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Abstract

The result of this paper yields a maximum principle for the components of surfaces whose distortion by a certain GL3(R) matrix
are minimizers of a dominance functional I of a parametric functional J with dominant area term within boundary value classes
H

1,2
ϕ (B,R

3), termed I-surfaces. Finally we derive a compactness result for sequences of I-surfaces in C0(B̄,R
3), which serves

as a preparation for the forthcoming article [R. Jakob, Unstable extremal surfaces of the “Shiffman functional” spanning rectifiable
boundary curves, Calc. Var., submitted for publication] whose aim is a proof of a sufficient condition for the existence of extremal
surfaces of J which do not furnish global minima of J within the class C∗(Γ ) of H 1,2-surfaces spanning an arbitrary closed
rectifiable boundary curve Γ ⊂ R

3 that merely has to satisfy a chord-arc condition.

1. Introduction and main result

Following Shiffman [12] we consider as in [6] and [8] the functional

I(X) :=
∫
B

F(Xu ∧ Xv) + k

2
|DX|2 dudv =:F(X) + kD(X),

on surfaces X ∈ H 1,2(B,R
3) of the type of the open disc B := B2

1 (0) ⊂ R
2. The Lagrangian F is assumed to satisfy

the following list of requirements (A):

F ∈ C0(
R

3) ∩ C2(
R

3 \ {0}), (1)

F(tz) = tF (z) ∀t � 0, ∀z ∈ R
3, (2)

m1|z| � F(z) � m2|z| ∀z ∈ R
3, 0 < m1 � m2, (3)

F is convex on R
3. (4)

Moreover we have to impose the following requirement on F :
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(R∗) The restriction of the function g(z) := F(z) + F(−z) to the S
2 shall have three linearly independent critical

points, i.e. there have to be at least three linearly independent unit vectors a1, a2, a3 ∈ S
2 at which ∇g(aj ) = rj a

	
j ,

for some rj ∈ R, j = 1,2,3. Finally we assume that

k > max
S2

F = m2. (5)

Thus I is a controlled perturbation of the Dirichlet functional D, where F depends only on the normal Xu ∧ Xv ,
but not on the position vector X itself. Now only imposing the requirements (A) it was proved in Lemma 2.2 and
Theorem 4.3 of [6] that in every boundary value class H 1,2

ϕ (B,R
3) there exists a unique minimizer of I , termed

I-surface, which is additionally of the class C0(B̄,R
3) if ϕ ∈ C0(∂B,R

3) ∩ H 1/2,2(∂B,R
3) by Theorem 5.2 in [6].

Shiffman claimed the results of this paper, Theorems 1.1 and 1.2, in Sections 6 and 7 of [12], but his proof of
Theorem 1.1 is incomplete. We emphasize in particular that on p. 552 in [12] Shiffman asserts the incorrect statement
that any integrand F meeting (A) satisfies the requirement (R∗) only by the fact that the function g, defined by
g(z) := F(z) + F(−z), is even (see the wrong proof in footnote 7 on the mentioned page). In fact one can easily
construct counterexamples, see Section 2. On the other hand we will see in Section 2 that any integrand F that
satisfies the requirements

(A∗) := requirements (1)–(3) and F − λ| · | has to be convex on R
3,

for some λ > 0, can be “approximated” by a family of Lagrangians {Fε}ε>0 meeting the conditions (A) + (R∗) for
sufficiently small ε, which will be used in the forthcoming article [8]. Now combining property (R∗) of F with
the method of “levelling” real valued functions on B̄ , used by Shiffman in Section 6 of [12] and by McShane in
Theorem 3.1 in [10], the author was able to carry out a rigorous proof of the “quasi maximum principle” for I-
surfaces, Theorem 1.1, which will imply a compactness result for sequences of those, Theorem 1.2. Firstly we need

Definition 1.1. Let f ∈ C0(B̄) and G ⊆ B be an open subset of B . We set

mG(f ) := max
{
max

Ḡ

f − max
∂G

f,min
∂G

f − min
Ḡ

f
}

(6)

and call md(f ) := supG⊆B mG(f ) the monotonic diefficiency of f , where the supremum is taken over all open subsets
G ⊆ B .

