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We discuss linear autonomous evolution equations on function
spaces which have the property that a positive initial value leads
to a solution which initially changes sign, but then becomes – and
stays – positive again for sufficiently large times. This eventual
positivity phenomenon has recently been discovered for various
classes of differential equations, but so far a general theory to
explain this type of behaviour exists only under additional spectral
assumptions.

1 Evolution equations and positivity

To set the stage, we start with a reminder about linear evolution
equations whose solutions are positive whenever the initial value is.

Linear ODEs and positivity
For a matrix A ∈ ℝd×d, the linear and autonomous initial value
problem

⎧
⎨
⎩

̇u(t) = Au(t) for t ∈ [0,∞),
u(0) = u0,

where u0 ∈ ℝd, is well-known to be solved by the function

u∶ [0,∞) ∋ t ↦ etAu0 ∈ ℝd.

We say that the matrix family (e tA)t∈[0,∞) is positive if e tAu0 ≥ 0
for all t ∈ [0,∞) whenever u0 ≥ 0; equivalently, e tA ≥ 0 for all
t ∈ [0,∞). Here, we use the notation ≥ 0 for a vector or a matrix
to say that all its entries are ≥ 0.

Remark 1. There is some terminological inconsistency in the liter-
ature with respect to this notion: in matrix analysis and in some
parts of PDE theory, it is common to use the word non-negativity;
we use the notion positivity instead, which is more common in
functional analysis.

To get an intuition for this concept, it is useful to recall that
positivity of the matrix exponential function is easy to characterise
in terms of A.

Theorem 2. For A ∈ ℝd×d, the family (e tA)t∈[0,∞) is positive if
and only if every off-diagonal entry of A is ≥ 0.

Proof. “⇒” For indices j ≠ k, one has

Ajk = lim
t↓0

⟨ej,
etA − id

t
ek⟩ = lim

t↓0

1
t
⟨ej, etAek⟩ ≥ 0,

where ej,ek ∈ℝd are the canonical unit vectors and ⟨ ⋅ , ⋅ ⟩ denotes
the standard inner product on ℝd.

“⇐” By assumption, one has, for a sufficiently large number
c ≥ 0, the inequality A+ c id ≥ 0, and hence

etA = e−tcet(A+c id) ≥ 0

for all t ∈ [0,∞), where the inequality at the end follows from the
series expansion of the matrix exponential function.

A typical situation where positivity of matrix exponential func-
tions occurs is the study of Markov processes on finite state spaces.

Example 3. Assume that all off-diagonal entries of A ∈ ℝd×d

are ≥ 0 and that all rows of A sum up to 0. Then (e tA)t∈[0,∞)

is positive, and the vector 𝟙 ∈ ℝd whose entries are all equal
to 1 satisfies A 𝟙 = 0 and thus e tA 𝟙 = 𝟙 for all t ∈ [0,∞). This
shows that each of the matrices e tA, t ≥ 0, is row stochastic, so
(e tA)t∈[0,∞) describes a continuous-time Markov process on the
finite state space {1,…,d}.

Infinite-dimensional equations
In infinite dimensions, we are still interested in initial value problems
of the form

⎧
⎨
⎩

̇u(t) = Au(t) for t ∈ [0,∞),
u(0) = u0,
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but this time, u0 is an element of a Banach space E, and A ∶ E ⊇
dom(A) → E is a linear operator which is defined on a vector
subspace dom(A) of E. The initial value problem is well-posed
if and only if A is a generator of a C0-semigroup (e tA)t∈[0,∞).
Such a C0-semigroup is a family of bounded linear operators on E
which is a suitable infinite-dimensional substitute of the matrix
exponential function and has similar properties, but it is not given
by an exponential series in general. The solution u to the initial
value problem is then given, again, by the formula u(t) = e tAu0 for
t ∈ [0,∞). The generator and the C0-semigroup determine each
other uniquely, and the relation between semigroup and generator
can in general be expressed by the formula

dom(A) = {v ∈ E ∶ lim
t↓0

1
t
(etA − id)v exists in E},

Av = lim
t↓0

1
t
(etA − id)v.

