say that L/K is of level ⩽ d if there
exists a finite tower of subfields

K = K0 ⊂ K1 ⊂ ⋯ ⊂ Kn (14)

such that L⊂ Kn and edk(Ki+1/Ki) ⩽ d for every i. The level of L/K
is the smallest such d; I will denote it by levk(L/K). Clearly,

levk(L/K) ⩽ edk(L/K).

If K is a field of rational functions on some algebraic variety
X defined over k, then it is natural to think of elements of K1

as algebraic (multi-valued) functions on X in at most edk(K1/K)
variables, and elements of L as compositions of algebraic functions
in at most levk(L/K) variables.

Example 15. If the field extension L/K is solvable, then we claim
that levk(L/K) ⩽ 1. Indeed, here we can choose the tower (14) so
that each Ki+1 is obtained from Ki by adjoining a single radical.
Then edk(Ki+1/Ki) ⩽ 1 for each i, and hence, levk(L/K) ⩽ 1, as
claimed.
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8.2 The resolvent degree of a functor
Let ℱ be a functor from the category of field extensions K/k to
the category of sets with a marked element. We will denote the
marked element in ℱ(K) by 1 and will refer to it as being “split”.
We will say that a field extension L/K splits an object α ∈ ℱ(K)
if αL = 1. Here, as usual, αL denotes the image of α under the
natural map ℱ(K) → ℱ(L). Let us assume that

for every field K/k and every α ∈ ℱ(K),
α can be split by a field extension L/K of finite degree. (15)

This is a strong condition ofℱ; in particular, it implies thatℱ(K) =
{1} whenever K is algebraically closed.

I will now define the resolvent degrees rdk(α) of α∈ℱ(K) and
rdk(ℱ) of the functor ℱ satisfying condition (15) by analogy with
the definitions of edk(α) and edk(ℱ) in Section 3. The resolvent
degree rdk(α) is the minimal integer d ⩾ 0 such that α is split
by a field extension L/K of level d (or equivalently, of level ⩽ d).
The resolvent degree rdk(ℱ) is the maximal value of rdk(α), as K
ranges over all fields containing k and α ranges over ℱ(K).

Example 16. Let n ⩾ 2 be an integer not divisible by char(k).
Then the functor H2(∗, μn) satisfies condition (15). I claim that
this functor has resolvent degree 1. Indeed, let α ∈ H2(K,μn), and
let ζ be a primitive nth root of unity in k. By the Merkurjev–Suslin
theorem, over K(ζ), we can write

α = (a1) ∪ (b1) + (a2) ∪ (b2) +⋯+ (ar) ∪ (br)

for some 0 ≠ ai, bi ∈ K(ζ). Now L = K(ζ, a1/n
1 ,…, a1/n

r ) splits α.
By our construction, L is solvable over K. Thus, as we saw in Ex-
ample 15, levk(L/K) ⩽ 1. This shows that rdk(α) ⩽ 1, as claimed.
Using the norm residue isomorphism theorem (formerly known
as the Bloch–Kato conjecture) in place of Merkurjev–Suslin, one
shows in the same manner that Hd(∗,μn) has resolvent degree 1
for every d ⩾ 1.

The resolvent degrees rdk(α; p) and rdk(ℱ; p) at a prime p
are defined in the same way as edk(α;p) and edk(ℱ;p). Here ℱ
is a functor satisfying (15), α ∈ ℱ(K) is an object of ℱ. That is,
rdk(α; p) is the minimal value of rdk(αK′), as K ′ ranges over all
field extension of K such that [K ′ ∶ K] is finite and prime to p,
and rdk(ℱ; p) is the maximal value of rdk(α; p), where K ranges
over all field containing k, and α ranges over ℱ(K). A variant of
the argument we used to prove (10) shows that rdk(ℱ; p) ⩽ 1
for every base field k, every functor ℱ satisfying (15) and every
prime p.

8.3 The resolvent degree of an algebraic group
The functor ℱ = H1(∗,G) whose objects over K are G-torsors
over Spec(K) satisfies condition (15) for every algebraic group G
defined over k. I will write rdk(G) for the resolvent degree of this

functor. For simplicity, let us assume that k = ℂ for the remainder
of this section. I will write rd in place of rdℂ.

Note that the quantity rd(n)we defined in the introduction can
be recovered in this setting as rd(Sn); cf. (8). Moreover, for a finite
group G, our definition of rd(G) coincides with the definition given
by Farb and Wolfson in [25].

Recall that, for a polynomial f(x) ∈ K[x], our definition of rd(f)
wasmotivated by wanting to express a root of f(x) as a composition
of algebraic functions in ⩽ d variables applied to the coefficients.
Equivalently, we wanted to find the smallest d such that the 0-cycle
in 𝔸1

K given by f(x) = 0 has an L-point for some field extension
L/K of level ⩽ d. If G is a linear algebraic group and T → Spec(K)
is a G-torsor, then our more general definition of rd(T) retains this
flavor. Indeed, T is an affine variety defined over K, and saying that
T is split by L is the same as saying that T has an L-point.

While little is known about rd(n) = rd(Sn), it is natural to ask
what rd(G) is for other algebraic groups G. Such questions can
be thought of as variants of Hilbert’s 13th problem. Let us now
take a closer look at the case where G is linear and connected. The
following folklore conjecture is implicit in the work of Tits.

Conjecture 17. Let G be a connected complex linear algebraic
group and K be a field containing ℂ. Then every α ∈ H1(K,G) is
split by some solvable field extension L/K.

Since solvable extensions are of level ⩽ 1, this conjecture im-
plies that rd(G) ⩽ 1 for every connected linear algebraic group G.¹¹
I can prove the following weaker inequality unconditionally [52].

Theorem 18. LetG be a connected complex linear algebraic group.
Then rd(G) ⩽ 7.

Note that if we knew that rd(Sn) ⩽ d for every n, we would
be able to conclude that lev(L/K) ⩽ d for every field extension
L/K of finite degree. This would, in turn, imply that rd(ℱ) ⩽ d for
every functor ℱ satisfying (15). Setting ℱ = H1(∗,G), we obtain
rd(G) ⩽ d for every algebraic group G. In particular, if we were able
to show that rd(ℱ) > 1 for some functor ℱ satisfying (15), we
would be able to conclude that rd(Sn) > 1 for some n. This would
constitute major progress on Hilbert’s 13th problem. I do not see
how to reverse this implication though: an upper bound on rd(G)
for every connected group G (such as the inequality rd(G) ⩽ 7
of Theorem 18) does not appear to tell us anything about rd(Sn).
However, Conjecture 17 and Theorem 18 make me take more
seriously the possibility that rd(Sn) may be identically 1 or at least
bounded as n → ∞.

¹¹ Other interesting consequences of Conjecture 17 are discussed in [17].
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