
A Diophantine equation concerning epimoric ratios

Preda Mihăilescu and Daniel Muzzulini

In this paper, we solve an interesting Diophantine equation that is
born from classical questions of music theory.

1 Introduction

This paper investigates a Diophantine equation derived from a prin-
ciple of construction for musical harmonies and scales advocated
in antiquity by Claudius Ptolemy (c. 85–160AD), known also for his
geocentric model of celestial motion. Ptolemy’s “Harmonics” was
one of the main sources for Greek music theory in the Middle Ages
and remained influential in the Renaissance up to the 17th century
[3,4,16].

Retrospectively, the theory of proportions in the Pythagorean
tradition can be considered a theory for rational numbers greater
than one under multiplication¹. In its application to musical har-
monies and scales, adding musical intervals corresponds to the
multiplication of rational numbers, and therefore piling equal inter-
vals, i.e., multiplying a given interval by an integer, is equivalent
with raising its ratio to the respective integer power².

According to Ptolemy’s music-aesthetic premises, the multiple
and the so-called epimoric ratios are the building blocks of musical
harmonies and scales. Epimoric ratios (also called superparticular
ratios) are positive rational numbers of the form n+1

n , whereas
multiple ratios of the form n

1 are ordinary natural numbers. Since
they can be written as the unit plus a unit fraction (1+ 1

n ), epi-
moric ratios can be regarded as an elementary form of improper

¹We are aware that the antique ratios are not yet fully fledged rational
numbers, i.e., classes of ordered pairs of integers. Whereas ratios were
considered equivalent to their representations in lowest terms, the order
of the terms of a ratio was not constitutive. The ratios 3 ∶ 4 and 4 ∶ 3,
for instance, represent the same relationship (the epitriti or sesquitertia)
corresponding to the musical interval of the fourth (the diatessaron,
see Figure 1) in the sense of a perceptual distance. For our purpose the
restriction to rational numbers greater than 1 is sufficient and convenient.

² The term musical interval refers to logarithms of frequency ratios. Many
quantifiable sensory phenomena and their physical counterparts are in
a logarithmic or nearly logarithmic relationship, as loudness or brightness
sensation with respect to the intensity of sound or light.

12
A

9
D

8
E

6
a

tonus

diatessaron diatessaron

diapente diapente

diapason

Figure 1. Arc diagram showing a complete graph with epimoric ratios.
The nodes are labelled with numbers and note names, and the arcs with
the Greek and Latin names of the related intervals. The six pairs of
numbers tonus (whole tone), diatessaron (fourth), diapente (fifth),
diapason (octave) form epimoric ratios. The diagram is remarkable
because it represents equal intervals, i.e., logarithms of ratios, as equal
semicircles, and not on a linear scale. It is a marginal note by Swiss music
theorist Heinrich Loriti Glareanus (1488–1563) added to a manuscript
copy from c. 1200 of the “Micrologus” by Guido of Arezzo (c. 991–992
until after 1033).

fractions accessible to perception guided by the intellect, see [3,
pp. 60–62], [4] and [7, pp. 191–200]. The role of epimoric ratios
in music theory and pitch perception was repeatedly emphasized
and problematized throughout the course of history – in the sec-
ond half of the 16th century for instance, they were debated by
Gioseffo Zarlino (1517–1590) and Vincenzo Galilei³ (1520–1591)
[14,15]. On the other hand, epimoric ratios also played a crucial
role in the development of novel calculation techniques: Simon

³ The father of Galileo.
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1 4 16 64 256 1024

5 20 80 320 1280

25 100 400 1600

125 500 2000

625 2500

3125

Figure 2. Triangular table used by Boethius to calculate finite geometric
sequences of integers with the common epimoric factor 5/4. Only the first
row requires repeated multiplication by 4. The numbers in any row can be
found by adding neighbors from the previous one:

1+ 4 = 5, 4+ 16 = 20, 16+ 64 = 80, etc.

The main diagonal direction holds the powers of 5, and the columns
contain the geometric sequences in lowest terms. From the fourth column
one can read that three major thirds 5/4 are smaller than an octave
because (5/4)3(128/125) = 2. The method can be used for arbitrary
epimoric ratios. There are examples for 3/2, 4/3, 5/4 and 9/8 in medieval
Boethius manuscripts.