Now let F be a fixed integrand satisfying (A) + (R∗) and g(z) := F(z) + F(−z). By the requirement (R∗) the
function g gives rise to a matrix A := (a1, a2, a3)

	 ∈ GL3(R), having chosen three linearly independent critical points
a1, a2, a3 of g|S2 arbitrarily. The “quasi maximum principle” for I-surfaces reads (see also Theorem 6.1 on p. 554 in
[12]):

Theorem 1.1. Let ϕ ∈ C0(∂B,R
3) ∩ H 1/2,2(∂B,R

3) be prescribed boundary values. Then the corresponding I-
surface X∗ ∈ H 1,2

ϕ (B,R
3) ∩ C0(B̄,R

3), i.e. the unique minimizer of I in H 1,2
ϕ (B,R

3), satisfies md((AX∗)i) = 0 for
i = 1,2,3.

Combining this result with Lemma 1 on p. 719 in [9] one easily obtains the following compactness result:

Theorem 1.2. Let {Xn} be a sequence of I-surfaces with D(Xn) � const, ∀n ∈ N, and with equicontinuous and
uniformly bounded boundary values. Then there exists a subsequence {Xnj } such that

Xnj −→ X̄ in C0(B̄,R
3) and Xnj ⇀ X̄ in H 1,2(B,R

3), (7)

for a surface X̄ ∈ H 1,2(B,R3) ∩ C0(B̄,R3) with md((AX̄)i) = 0, i = 1,2,3.

2. Critical points of even functions on S
2

This section is devoted to a discussion of the requirement (R∗) on the integrand F . Firstly we sketch a construc-
tion of a counterexample of Shiffman’s assertion that any even C1-function on the S

2 would possess three linearly
independent critical points (see p. 552 in [12]).
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To this end we consider a linear transformation A : R3 −→ R
3 which possesses exactly three linearly independent

unit eigenvectors a1, a2, a3, such that a3 lies in a small neighborhood of the great circle G determined by a1 and a2.
Then we choose some point b ∈ G \ {±a1,±a2} near a3 and construct some smooth tangent vector field V on the S

2

which vanishes outside a small neighborhood U of the shortest arc γ connecting a3 with b and which induces a global
smooth flow φ : R × S

2 −→ S
2, by Corollary 10.13 and Theorem 9.5 in [3], taking the point a3 via γ onto b within

a certain time t∗ > 0 and not effecting the points ±a1 and ±a2 in particular. Now we only consider the restriction of
the C∞-diffeomorphism φ(t∗, ·) to some appropriate (closed) hemisphere S, containing U in its interior, and extend
it to an uneven diffeomorphism φ̃ of the S

2 simply by reflection at the origin, i.e.

φ̃(z) :=
{

φ(t∗, z) z ∈ S,

−φ(t∗,−z) z ∈ −S,

which is well defined due to φ(t, z) ≡ z ∀z ∈ ∂S and ∀t ∈ R. Then the composition q ◦ φ̃−1 of the quadratic form
q(z) := 〈z,Az〉 with φ̃−1 is indeed a smooth even function on the S

2 whose critical points are exactly the three linearly
dependent unit vectors a1, a2 and b, which completes the construction of the asserted counterexample.

On the other hand there holds the following approximation result:

Proposition 2.1. Let F be an integrand satisfying the requirements (A∗), then there exists a family of approximations
{Fε}ε>0 meeting the requirements (A) and additionally (R∗) if ε < ε̄, for some sufficiently small ε̄ > 0, and with

D2Fε −→ D2F in C0(
R

3 \ Bρ(0)
)
, ∀ρ > 0, (8)

∇Fε −→ ∇F in C0(
R

3 \ {0}), (9)

Fε −→ F in C0(BR(0)
)
, ∀R > 0, (10)

for ε ↘ 0.

Proof. We set g(z) := F(z) + F(−z) and assume that g|S2 has only critical points on some great circle which we
suppose to be the S

1 without loss of generality, otherwise we were done. Now just arguing in the opposite way as in
the above construction of the counterexample we claim the existence of some smooth tangent vector field V on the S2

which vanishes outside a small neighborhood U of some chosen critical point b of g|S2 and whose induced flow φ,
which is globally defined and smooth on R × S

