
Calculus: A new approach for schools that starts with simple algebra
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We outline a novel approach to tangents and derivatives that
does not use any limits. Instead, it uses elementary algebraic
concepts related to the quadratic equation, and therefore fits right
into the school curriculum. Adding an elementary estimate to the
central algebraic factorization naturally leads to the concept of
continuity and thereby reveals that the algebraic derivative can
also be captured by an approximation process. This turns out to be
critical for handling non-algebraic functions, such as exponential
functions. In order to capture the new elusive limits, students
recognize that one needs to expand the familiar rational numbers
to the much more intriguing real numbers. The solution of the
tangent problem for exponential functions leads to the general
notion of a differentiable function, in a formulation that is the
natural generalization of the algebraic version, and which has
been known for over 70 years. This approach gradually proceeds
from most elementary concepts to the heart of analysis, making it
clear to students along the way why more sophisticated tools are
needed, and providing motivation for the more advanced concepts
that are indispensable for a proper understanding of calculus.

1 The beginning

The standard introduction to calculus typically involves limits pretty
much from the beginning. For example, the calculation of the
slope of the tangent to y = x2 at (a, a2) leads us to consider
limh→0

(a+h)2−a2

h , whose intuitive answer 0
0 is meaningless. How-

ever, as long as h≠ 0, it is easy to simplify the expression to 2a+ h,
which makes it obvious that the answer should be 2a. Yet there
still remains the problem with the limit, something that prompted
intensive discussions already in the early 18th century, led by the
criticisms of the philosopher George Berkeley (1685–1753) (see
[5, pp. 628–630]). Eventually, mathematicians in the 19th century
placed limits on a solid foundation and since then students have
had to learn about them first. But have you ever wondered if there
shouldn’t be an easier way that avoids limits until they really are
needed?

Thanks to René Descartes (1596–1650), there actually is such
an elementary way, and students in school can be introduced to it

as soon as they have learned the basics of the quadratic function
and equation. Tangents had been considered long before Descartes’
days. Well over 2000 years ago, Greek geometers studied tangents
to simple curves, such as circles, or more generally, conic sections.
For them, a tangent to a curve at the point P is a line that touches
the curve at P, but does not cut it (see [5, p. 120]). While this
language is somewhat vague, its intuitive meaning is quite clear,
and it turns out that it is very easy to give it a precise algebraic
interpretation.

The crux of the matter is visible in Figure 1 that shows the
graphs of two quadratic functions of the form f(x) = (x− b)2 + c,
where b, c are some fixed numbers.

The curve on the right corresponds to the case where c < 0:
the x-axis intersects the graph of f in two distinct points, and surely
it would seem appropriate to say that the axis “cuts” the curve in
each of those two distinct points. The curve on the left corresponds
to the case c = 0. In this case, the two points of intersection have
blended together, one on top of the other, and it would be ap-
propriate to say that the x-axis just “touches” the curve at that

x

y

Figure 1
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point, but does not “cut” it. So, according to Greek geometers, the
x-axis surely is a tangent to the curve at that point. Algebraically,
in this case, the point (b, 0) of intersection is determined by the
solution(s) of the equation (x− b)2 = 0, which is a quadratic equa-
tion for which the two roots coincide; that is, we have a “double
root (or zero)”, or a root of “multiplicity 2”. Geometrically, we have
a “double point”, that is, two points that just happen to lie on top
of each other, so that only one point is visible. Of course, if the
curve is just moved down a little bit, the two points of intersection
separate and both become visible.

So, by just looking at this most simple example, we conclude
that the ancient notion of a touching line is made precise geomet-
rically by recognizing that the special point where the line touches
the curve is really a double point, and furthermore, that this is
made precise algebraically by saying that the relevant equation
that determines the points of intersection has a double zero.

Given that the quadratic equation is a central and important
topic in school algebra, which in particular includes the case of
a double zero, this seems to be the perfect place to introduce
the students to the basics of calculus. All that is needed is to
appropriately interpret the picture above to conclude:

A tangent to a curve at a point P is a line that intersects
the curve at P with multiplicity 2 (or higher).

I can hear algebraic geometers say that they have known this
for a long time. True, after all Descartes’ idea did leave a trail. But
have you ever used this idea when you are teaching a calculus
class? If yes, great for you! But sadly, I have not yet found any
calculus text that utilizes this simple idea to introduce students to
tangents.