Stevin (1548/49–1620) used various epimoric bases in his tables
of compound interest, and Jost Bürgi (1552–1632) created a fine-
grained and very accurate exponential table with more than 23,000
entries for the epimoric base 1+ 1

10,000 , see [17], [18, p. 75] and
[11, pp. 199–200, 209–210].

Archytas of Tarentum (c. 420–c. 350 BC) proved that the equa-
tion

(n+ 1
n

)
k
= s+ 1

s
has no integer solutions in n, s for integer exponents k > 1 (see [2]).
Archytas’ reasoning was discussed by Boethius (c. 477–524AD) [9,
pp. 451–470], who also quotes a more general result and its proof
from the Euclidean “Sectio Canonis”⁴, stating that epimoric ratios
can be decomposed in no way into products of two or more equal
integer ratios – [5, Inst.Mus. IV.2, p. 303], [6, p. 118].

In other words, musical intervals of an epimoric ratio, such as
the octave (s= 1) or the fourth (s= 3), cannot be divided equally
into smaller intervals of epimoric ratios, i.e., equal division results
in “irrational ratios”⁵. This fact makes it impossible to construct
musical scales or scale segments with several equal intervals of
epimoric ratios spanning for example a fourth or an octave. Our
theorem, the main result of this paper, proves that a similar restric-
tion holds for the partition of an epimoric ratio into a power of
an epimoric ratio and a single epimoric cofactor: It shows that for

⁴ See [1, p. 195]; the assignment of the “Sectio Canonis” to Euclid is
insecure.

⁵ Irrationality had a precarious ontological status as being defined only ex
negativo, and it was linked to incommensurable (geometric) quantities,
see also [12].

positive integers q, r, s and exponent k > 2, equation (1) below
has no solutions⁶. Introducing an epimoric cofactor, r+1

r , into the
decomposition raises the upper bound k for solvability only by 1.

2 The main theorem

We will prove the following theorem.

Theorem 1. The Diophantine equation

(q+ 1
q

)
k
⋅ r+ 1

r
= s+ 1

s
, q, r, s ∈ ℕ, k > 2, (1)

has no integer solutions.

The following derivation holds for all k ≥ 2. The value k = 2
allows for an infinity of solutions; it will be considered in detail
in a separate paper. By removing denominators, we obtain the
following two equivalent formulations of (1):

(q+ 1)k ⋅ (r+ 1)s = qkr(s+ 1); (2)

((q+ 1)k − qk)(r+ 1)s = qk(rs+ r− rs− s) = qk(r− s). (3)

The last identity in (3) implies that r− s > 0, so we can in particular
divide by r− s.

We define δ = (q+ 1)k − qk and note that

δ = kqk−1 ⋅ (1+ k− 1
2

1
q
+ O( 1

q2))

< kqk−1 ⋅ (q(e1/q − 1)). (4)

In both equations (2) and (3), we encounter various pairs of fac-
tors of the type (x,x+ 1) for some x∈ℕ, for instance s,s+ 1 in (2).
These are coprime and in order to exploit this useful fact, we define
a series of factors whose existence follows from such relations of
coprimality. Namely, we set A = (r+ 1, r− s) = (r+ 1, s+ 1) and
B= (s, r− s) = (r, s). We assume A,B > 0 and let the cofactors be
AC= s+ 1 and BD= s for some C,D∈ℕ. Since (qk,(q+ 1)k)= 1,
it follows that qk ∣ (r + 1)s and δ ∣ r − s. By combining the last
relations of divisibility with the definitions of A and B, we get

(r+ 1)s = AB ⋅ qk, r− s = AB ⋅ δ,

qk

δ
= s ⋅ (1+ s+ 1

r− s
) > s.

(5)

Using the upper bound on δ in (4), we obtain the following esti-
mates for s.