2 by Corollary 10.13 and Theorem 9.5 in [3], satisfies (φ(t, b))3 > 0,
∀t > 0, and does not effect the antipodal pairs ±a1 and ±a2 of two further linearly independent critical points a1, a2
of g|S2 . As above we consider now the restriction of φ(t, ·) to some appropriate (closed) hemisphere S, containing U

in its interior, and extend it to an uneven smooth flow φ̃ on the S
2 by

φ̃(t, z) :=
{

φ(t, z) z ∈ S,

−φ(t,−z) z ∈ −S,

which is well defined due to φ(t, z) ≡ z ∀z ∈ ∂S and ∀t ∈ R. We extend this flow homogeneously of first degree onto
R

3, i.e. by setting

φ̄(t, z) := |z|φ̃
(

t,
z

|z|
)

for z ∈ R
3 \ {0} (11)

and φ̄(t,0) ≡ 0, for any t ∈ R. As we know that φ̃ is smooth on R × S
2 we infer together with φ̄(t,0) ≡ 0 that

φ̄ ∈ C∞(R × (R3 \ {0}),R
3) ∩ C0(R × R

3,R
3). Now since ∂ij φ̄ is uniformly continuous on [−c, c] × S

2, for any
c > 0, and φ̄(0, ·) = idR3 one easily sees that

∂ij φ̄(t, ·)|S2 −→ ∂ij φ̄(0, ·)|S2 = 0 in C0(
S

2),
for t → 0 and i, j ∈ {1,2,3}, where we denote ∂i := ∂

∂zi
. Now together with the homogeneity of ∂ij φ̄(t, ·) of degree

−1 by (11) one infers immediately:

∂ij φ̄(t, ·) −→ 0 in C0(
R

3 \ Bρ(0)
)
, (12)

for t → 0 and any ρ > 0. Analogously one obtains

Dφ̄(t, ·)|S2 −→ Dφ̄(0, ·)|S2 = 13 in C0(
S

2),
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and together with the homogeneity of Dφ̄(t, ·) of degree 0 by (11):

Dφ̄(t, ·) −→ 13 in C0(
R

3 \ {0}), (13)

for t → 0. And finally one achieves similarly, using the homogeneity of φ̄(t, ·) of degree 1 and φ̄(t,0) ≡ 0 for any
t ∈ R:

φ̄(t, ·) −→ idBR(0) in C0(BR(0)
)
, (14)

for t → 0 and any R > 0. Now we set Fε := F(φ̄(ε, ·)−1) ≡ F(φ̄(−ε, ·)) on R
3, for ε > 0. Then we can immediately

infer from the homogeneity of degree 1 of φ̄(−ε, ·) and its regularity that Fε inherits the properties (1)–(3) from F .
Additionally we see by (φ̄(ε, b))3 > 0, ∀ε > 0, and by the invariance of a1, a2 ∈ S

1 w. r. to φ̄ that a1, a2 and φ̄(ε, b)

are three linearly independent critical points of the restriction gε |S2 of gε(z) := Fε(z) + Fε(−z) = g(φ̄(−ε, z)) on the
S

2, for any ε > 0, where we used in the last equality that φ̄(−ε, ·) is uneven on R
3. Furthermore we calculate

∂iFε(z) = 〈∇F
(
φ̄(−ε, z)

)
, ∂i φ̄(−ε, z)

〉
and

∂ijFε(z) = 〈∇F
(
φ̄(−ε, z)

)
, ∂ij φ̄(−ε, z)

〉 + 〈
D2F

(
φ̄(−ε, z)

)
∂j φ̄(−ε, z), ∂i φ̄(−ε, z)

〉
,

for z �= 0 and i, j ∈ {1,2,3}. Hence, on account of (12), (13) and (14) together with the homogeneity of D2F of
degree −1 and of ∇F of degree 0 on R

3 \ {0} and of F of degree 1 on R
3 in combination with (11) and with the

uniform continuity of D2F , ∇F and F on S
2 we obtain the asserted convergences (8), (9) and (10). Now by (8) we

conclude that∣∣〈ξ,
(
D2Fε(z) − D2F(z)

)
ξ
〉∣∣ �

∥∥D2Fε − D2F
∥∥

C0(S2)
−→ 0 (15)

for ε ↘ 0, ∀z, ξ ∈ S
2. Moreover the required convexity of F − λ| · |, for some fixed λ > 0, implies the positive

semi-definiteness of D2(F (z) − λ|z|) ∀z ∈ R
3 \ {0} and thus by a short computation:

〈
ξ,D2F(z)ξ

〉
� λ

〈
ξ,D2(|z|)ξ 〉 = λ

|z|
(

|ξ |2 − 〈z, ξ 〉2

|z|2
)

, (16)

∀z ∈ R
3 \ {0} and ∀ξ ∈ R

3. Now we fix some z �= 0, consider the orthogonal decomposition Span(z) ⊕ Span(z)⊥ of
R

3 and note that |〈z,ξ〉|
|z| is just the length of the orthogonal projection ξ‖ := 〈 z

|z| , ξ 〉 z
|z| of ξ onto Span(z). Now we

conclude by the homogeneity of ∇F(z) of order 0:

D2F(z) z = 0 · ∇F(z) = 0 for z �= 0,

showing that Span(ξ‖) is contained in the kernel of D2F(z) for any ξ ∈ R
3 and also of D2Fε(z), ∀ε > 0, by the same

reasoning. Now we introduce ξ⊥ := ξ − ξ‖, i.e. the orthogonal projection of ξ onto Span(z)⊥, and obtain together
with the symmetry of D2(Fε − F)(z):〈

ξ,D2(Fε − F)(z) ξ
〉 = 〈

ξ⊥,D2(Fε − F)(z)ξ⊥〉
(17)

∀z ∈ R
3 \ {0} and ∀ξ ∈ R

3. From (15) we infer in particular the existence of some ε̄ > 0 such that

∣∣〈ζ,D2(Fε − F)(z)ζ
〉∣∣ � λ

2

for any z ∈ S
2 and ζ ∈ S

2 ∩ Span(z)⊥, if ε < ε̄, and thus together with (17):

∣∣〈ξ,D2(Fε − F)(z)ξ
〉∣∣ = ∣∣〈ξ⊥,D2(Fε − F)(z)ξ⊥〉∣∣ � λ

2
|ξ⊥|2

for any z ∈ S
2 and ξ ∈ R

3, if ε < ε̄. Hence, recalling (16) we achieve〈
ξ,D2Fε(z)ξ

〉 = 〈
ξ,D2F(z)ξ

〉 + 〈
ξ,D2(Fε − F)(z)ξ

〉
�

(
λ − λ

)
|ξ⊥|2 = λ(|ξ |2 − 〈z, ξ 〉2),
2 2
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for any z ∈ S
2 and ξ ∈ R

3, if ε < ε̄. Thus we obtain together with the homogeneity of D2Fε of degree −1:

〈
ξ,D2Fε(z) ξ

〉
� λ

2|z|
(

|ξ |2 − 〈z, ξ 〉2

|z|2
)

∀ξ ∈ R
3

and ∀z ∈ R
3 \ {0}, which is equivalent to the positive semi-definiteness of D2(Fε(z) − λ

2 |z|), for any z �= 0, by the
second equation in (16). Hence, we obtain the convexity of Fε − λ

2 | · | on R
3 from the next lemma and thus especially

the asserted convexity of Fε for ε < ε̄. �
Lemma 2.1. Let q ∈ C0(R3) ∩ C2(R3 \ {0}) have a positive semi-definite Hessian pointwise on R

3 \ {0}, then q is
convex on R

3.

Proof. Let H be an arbitrary open halfspace in R
3 whose boundary contains the origin. A well known argument

yields the convexity of q on H on account of the requirement of the lemma, i.e. there holds

q
(
tz1 + (1 − t)z2

)
� tq(z1) + (1 − t)q(z2) ∀t ∈ [0,1], (18)

for any pair z1, z2 ∈ H . Now let z∗
1, z

∗
2 ∈ ∂H be arbitrarily given. Then we can choose two sequences {zi

1}, {zi
2} ⊂ H

with zi
1 → z∗

1 and zi
2 → z∗

2, for i → ∞, and infer from (18) applied to the pairs zi
1, z

i
2 in combination with the

continuity of q on R
3 the convexity relation (18) in the limit also for the pair z∗

1, z
∗
2. This proves the convexity of q

on R
3. �

3. Preparing propositions

Let F be a fixed integrand meeting (A) and (R∗), g(z) := F(z) + F(−z), a1, a2, a3 three linearly independent
critical points of g|S2 and A := (a1, a2, a3)

	 ∈ GL3(R). We choose two vectors b1, c1, such that O1 := (a1, b1, c1)
	 ∈

SO(3) and set F ′ := F ◦ O−1
1 , g′ := g ◦ O−1

1 . We prove

Lemma 3.1. There are real constants k2 and k3 such that

F ′((z1, z2, z3)
) − F ′((z1,0,0)

)
� k2z2 + k3z3 (19)

∀z1, z2, z3 ∈ R.