The following notion will be used several times later on. For a linear
operator A ∶ E ⊇ dom(A) → X on a Banach space X, the quantity

s(A) ≔ sup{Reλ ∶ λ ∈ σ(A)} ∈ [−∞,∞],

where σ(A) denotes the spectrum of A, is called the spectral bound
of A. If A generates a C0-semigroup, then s(A) < ∞ (see [20,
Theorem II.1.10 (ii)]). More information about C0-semigroup theory
can be found, for instance, in the monographs [20,31].

Let us briefly illustrate the concept of a C0-semigroup by two
very classical examples.

Examples 4. (a) Let p ∈ (1,∞) and let the operator A be the
Laplace operator on the space Lp(ℝn), i.e.

dom(A) = W 2,p(ℝn),

Av = Δv ≔
n

∑
j=1

∂2j v for v ∈ dom(A).

Then A generates a C0-semigroup (e tA)t∈[0,∞) on Lp(ℝn) that is
given by the formula

(etAu0)(x) =
1

(4πt)n/2
∫
ℝn
exp(−‖x− y‖22

4t
)u0(y)dy

for u0 ∈ Lp(ℝn) and x ∈ ℝn. The semigroup is called the heat
semigroup since it describes the solutions to the heat equation

̇u(t) = Δu(t).

Similar observations can be made on the space L1(ℝn), but the
domain of the Laplace operator cannot be chosen to be a Sobolev
space in that case, due to the lack of elliptic regularity.

(b) Let p ∈ [1,∞) and let the operator A be the negative first
derivative on Lp(0,∞), given by

dom(A) = {v ∈ W 1,p(0,∞) ∶ v(0) = 0}, Av = −v′.

Then A generates the so-called right shift semigroup (e tA)t∈[0,∞)

on Lp(0,∞) given by

(etAu0)(x) =
⎧
⎨
⎩

u0(x − t) if t ≤ x,

0 if t > x,

for u0 ∈ Lp(0,∞). The mapping u∶ [0,∞)∋ t↦ e tAu0 ∈ Lp(0,∞)
is a so-called mild solution to the transport equation

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

̇u(t, x) = −∂xu(t, x) for t, x > 0,

u(0, x) = u0(x) for x > 0,

u(t, 0) = 0 for t > 0;

see [20, Definition II.6.3] for the definition of mild solutions. This ex-
ample is an easy illustration of the general principle that boundary
conditions of a PDE are encoded in the domain of the correspond-
ing operator A.

Positive C0-semigroups
In order to discuss positive C0-semigroups, one needs an order
structure on the underlying Banach space E. This can be for instance
a partial order induced by a general closed convex cone, or more
specifically the order structure of a Banach lattice. To facilitate the
exposition here, we will restrict our attention to the illustrative case
of function spaces, most importantly to Lp-spaces (over σ-finite
measure spaces).

For a function f ∈ Lp, we write f ≥ 0 to indicate that f(ω) ≥ 0
for almost all ω. In accordance with the terminology used above,
we call a function f positive if it satisfies f ≥ 0. A C0-semigroup
(e tA)t∈[0,∞) on Lp is called positive if e tAu0 ≥ 0 for all t ∈ [0,∞)
whenever u0≥0. Equivalently, each of the operators e tA is positive –
which we denote by e tA ≥ 0 – in the sense that it maps positive
functions to positive functions.

We have already encountered two examples of positive C0-
semigroups: as is easy to see, both semigroups in Examples 4 are
positive.

2 Positivity for large times

Let us now proceed to a more surprising situation, where positive
initial values lead to solutions which might change sign at first, but
again become – and stay – positive for sufficiently large times. In
this section, we illustrate by means of two easy examples that this
kind of behaviour can indeed occur; a more systematic account is
presented in the subsequent section.

A matrix example
Let us start with a simple three-dimensional example.
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Example 5. Consider the orthonormal basis ℬ of ℝ3 consisting of
the three vectors

v1 = 1
√3

⎛⎜⎜
⎝

1
1
1

⎞⎟⎟
⎠
, v2 = 1

√2
⎛⎜⎜
⎝

−1
0
1

⎞⎟⎟
⎠
, v3 = 1

√6
⎛⎜⎜
⎝

1
−2
1

⎞⎟⎟
⎠
.