⁶ The conjecture that (1) has no solutions was formulated by the
second author, from the study of music theory and on the basis of his
mathematical background. It was eventually settled in a joint effort of the
two authors.
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Figure 3. Left: Since twice the number on top 262,144 (= 86) is less than 531,441 (= 96), six epimoric tones (9/8) are by a Pythagorean comma
(531,441/524,288 = 312/219) greater than the octave, as the diagram by Jacobus Leodiensis (14th century) illustrates. Right: Twelve epimoric semitones
of the ratio 18/17, however, are a little smaller than an octave, as Gioseffo Zarlino’s monochord calculations show. The epimoric ratio 18/17 was proposed
by Vincenzo Galilei as a substitute for the 12th root of two – it is the best epimoric approximation to the semitone of our modern piano tuning.
The monochord string AB is divided at C in the middle, the horizontal system of lines d, e, f,…,p indicate fret positions on the string, which is to be
plucked between the frets and B (estremo acuto) to give the corresponding notes of this regular scale with a small non-epimoric gap between p and C.

Lemma 1. Assuming that (1) has non-trivial integral solutions, s
obeys the bounds

q
kμ

< s < qk

δ
< q

k
, with μ = q(e1/q − 1) ⋅ (1+ s+ 1

r− s
). (6)

In particular, q > k.

Proof. The upper bound for s follows from (5); the lower bound
follows from the same identity, in conjunction with the upper
bound in (4). Since s ≥ 1, we obtain our first lower bound for q,
namely q

k > s ≥ 1, hence q > k.

Our next task is to derive from the above and some additional
bounds, a tight interval which must contain s; en route we also
obtain sharper lower bounds on q.

Lemma 2. Under the same assumption as above, we let

Q = (q
k
+ 1) ⋅ q

k
and U ≔ qk − Q

δ
, V ≔ qk − 1

δ
.

Then

s ∈ I ≔ (U,V). (7)

Moreover, q > (k− 1)k+1 and there is at most one integer σ ∈
I∩ℕ. In particular, if (1) has a solution, then s = σ.

Proof. We have

r = s+ r− s = AB ⋅ ( qk

r+ 1
+ δ).

Now, (B, r+ 1) = 1 and A ∣ (r+ 1), so the previous becomes

r = ABδ+ B
qk

(r+ 1)/A .

Since (B, r+ 1) = 1, it follows that (r+ 1) ∣ Aqk, and in (5), we
find

B ⋅ ( Aqk

r+ 1
) = s.

Since (A, s) = 1, we get

( s
B
) = D ∣ qk,

18 EMS MAGAZINE 124 (2022)



hence s = BD ∣ rqk. Reinserted in (5) with the definition r ≔ r ′ ⋅ B,
this leads to

r+ 1 = A
qk

D
and r′ − D = A ⋅ δ.

So

r = A(q
k

D
)− 1 and r′ = r

B
= Aδ+ D,

thus

s = Aqk − D
Aδ+ D

∈ ℕ;

consequently,

s ⋅ δ+ sD
A

= qk − D
A
, (8)

CD = D
s+ 1
A

= qk − sδ = qk(s+ 1) − s(q+ 1)k.

Since CD ≤ s(s+ 1) < Q, we conclude that

qk − 1
δ

≥ s = qk − CD
δ

> k2qk − q(q+ k)
k2((q+ 1)k − qk) .

Statement (7) follows from these inequalities, by inserting the
definitions of U and V. The length of the interval I is ℓ = Q−1

δ ; the
improved lower bound on q will show that ℓ < 1

2 for k ≥ 3, and
thus the interval I contains at most one integer, which confirms
the statement on σ.

Now D ∣ qk, so

B =
qk

D − C
(q+ 1)k − qk .

Since D ≤ s < q
k , we also have qk

D > kqk−1. This will lead to the
bound for q. Assume first that qk

D ≡ 0 mod q. Then B+ C ≡ 0 mod
q. But B+ C ≤ 2s+ 1 < 2 q

k + 1 < q for q > k > 2, so we obtain
a contradiction to B+ C ≥ 0, and thus B = C = 0, which is absurd.

It remains to treat the case qk

D ≢ 0 mod q. We decompose
D = adk, so that all primes p that divide a are either coprime to
q, or occur in a with a power less than k, while d ∣ (q,D). Then
qk

D = a( q
d)

k ≡ 0 mod q
d and (6) implies a fortiori that Bkdk < q

holds along with B+ C ≡ 0 mod q
d . Since B,C > 0, we have

q
k
> C ≥ q− Bd

d
⟹ dq > kq− Bkd > kq− q

dk−1 ,

and thus d− (k− 1
dk−1 ) > 0 and a fortiori d ≥ k− 1. In particular,

q must be large, namely

q > B(k− 1)k+1 ≥ (k− 1)k+1, (9)

as claimed. Using this bound, a straightforward verification shows
that ℓ < 1

2 , and this completes the proof of Lemma 2.