Proof. Since O−1
1 · (1,0,0)	 = O	

1 · (1,0,0)	 = a1 and since a1 is a critical point of g|S2 we calculate:

∇g′((1,0,0)	
) = ∇g(a1) · O−1

1 = r1a
	
1 · O	

1 = r1(O1 · a1)
	 = r1(1,0,0),

for some r1 ∈ R. Hence, (1,0,0)	 is a critical point of g′|S2 , implying in particular the equations:

0 = g′
z2

(
(1,0,0)

) = F ′
z2

(
(1,0,0)

) − F ′
z2

(
(−1,0,0)

)
,

0 = g′
z3

(
(1,0,0)

) = F ′
z3

(
(1,0,0)

) − F ′
z3

(
(−1,0,0)

)
,

where we dropped the “	”-sign. Now using that ∇F ′ is homogeneous of degree 0 on R
3 \ {0} by (2) we obtain:

F ′
z2

≡ const =: k2, F ′
z3

≡ const =: k3

on the z1-axis except {0}. Furthermore we infer from the convexity of F ′ ∈ C2(R3 \ {0}) for z1 �= 0:

F ′((z1, z2, z3)
) − F ′((z1,0,0)

)
�

〈∇F ′((z1,0,0)
)
, (z1, z2, z3) − (z1,0,0)

〉
= F ′

z2

(
(z1,0,0)

)
z2 + F ′

z3

(
(z1,0,0)

)
z3 = k2z2 + k3z3, (20)

∀z2, z3 ∈ R. Now letting z1 −→ 0 in (20) and using F ′ ∈ C0(R3) we achieve the assertion (19) also for z1 = 0. �
If we choose vectors b2, c2, and b3, c3, such that O2 := (b2, a2, c2)

	, O3 := (b3, c3, a3)
	 ∈ SO(3) and set F ′2 :=

F ◦ O−1
2 , F ′3 := F ◦ O−1

3 , then we obtain analogously:

F ′2((z1, z2, z3)
) − F ′2((0, z2,0)

)
� const z1 + const z3 (21)
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and

F ′3((z1, z2, z3)
) − F ′3((0,0, z3)

)
� const z1 + const z2 (22)

∀z1, z2, z3 ∈ R. Next we need

Definition 3.1. Let ϕ ∈ C0(∂B,R
3) ∩ H 1/2,2(∂B,R

3) be prescribed boundary values. Then we define

M(ϕ) := {{Yn} ⊂ C0(B̄,R
3) ∩ H 1,2(B,R

3)|Yn|∂B −→ ϕ in C0(∂B,R
3)}

and

m(ϕ) := inf{Yn}∈M(ϕ)
lim inf
n→∞ I

(
Yn

)
. (23)

Clearly one has m(ϕ) � inf
H

1,2
ϕ (B)∩C0(B̄)

I and

Proposition 3.1. There exists a minimizing element {Xj } for I in M(ϕ), i.e. {Xj } ∈ M(ϕ) satisfies

lim
j→∞I

(
Xj

) = m(ϕ).

Proof. By the definition of m(ϕ) we can choose a minimizing sequence {{Yn}j }j∈N of sequences for I in M(ϕ), i.e.
we have {{Yn}j }j∈N ⊂ M(ϕ) such that

lim
j→∞ lim inf

n→∞ I
({

Yn
}j ) = m(ϕ).

We set mj := lim infn→∞ I({Yn}j ). For each j ∈ N we can choose an integer n(j) such that

∣∣I({
Yn(j)

}j ) − mj

∣∣ <
1

j
and

∥∥{
Yn(j)

}j ∣∣
∂B

− ϕ
∥∥

C0(∂B)
<

1

j
.