Let A ∈ ℝ3×3 be such that its representation matrix with respect
to the basis ℬ is given by

R ≔ ⎡⎢⎢
⎣

0 0 0
0 −1 −1
0 1 −1

⎤⎥⎥
⎦
,

i.e., we let A = VRV−1, where V ∈ ℝ3×3 consists of the columns
v1, v2, v3. A direct computation shows that A has some strictly neg-
ative off-diagonal entries, so (e tA)t∈[0,∞) is not positive according
to Theorem 2. On the other hand, A has the eigenvalue 0 (with
eigenvector v1) as well as the further eigenvalues −1± i, so e tA

converges to the matrix v1 ⋅ vT1, whose entries are all equal to 1/3,
as t → ∞; this shows that e tA is a positive matrix for all sufficiently
large times t.

A fourth order PDE
Let us now discuss an infinite-dimensional example where eventual
positivity occurs.

Example 6. Let us consider the biharmonic heat equation with
periodic boundary conditions on L2(0, 1). It is given by

̇u(t) = Au(t) for t ∈ [0,∞),

where A ∶ L2(0, 1) ⊇ dom(A) → L2(0, 1) has domain

dom(A) = {v ∈ H4(0, 1) ∶ v(k)(0) = v(k)(1) for k = 0, 1, 2, 3}

and is given by Av=−v(4) for each v∈ dom(A). The C0-semigroup
(e tA)t∈[0,∞) is not positive; this can for instance be seen by associat-
ing a sesquilinear form to −A and using the so-called Beurling–Deny
criterion [30, Corollary 2.18].

However, we can prove positivity for large times. To this end,
note that the operator A is self-adjoint, and its spectrum consists
of isolated eigenvalues only since dom(A) embeds compactly into
L2(0, 1). The largest eigenvalue of A is 0, and the constant func-
tion 𝟙 spans the corresponding eigenspace. Hence we conclude,
for instance from the spectral theorem for self-adjoint operators
with compact resolvent, that

etAu0 → ⟨u0,𝟙⟩𝟙 ≔ ∫
1

0
u0(x)dx ⋅ 𝟙 in L2(0, 1)

for each u0 ∈ L2(0, 1) as t → ∞. Since A is self-adjoint, the oper-
ators e tA have the property that for t > 0 they map L2(0, 1) into
dom(A) and thus into L∞(0, 1). Moreover, they are even continu-
ous from L2(0, 1) to L∞(0, 1) (this follows for instance from the

closed graph theorem), so for u0 ∈ L2(0, 1), we even have

etAu0 = e1⋅Ae(t−1)Au0 → ⟨u0,𝟙⟩ e1⋅A 𝟙 = ⟨u0,𝟙⟩𝟙

as t → ∞, where the convergence takes place with respect to the
norm in L∞(0, 1). This implies that if u0 ≥ 0, then e tAu0 ≥ 0 for
all sufficiently large times t.

3 A systematic theory

After the previous ad hoc examples, we now present a few excerpts
of a more systematic account of eventual positivity.

Eventually positive matrix semigroups
Example 5 already gives quite a straightforward idea of how to
obtain a sufficient condition for a matrix exponential function
to be eventually positive: if a matrix A ∈ ℝd×d has a simple real
eigenvalue that dominates the real parts of all other eigenvalues
and if the corresponding eigenvectors of A and the transposed
matrix AT have strictly positive entries only, then we expect e tA

to be positive – and in fact to even have strictly positive entries
only – for all sufficiently large t. A bit more surprising is the Perron–
Frobenius-like fact that the converse implication also holds. This
was proved by Noutsos and Tsatsomeros in [29, Theorem 3.3], who
thus obtained the following theorem (in a slightly different form;
see [17, Theorem 6.1] for the following version of the result).

Theorem 7. For a matrix A ∈ ℝd×d, the following assertions are
equivalent.
(i) There exists a time t0 ≥ 0 such that all entries of e tA are strictly

positive for all t > t0.
(ii) The spectral bound s(A) is a geometrically simple eigenvalue

of A and strictly larger than the real part of every other eigen-
value of A. Moreover, both A and AT have a strictly positive
eigenvector for s(A), respectively.

Here, a strictly positive vector means a vector whose entries
are all strictly positive.

Individual vs. uniform behaviour
In infinite dimensions, there is a subtlety that we have not properly
discussed yet. Let (e tA)t∈[0,∞) be a C0-semigroup on a function
space E. If, for every 0 ≤ u0 ∈ E, there exists a time t0 ≥ 0 such
that e tAu0 ≥ 0 for all t ≥ t0, it is natural to call the semigroup
individually eventually positive since t0 might depend on u0. If in
addition t0 can be chosen to be independent of u0, then we call
the semigroup uniformly eventually positive.