2 Historical remarks

As we just mentioned, the idea of finding tangents via double
zeroes appears first in Descartes’ work [3]. Actually, Descartes was
more fascinated by normals to a curve rather than by tangents¹, but
knowing either one determines the other. Perhaps Descartes had
simply been thinking of generalizing what had long been known for
a circle, namely that the tangent at a point P on a circle is perpen-
dicular to the normal at P, which in this case is simply the line from
the center of the circle to the point P. Therefore, in this case, the
normal is the obvious tool to find the tangent. Descartes solved the
problem for an ellipse and emphasized the generality of his method.
Descartes’ expositor Frans van Schooten applied the double point

¹ Descartes wrote: “…when I have given a general method of drawing
a straight line making right angles with the curve. And I dare say that this
is not only the most useful and most general problem in geometry that
I know, but even that I have ever desired to know.” [3, p. 95]

method to find the tangent to a parabola directly [9]. On the other
hand, attempts to apply this method to more general curves led to
formidable complications. The situation was captured by Howard
Eves [4, pp. 284–285] as follows: “Here we have a general process
which tells us exactly what to do to solve our problem, but it must
be confessed that in the more complicated cases the required al-
gebra may be quite forbidding.” Thus Descartes’ approach was
eventually forgotten. On the other hand, as you will see shortly, the
implementation of the double point method presented here, first
published in [6], is completely elementary, and applies to all curves
defined by algebraic expressions. So it is natural to wonder why
mathematicians in the 17th century overlooked what today appears
to be so obvious. One possible explanation is based on the fact
that even though the concept of slope was certainly known at that
time (“quotients of infinitesimals” were supposed to capture it), the
point-slope form to describe lines – something every high school
student today is familiar with – was not known or used explicitly
at that time. In fact, it seems to have appeared first only more than
100 years later, in a 1784 paper by Gaspard Monge (1746–1818)
(see [1, pp. 205–206]). Instead, Descartes, and everybody else
around that time, described lines through the point P on the curve
by using a second distant point Q on that line. One then changed
the position of the line by moving that point Q along some other
line, often a line of symmetry of the curve under consideration. But
in case of more complicated curves, there was no obvious natural
place to move that second point along. Perhaps philosophers and
scientists in the 17th century were still so strongly under the spell
of Euclid (approximately 325 BC – 265 BC), who had introduced the
axiom that a line is defined by two (distinct) points, that they just
couldn’t conceive of describing a line by a single point and its slope.

3 Polynomials and the Chain Rule

This is not the place to present all the details of our proposed new
approach to Calculus (see [8] for some more details). But I want to
highlight two simple important results that can readily be presented
to students pretty much at the beginning.

First, suppose P is a polynomial of degree n. We want to identify
the tangent to its graph at the point (a, P(a)). An arbitrary (non-
vertical) line through (a, P(a)) is described by an equation y =
P(a) +m(x− a), where m is the slope. Its points of intersection
with our curve are given by the solutions of the equation

P(x) = P(a) +m(x− a).

Fortunately, we do not need to find all solutions of this equation.
We only are interested in the one obvious zero, namely x = a, and
we want to determine when this is a zero of multiplicity greater
than 1. We rearrange the above equation in the form

P(x) − P(a) −m(x− a) = 0.
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A standard result gives the factorization

P(x) − P(a) = q(x)(x− a),

where q is a certain polynomial of degree n− 1. While the existence
of such a factorization is not trivial, it is an immediate consequence
of the following fundamental result which should definitely be part
of any discussion of polynomials in school.

Theorem. If P is a polynomial of degree n ≥ 1 that has a zero at
the point a, i.e., P(a) = 0, then P has a linear factor of the form
x− a; that is, there exists a polynomial q of degree n− 1 such
that P(x) = q(x)(x− a).

In our case, we simply apply this theorem to the polynomial
P(x) − P(a), which does indeed have a zero at a.

By using this result, we can now factor our equation P(x) −
P(a) −m(x− a) = 0 and rearrange it in the form

[q(x) −m](x− a) = 0.

This clearly shows that a is a solution of the equation – after all
we only consider lines that intersect the curve at (a, P(a))! Most
significantly, this factorization shows that a is a zero of multiplicity
greater than one if and only if the factor [q(x)−m] also has a zero
at a, and this occurs precisely if the slope m = q(a).

