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We present new achievements in the area of anomaly detection
related to predictive maintenance in the mining industry. The main
focus is on the problem of local damage detection based on vibra-
tion signals analysis. The vibration signals acquired from machines
usually have a complex spectral structure. As the signal of interest
(SOI) is weak (especially at an early stage of damage) and covers
some frequency range, it must be extracted from raw observations.
Up to now, most the techniques assumed the presence of Gaussian
noise. However, there are cases in which the non-informative part
of the signal (considered as the noise) is non-Gaussian due to
random disturbances or to the nature of the process executed by
the machine. In such cases, the problem can be formulated as
the extraction of the SOI from the non-Gaussian noise. Recently,
the importance of this problem has been recognised by several
authors, and some new ideas have been developed. We present
here a comparison of the new techniques for benchmark signals.
Our analysis will cover classical approaches and recently intro-
duced algorithms based on the stochastic analysis of the vibration
signals with non-Gaussian distribution.

1 Introduction

Vibration-based condition monitoring is commonly used for the
maintenance of mechanical systems [35, 36]. The main focus is
usually set on gearboxes and bearings, as these elements appear
in most transmission systems and their failure is the most frequent
reason for a machine breakdown; for recent reviews, see [16,42].

From the mathematical/statistical point of view, the task is
defined as the detection of the periodic impulsive behaviour in the
vibration signal. The most popular approach is the envelope analysis
(and its various modifications) and detection of fault frequencies in
the spectrum of the envelope for a given signal; see e.g. [5,6,37,40].
The filtration of a raw signal is used to select its informative part
and avoid other spectral content not related to the local damage.

The most popular approach is based on spectral kurtosis as
an informative frequency band (IFB) selector (filter characteristic).
The kurtosis value is calculated for sub-signal at some narrow
frequency band. As kurtosis is sensitive to outliers [41], one can

select impulsive content at a given narrow frequency band and
filter out other components. Kurtosis is the most intuitive statistic
commonly used for machine diagnostics [36]. It has plenty of
variations and extensions, e.g. the kurtogram [1] which is a coloured
map in which the depth of the colour values is proportional to
the kurtosis value. Moreover, other statistics are also used in such
context [33].

In the literature, one can also find methods which are based on
the cyclostationary approach. Recall that cyclostationary signals are
considered when some of their characteristics are periodic in time.
The most common characteristic used in this context is the autoco-
variance function, in which case we consider the cyclostationarity
of the second order. The methods for the analysis of cyclostationary
signals are dedicated to the cyclic behaviour identification. In the
classical approach of cyclostationary-based techniques, the Gauss-
ian distribution of the signal is usually assumed [2,6,7,11,29,31].

One can also find other approaches for the informative fre-
quency band selection based on artificial intelligence methods
[26, 38, 50]. However, there is still a need for new approaches
that would allow us to consistently handle restrictions linked to the
amount of available data, specific type of noise, work specifications
of the tested machine, etc.

Unfortunately, most of the standard statistical indicators used
for local damage detection might be not appropriate in the pres-
ence of non-Gaussian noise. In the real environment, we observe
signals with cyclic and impulsive behaviour. One of the examples is
the crushing machine [47] used in mines. During the operation of
such a machine (the crushing process), apart from the background
noise (which is often assumed to be Gaussian white noise) in the
vibration signal, large observations appear due to the nature of
the machine’s work. Moreover, in the case of local damage, the
additional cyclic impulses are hidden in the signal. In this case,
the detection of local damage is very difficult. The non-Gaussian
noise could be also linked to other technological processes of the
working machine and may correspond to milling, sieving, cutting,
compressing, etc. In the literature, algorithms for signals with non-
Gaussian distribution have been proposed [10,19,21,27,28,48,49].
A new definition of the cyclostationary non-Gaussian signal was
introduced in [25].
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We demonstrate here some recently proposed algorithms for
local damage detection that take into consideration the possible
non-Gaussian behaviour of the signal and utilise the advanced stat-
istics that are robust for large observations not related to failure.
We present two approaches. The first is related to new techniques
that can replace the classical measure of impulsiveness, i.e. kurtosis
used as the selector for the IFB. In the second approach, the local
damage is detected using the cyclostationary analysis dedicated to
non-Gaussian distributed signals. All these techniques were recently
published and used for simulated and real signals [12–14,25,32].
Methods dedicated to non-Gaussian vibration signals were also
developed during the OPMO project (EiT RawMaterials), which was
carried out at the Wrocław University of Science and Technology
(2019–2021), among others with a global mining industry leader
KGHM. Those results were also the basis for two research projects
currently implemented at the Faculty of Pure and Applied Math-
ematics at the Wrocław University of Science and Technology (the
first in cooperation with the AMC Tech company and the second
with the Tsinghua University, China).