In finite dimensions, the two concepts can be easily seen to
coincide (just apply the semigroup to all canonical unit vectors), but
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in infinite dimensions, there exist semigroups which are individually
but not uniformly eventually positive [17, Examples 5.7 and 5.8].

Conditions for eventual positivity in infinite dimensions
The arguments given in Example 6 show individual eventual pos-
itivity of the semigroup, and the same argument can easily be
generalised to a more abstract setting. There is one important issue
to note, though: if the leading eigenfunction is not bounded away
from 0, but might be equal to 0 on the boundary of the underlying
domain (as in the case of Dirichlet boundary conditions), then it no
longer suffices for the argument that e1⋅AL2 be contained in L∞;
instead, one needs the condition that every vector in e1⋅AL2 is dom-
inated by a multiple of the leading eigenfunction. This property is
closely related to Sobolev embedding theorems, and can be used
to give a characterisation of a certain strong version of individual
eventual positivity that is reminiscent of Theorem 7.

On the other hand, giving conditions for uniform rather than
individual eventual positivity is more subtle. It requires a domination
condition not only on the vectors in the image of e1⋅AL2, but also
on the image of the dual operator. If the semigroup is self-adjoint,
though, this dual condition becomes redundant and one ends
up with the following sufficient condition for uniform eventual
positivity.

Theorem 8. Let (Ω,μ) be a σ-finite measure space, let (e tA)t∈[0,∞)

be a self-adjoint C0-semigroup on L2 ≔ L2(Ω,μ) which leaves the
set of real-valued functions invariant, and let u ∈ L2 be a func-
tion which is strictly positive almost everywhere. Assume that the
following assumptions hold.
(1) The spectral bound s(A) is a simple eigenvalue of A, and

the corresponding eigenspace contains a function v satisfying
v ≥ cu for a number c > 0.

(2) There exists a time t1 ≥ 0 such that the modulus of every vector
in e t1AL2 is dominated by a multiple of u.

Then (e tA)t∈[0,∞) is uniformly eventually positive.

The really interesting part in the conclusion of the theorem is
the word uniformly, and this is more involved than the argument
presented in Example 6. Two different proofs of the theorem are
known: the first one is based on an eigenvalue estimate and the
theory of Hilbert–Schmidt operators [24, Theorem 10.2.1] (the
assumptions in the reference are slightly different, but the same
argument works under the assumptions presented above); the
second one employs a duality argument and can thus be general-
ised to non-self-adjoint semigroups on more general spaces [14,
Theorem 3.3 and Corollary 3.5]. This reference also shows that
the theorem can be adjusted to even yield a characterisation of
a stronger type of eventual positivity.

Theorem 8 implies the non-trivial observation that the semi-
group in Example 6 is even uniformly eventually positive.

Spectral properties
Positive semigroups are known to have surprising structural proper-
ties, in particular with regard to their spectrum. For some of these
properties, it can be shown that they are shared by eventually
positive semigroups, though some of the proofs are different from
the classical proofs for the positive case. Here are two examples.
• If the spectrum of the generator A of an individually eventu-

ally positive semigroup is non-empty, then it follows that the
spectral bound s(A) is itself a spectral value [17, Theorem 7.6].

• For uniformly eventually positive semigroups on Lp-spaces, the
spectral bound s(A) coincides with the so-called growth bound
of the semigroup (see e.g. [20, Definition I.5.6] for a definition);
this was recently shown by Vogt [35, Theorem 2]. The same can
be shown, even for individually eventually positive semigroups,
on spaces of continuous functions [6, Theorem 4].

More results on the spectrum of eventually positive C0-semigroups
can be found in [5].

4 More examples

The biharmonic heat equation
Example 6 can be adjusted in the following way: we replace the unit
interval with a ball B in ℝd, the fourth derivative with the square Δ2

of the Laplace operator, and the periodic boundary conditions with
so-called clamped plate boundary conditions, which require both
the function and its normal derivative to vanish at the boundary.
On L2(B), this yields the operator A given by

dom(A) = H4(B) ∩ H2
0(B),

Av = −Δ2v,

where H4(B) and H2
0(B) denote Sobolev spaces. The operator A

is self-adjoint and has negative spectral bound. It thus generates
a C0-semigroup (e tA)t∈[0,∞) which describes the solutions to the
so-called bi-harmonic heat equation

̇u(t) = Au(t) for t ∈ [0,∞).