Let us formalize our result in the following theorem that com-
pletely solves the tangent problem for any polynomial.

Theorem. Let P be a polynomial of degree n≥ 2 and let (a,P(a))
be a point on its graph. Then there exists a unique line through
(a, P(a)) that intersects the graph at that point with muliplicity
greater than 1. The slopem of that line is given by q(a), where q is
the polynomial of degree n− 1 in the factorization P(x) − P(a) =
q(x)(x− a).

Of course, we call this unique line given by the theorem the
tangent to the graph of P at the point (a,P(a)). Its slopem= q(a)
is called the derivative of P at the point a, and it is denoted by
D(P)(a) or also by P ′(a).

Example. If g(x) = x2, then the relevant factorization is x2 − a2 =
(x + a)(x − a), so q(x) = x + a, and hence D(g)(a) = q(a) =
2a. So we have obtained the expected result without any limits
whatsoever!

It is straightforward to generalize this to an arbitrary power
function P(x) = cxn, where c is a constant and n is a non-negative
integer. Just as easily one can verify that if f and g are two poly-
nomials, then (f+ g)′(x) = f ′(x) + g′(x), and consequently one
obtains the familiar formula for the derivative of a polynomial, all
this without any limits!

Next we want to discuss the Chain Rule. This order also differs
from the standard curriculum, which typically discusses product

and quotient rules first. Perhaps this is due to the fact that multipli-
cation and division are such standard operations in school algebra
that it seems natural to extend these operations to polynomials or
more general functions. Unfortunately, the relevant rules for differ-
entiation look quite complicated and mysterious for the beginning
student, adding more frustration. In contrast, as mathematicians
know, the natural operation to consider for functions in the most
general setting is composition, that is, apply one function after the
other. It therefore should not come as a surprise that the rule for dif-
ferentiation of compositions is as easy as it gets, with a completely
transparent proof.

In detail, suppose f and g are polynomials, and consider the
composition (f ∘ g)(x) = f(g(x)), which is again a polynomial. We
want to find its derivative at the point x = a. Let b = g(a), and
introduce the relevant factorizations

f(y) − f(b) = qf(y)(y− b) and

g(x) − g(a) = qg(x)(x− a),

where qf and qg are polynomials. The obvious step is to replace
y = g(x) and b = g(a) in the first equation, resulting in

f(g(x)) − f(g(a)) = qf(g(x)) ⋅ [g(x) − g(a)],

and then to introduce the second equation to obtain

(f ∘ g)(x) − (f ∘ g)(a) = f(g(x)) − f(g(a))

= qf(g(x)) ⋅ [qg(x)(x− a)]

= [qf(g(x)) ⋅ qg(x)](x− a).

Clearly, this is the relevant factorization for f ∘ g, and it follows
that

D(f ∘ g)(a) = qf(g(a)) ⋅ qg(a) = D(f)(g(a)) ⋅ D(g)(a).

We thus have established the Chain Rule.

Yes, you might say that all this only handles the case of polyno-
mials, while in the case of general differentiable functions things
surely must be more complicated. Well, not really. As we will
show later, the above proof, combined with natural properties
of continuous functions, carries over as it stands.

It is natural to introduce inverse functions at this place, and
then the relevant rule for derivatives. There is a new twist, as taking
inverses where a function is one-to-one usually brings in a new
kind of function, so that the relevant factorization needs to be
established as well. But we shall skip these details and refer the
interested reader to [6,7]. Also, considering inverses will typically
take us beyond the rational numbers, although this can be avoided
by restricting the domain of the inverse of a function f defined on
the interval I to the image f(I). For example, if we just consider√x
on the domain {r2 ∣ r ∈ ℚ and r ≥ 0}, everything can be done by
just using rational numbers.
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4 Rational functions

The next topic I propose for the school curriculum is to investigate
the class of rational functions, defined by taking quotients of poly-
nomials. There are two main reasons for this choice. First of all, it
takes the student up one step on the ladder to mastering calculus.
While no really new ideas are needed in order to handle tangents
and derivatives, things do get more complicated algebraically. Also,
this seems to be a good place to introduce the quotient rule for
derivatives (and of course the product rule as well), since rational
functions are the first non-trivial examples where quotients appear.
In particular, the quotient rule shows that the derivative of a ratio-
nal function is again a rational function, with the same domain. The
other reason is that the study of the fieldℚ(x) of rational functions
is a good opportunity to strengthen the student’s familiarity with
the fundamental rules that she/he has learned while mastering the
rational numbers ℚ. And these rules (or axioms) will become even
more critical when one must introduce the real numbers ℝ, which
notoriously are very difficult to describe exactly, so that “following
the rules” becomes even more important. Of course, mathemati-
cians are used to dealing with abstract sets, whose elements are
required to follow the rules that define the particular structure that
is studied. But for students, this is a big leap, and I believe that it is
important to help them to prepare to deal with the more axiomatic
approach that will be needed for the field of real numbers.

