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We will first recall the Syracuse conjecture (also known as the
“3n+ 1” problem) and give a very quick overview of the known
results on the subject. Then we will attempt to give some of the
ideas behind a remarkable recent result of T. Tao on this conjecture.

1 Introduction

The Syracuse conjecture, also called Collatz conjecture, Kakutani
conjecture or 3x+ 1 problem (there is even a paper by B. Thwaites
entitled My conjecture), is one of those extraordinarily attractive
mathematical questions whose simplicity of statement is matched
by their difficulty of proof, to the extent that many (most) of these
questions are still open. One can think for example of the Goldbach
conjecture or of the Fermat(–Wiles) theorem. A common character-
istic of these very difficult conjectures is that their simple statements
attract many amateurs, who are certainly well-intentioned, but who
are sometimes difficult to convince that their approach is as naive
as it is false. One can, however, hardly blame them, since even
“professional mathematicians” are regularly seduced by these con-
jectures, and then realise that their own attempts towards a proof
are unsuccessful. They probably do not know that P. Erdős once said
to J. C. Lagarias, referring to this conjecture: “Hopeless. Absolutely
hopeless”, which is … not very encouraging.

Let us recall the statement of the Syracuse–Collatz–Kakutani–
(3x+ 1)–Thwaites problem.

Conjecture. Let f be the function defined on the positive integers
by

f(n) =
⎧⎪
⎨⎪
⎩

3n+ 1
2

if n is odd,
n
2

if n is even.

Then all the orbits of f are ultimately equal to (1, 2, 1, 2, 1, 2,…).

In other words, defining f k as the k-th iterate of f, the orbit
of every integer n under f, i.e., the sequence (n, f(n), f 2(n),…),
contains the number 1, from which it alternatively takes the values
1 and 2.

Remark. (i) This conjecture is clearly equivalent to the following
one: Let ν2(n) be the 2-adic valuation of the integer n (in other
words, the largest integer a such that 2a divides n) and g the func-
tion defined on the odd integers by Syr(n) = (3n+ 1)/2ν2(3n+1).
Then, for any odd integer n, there exists an integer ℓ such that
Syrℓ(n) = 1.

(ii) The history of this conjecture and practically all the results
before the one by T. Tao which is the subject of this paper can be
found in the book by J. C. Lagarias [9].

We propose here to first recall the results that have been proved
so far, and then to try to summarise Tao’s result, which is stated as
follows in [12].

Theorem (Tao). Almost all orbits of f contain an almost bounded
element.

2 First steps

The simplicity of the statement of this conjecture is likely to impel us
to “play” with it and to do experiments. If we compute the iterates
of f on sufficiently small integers, we soon see that the orbits
reach 1, and are therefore ultimately equal to (1, 2, 1, 2, 1, 2,…).
We also see that the pre-period (i.e., the part before the periodic
part) of the orbit of 27 is (curiously?) much longer than that of the
smaller integers.

Another very general observation is that applying f to “half of
all integers”, namely the even ones, results in a value smaller than
the starting one. Furthermore, if we consider integers of the form
(4m+ 1), successive applications of f give 4m+ 1 → 6m+ 2 →
3m+ 1. Since 3m+ 1< 4m+ 1 (at least for m> 0), we thus obtain
that “a quarter of the integers” leads, after just two iterations of f,
to a number smaller than the starting one. So in fact at least “3/4
of all integers” belong to the set S≔ {n> 0 ∣ ∃k, f k(n) < n}. More
precisely, the natural density of a set A of integers is by definition
the limit, if it exists, of #{n ∈ A ∣ n ≤ x}/x (and we define the
upper and lower density by replacing the limit by the upper and
lower limit). Thus what we just saw is equivalent to the statement
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that the lower density of the set S is larger than or equal to 3/4. If
we now proceed by considering the integers of the form 8m+ j
with j ∈ [0, 7], then the integers in the residual classes modulo 2a

for a = 4, 5,…, we successively obtain lower bounds for the lower
density of S which are closer and closer to 1. The author of this
paper carried out these experiments in the second half of the 1970s
with one of the first programmable pocket calculators (a TI 58):
after keeping the machine running for forty-eight hours or more,
we obtained values so close to 1 that it was tempting to try to
prove this result, in the hope that it would be simpler than the
initial conjecture.

It is now time to do some mathematics – simple for the mo-
ment – by stating the following result.

Theorem. The lower density of S is equal to 1, and the same holds
for the density of S.