We have the following result.

Theorem 9. The bi-harmonic heat semigroup (e tA)t∈[0,∞) on
L2(B) is uniformly eventually positive.

Rough outline of the proof. Since B is a ball, the inverse operator
(−A)−1 – or rather its integral kernel, the so-called Green function
of A – can be computed explicitly, and this was in fact done by
Boggio over a hundred years ago [9] (see also [27, Section 2]).
The explicit formula shows that (−A)−1 maps positive functions
to positive functions, and even strengthens their positivity in an
appropriate sense. Hence, by a Krein–Rutman type result, we obtain
that the leading eigenfunction of A is strictly positive inside B. Given
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the specific boundary conditions, it is not too surprising that we
also get that assumptions (1) and (2) of Theorem 8 are satisfied if
we choose u = d2, where d ∶ B → [0,∞) describes the distance
of each point in B to the boundary ∂B. Hence, Theorem 8 gives
the desired eventual positivity.

For more details, we refer to [16, second subsection of Sec-
tion 6] and [14, third subsection of Section 4]. A few comments
are in order.

Remark 10. (a) The argument sketched above breaks down for
general domains in ℝd, since the inverse (−A)−1 need no longer
be positive in this case. This is a very well-studied topic in PDE
theory; see for instance the surveys [33] by Sweers and [11] by
Dall’Acqua and Sweers for more information.

(b) However, if we replace B with a domain which is sufficiently
close to a ball, we still obtain the same result. The main point here
is that positivity of (−A)−1 or, under slightly larger perturbations,
at least positivity of the leading eigenfunction of A remains true on
such domains as shown by Grunau and Sweers in [27, Theorem 5.2].
So Theorem 9 holds on this more general class of domains, too.

(c) Theorem 9 remains true on general Lp-spaces rather than
on L2; see for instance [14, Theorem 4.4].

(d) If we replace the clamped plate boundary conditions with
so-called hinged boundary conditions, which require u=Δu= 0 on
the boundary, the situation becomes much easier because the oper-
ator can then be written as minus the square of the Dirichlet Laplace
operator. In this case, we have eventual positivity of the semigroup
on general domains; on the space of continuous functions, this
example is worked out in [16, Theorem 6.1].

Non-local boundary conditions
Let us now go back to the unit interval and consider the Laplace
operator, i.e. the second spatial derivative. If we impose local
boundary conditions – such as for instance Dirichlet, Neumann
or mixed Dirichlet and Neumann boundary condition, the Laplace
operator is well-known to generate a positive semigroup (also
on general domains in arbitrary dimension); see for instance [30,
Corollary 4.3]. However, let us consider an example of non-local
boundary conditions instead. More specifically, we consider the
operator A on L2(0, 1) given by

dom(A) = {v ∈ H2(0, 1) ∶ v′(0) = −v′(1) = v(0) + v(1)},

Av = v″.

This is a self-adjoint operator; the operator, and in particular its
relation to the Dirichlet and the Neumann Laplace operator, is
discussed in more detail in [2, Section 3]. The spectral bound of A
is negative, and the inverse (−A)−1 can be computed explicitly
[16, proof of Theorem 6.11 (i)]; from this formula and the spectral

theory of positive operators, we can conclude that s(A) is a simple
eigenvalue and that there is a corresponding eigenfunction which is
strictly positive on the closed interval [0,1]; see [16, Theorem 6.11]
for details. Moreover, we have e1⋅AL2(0,1) ⊆ dom(A) ⊆ L∞(0,1),
so the assumptions of Theorem 8 are satisfied for u = 𝟙, and we
obtain the following result.

Theorem 11. The semigroup (e tA)t∈[0,∞) on L2(0, 1) generated
by the Laplace operator with the non-local boundary conditions
given above is uniformly eventually positive.

Compare also [4, Section 4.2] for a related discussion. An
example of eventual positivity for different non-local boundary con-
ditions which lead to a non-self-adjoint realisation of the Laplace
operator can be found in [14, Theorem 4.3].