The main lesson is that in order to learn about tangents for
rational functions, no new ideas are needed beyond what we used
for polynomials. In fact, the methods can be readily extended to
all functions built up from polynomials by algebraic operations.

Furthermore, it is remarkable that everything we have covered
so far does not involve any limits, and it can be handled by just
using the rational numbers ℚ. Students thus get introduced to
tangents and the basic rules of differentiation within the familiar
setting of rational numbers. Isn’t it amazing how simple school
algebra allows to solve a major problem – at least in the algebraic
setting – that was the focus of fundamental investigations in the
17th century? Perhaps this will help students to better understand
the importance of and to appreciate the basic algebra that they
are learning in school.

5 Continuity and approximation of derivatives

At this point, students may wonder if this is it. Perhaps they have
heard of exponential functions or trigonometric functions, and if
they found the discussion of tangents for rational functions of some
interest, they may ask whether all this works for these functions as
well. Before we get into that in the next section, we want to discuss
another remarkable consequence of the fundamental algebraic
factorization that opens the door to the next stage, where we
really will be entering a new world.

Consider a polynomial P and its standard factorization P(x) −
P(a) = q(x)(x− a) at a fixed point a, where q is also a polyno-
mial. It is easy to see by standard estimations that any polynomial
is bounded over any finite interval. In particular, there exists a con-
stant K > 0, so that

|q(x)| ≤ K for all x with |x− a| ≤ 1.

The factorization then implies the estimate

|P(x) − P(a)| ≤ K|x− a| for all x with |x− a| ≤ 1.

Clearly, this estimate shows that as x gets closer to a, then P(x)
gets closer to P(a) as well. In symbols, P(x) → P(a) as x → a. In
other words, we have discovered that polynomials enjoy a funda-
mental property that is known as continuity at each point a. In
case you are hooked on ε and δ, just choose δ = ε/K, and you
are done. But there is no need to make things so complicated for
the students at this point; the estimate speaks for itself, and it
confirms what students can readily see by graphing polynomials
with a graphing calculator.

Remark. We want to emphasize that no limits are required yet. In
fact, it is the above estimate that suggests the idea of limit in the
simple case where the value of the limit is known and equals the
value of the function. So we may introduce the notation

lim
x→a

P(x) = P(a)

to summarize the statement that P(x) → P(a) as x → a. Note how
this approach is really the reverse of the standard one, which begins
with limits, introduces continuity as a special case of limits, proves
various limit theorems, and ultimately concludes that polynomials
are continuous everywhere. I wonder which approach works better
for our students?

Rational functions can essentially be handled by the same
method, and similarly more general algebraic functions. It just
takes a simple argument to show that every rational function is
locally bounded near each point in its domain (i.e., where the
denominator is not zero). So we have a rigorous proof that rational
functions are continuous at every point where they are defined.

Let us now apply these new ideas to the polynomial (or rational)
factor q in the standard factorization P(x) − P(a) = q(x)(x− a).
Using the new notation, we know that

lim
x→a

q(x) = q(a) = D(P)(a).

This shows that the derivative of P at a is approximated by the
values of q(x) as x ≠ a gets closer and closer to a. So what are
these values q(x)? As long as x ≠ a, we can divide by x− a ≠ 0,
resulting in

q(x) = P(x) − P(a)
x− a

for x ≠ a.
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So we have reached the very beginning of the standard introduction
to derivatives: the derivative is the limit of average rates of change,
or, in geometric language, the slope of the tangent is the limit of
the slopes of secants through the points (a,P(a)) and (x,P(x)) on
the curve as x → a. However, from the perspective of the student
who is learning calculus as suggested in our approach, this is a new,
non-algebraic technique to capture derivatives, which so far have
been defined exactly by a simple algebraic method. It thus takes
the student the first step beyond pure algebra further up the ladder
towards mastering calculus. And as we start investigating non-
algebraic functions, we will shortly discover how this latest insight
will reveal amazing new phenomena that will force us to expand
the foundations of the rational numbers ℚ.