We finally use the bound (9) and sharper estimates for δ to
complete the proof of Theorem 1. If I∩ℕ = ∅, then there are
no solutions, and we are done. Otherwise, we let σ be the unique
integer in the interval I. Since s ∈ I is also an integer, it follows that
s = σ.

Proof of Theorem 1. We determine σ in terms of q
k . We have

δ ≔ (q+ 1)k − qk = qk−2(qk+(k
2
)+ 1

q
(k
3
)+ ρ),

with

|ρ| ≤

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

0 for k = 3,
k4

4!q2 < 1
20q

for k > 3,
using q > (k − 1)k+1.

Consequently,

δσ = qk−2σ(qk+(k
2
)+ 1

q
(k
3
)+ ρ) = qk − CD,

σ ⋅ (qk+(k
2
))+ σ

q
(k
3
) = q2 − ρ1,

where

|ρ1| = | CD
qk−2 − σρ|.

Since σ < q
k , there is a number e of the form e = { q

k } + n, with
n ∈ ℤ≥0 and { q

k } denoting the fractional part of q
k , such that

σ = q
k
− e = [q

k
] − n, ek = q− kσ.

We claim that n = 0. The definition of U implies that

nk = q− [q− kσ] ≤
kqk(1+ k−1

2q + O( 1
q2 )) − kqk + q2

k

δ

≤
(k2)q

k−1 + q2

k + O(qk−2)
kqk−1 < ⌈k− 1

2
⌉ ≤ k+ 1

2
.

Since n is an integer and 0 ≤ n < k+1
2k , it follows that n = 0 and

0 < ek < k, as claimed.
Thus, σ = q

k − e = [ qk ]. Inserting this value of σ in (8) yields

q2 − eqk+ k− 1
2

q− ek(k− 1)
2

+ (k− 1)(k− 2)
6

−(k
3
) e
q
= q2 − ρ1,

hence

q ⋅ (k− 1
2

− ek) = R′

≔ −ek(k− 1)
2

+ (k− 1)(k− 2)
6

+ ρ2, (10)

with

|ρ2| = |ρ1 −(k
3
) e
q
| ≤ |ρ1| +

k(k− 1)(k− 2)
6q

.

We have seen that ek ∈ ℕ, so if the left-hand side of (10) does
not vanish, then its cofactor is an integer or a half-integer; if it
does not vanish, its absolute value will exceed q

2 . We denoted the
right-hand side of (10) by R ′, so

|R′| ≤ |R| + k− 1
2

⋅ |k− 2
3

− ek| < k(k− 1)
3

+ |R|.

EMS MAGAZINE 124 (2022) 19



For the right-hand side, small values of k allow for larger values
of ρ2, so we first assume k ≥ 4. In this case

|ρ2| ≤ R ≔ Q
qk−2 + σ

20q
+ k(k− 1)(k− 2)

6(k− 1)5 < 2
(k− 1)k .

Now |R| < ( 1
k2 +

1
qk +

1
20k)+

6
(k−1)k−2 < 1

k ⋅ (
2
k +

1
20) and inserting

this in the bound for R ′, we see that |R ′| < (k− 1)2 < q
2 . Since the

left-hand side is at least q
2 in absolute value, if it does not vanish,

we conclude that the two sides must vanish simultaneously. Thus,
e = k−1

2k and the right-hand side is k2−1
12 − ρ2. Since |ρ2| < 1 and

k2−1
12 > 1 for k > 3, the last expression cannot vanish for k > 3, so

there are no solutions in this case.
The case k = 3 is more delicate; recall that in this case ρ = 0

and thus ρ2 = CD−e
q . The best bound for the error term is now

0 < |ρ2| < q
9 , so in (10)

q = 3e(q− 1) + 1
3
+ ρ2 = 3e(q− 1) + 1

3
+ CD− e

q
.