Further examples
Today, eventual positivity, and closely related properties as for
instance asymptotic positivity, are known for various further C0-
semigroups, including the semigroup generated by the Dirichlet-
to-Neumann operator on the unit circle for various parameter
choices [12] (which was the initial motivation for the development
of the general theory), several delay differential equations ([17,
Section 6.5], [24, Section 11.6] and [14, Theorem 4.6]), the semi-
group generated by a bi-Laplacian with certain Wentzell boundary
conditions [19, Section 7], various semigroups on metric graphs
([26, Proposition 3.7], [25, Section 6] and [8, Proposition 5.5]) and
semigroups generated by Laplacians coupled by point interactions
[28, Proposition 2].

5 Unbounded domains and local properties

The biharmonic heat equations on unbounded domains
A major drawback of Theorem 8 is that it can only be applied if the
leading spectral value is even an eigenvalue of the operator A. This
makes it impossible to apply the theorem to various differential
operators that live on unbounded domains. For instance, consider
the biharmonic operator A on L2(ℝd) given by

dom(A) = H4(ℝd),

Av = −Δ2v.

The spectrum of A, which is the set (−∞, 0], does not contain
eigenvalues, so Theorem 8 cannot be applied. Still, the semigroup
(e tA)t∈[0,∞) exhibits a certain local eventual positivity property: for
every compact set K⊆ℝd and every initial value 0≤ u0 ∈ L2(ℝd)∩
L1(ℝd), the solution u∶ t↦ e tAu0 to the biharmonic heat equation
̇u(t) = Au(t) becomes eventually positive on K. This was proved,

under slightly different assumptions on u0 in [23, Theorem 1 (i)]
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and [22, Theorem 1.1 (ii)] by explicit kernel estimates; for more
general powers of Δ, a similar result was recently shown in [21,
Theorem 1.1]. Under the assumptions described above, the result
was proved by Fourier transform methods in [18, Theorem 2.1].

If we replace the whole space ℝd with an infinite cylinder –
for instance of the form ℝ× B, where B ⊆ ℝd−1 is a ball – and
again impose clamped plate boundary conditions, the same local
eventual positivity result remains true. The proof is technically
more involved, though, and relies on a detailed analysis of the
specific partial differential equation under consideration; see [18,
Theorem 2.3 and Section 4].

However, despite the successful analysis of the aforementioned
concrete differential equations, an abstract and general theory as
outlined in Section 3 for operators with leading eigenvalue is not
yet in sight for the case without eigenvalues.

Open problem. Develop a theory of locally eventually positive
C0-semigroups (e tA)t∈[0,∞) which is applicable in situations where
the generator A does not have a leading eigenvalue.

Eigenvalues revisited
Getting back to operators which do have a leading eigenvalue,
results such as Theorem 8 might still not be applicable in some
cases due to conditions (1) and (2) which are sometimes particularly
subtle at the boundary of Ω (if Ω is, say, a domain in ℝd and
A a differential operator). When all functions are restricted to
compact subsets of Ω, though, conditions of the type (1) and (2)
might still be satisfied.

This motivates the development of a theory of locally even-
tually positive semigroups for generators that do have a leading
eigenvalue with strictly positive eigenfunction. Such a theory was
presented by Arora in [3]. An application of the theory to certain
fourth order operators with unbounded coefficients on ℝd (which
sometimes have eigenvalues due to the growth of the coefficients)
was given in [1, Section 3.2].

6 Related topics and results

We close the article by discussing a few related concepts.

Perturbation theory
If A generates a positive C0-semigroup on a function space E,
it is quite easy to see that if B is a positive and bounded linear
operator on E and M is a bounded and real-valued multiplication
operator on E, then the perturbed semigroup (e t(A+B+M))t∈[0,∞)

is positive, too: if M= 0, this follows for instance from the so-called
Dyson–Phillips series representation of perturbed semigroups [20,
Theorem III.1.10], and if M is non-zero, it follows from the previous

case by using the formula

et(A+B+M) = e−tcet(A+B+M+c id)

for a real number c ≥ 0 that is sufficiently large to ensure that
M+ c id is positive.

For eventual positivity, though, the situation is much more
subtle. Under quite general conditions, one can show that eventual
positivity of a semigroup cannot be preserved by all positive per-
turbations of the generator. This was proved in [15, Theorem 2.3];
related results in finite dimensions had earlier been obtained in [32,
Theorem 3.5 and Proposition 3.6]. On the other hand, sufficiently
small positive perturbations can be shown not to destroy eventual
positivity under appropriate assumptions [15, Section 4].