6 Exponential functions and mysterious limits

As we have reached the boundary of the algebraic techniques, the
next step involves the study of other – non-algebraic – functions.
Perhaps the most widely known such functions are the exponential
functions. This past year just about everybody heard about the
exponential growth of the spread of Covid-19, but other applica-
tions, such as compound interest, population growth, radioactive
decay, and so on are also widely known. From the perspective
of the experienced mathematician, exponential functions are the
eigenfunctions of the differentiation operator, and therefore un-
derstanding them fully should reveal all there is to know about
tangents and derivatives.

Exponential functions are easily defined for inputs that are
natural numbers; most importantly, this basic case already reveals
the fundamental rule

bm+n = bm ⋅ bn for m,n ∈ ℕ.

While studying integers, rational numbers, and rational functions,
students have learned that “following the rules” is a fundamental
principle when one moves into new uncharted territory. So they
should not be surprised that the rule we just recalled, that is, the
functional equation for the exponential function, will guide us to
properly define exponential functions for other numbers, such as
negative integers, and then rational numbers. In particular, these
rules, when extended to 1/n with n ∈ ℕ, require that the base b
must be positive, and most importantly that

(b
1
n )n = b,

that is, b1/n must be the n-th root of b. While this forces us to
go beyond the rational numbers, this is not much of a problem
at the preliminary stage. After all, already Greek geometers recog-
nized that there is no rational number m

n that satisfies (m
n )

2 = 2,
and philosophers, scientists, and mathematicians lived for over
2000 years with this problem, and still were able to make amazing
progress. So students, too, will just have to accept this reality as we

move on with a preliminary investigation of exponential functions
Eb(x) = bx with domain ℚ, where b > 0.

So let us look at the tangent problem for the concrete case
b = 2 at the point (0, 1). Guided by the algebraic approach, we
look for an analogous factorization

2x − 20 = q(x)(x− 0),

andwe immediately realize that there is no formula for q that would
unambiguously tell us the value of q(0). Just as in the algebraic
case, that value would give us the slope of that line through (0, 1)
that intersects the graph of E2 with multiplicity greater than one.
Since we do know that q(x) = 2x−1

x for x ≠ 0, and since we just
learned that in the algebraic case the values q(x) approximate q(0)
as x → 0, it thus seems reasonable to study

q(x) = 2x − 1
x

as x → 0.

Unfortunately, we have no tools available yet to determine whether
such a limit actually exists. And if it does, what is it? If we look at nu-
merical approximations for q(0) by considering inputs xk =10−k for
k = 1, 2, 3,…, we see that the numbers q(xk) approach a strange
number whose decimal expansion begins with 0.6931471805…
as k gets larger, so that 10−k → 0. To summarize: the student rec-
ognizes that we are faced with fundamentally new phenomena
that force us to take a deeper look at the numbers that we are
using, and to thoroughly study the mysterious limit process that is
central to understanding the exponential function.

7 Analysis

It is now time to bring in the real numbers ℝ by adding one more
axiom beyond those that the students have been familiar with all
along from the rational numbers ℚ. We introduce the complete-
ness axiom by requiring that the field of real numbers satisfies the
Least Upper Bound Property, and hence also the analogous Great-
est Lower Bound Property. This version makes precise something
that is intuitively quite obvious, and it provides easy proofs of the
existence of the relevant limits that are needed to rigorously com-
plete the discussion of the exponential function. Once students are
well familiar with the real numbers ℝ, the domain of exponential
functions is extended to all real numbers, and one verifies that the
functional equation continues to hold in this more general setting.
The tangent problem is solved by verifying in detail the existence
in ℝ of the limit

lim
x→0

2x − 1
x

= inf{2x − 1
x

| x > 0} = c2,

where the expression on the right is the Greatest Lower Bound
of the relevant set, whose existence is guaranteed by the com-
pleteness axiom. The subscript 2 in the notation c2 relates to the
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base 2 of the exponential function E2 that is considered. We then
define

q(x) =
⎧
⎨
⎩

2x−1
x for x ≠ 0,

c2 for x = 0,

so the function q is continuous at 0, since limx→0 q(x) = q(0).
We therefore conclude that the function E2(x) = 2x has a fac-

torization

E2(x) − E2(0) = q(x) ⋅ (x− 0), with q continuous at 0,

and we define its derivative D(E2)(0) = q(0). Of course, the same
results hold for exponential functions Eb with arbitrary base b > 0,
with

D(Eb)(0) = cb = lim
x→0

bx − 1
x

.