The proof is based upon the study of residual classes modulo 2a.
The above sketch for integers modulo 2 or 4 is easily generalised
by induction on a.

Proposition. (i) Let α(a, j) ≔ #{v∈ [0,a− 1] ∣ f v(j) odd}. Then

f a(2an+ j) = 3α(a, j)n+ f a(j).

(ii) For all i in [0,a], we have

#{j ∈ [0, 2a − 1] ∣ α(a, j) = i} = (a
i
).

We see from this proposition that the study of f(n)/n for n≤ x
will involve truncated sums of binomial coefficients. In order to
estimate these sums, we use the following lemma.

Lemma. For all ε ∈ (0, 1), there exists an η ∈ (0, 1) such that

1
2a ∑

|i−a/2|> εa

(a
i
) ≤ ηa

for all sufficiently large values of a.

A proof of this lemma suggested by G. Tenenbaum uses the
relation
m

∑
i=0

(a
i
) = (a−m)( a

m
)∫

2

1
tm(2− t)a−m−1 dt for m ≤ a− 1

which can be proved by finite induction on m and which is, by
the way, one of the exercises in the beautiful book by L. Comtet
(see [4, Exercise 12, p. 91]). For more details, one may refer to
a paper by the author published in the Séminaire de Théorie des
Nombres de Bordeaux [1]. The result on density 1 was also proved
independently by C. J. Everett in 1977 [5], H. Möller in 1977 [10]
and E. Heppner in 1978 [6], and also by R. Terras in his papers
of 1976 and 1979 [13, 14], either for the initial problem or for

the generalisation due to H. Hasse, see the remark at the end
of this section. These different papers written independently at
about the same time suggest that the result on density 1 is not very
difficult. It relies on a non-trivial limit, which is still a reasonably
easy exercise. They also reveal the absence of electronic tools at
that time (even if Zentralblatt existed in paper form as well as
MathSciNet which was called Mathematical Reviews). I remember,
however, that M. Mendès France told me about Heppner’s and/or
Möller’s paper afterwards and put an “anonymous” letter with
easily recognisable handwriting in my locker: Forget about this
problem. A friend who wishes you well – which confirms Erdős’
opinion as reported by Lagarias.

Why doesn’t this density result provide a proof of the conjec-
ture? It is the remaining term in the limit for the density computation
that spoils the party – the result we actually obtain can be stated
as follows:

#{n ≤ x ∣ ∃k, f k(n) < n} = x+ O(x1−δ)

for some δ in (0, 1), and in fact even if we had O(1), we would
still only obtain a weak form of the conjecture, namely that any
orbit will eventually “loop” (i.e., is ultimately periodic¹), but there
could be more than one loop. One can even refine this by making
the above k depend on n (logarithmically), but this still remains far
from the actual conjecture even in its weak form.

However, what the author had overlooked was that the result
he had obtained in [1] (actually a bit more precise than that stated
above) could yield something more, namely that the set Sc ≔ {n ∣
∃k, f k(n) < nc} is of density 1 for c > 0.8691. It was I. Korec
who mentioned in 1994 in [7] that this was pointed out by the
referee of his paper. Korec improves the 0.8691 value to log3/log4,
which is about 0.7925 (see the review MR1290275 by Lagarias on
MathSciNet).

Remark. A more general formulation of the conjecture, due to
H. Hasse, is to replace “multiply by 3 and add 1, then divide by 2,
or divide by 2, depending on the value modulo 2 of the starting
integer”, by “multiply by m and add a suitable residue in a com-
plete system of fixed residues, then divide by d, or divide by d,
depending on whether the starting integer is not or is divisible
by d”. The conjecture is then that there exists a function Φ such
that if m <Φ(d), then all orbits are ultimately periodic and there is
a finite number of possible periods, and if m>Φ(d), then there ex-
ists at least one non-ultimately periodic orbit. Möller [11] proposes
the function Φ(d) = dd/(d−1). (Note that m= 3 is “just” under the
threshold dd/(d−1) for d = 2.) Some of the authors quoted above
also give density results for this generalisation.

¹ Let us recall that a sequence (un)n≥0 is said to be ultimately periodic if it
is periodic for large enough indices, i.e., if there exist n0 ≥ 0 and T ≥ 1
such that, for all n ≥ n0 and for all k ≥ 0, we have un+kT = un.
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3 Going a bit further

We now give some brief indications on other results (the book by
Lagarias mentioned above is very complete and includes in particu-
lar an impressive annotated bibliography). We will not discuss the
numerical results which produce huge integers N such that the con-
jecture is true for all integers n ≤ N, nor to those which show that
the number of elements of any possible period apart from (1, 2)
for the orbits of the function f is necessarily fantastically large.