Maximum and anti-maximum principles
One abstract way to formulate that a linear operator A ∶ E ⊇
dom(A) → E on a function space E satisfies a maximum principle
is to require that (−A)−1 be a positive operator, i.e. maps pos-
itive functions to positive functions. If 0 is in the spectrum of E,
or more generally if the spectral bound of A satisfies s(A) ≥ 0, it
is often more natural to consider the resolvent (λ id− A)−1 for
real numbers λ > s(A). If the resolvent at one such point λ0 is
positive, then the same is true for all λ ∈ (s(A),λ0), too, and we
say that A satisfies a maximum principle. More precisely, this is
a uniform maximum principle, while we say that A satisfies an
individual maximum principle if, for each 0 ≤ f ∈ E, there exists
an ( f-dependent) number λ0 > s(A) such that (λ id− A)−1f ≥ 0
for all λ ∈ (s(A),λ0).

Similarly, it is common to say that A satisfies a uniform anti-
maximum principle if s(A) is, say, an isolated spectral value and
for all λ in a left neighbourhood of s(A) the resolvent (λ id− A)−1

maps positive functions to negative functions. Likewise, we can
define an individual anti-maximum principle (and clearly, the same
concepts can be defined at isolated spectral values different from
s(A), too).

Anti-maximum principles have a considerable history and have,
for instance, been studied for various elliptic differential operators;
see e.g. [10] for a seminal paper on this topic. For biharmonic and
polyharmonic operators the validity of (anti-)maximum principles
is closely related to the boundary conditions and the geometry of
the underlying domain, as explained in Remark 10.

The argument sketched after Theorem 9 can be generalised
(and partially reversed) to obtain a correspondence between the
following three types of properties:
(a) eventual positivity of the semigroup (e tA)t∈[0,∞),
(b) spectral properties of A and positivity of the leading eigenfunc-

tion,
(c) an individual (anti-)maximum principle for A.
This correspondence was discussed in [16, Sections 3–5], where the
terminology eventual positivity and negativity of the resolvent was
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used to describe maximum and anti-maximum principles. Indeed,
equivalence between the three properties (a)–(c) is true under
a number of technical restrictions which have been analysed in
more detail in [13].

Uniform (anti-)maximum principles are more difficult to analyse
than their individual counterparts – a phenomenon that occurs, as
pointed out above, for semigroups, too, but becomes even more
pronounced when studying (anti-)maximum principles. An abstract
operator theoretic approach to uniform anti-maximum principles
was first presented by Takáč in [34, Section 5], and recent progress
on the topic was made in [7]. As a sample result, let us discuss the
following special case of [7, Corollary 5.4] for self-adjoint operators
on L2.

Theorem 12. Let (Ω, μ) be a σ-finite measure space, and let
A∶ L2 ⊇ dom(A) → L2 be a real and self-adjoint operator on L2 ≔
L2(Ω,μ). Let u∈ L2 be a function which is > 0 almost everywhere,
and assume that there exists an integer m ≥ 0 such that every
vector in dom(Am) is dominated in modulus by a multiple of u.
Assume moreover that λ0 ∈ ℝ is an isolated spectral value of A
and a simple eigenvalue whose eigenspace contains a function v
that satisfies v ≥ cu for a number c > 0.

If μ1 > λ0 is in the resolvent set of A and (μ1 id− A)−1 ≥ 0,
then the following assertions are equivalent.
(i) One has (μ id− A)−1 ≤ 0 for all μ in a left neighbourhood

of λ0.
(ii) There exists a real number d > 0 such that

(μ1 id− A)−1f ≤ d ⟨f,u⟩u for all 0 ≤ f ∈ L2.

The assumption that A be a real operator means that the
domain dom(A) is spanned by real-valued functions and that A
maps real-valued functions to real-valued functions. Assertion (i)
of the theorem is a uniform anti-maximum principle, while asser-
tion (ii) can be considered as an upper kernel estimate for the
resolvent (in other words: as an upper Green function estimate)
of A. Simple consequences of this theorem are the classical results
that the Dirichlet Laplace operator on an interval does not satisfy
a uniform anti-maximum principle, while the Neumann Laplace
operator on an interval does (see [7, Proposition 6.1 (a) and (b)] for
a few more details). More involved examples where the theorem
(or more general versions thereof) can be applied are discussed in
[7, Section 6].
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