We generate a contradiction by a case-by-case examination. We
know that 3e < k = 3, so 3e ∈ {0, 1, 2}. The cases 3e = 0 and
3e = 2 are easily seen to be impossible. In the first case, the right-
hand side is too small, while in the second case it is too large,
compared to q, as one verifies from the definitions.

If 3e = 1, we obtain

q = q− 1+ 1
3
+

CD− 1
3

q
⟹ q+ 3CD− 1

3q
= 1,

thus CD = 2q+1
3 = 2q+1

k . We have seen above that D ∣ qk, while
3CD = 2q+ 1 implies D ∣ (2q+ 1,q3), and thus D = 1. But then
C = CD = 2q+1

3 > q
3 + 1, contradicting the upper bound C ≤

s+ 1 < q
k + 1 established above. We conclude that there are no

solutions for k = 3 either, and this completes the proof.

3 Remarks and comments

Here we provide some historical details that place our result in
its musical context. For additional reading we recommend the
excellent modern introduction to superparticular ratios⁷ by Halsey
and Hewitt [8].

3.1 Music theory
In order to briefly elucidate the musical context of the theorem, we
give some examples. Historically, partitions of ratios are frequently
written as ordered multi-term proportions within arc diagrams.
Arrangements as proportions in lowest terms corresponding to the
left-hand side of the following equalities are given in brackets.

⁷ This is an other expression for epimoric ratios.

With k = 1, the octave (2/1) can be divided into a fifth (3/2)
and a fourth (4/3):

3
2
⋅ 4
3
= 2

1
(2 ∶ 3 ∶ 4)

and with k = 2, into two fourths and a whole tone (9/8), see
Figure 1:

(4
3
)
2
⋅ 9
8
= 2

1
(6 ∶ 8 ∶ 9 ∶ 12). (11)

Likewise, the fifth (3/2) can be partitioned with two minor thirds
(6/5) and a chromatic semitone (25/24):

(6
5
)
2
⋅ 25
24

= 3
2

(20 ∶ 24 ∶ 25 ∶ 30).

However, no epimoric musical interval can be divided into four
epimoric smaller intervals, of which three are equal (k = 3). For
example, the Pythagorean division of the fifth into three whole
tones and a non-epimoric remainder,

(9
8
)
3
⋅ 256
243

= 3
2

(192 ∶ 216 ∶ 243 ∶ 256 ∶ 288), (12)

or the division of the octave into three major thirds (5/4) and a diesis
(128/125),

(5
4
)
3
⋅ 128
125

= 2
1

(64 ∶ 80 ∶ 100 ∶ 125 ∶ 128),

are prototypical: Whatever cubed epimoric ratio is chosen, the
cofactors to 3/2 and 2/1 are never epimoric. The latter example
illustrates that the just intonation major third (5/4) is an approxima-
tion to the problem of doubling the cube, whereas the irrational
major thirds of the present-day equal division of the octave is a true
solution beyond antique ratio theory⁸.

Ptolemy’s tetrachords (divisions of the fourth) involved three
different epimoric ratios, as in

9
8
⋅ 10
9

⋅ 16
15

= 4
3
.

Combining this with (11) results in the octave division

(9
8
)
3
⋅ (10

9
)
2
⋅ (16

15
)
2
= 2

1
,

where 9/8 and 10/9 define two varieties of whole tones and 16/15
a semitone larger than the Pythagorean 256/243. This partition
can be used to define the diatonic scale in just intonation, see
Figure 4 (left). The Pythagorean example (12) which fails to be
made up solely of epimorics, is an indication for the origin of our
problem (1).

⁸ Illustrations for k = 6 and k = 12, where s = 1 (the octave), from sources
of the 14th and 16th century are given in Figure 3.
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Figure 4. Left: Ptolemy’s diatonic scale according to Gioseffo Zarlino. The baseline holds the proportion 90 ∶ 96 ∶ 108 ∶ 120 ∶ 135 ∶ 144 ∶ 160 ∶ 180
(from right to left) with three major tones (9/8 = Sesqui 8), two minor tones (10/9 = Sesqui 9) and two (major) semitones (16/15 = Sesqui 15).
The fourth (diatessaron) of the Ptolemaic tetrachord highlighted at the bottom consist of a semitone (16/15), a major tone (9/8) and a minor tone (10/9).
Only intervals of epimoric ratios are labelled in this almost complete graph with eight nodes. Right: Greek tetrachords in the 17th century. Doni’s system
with three “epimoric tetrachords” E–A (dorian), D–G (phrygian) and C–F (lydian) uses two varieties of whole tone steps (9/8 and 10/9), semitones E–F
(16/15) as well as two pitches for D differing by a syntonic comma (81/80) resulting in a fine grained system of pitches [10, pp. 62–69].