2 Informative frequency band selectors
for non-Gaussian signals

In the problem of IFB selection, the fist step is the decomposition of
the raw signal into a set of narrow-band sub-signals using a time-
frequency representation to obtain several dozen time series. To per-
form signal decomposition, one may use various techniques (wave-
lets, Wigner, EMD, etc.); see e.g. [9]. In this research, the Short-Time
Fourier Transform (STFT) is used. The transform is defined as

STFT(t, f) =
N

∑
k=1

xkw(t− k)e
−2jπfk

N ,

where w(t− k) is the shift window, x1,x2,…,xN is the input signal,
N is its length, t ∈ T is the time point, and f ∈ F is a frequency;
see [3] for more details. Interpretation of the STFT is intuitive:
the squared envelope of the STFT (spectrogram) describes the
energy flow in time for some narrow frequency band, i.e. sub-signal.
The simplified representation of the spectrogram is presented in
Figure 1 (a).

The next step is the application of some statistics (called se-
lectors) to time series obtained from the spectrogram S1, S2,…, Sk
(Figure 1 (b)) to identify if a given sub-signal fulfils expectations
regarding information about faults and select similar sub-signals
from the whole frequency range. Distribution of selectors along
frequencies, after normalisation, may constitute the filter charac-
teristic (frequency response). One should expect that IFB for the
healthy machine will contain stationary noise. In case of damage,
the energy flow in some frequency bins will reveal a non-stationary
character, and distribution of such sub-signals will be far from
Gaussian; see [34,46,47] for more details. In Figure 1, we present

(a)

S1 = {|STFT(t1, f1)|, |STFT(t2, f1)|,…, |STFT(tl, f1)|}

S2 = {|STFT(t1, f2)|, |STFT(t2, f2)|,…, |STFT(tl, f2)|}

⋮

Sk = {|STFT(t1, fk)|, |STFT(t2, fk)|,…, |STFT(tl, fk)|}

(b)

Figure 1. (a) Simplified representation of the spectrogram,
(b) matrix representation of the spectrogram [32]

the general idea of preparing the signal to calculate the selectors
for IFB using the time-frequency representation of the signal.

In the following subsections, we present three statistics that
are considered in the literature as the IFB selectors.

2.1 Kurtosis
In probability theory and statistics, kurtosis is considered as the tail
measure of the probability distribution [43]. For a given random
variable X with finite fourth moment, its kurtosis is defined as

K = μ4
σ4 ,

where μ4 = E(X − μ)4 is the fourth central moment of X, μ is
its expectation of X, and σ2 is the variance of X. For a Gaussian
random variable, the kurtosis is always equal to 3; sometimes the
term excess kurtosis is used in reference to K− 3. The empirical
kurtosis is based on a scaled version of the fourth empirical moment
of the data. Given a signal x1, x2,…, xN, the empirical kurtosis is
a statistic defined as

̂K = ∑N
i=1(xi − ̄x)4

N ̂σ4 ,

where ̂σ2 is the empirical sample variance and ̄x is the empirical
mean; see [20] for details. In our case, the statistic ̂K is calculated
for the time series S1, S2,…, Sk from time-frequency representation
of the raw signal, see Figure 1 (b), and thus in this case it is called
the spectral kurtosis [13].
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2.2 Alpha selector
Let us first recall the class of α-stable distributions. It is considered
as a natural extension (via the generalised limit theorem) of the
classical Gaussian distribution; see [15, 39]. It is very useful in
data modelling with impulsive behaviour (also for damage de-
tection), since in general it contains heavy-tailed (power-law) dis-
tributions. In the problem under consideration, we do not use the
α-stable distribution to describe the signal, but to analyse one
of the parameters of this distribution (the stability index α) as the
measure of impulsiveness, and consider its estimator as the selector
for IFB.

