
Cauchy problem for the Einstein equations, are not addressed at all.
While it is of course unrealistic to ask for a detailed treatment of all
these subjects, especially in a book for undergraduates, more steps
in that direction could perhaps have been taken. Nevertheless,
these small quibbles should not take away from the fact that this
book is a valuable addition to the general relativity literature for
mathematicians, and one which I highly recommend.

Amol Sasane, A Mathematical Introduction to General Relativity. World
Scientific, 2021, 500 pages, Hardback ISBN 978-981-124-377-6, eBook
ISBN 978-981-12-4379-0.
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Lectures on Optimal Transport
by Luigi Ambrosio, Elia Brué and Daniele Semola

Reviewed by Filippo Santambrogio

This is the first of the two books that I am re-
viewing for this issue of the EMS Magazine.
It is a textbook on optimal transport (in
the same spirit of a book I published in
2015 [9], or of the two books by Cédric
Villani [11,12]), meant yo be used by gradu-
ate students. The first author is one of the
leading experts on the topic, who has been
giving lectures on it for decades at SNS Pisa
(by the way, it is in the course that he gave

exactly 20 years ago that I started learning about optimal transport).
The second and third authors are two of the brilliant students who
attended these courses in Pisa.

The book is organized into 19 chapters, each meant to cor-
respond to a single lecture. The duration of a single lecture is
not suggested explicitly, but I find the rhythm a little bit slow for
graduate students, as I usually cover the material of the first 6
or 7 lectures in approximately 6 hours. Regardless, the idea of
organizing the presentation according to teaching time is a very
useful pedagogical tool.

The 19 lectures can be roughly divided into four series. Lectures
1 to 7 are essentially devoted to the main theory of the Monge

and Kantorovich problems, where two measures are fixed and
one looks for the optimal plans or maps to transport the first
measure onto the second at minimal cost. At the beginning the
cost function is as general as possible, which allows to develop
the whole Kantorovich theory, including existence of optimal plans
and duality. Only in the last of these lectures the focus is on some
precise Euclidean examples, and in particular on the quadratic cost,
together with its connections with the Monge–Ampère equation
(whose name is spelled correctly all along the book, except for
the title of the corresponding lecture where, unfortunately, we
can see an acute accent). Another very natural cost, the distance
cost originally studied by Monge, is deliberately discussed for only
a single page, since it is clearly the goal of the authors to move on
to some notions, in connection with PDEs and differential geometry,
that are more related to the quadratic cost. Some choices in the
proofs or in the presentation could be debatable, for instance
regarding duality: the authors do present, shortly, a proof based on
rather general convex analysis (the Fenchel–Rockafellar theorem),
but devote more space to a full and self-contained proof based
on the c-cyclical monotonicity of the support, arguing that it is
more constructive, which is absolutely true. On the other hand,
this approach might suggest the wrong idea that each optimizer in
the Kantorovich problem is associated with a specific maximizer of
the dual (the one built from the support of this very optimizer) and
this can be seen in the (absolutely classical) proof of uniqueness of
optimal transport maps. This proof is based on the clever statement
that if every optimal plan is induced by a map, then it is unique,
but does not exploit the fact that the map corresponding to a plan
can be chosen to be the same for all plans.

After the general presentation of the optimal transport problem,
a second series of lectures (8–10) on the Wasserstein distances
and Wasserstein spaces follows. Here the authors do a remarkable
work by systematically analysing which metric properties of a metric
space (X,d) are inherited by the corresponding Wasserstein space
(𝒫(X),W2) (we see that the focus is explicitly on the case p= 2, in
order to pave the way for the next part of the book): compactness,
completeness, geodesics,… Some parts require the introduction of
suitable tools from analysis in metric spaces, in particular the notion
of metric derivative, which are independent of optimal transport,
but not always well known among graduate students in analysis.