The functional equation readily implies that analogous results hold
at every point a ∈ ℝ, leading to the differentiation formula

D(Eb)(a) = Eb(a) ⋅ D(Eb)(0).

Furthermore, the number e= 21/c2 , where c2, as introduced above,
equals the derivative D(E2)(0), is the unique number for which
D(Ee)(0) = 1, so that the natural exponential function E(x) =
Ee(x) = ex satisfies

D(ex) = ex for all x ∈ ℝ.

Once we have identified the relevant property for the exponen-
tial function that identifies the slope of the tangent, it is natural to
use it as the defining property for general differentiable functions,
as follows.

Definition. The function f defined in an interval surrounding the
point a is said to be differentiable at a if there exists a factorization

f(x) − f(a) = q(x) ⋅ (x− a),

where the function q is continuous at a. The value q(a) is called
the derivative of f at a and it is denoted by D(f )(a) or f ′(a).

Note how this definition naturally generalizes what has been
central for polynomials and rational functions. Since in those cases
the factor q is of the same algebraic type and known to be con-
tinuous, rational functions are trivially differentiable according to
this definition at every point where defined. And of course, we just
saw that exponential functions are differentiable everywhere.

It is obvious that the definition above is equivalent to the
standard definition of differentiability.

This formulation of differentiability has been around for quite
a while, but unfortunately it is not widely known. To my knowledge,
it was first introduced by Constantin Carathéodory (1873–1950)
at least as early as 1950, in his classic text Funktionentheorie [2].
It has been used in Germany in courses and books since the early

1960s, and it slowly has appeared in US textbooks since the late
1990s (see [6] and [7, pp. xxvi–xxvii] for more details).

It should be mentioned that Carathéodory’s formulation of
differentiability naturally suggests the basic relationship (df )a =
f ′(a)dx between “differentials” that is widely used in applications,
namely, that a small change dx in the input leads to a small change
df(dx) in the output, which is well approximated by the product
f ′(a) ⋅ dx. In fact, the error between Δf = q(x)Δx and (df )a(Δx)
is given by [q(x) − q(a)]Δx, which, because of the continuity of q
at x = a, is negligible compared to Δx as long as x is very close
to a. Of course, working with differentials df and dx is loaded
with much historical baggage, given their classical interpretation
as “infinitesimals”, while for differential geometers it is standard to
view the differential (df )a at a as a linear function defined on the
tangent space at that point. It is hard enough for mathematicians
to keep all this straight, and for students this is bound to be very
confusing. Clearly, we need to find a way to help our students to
sort this out. Perhaps it is time to introduce different notations for
infinitesimals, small changes in input/output, and the underlying
linear function, instead of just using df.

The Chain Rule, revisited. We already introduced and proved this
rule for polynomials above. The proof for general differentiable
functions follows exactly the same structure as the proof in that
case, and is completed by just using natural properties of contin-
uous functions, such as the fact that compositions and products
of continuous functions are continuous. Again, the reader should
compare this with the various proofs of this important result found
in standard textbooks, and decide for her/himself which proof we
should teach our students.

Aside from allowing the simplest proof of the Chain Rule known
to me, Carathéodory’s formulation has other advantages. In partic-
ular, it naturally extends to functions and maps of several variables
once the appropriate linear algebra is introduced, and it allows
simple proofs of the Chain Rule and Inverse Function Rule in the
higher dimensional setting.

8 Concluding remarks

This concludes our outline of howwe propose to introduce students
to differential calculus, beginning with rational numbers and the
quadratic equation. Once we have reached the heart of Analysis
and in particular the general notion of differentiable functions,
the story continues, more or less, along more traditional lines. We
hope that this brief outline has convinced the reader that there is
an alternative to the traditional approach, a new approach that
should make things easier for students. It gradually builds up from
simple algebra to lead them to the point where they will recognize
the true necessity of deep new ideas involving more advanced
mathematical tools that are the heart of analysis. The author is
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currently working on a detailed textbook that implements this
outline and which may be viewed as a substantial expansion of the
first half of his earlier book [7].
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