The random variable X has a stable distribution with stability
index α ∈ (0, 2], scale parameter σ > 0, skewness parameter β ∈
[−1, 1], and shift parameter μ ∈ ℝ, if its characteristic function
𝜙X(θ) = 𝔼[exp{iθX}] is given by

𝜙X(θ) =
⎧
⎨
⎩

e−σα|θ|α{1− iβsign(θ)tan(πα/2)}+ iμθ, α ≠ 1,

e−σ|θ|{1+ iβsign(θ)2/π log(|θ|}+ iμθ, α = 1.

For β = μ = 0, X has a symmetric stable distribution, and for
α = 2, the α-stable distribution reduces to the Gaussian.

In the literature, one can find different α estimation methods;
see e.g. [4, 24]. We use the classical McCulloch method [30]. In
further analysis, the statistic 1− α̂ obtained using this approach
applied to the sub-signals S1, S2,…, Sk (Figure 1 (b)) is called the
Alpha selector; see [13].

2.3 Conditional variance-based selector
The selector called conditional variance-based (CVB) was intro-
duced in [13]. Below, we briefly describe this approach. Let us
assume that X is a Gaussian random variable with mean μ and
standard deviation σ. Let Φμ,σ( ⋅ ) denote the distribution function
(cdf) of X. For any level 0 < q < 0.5, we define the left, right, and
middle quantile partitioning of X by

Lq ≔ (−∞, Φ−1
μ,σ(q)],

Rq ≔ [Φ−1
μ,σ(1− q),∞),

Mq ≔ (Φ−1
μ,σ(q), Φ−1

μ,σ(1− q)),

where Φ−1
μ,σ is the inverse of Φμ,σ, i.e. Φ−1

μ,σ(d) denotes the d-
quantile of X. Under the normality assumption and the partitioning
ratio close to 20/60/20, i.e. for q ≈ 0.2, we get that

σ2
Lq = σ2

Mq
= σ2

Rq, (1)

where σ2
A ≔ Var(X ∣ X ∈ A) is the conditional variance of X on

set A; see [17] for details. Moreover, the 20/60/20 ratio is the
unique quantile (three set) partitioning satisfying property (1).

This property can be described as follows: if we split the large
normal random sample into three sets, one corresponding to
the worst (smallest) 20% of outcomes, one corresponding to
the middle 60% of outcomes, and one corresponding to the
best (largest) 20% of outcomes, then the conditional variance
on appropriate subsets is approximately the same.

As noted in [17], condition (1) creates a dispersion balance for
the conditional populations. This might be linked to the statistical
phenomenon commonly referred to as the 20/60/20 rule.

Since the ratio 20/60/20 is the unique ratio for which condition
(1) is satisfied, it can be used to construct a goodness-of-fit test
statistic. In other words, by comparing conditional variances with
the conditional central variance, one can verify whether the sample
comes from a Gaussian distribution. As the conditional tail variance
might be seen as a measure of a tail heaviness, we can also use
property (1) to benchmark any distribution tails with respect to
normal tails without making any explicit assumptions about the
distribution of X.

The statistic used in [18] for Gaussian distribution testing is
defined as

̂C ≔ 1
ρ
(

̂σ2
Lq − ̂σ2

Mq

̂σ2 +
̂σ2
Rq − ̂σ2

Mq

̂σ2 )√N, (2)

where q= 0.2, ρ∈ℝ is a normalisation constant, ̂σ2 is the sample
variance, and ̂σ2

A is set A conditional sample variance. Assuming
that the sample is independent and identically distributed, the
asymptotic distribution of ̂C is standard normal. Moreover, if the
sample under consideration comes from a (symmetric) heavy-tailed
distribution, the values of the statistic C should be positive due to
high values of conditional tail variances on sets Lq and Rq. Con-
sequently, ̂C could be considered as the measure of tail fatness, i.e.
the bigger the value of ̂C, the fatter the tails. The value of ̂C for
real signals is based on the empirical conditional variance. See [13]
for more details.