An interesting theoretical question is: can we say anything
about the integers n for which there exists k such that f k(n) = 1?
In other words, can we ask “how many” pre-images of 1 exist
under the iterates of f ? Because our lack of understanding of this
function f, we cannot even say that this set has density 1. The best
result obtained thus far is a lower bound of the type

#{n ≤ x ∣ ∃k, f k(n) = 1} > xd

for sufficiently large x, with one of the most recent values for d
being d = 0.84, see [8].

4 The result obtained by T. Tao

4.1 Introductory remarks
As is the case for the classical conjectures recalled at the beginning
of this overview, whenever we fail to obtain a desired result, we
always try to obtain at least a weaker form. A typical example is
Goldbach’s conjecture, for which J. R. Chen proved a weaker form
in [3]: Any sufficiently large even number is the sum of a prime num-
ber and a number having at most two prime factors. Or think of the
Fermat–Wiles theorem, for which an attempt was made to restrict
to the “first case” (if xp + yp = zp, then xyz ≡ 0 mod p). Some
results of this kind have been described above, in particular the one
which states that the density of the set {n ≤ x ∣ ∃k, f k(n) < nc} is
equal to 1 for c > 0.7925.

This last result can be expressed as follows: Almost all integers
have in their orbit by f an element smaller than the (0.7925)-th
power of the considered integer. This is of course a (convenient)
abuse of language since density is not a probability on the integers.
Using this terminology, one can ask which “best function” B could
be obtained to replace nc in the set {n ∣ ∃k, f k(n) ≤ nc}, while
keeping the natural density of this set equal to 1. In other words, B
should be such that almost all integers n have an element ≤ B(n) in
their orbits by f. A caveat is necessary: as pointed out for example in
Tao’s paper, one cannot “improve” n → nc by “iterating”. Indeed,
even if it is true that, for almost all integers n, there exists an
element n′ = f k(n) with n′ ≤ nc, one cannot apply the result
of “almost all” to n′ to obtain an element n″ = f ℓ(n′) such that
n″ ≤(n′)c, and thus f k+ℓ(n)= f ℓ(n′)= n″ ≤(n′)c ≤(nc)c = nc

2
,

because n′ could very well belong to the set of exceptions of the
“almost all” and have no associated n″. Let us also note that we do

not know how to obtain B(n) = 1, since we do not know (end of
the previous section) that the Syracuse conjecture is true for almost
all integers. Tao’s “tour de force” is to prove, up to replacing the
natural density by the logarithmic density (see below), that one
can take for B any function tending to infinity, as slowly as one
wants for an infinitely large argument. For example, Tao writes,
perhaps as a wink to estimates “à la Erdős”, B(n) = log log log logn.
He summarises this in a figurative way, stating that we can take an
“almost bounded” B.

Definition. A set of integers A ⊂ ℕ is said to have a logarithmic
density equal to δ if the limit, when x tends to infinity, of

1
log x ∑

n≤ x, n∈A

1
n

exists and equals δ.

Remark. If the natural density of a set of integers exists, its logar-
ithmic density also exists and is equal to the natural density. The
converse is not true.

4.2 T. Tao’s theorem
As we have seen above, Tao stipulates in his theorem a striking,
even mediatic (in the non-pejorative sense of the term …) state-
ment: Almost all orbits of f contain an almost bounded element.
This means that, for any function B which tends to infinity, the
logarithmic density of the set {n ∣ ∃k, f k(n) < B(n)} is equal to 1.
We will try to describe (as Tao himself does in the first pages of his
paper) in a heuristic way, yet avoiding technical details (the paper
has 49 pages), the steps of the proof and the small improvements
that it suggests.

(1) Studying the function f is classically equivalent to studying
the function that Tao calls Syr. Let ν2(n) be the 2-adic valuation of
the integer n, that is ν2(n) = a if 2a divides n and 2a+1 does not
divide n. We define the function Syr on odd integers by

if n is odd, then Syr(n) = 3n+ 1
2ν2(3n+1) = f ν2(3n+1)(n).