3.2 Diophantine equations
Music Theory stood more than once at the origin of fascinating
Diophantine equations. For instance, the reputed Catalan equa-
tion⁹ xu − yv = 1, stating that 8 and 9 are the only successive
non-trivial powers of integers, generalizes the original question
about 3x − 2y = 1 considered by Philippe de Vitry (1291–1361) in
relation with harmonic numbers and Platonic music theory, thus
a Diophantine equation with actual connection to music. Levi ben
Gershon (1288–1344) had proved that this particular equation does
not have other solutions than 9− 8 = 1, and this already in the
13th century. Leonhard Euler (1717–1783) switched exponents and
bases in the musical equation, and finally Catalan (1814–1894) al-
lowed both bases and exponents to vary: both latter variations had
left the common field of music and mathematics, and Diophantine
equations were investigated for their pure mathematical interest.

The present equation (1) still has a lively connection to mu-
sic theory. Were this of no more concern, one could imagine
generalizations of (1) such as

(q+ 1
q

)
k
⋅ ( r+ 1

r
)
l
= ( s+ 1

s
)
m
, q, r, s ∈ ℕ, k, l,m > 2,

⁹ Catalan proposed this equation in a French journal in 1841 and it
appeared in Crelle’s Journal as a note to the Editor, in 1844.

or, defining

ℓ(q,m) = 1+ 1
n
+ 1

n+ 1
+⋯+ 1

n+m
,

one could look at

ℓ(q,n)k ⋅ ℓ(r,n)l = ℓ(s,n)m, q, r, s ∈ ℕ, k, l,m,n > 2,

All this recalls the falling powers

xn = x(x− 1)⋯(x− n+ 1),

dear to Isaac Newton (1643–1727), and one finds a variant of
Fermat’s Last Theorem, that cannot be found among the dozen of
variants mentioned in Ribenboim’s 13 Lectures [13], probably the
most adequate source for verifying if a variant of Fermat’s Equation
has already received attention. This one apparently did not:

xp + yp = zp, (x, y, z) = 1 and x, y, z > n+ 1.

We stop here and invite the reader to imagine his own favorite
generalization, leaving it to the future to decide whether some of
these variations will capture the attention of a larger number of
mathematicians, professional or not.
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Image sources

Figure 1: Guido of Arezzo (c. 1200), Micrologus, Ms. 8 Cod. Ms. 375
(Cim 13), fol. 53r. Source: München, Universitätsbibliothek

Figure 2: A.M. S. Boethius (early 10th c.), De institutione arithmetica.,
fol. 4v. Source: Medeltidshandskrift 1 (Mh 1), Lund University Library

Figure 3, left: Jacobus (Leodiensis) (15th c.), Speculum musicae, Ms.
Latin 7207, Vol. III, Cap LXXXV, fol. 46r. Source: gallica.bnf.fr/
Bibliothèque nationale de France

Figure 3, right: G. Zarlino (1588), Sopplimenti musicali, Venetia:
Francesco de Franceschi, Sanese, Lib IV, p. 205, https://
s9.imslp.org/files/imglnks/usimg/d/d1/IMSLP129044-PMLP252086-
terzo_volume.pdf (accessed February 21, 2022)

Figure 4, left: G. Zarlino (1562), Le istitutioni harmoniche, Venice, Italy,
p. 122. https://digital.library.unt.edu/ark:/67531/metadc25955/
(accessed February 21, 2022), University of North Texas Libraries,
UNT Digital Library, https://digital.library.unt.edu; crediting UNT
Music Library

Figure 4, right: G. B. Doni (1635), Compendio del Trattato de’ Generi
e de’ Modi della Musica, Roma, p. 41. Source: Mus.th. 7234,
Bayerische Staatsbibliothek München
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