The statistic given in (2) can be extended, and a different
number of partitioning sets could be considered. In [13], it was
proposed to partition into seven quantile conditioning subsets and
use the (unique) ratio guaranteeing conditional variance equality.
The statistic used as the CVB selector is defined as

̂C1 ≔ (
̂σ2
A3

− ̂σ2
A4

̂σ +
̂σ2
A5

− ̂σ2
A4

̂σ )
2
√N,

where ̂σ2
A is the conditional sample variance on A and the subsets

Ai come from the partitioning of the signal into seven appropriate
subsets. In this approach, C1 was used to measure the impact of
the non-extreme (trimmed) tail variance on the central part of the
distribution without bench-marking the model using Gaussian dis-
tribution. Similarly to what we saw above for kurtosis and the Alpha
selector, ̂C1 applied to the time series S1, S2,…, Sk (Figure 1 (b)) is
used as the selector for IFB.
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3 Comparative study of IFB selection –
simulated signal analysis

In order to verify the efficiency of the presented selectors, we
simulated four different types of signals: s1, s2, s3 and s4. The first
signal s1 is the Gaussian white noise, which corresponds to the
bearing vibration in a healthy condition; see Figure 6 (a). In such
a case, we expect any of the informative frequency band selectors
to respond significantly. The signal’s frequency is 25000Hz and its
length is 1 second. Signal s2 corresponds to the locally damaged
bearing vibration and is defined as

s2 = ACI ⋅ gauspuls(t0, fc0,bw0) + s1,

where gauspuls(t, fc,bw) is a unity-amplitude Gaussian radio-fre-
quency (RF) pulse at the times indicated in array t, with a centre
frequency fc in hertz and a fractional bandwidth bw. ACI is the
amplitude of the cyclic impulses (ACI = 3), fc0 is set to 2500Hz,
and the frequency modulation of cyclic impulses is equal to 30Hz.
The simulated signal s2 is presented in Figure 6 (b).

The signal s3 imitates the bearing operation of the loaded
machine in a healthy condition; it is defined as

s3 = ANCI ⋅ gauspuls(t1, fc1,bw1),

where ANCI = 30 is the amplitude of the non-cyclic impulses and
t1 is the location of the non-cyclic impulses, with the uniform
distribution. The simulated signal s3 is depicted in Figure 6 (c).

The last of the signals is a mixture of the previous ones, namely,
it is defined as s4 = s2 + s3. It imitates the bearing vibrations in the
case of a loaded machine operating in the unhealthy condition of
bearing; see Figure 6 (d). In Figure 7, we present the spectrograms
for the simulated signals presented in Figure 6. Panel (a) illustrates
the spectrogram of the signal s1. The signal is the Gaussian white
noise, so it is neither impulsive nor periodic. In panel (b), we demon-
strate the spectrogram for signal s2. For this cyclic impulsive signal,
we expect the techniques to point out the informative frequency
band between 2 and 3 kHz (the centre frequency is set to 2500Hz).
In panel (c), we show the spectrogram for signal s3. For this non-
cyclic impulsive signal, any IFB is expected. Finally, in panel (d), the
spectrogram for signal s4 is demonstrated. This is the most complic-
ated case. The signal contains large non-cyclic and cyclic impulses.
Thus, we expect to find information about the cyclic impulses with
possibly suppressed information about non-cyclic ones.

In Figures 8–10, we present the considered selectors for the
four simulated signals s1, s2, s3, s4. As one can see, if the signal
contains only the Gaussian noise (s1), all considered techniques,
kurtosis, Alpha selectors and CVB, have relatively small amplitudes
and do not indicate the informative frequency band, as expected.
There is no frequency band which significantly stands out from the
others. For the signal s2, all techniques work well, but the results for
the CVB selector seem to be the most unequivocal. The value of the
CVB selector in the range of the IFB is significantly higher than for

other frequency bins. If the cyclic impulses have higher amplitudes,
then their variance will increase and the value of the CVB will in-
crease as well. For the non-cyclic impulsive signal s3, all techniques
properly select the frequency band where the non-cyclic impulses
appear. Note that none of the methods take into consideration
the cyclic behaviour of the signal, only its impulsiveness. For the
most complicated case, i.e. for the signal with a large non-cyclic
to cyclic impulse amplitude ratio (s4), surprisingly only the CVB
selector correctly identified the frequency band corresponding to
the cyclic impulses, based on the distribution of their amplitudes.
The kurtosis and Alpha selector indicate both cyclic and non-cyclic
impulses frequency ranges. For more details and comparison with
other selectors, see [14].

4 Real signal analysis

In this part, we present an application of the statistics we are
considering to a real signal. The effectiveness of the different
methods is verified on the data from the bearing of a crushing
machine; see Figure 2.