Of course, the Syracuse conjecture is that, for any odd integer n,
there exists an integer k such that Syrk(n) = 1. And Tao’s original
statement is equivalent to: Let B be a function defined on the
odd integers that tends to infinity at infinity. Then, for almost all
integers N, there exists an integer k such that Syrk(N) < B(N) (here
“almost all integers” means that the set of odd integers for which
the property is true, is of logarithmic density 1/2 in the set of all
integers).
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(2) How do we compute the iterates of Syr for an odd in-
teger N? Note that a1(N) ≔ ν2(3N+ 1), a2 ≔ ν2(3 Syr(N) + 1),
a3 ≔ ν2(3 Syr2(N) + 1), etc. Clearly,

Syr(N) = (3N+ 1)2−ν2(3N+1)

= 3.2−a1(N)N+ 2−a1(N),

Syr2(N) = (3 Syr(N) + 1)2−ν2(3Syr(N)+1)

= 32.2−a1(N)−a2(N) + 3.2−a1(N)−a2(N) + 2−a2(N),

etc.

and therefore,

Syrn(N) = 3n2−a1(N)−a2(N)−⋯−an(N)N

+ Fn(a1(N),a2(N),…,an(N)),

where

Fn(a1(N),a2(N),…,an(N))

≔ 3n−12−a1(N)−a2(N)−⋯−an(N)

+ 3n−22−a2(N)−a3(N)−⋯−an(N)

+⋯+ 312−an−1(N)−an(N) + 2−an(N).

This formula can be compared with the one seen above for f:
f a(2an+ j) = 3α(a, j)n+ f a(j), which essentially says that we can
estimate the values of successive images of an integer in a class
modulo 2a from the images of a representative of this class, until
a number of iterations equal to a (this number is thus of the order
of the logarithm of the considered integer if we have chosen the
representative in [0, 2a)).

(3) Take as above aj(N) = ν2(3 Syrj−1(N) + 1). Then, heurist-
ically, for a “typical” odd integer N large enough, and n much
smaller than logN, the vector (a1(N),a2(N),…,an(N)) behaves
like a geometric random vector of size n and parameter 1/2, i.e.,
an n-tuple of independent random variables, all geometric with
parameter 1/2. More precisely, the “behaves like” has to be taken
in the sense of a small distance between random variables, where
the distance between two discrete random variables X and Y taking
their values in the same discrete space R is the total variation

∑
r∈R

|ℙ(X = r) − ℙ(Y = r)|.

A proposition proved in Tao’s paper states that the heuristic prop-
erty in italics at the beginning of step (3) is justified if N is uniformly
distributed modulo 2m for m slightly larger than 2n. This gives
a good control of Syrn(N) for almost all N and for n of the order
of γ logN with a small constant γ. Since one heuristically has an
estimate like Syrn(N) ≈ (3/4)nN, in fact Syrn(N) = eO(√n)(3/4)nN
(by the central limit theorem or by the Chernoff bound), one can
in this way already obtain again Korec’s result recalled above: the
density of the set Sc ≔ {n ∣ ∃k, f k(n) < nc} is 1 for c > 0.8691.
As Tao points out, a result of this kind is somewhat analogous to

“almost sure local wellposedness results” for evolutionary partial
differential equations, in which one has good short-time control
for almost all initial conditions. Additionally, the theorem we want
to prove is similar to an “almost sure almost global wellposedness”
result. Now how to get from “local” to “global”?

(4) The last and most difficult step is to answer the above
question by introducing a function that further “accelerates” the
maps f and Syr seen above. This “first passage” function Pass is
defined as follows: for x ≥ 1 and any odd integer N, we write

Tx(N) ≔ inf{n ∈ ℕ ∣ Syrn(N) ≤ x}

with the usual convention that Tx(N) ≔+∞ if Syrn(N) > x for all n.
The first passage function is then defined by

Passx(N) ≔ SyrTx(N)(N).

Tao is then inspired by a work of J. Bourgain [2] who goes from
a local almost everywhere to a global almost everywhere, thanks to
the construction of an invariant probability measure. Alas! This is im-
possible here, but the author gets around this issue by introducing
a family of probability measures which are approximately transpor-
ted one to the other by iterating Syr a variable number of times.
This is what will permit the use of an iterative argument, which
was not feasible “directly” as we pointed out at the beginning of
Section 4.1 with nc and (nc)c.