Similarly, the next series of lectures (11–14) is not specifically
related to optimal transport: it is devoted to a detailed analysis of
gradient flows in Hilbert spaces, paying attention to those notions
which can be extended to metric spaces, and in particular the EVI
(Evolution Variational Inequality) and the EDI (Energy Dissipation In-
equality) formulations. The role played by convexity or λ-convexity
is emphasized from the very beginning. A full chapter is devoted to
the study of the heat flow as a gradient flow with different choices
of the functional and of the Hilbert norm (the heat flow is, for
instance, the gradient flow of the Dirichlet energy u↦ 1

2 ∫|∇u|2 in
the L2 space, but also of the simplest functional u ↦ 1

2 ∫u
2 in the
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homogeneous H−1 space). This is very useful, enabling the reader
to realize that one and the same equation can be seen as a gradient
flow in many different ways, and that there is an interplay between
the functional and the distance (one needs to change both if one
is looking for the same equation).

After this detailed discussion about gradient flows, the authors
come back for the last lectures (15–19) to theWasserstein spaceW2.
First, a long chapter is devoted to the study of various functionals on
the space of probability measures and on their variational properties
(in particular, lower semicontinuity and geodesic convexity). This
recalls what I did in a chapter of [9] and I am glad to see that the
authors share my feeling that, in order to address some applications
of optimal transport, at some point it is absolutely necessary to
clarify what we know and what we should know about the most
used functionals. The next lectures are mainly devoted to curves
of measures, with a detailed discussion of the continuity equation
∂tμ +∇ ⋅ (μv) = 0, and of the specific case of geodesic curves
(for which the velocity field v is related to the gradient of the
solution of a Hamilton–Jacobi equation solved by means of the
Hopf–Lax semigroup). This is followed by the dynamical formulation
of optimal transport proposed by Benamou and Brenier [4] and the
characterization of “nice” curves inW2 as solutions of the continuity
equation with L2 vector fields. I find it unusual to follow this order
(I usually consider generic curves and then optimal ones, even if
admittedly also in my presentation geodesics are used to build
a velocity field), but the exposition is perfectly coherent and clear.
I also note a very nice proof of the semicontinuity of the Benamou–
Brenier energy based on the interpretation of the Lp norm as dual
to the corresponding Lq norm. The last two lectures in this series
concentrate more on the heat flow, proving that the solutions of
the heat equation are metric EVI gradient flows in the Wasserstein
space of the entropy functional. This is the meaning which is given
to being a gradient flow in this approach, coherently with the
famous book of the first author with N. Gigli and G. Savaré [2].
Since the procedure consists here in checking that an existing
solution of a well-known PDE satisfies this notion, this can be seen
as an interpretation tool, and not as a way to prove existence of
solutions to some PDE with a gradient flow structure in W2 (in
particular, the celebrated Jordan–Kinderlehrer–Otto scheme [7] is
only marginally mentioned). Finally, it is shown that the behaviour
of the heat flow on Riemannian manifolds is strongly related to
conditions on the curvature and to the geodesic convexity of the
entropy functional, a fact that has been used as a starting point for
a synthetic definition of the notion of curvature bound in metric
measure spaces [8,10] and then for a very general theory of calculus
in metric measure spaces [3].

Even if some points in the exposition differ from what I would
have done – and I had fun in pointing this out – there is no doubt
in my mind that this very well written 250-page book can be an ex-
tremely useful tool to teach optimal transport classes or, for a more
experienced researcher from a related but different field, to access

the subject. It contains both heuristic discussions which could be
completed by external reading and rigorous proofs, and covers
a large part of the existing theory. Covering the entire theory was
of course impossible, and the choice was made to focus on topics
that better prepare the reader to deal with some mathematical
applications, in particular in connection with differential geometry
and partial differential equations from an abstract point of view,
and the book is clearly meant for a public of analysts or geometers.
And it contains many clever ideas and tricks that the reader will
appreciate and re-use in his own work!

Luigi Ambrosio, Elia Brué and Daniele Semola, Lectures on
Optimal Transport. Springer, 2021, 259 pages, Paperback ISBN
978-3-030-72161-9, eBook ISBN 978-3-030-72162-6.

An Invitation to Optimal Transport, Wasserstein Distances, and
Gradient Flows by Alessio Figalli and Federico Glaudo

Reviewed by Filippo Santambrogio

We now move on to the second book I am
reviewing for this issue. It is also a text on
optimal transport, and it is also produced
by researchers from the same school (i.e.,
the Italian school on calculus of variations
centred at SNS Pisa). This book aims at
being a self-contained introduction to op-
timal transport and some of its applications,
with a quite explicit goal to acquaint the
reader with the theory and invite her/him

to start working on and with it, possibly looking for more detailed
developments or proofs elsewhere.