However, due to the lack of local faults in the considered vi-
bration data, we introduce an artificial component related to local
damage. A similar approach was performed in [13, 44, 47]. The
signal is presented in Figure 4. The length of the signal is 6 seconds
and the sampling frequency is 25 kHz. The local fault was added
with frequency modulation equal to 30 kHz and carrier frequency
equal to 2.5 kHz (2–3 kHz). The spectrogram of the data is presen-
ted in Figure 11 (a). As we can see, the data reveals high-energy
wide-band impulses around 0.25, 4.5 and 5.25 seconds, which
correspond to falling rocks. The real vibration signal contains vari-
ous components with a complex structure, and the component
related to the damage is almost imperceptible above the noise. We
apply the informative frequency band selectors to the real signal

Figure 2. Crushing machine in a copper ore mine [45]
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Figure 3. Results of the copper ore crusher’s signal filtration performed by three different selectors [13]
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Figure 4. Analysed real signal [14]

with its added fault. The results are presented in Figure 11 (b)–(d).
The amplitude of the non-cyclic impulses is smaller than in the
simulated data, but one can see that the results of the kurtosis fail.
The Alpha selector properly indicates the IFB, but with much less
selectivity than the CVB selector.

The signal filtered using the analysed selectors is presented in
Figure 3. Filtering driven by the kurtosis selector (panel (a)) provides
a single impulsive component that is a non-informative signal. In
contrast, the Alpha selector (panel (b)) allows extraction of cyclic
impulsive components with 2 random impulses. Finally, results of
the CVB selector-based filtering (panel (c)) show a similar effect
to the Alpha selector with slightly smaller random impulses. To
summarise, Figure 3 shows that the filtration with the kurtosis
selector fails, while the results of Alpha and CVB-based methods
are acceptable and similar; however, we note that the shape of
the CVB selector is better.

5 Cyclostationary analysis for non-Gaussian signals

In this part, we discuss new research related to the cyclostationary
analysis for non-Gaussian signals. More precisely, we propose to
apply dependency measures expressed by the known correlation
coefficients to detect the cyclic behaviour on the time-frequency
map. The idea is as follows. First, we represent the signal as the
time-frequency map (Figure 1 (a)), then we consider the correspond-
ing sub-signals S1,S2,…,Sk as the separate time series (Figure 1 (b)),
and finally, we apply the dependency measure m( ⋅ , ⋅ ) (see ex-
amples below) to the time series extracted from the time-frequency
representation of the signal. The general idea of this approach is
illustrated in Figure 5.

5.1 Pearson correlation map
Let (x1, y1), (x2, y2),…, (xN, yN) be a bi-dimensional sample of
a random vector (X,Y), where N is the sample length. The Pearson
correlation of (X,Y) is defined as follows [8]:

ρXY = cov(X,Y)
σXσY

,

m(s1, s1),m(s1, s2),…,m(s1, sl)

m(s2, s1),m(s2, s2),…,m(s2, sl)

⋮

m(sk, s1),m(sk, s2),…,m(sk, sl)

Figure 5. Dependency map
structure for spectrogram
sub-signals and a given
dependency measure
m( ⋅ , ⋅ ) [32]
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(b) s2 – Gaussian noise with cyclic impulses

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time [secs]

-20

-10

0

10

20

A
m

p
lit

u
d

e

(c) s3 – non-Gaussian noise
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(d) s4 – non-Gaussian noise with cyclic impulses

Figure 6. Simulations of the considered signals [14]
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(b) s2 – Gaussian noise with cyclic impulses
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(c) s3 – non-Gaussian noise
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Figure 7. Spectrograms of the simulated signals [14]
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(b) s2 – Gaussian noise with cyclic impulses
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Figure 8. Spectral kurtosis for simulated signals [14]
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(b) s2 – Gaussian noise with cyclic impulses
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Figure 9. Alpha selector for simulated signals [14]
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Figure 10. CVB selector for simulated signals [14]
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Figure 11. Results for real signal from crushing machine [14]
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where cov( ⋅ , ⋅ ) is the covariance function, σX is the standard
deviation of X, and σY is the standard deviation of Y. The empirical
equivalence of ρXY for (x1, y1), (x2, y2),…, (xN, yN), denoted ρxy,
is defined as [8]

ρxy =
∑N

i=1(xi − ̄x)(yi − ̄y)

√∑
N
i=1(xi − ̄x)2√∑

N
i=1(yi − ̄y)2

,

where ̄x, ̄y are sample means of data vectors x and y respectively.
The Pearson correlation is usually a good dependency measure
for finite-variance signals. However, this measure is sensitive to
outliers. In our study, the Pearson correlation coefficient is applied
to the sub-signals S1, S2,…, Sk; see Figure 1 (b).