We will not go any further in this attempt to demystify Tao’s
beautiful proof, whose high technicality, but above all its invent-
iveness, have been barely touched. To try to summarise it – too
schematically – let us start by describing a temptation shared both
by the professional mathematician who discovers the Syracuse
conjecture and by the amateur: basically, iterating the application f
from the beginning seems to consist roughly of replacing n every
second time (when n is odd) by approximately 3/2 ⋅ n, and of re-
placing n every other time (when n is even) by 1/2 ⋅ n; in other
words, applying f 2 amounts to multiplying n approximately by 3/4.
For example (with a “reasonably chosen” initial integer),

17
f
→ 26

f
→ 13

f
→ 20

f
→ 10

f
→ ⋯,

that is to say

17
f 2

→ 13
f 2

→ 10
f 2

→ ⋯.

Thus the orbit of a typical integer seems to be obtainable approxim-
ately by a sequence of multiplications by 3/4. It is this temptation,
which obviously does not constitute a proof, that Tao, at the cost
of unprecedented effort and technicality for such an apparently
innocent statement, has transformed into a proof for almost all
integers. There should not be any misunderstanding about the
purpose of this remark: to go from “we multiply roughly by 3/4”
to Tao’s proof and its half a hundred pages is at least as diffi-
cult as transforming a frog or a toad into a charming princess
or prince.
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5 So, what now?

Now what can we expect for this conjecture? Tao indicates that,
by further refining his approach, it should be possible to replace
“almost all in logarithmic density” with “almost all in natural dens-
ity”. But he leaves little hope that the function tending to infinity as
slowly as one likes in his statement can be replaced by a constant.
In other words, even the statement “the orbit of almost any integer
is ultimately periodic” is still totally out of reach.

Acknowledgements. The author thanks Sophie Grivaux and Damien
Gayet for convincing him to present T. Tao’s paper and also for
their enthusiasm. He also thanks the two referees for their valuable
comments which helped to improve the first version of this text.

The EMS Magazine thanks La Gazette des Mathématiciens for
authorisation to republish this text, which is an English translation
of the paper entitled “T. Tao et la conjecture de Syracuse” published
in La Gazette des Mathématiciens, Number 168, April 2021. The
author would like to thank Miriam Gellrich Pedra and Jean-Bernard
Bru for their translation of the original paper.

References

[1] J.-P. Allouche, Sur la conjecture de “Syracuse–Kakutani–Collatz”.
In Sém. Th. Nombres, Bordeaux, CNRS, Talence, Exp. No. 9, 15
(1979)

[2] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant
measures. Comm. Math. Phys. 166, 1–26 (1994)

[3] J. R. Chen, On the representation of a larger even integer as the
sum of a prime and the product of at most two primes. Sci. Sinica
16, 157–176 (1973)

[4] L. Comtet, Analyse combinatoire. Tome I. Collection SUP:
“Le Mathématicien”, Presses Universitaires de France, Paris (1970)

[5] C. J. Everett, Iteration of the number-theoretic function f(2n) = n,
f(2n+ 1) = 3n+ 2. Adv. Math. 25, 42–45 (1977)

[6] E. Heppner, Eine Bemerkung zum Hasse-Syracuse-Algorithmus.
Arch. Math. (Basel) 31, 317–320 (1978/79)

[7] I. Korec, A density estimate for the 3x+ 1 problem. Math. Slovaca
44, 85–89 (1994)

[8] I. Krasikov and J. C. Lagarias, Bounds for the 3x+ 1 problem using
difference inequalities. Acta Arith. 109, 237–258 (2003)

[9] J. C. Lagarias, The ultimate challenge: the 3x+ 1 problem. Amer.
Math. Soc., Providence, RI (2010)

[10] H. Möller, F-Normalreihen. J. Reine Angew. Math. 289, 135–143
(1977)

[11] H. Möller, Über Hasses Verallgemeinerung des Syracuse-Algorithmus
(Kakutanis Problem). Acta Arith. 34, 219–226 (1977/78)

[12] T. Tao, Almost all orbits of the Collatz map attain almost bounded
values. arXiv:1909.03562 (2020)

[13] R. Terras, A stopping time problem on the positive integers.
Acta Arith. 30, 241–252 (1976)

[14] R. Terras, On the existence of a density. Acta Arith. 35, 101–102
(1979)

Jean-Paul Allouche is Directeur de recherche emeritus at CNRS. He is
working at IMJ-PRG, Sorbonne, Paris on subjects relating number theory
and theoretical computer science, including the so-called automatic
sequences.

jean-paul.allouche@imj-prg.fr

16 EMS MAGAZINE 123 (2022)

https://arxiv.org/abs/1909.03562
mailto:jean-paul.allouche@imj-prg.fr