Optimal transport is a very active field and every new mono-
graph that can attract colleagues from related disciplines or can
help researchers who need to understand it after a first encounter,
is more than welcome. One of the key advantages of this short
monograph is the authorship, since one of the authors is well
known in the whole mathematical world because of the Fields
medal he was awarded exactly for his work on optimal transport:
this is very likely to attract more readers than any other manuscript
on the topic.

The first important point to notice is the book’s size, approxim-
ately 130 pages. It is much shorter than other references on the
topic, and in this respect it is difficult to compare it to the book
by Ambrosio, Brué and Semola or to other classical references
[9,11,12]. The closest manuscript that one can use as a compar-
ison should probably be A user’s guide to optimal transport by
Ambrosio and Gigli [1], even if inviting readers to discover a topic is
not exactly the same as the claimed goal to offer a guide to under-
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stand, or at least use, it. In comparing the two texts one has to note
that Ambrosio and Gigli’s work is in the end only partially about
optimal transport, being instead heavily oriented towards metric
measure spaces. By contrast, Figalli and Glaudo’s work remains
focused on optimal transport, which allows for a more complete
and useful presentation, despite the small length.

In comparing to classical books, the reference is always the first
book by Villani [11], since my own text [9], published 12 years later,
aimed at adding developments of the theory that did not exist in
2003, and Villani’s second book [12], includes several hundreds
of pages on new extensions and connections, in particular in the
direction of differential geometry. From this point of view, the
present manuscript does not aim at covering new material, as the
core of its exposition concentrates on topics already present in [11],
and new developments are only worth a few lines in the further
reading part. This is a very legitimate choice if one wants to keep
the presentation short as well as reasonably self-contained. On
the other hand, I would say that, despite aiming at a slightly more
pure-math oriented audience, this book shares a “concrete” flavour
with [9].

As a short introductory text, the book is composed of only
five chapters, and the last one, called “further reading” honestly
discusses the other existing references on the topic, and some
extensions or connections. Chapter 1 also plays a different role
than the others, including some examples of transport maps, some
applications (for instance, how to prove the isoperimetric inequality
using the Knothe map), and some preliminary background material.
The core of the book thus consists of Chapters 2, 3, and 4.

Chapter 2 is devoted to the already classical theory of optimal
transport, following more or less the same structure as that of
the book by Ambrosio, Brué and Semola (including very similar
approaches to duality and to the uniqueness of optimal maps),
even if an important role is given to the cost c(x, y) = −x ⋅ y,
which is equivalent to the quadratic cost 1

2 |x − y|2 and allows
for a direct use of convex analysis without the need to introduce
c-convexity (or c-concavity). If general costs arrive first in what
concerns existence of optimal plans, they appear later in what
concerns Kantorovich duality. In this same chapter we can also
praise the detailed discussion of the various connections of optimal
transport with the incompressible Euler equation (which also allows
to underline the multiple roles Yann Brenier played in the theory of
optimal transport, see [4–6]).

Chapter 3 and Chapter 4 both include at the same time the
second and the third key concepts evoked by the title: Wasserstein
distances and gradient flows. Chapter 3 is more metric in nature:
it introduces the Wasserstein distances Wp (for every p) and after
a short (a few pages, not a few chapters) digression on Hilbertian
gradient flows, moves on to the Jordan–Kinderlehrer–Otto scheme
(JKO [7]), thus attacking gradient flows via a sequence of iterated
minimization problems involving the W2 distance. This chapter
treats only the case of the heat equation, which is the simplest

one, but has the drawback of being also a gradient flow in L2,
differently from the Fokker–Planck equation with a potential V
which is dealt with in Chapter 4. The main theorem here states
that the limit as the time step τ of the JKO scheme tends to 0 is
a distributional solution of the heat equation, and in this sense
I consider this presentation as more “concrete”: it finds a solution –
in a very standard sense – to a PDE, and not to a metric condition
such as the EVI or the EDI definitions of gradient flows, which could
sound unnatural as a definition when PDE tools are available.