5.2 Spearman correlation map
Let us again consider a bi-dimensional sample (x1, y1), (x2, y2),…,
(xN, yN) corresponding to a random vector (X,Y). Each pair (X,Y)
and its empirical counterpart (xi, yi) correspond to a pair (Q,W)
and (qi,wi), where qi is the rank of the observation xi in the sample
x1, x2,…, xN and wi is the rank of the observation yi in the sample
y1, y2,…, yN. The Spearman rank correlation coefficient for the
vector (X,Y) is defined as [23]

rXY = cov(Q,W)
σQσW

,

where cov( ⋅ , ⋅ ) is the covariance function, σQ and σW are the
standard deviations of the rank variables. The empirical version of
the Spearman correlation coefficient is given by

rxy =
1

N−1 ∑
N
i=1(qi − ̄q)(wi − w̄)

[ 1
N−1 ∑

N
i=1(qi − ̄q)2 1

N−1 ∑
N
i=1(wi − w̄)2]1/2

,

where ̄q and w̄ are sample means in the relevant rank samples.
The Spearman correlation takes values in the interval [−1, 1]

and investigates a monotonic relationship, in contrast to the Pear-
son correlation, which analyses a linear relationship. Outliers do
not disturb the Spearman correlation, whereas they do in the case
of the Pearson correlation.

As we did for the Pearson correlation, in our study, we apply
the Spearman correlation to the sub-signals S1, S2,…, Sk; see Fig-
ure 1 (b).

5.3 Kendall correlation map
The formula for the Kendall τ coefficient can be written as follows
[22]:

τ = 2
N(N− 1) ∑

1≤ i≤ j≤N

J((xi, yi), (xj, yj)),

where

J((xi, yi), (xj, yj)) = sgn(xi − yi) sgn(xj − yj)

and J((xi, yi), (xj, yj)) = 1 if a pair (xi, yi) is concordant with a pair
(xj, yj), i.e. if (xi − xj)(yi − yj) > 0; J((xi, yi), (xj, yj)) = −1 if a pair
(xi, yi) is discordant with a pair (xj, yj), i.e. if (xi − xj)(yi − yj) < 0.

The Kendall correlation coefficient is based on the difference
between the probability that two variables are in the same order
(for the observed data vector) and the probability that their order is
different. The Kendall coefficient indicates not only the strength but
also the direction of the dependency. Like the Spearman correlation,
it is resistant to outliers. In our study, the Kendall correlation is
applied to the sub-signals from the time-frequency representation
of the signal.

In the study [32], additional enhancements of the proposed
dependency maps were proposed. We refer the readers to this
position for more details.

6 Comparative study of dependency measure applications –
analysis of simulated and real signals

In this section, we present results of IFB selection by using the
above-mentioned dependency measures. The analyses are per-
formed for the simulated signal s4, presented in Figure 6 (d). Recall
that this is the signal that contains the non-Gaussian noise with
cyclic impulses. In Figure 12, we present the enhanced dependency
maps for the three correlation coefficients and for the signal s4 by
using the procedure presented in [32].

As one can see in Figure 12, in the case of the Pearson cor-
relation map, the result differs from the other correlation maps.
The correlation values at the location of the non-cyclic impulses
are higher than for the cyclic impulses. In the other cases, one can
see the opposite result. This result indicates that the application of
more robust dependency measures may help to identify the cyclic
impulsive behaviour in the case of impulsive noise.

Finally, we apply the dependency measures to the real signal
from the crushing machine presented in Section 4. The real signal
is depicted in Figure 4. In Figure 13, we present the enhanced
dependency maps based on the Pearson, Spearman and Kendall
correlations discussed in the previous section. We can see that
the clear picture can be obtained using the robust measures (i.e.
Spearman and Kendall correlation maps), where the IFB is indicated
properly. The Pearson correlation map reacts to the frequency band
related to the non-cyclic impulses; thus it cannot be used as a proper
measure for the cyclostationary analysis in the case of non-Gaussian
noise. Related discussions are presented in [25].
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Figure 12. Enhanced correlation maps for the simulated signal s4 [32]
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Figure 13. Enhanced correlation maps for the real signal s4 [32]
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