Chapter 4 then goes on with the differential and Riemannian
structure of the Wasserstein space, discussing geodesic curves and
the Benamou–Brenier formula, introducing Otto’s calculus in order
to endow this space with a formal notion of tangent space and
make it a sort of infinite-dimensional Riemannian manifold, and
then presenting the notion of geodesic convexity. In a way that
I strongly approve, geodesic convexity is shown to be crucial for the
study of gradient flows in what concerns finding properties of their
solutions, but it is not at all evoked when it comes to proving exist-
ence for some PDEs. As an example, the authors then concentrate
on the Fokker–Planck equation, adding a convex potential to the
heat flow, and prove a series of inequalities which allow to obtain
well-known rates of convergence to the steady state for strongly
convex confining potentials. They finish the chapter proving con-
vergence to the same steady state in the strong L1 sense (and not
only in the Wasserstein sense, which means weak convergence),
providing a very nice proof of a suitable functional inequality (the
Csiszár–Kullback–Pinsker inequality; my only criticism here is that
the authors claim that a certain step of the proof, establishing that
a certain function is negative on the boundary in order to apply
later a sort of maximum principle, is “easy”, while it required me
some work to reach this conclusion).

Besides Chapters 1–5, the book also contains two appendices,
both including exercises. Appendix B aims at providing a proof
of the disintegration theorem in measure theory via a series of
guided exercises, while Appendix A is a collection of 11 fully solved
exercises (though I think many readers would have liked to see
more exercises than these 11).

Book reviews are not meant for authors, but for potential
readers, but in case the authors will read this review they will
probably realize, in view of the similarity of some comments and
sentences, that I also refereed their manuscript before publication,
which means that I had more than one occasion to look at their
work (further occasions also include a student whom I supervised
who decided to build up her knowledge of optimal transport on
this very book). I must say that I get more and more convinced
every time I take a closer look: yes, I like this book. It does the job
of inviting readers to the field, and it does it well.

Alessio Figalli and Federico Glaudo, An Invitation to Optimal Transport,
Wasserstein Distances, and Gradient Flows. EMS Press, 2021, 144 pages,
Hardback ISBN 978-3-98547-010-5, eBook ISBN 978-3-98547-510-0.
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B-Series: Algebraic Analysis of Numerical Methods
by John C. Butcher

Reviewed by Raffaele D’Ambrosio

The algebraic analysis of numerical methods
is driven along a bridge matching numerical
analysis, graph theory, group theory, differ-
entiation of vector fields, and so on. The
result of the wise union of these aspects
is an effective and elegant theory that is
useful for investigating meaningful features
of numerical methods for differential equa-
tions. One of the pioneering sources of this
theory is the brilliant and ingenious work of

John C. Butcher. He has authored a remarkable number of seminal
contributions to the founding, establishment and development of
the modern theory of Runge–Kutta methods and its subsequent
extensions.

A building block for the algebraic analysis of numerical methods
and, in particular, of their order of convergence, is the connection
between rooted trees and the differentiation of vector fields. Such
a link lies at the basis of Butcher’s theory and its precursors¹, such
as Arthur Cayley (1821–1895) and Robin H. Merson (1921–1992),
a scientist at the Royal Aircraft Establishment, who became popular
for his involvement in the computations of an accurate orbit for
Sputnik 1, launched in 1957. In the same year, Butcher attended
the talk by Merson at the conference ”Data Processing and Au-
tomatic Computing Machines” held in Salisbury, South Australia,
where Merson described the one-to-one correspondence between
derivatives and rooted trees. The full theory will only be provided
later by Butcher, but it is worth mentioning that Cayley introduced
trees with the same purpose as in Butcher theory (namely, to un-
derstand and effectively represent the interaction of vector fields
repeatedly applied to one another), and then for one century this
aspect was totally forgotten in the literature, and reconsidered
with effectiveness only when the theory of numerical methods was
established with rigor.

Other two building blocks for the algebraic analysis of numeri-
cal methods, allowing to detect and elegantly prove properties of
numerical methods for differential problems, are well described in
the book under review, namely
• Butcher series (in short, B-series), allowing to represent both
exact and numerical solutions to a differential problem in terms
of series expansions whose coefficients are functions of rooted
trees of a prescribed order;

¹ Historical aspects have been described in detail, for instance, in the paper
by R. McLachlan et al., Asia Pacific Math. Newsletter 7(1), 1–11 (2017).
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