Now we choose Xj := {Yn(j)}j ∀j ∈ N and see that {Xj } ∈ M(ϕ) satisfies∣∣I(
Xj

) − m(ϕ)
∣∣ �

∣∣I(
Xj

) − mj

∣∣ + ∣∣mj − m(ϕ)
∣∣ −→ 0. �

Proposition 3.2. For any X ∈ C0(B̄,R
3) ∩ H 1,2(B,R

3) there is a mollified family {Xε} ⊂ C∞
c (B1+2δ(0),R

3), for
ε ∈ (0, δ) and some δ > 0, that satisfies:

Xε −→ X in C0(B̄,R
3) ∩ H 1,2(B,R

3). (24)

Proof. Due to the continuation theorem for Sobolev functions there is a continuation X̂ ∈ H 1,2(B1+δ(0),R
3) of X,

for some δ > 0. An examination of this continuation, explicitly given in [2, p. 256], shows that we also have X̂ ∈
C0(B1+ δ

2
(0),R

3) on account of X ∈ C0(B̄,R
3). Now we use a family {ϕε} of even Dirac kernels, with supp(ϕε) =

Bε(0), to mollify X̂:

Xε(·) :=
∫

B1+δ(0)

ϕε(· − w)X̂(w)dw ∈ C∞
c

(
B1+2δ(0),R

3)

for ε ∈ (0, δ). Due to X̂ ∈ H 1,2(B1+δ(0),R
3) we firstly obtain by [2, p. 108]:

‖Xε − X‖H 1,2(B) = ‖Xε − X̂|B‖H 1,2(B) −→ 0 for ε ↘ 0.

Moreover, due to supp(ϕε) = Bε(0) and
∫
B1+δ(0)

ϕε(y − w)dw = 1, ∀y ∈ B̄ , ∀ε ∈ (0, δ), we gain:

‖Xε − X‖C0(B̄) = max
y∈B̄

∣∣∣∣
∫

ϕε(y − w)X̂(w)dw − X̂(y)

∣∣∣∣

B1+δ(0)
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= max
y∈B̄

∣∣∣∣
∫

B1+δ(0)

ϕε(y − w)
(
X̂(w) − X̂(y)

)
dw

∣∣∣∣
� max

y∈B̄

∫
Bε(y)

ϕε(y − w)
∣∣X̂(w) − X̂(y)

∣∣dw

� max
y∈B̄

max
w∈Bε(y)

∣∣X̂(w) − X̂(y)
∣∣ −→ 0 for ε ↘ 0,

since X̂ is uniformly continuous on B1+ δ
2
(0), which completes the proof. �

Next we state a proposition due to McShane in [9, p. 719] (see [11, p. 416], for a detailed proof):

Proposition 3.3. Let ϕ ∈ C0(∂B) be prescribed boundary values and {f n} a sequence in C0(B̄) ∩ H 1,2(B) with the
following properties:

f n|∂B −→ ϕ in C0(∂B), (25)

md
(
f n

) −→ 0 for n → ∞, (26)

D
(
f n

)
� const ∀n ∈ N. (27)

Then there exists a subsequence {f nj } and a function f ∗ ∈ C0(B̄) ∩ H 1,2(B) such that md(f ∗) = 0 and

f nj −→ f ∗ in C0(B̄).

In [7, p. 7], the Lipschitz continuity of the integrand F on R3, with Lip.-const = m2, is derived from its required
properties (A). Together with the Hölder inequality one can easily deduce (see [12, p. 548]):

Proposition 3.4. For any X,X′ ∈ H 1,2(B,R
3) and any open subset Ω ⊆ B there holds:∣∣IΩ(X) − IΩ(X′)

∣∣ � (2m2 + k)
(√

DΩ(X) + √
DΩ(X′)

)√
DΩ(X − X′). (28)

4. Levelling of C∞
c (R2)-functions

In this section we discuss the process of “levelling” a function f ∈ C∞
c (R2) on the unit disc B̄ for a given fineness

δ > 0 (see also [12, p. 553], and [10, p. 558]). To this end let

Z: min
B̄

f = l0 < l1 < · · · < lN < lN+1 = max
B̄

f

be a partition of the interval [minB̄ f,maxB̄ f ] such that �Z := maxi=1,...,N+1{li − li−1} < δ and such that l1, . . . , lN
are regular values of f , which is possible for any choice of δ by Sard’s theorem (see [4, p. 205]).

The levelling process starts on the level l1. Since l1 is a regular value of f ∈ C∞
c (R2) (especially l1 �= 0)

f −1([l1,∞)) is a compact 2-dimensional C∞-manifold with boundary by the implicit function theorem (see [5,
p. 303]). Hence, f −1([l1,∞)) is locally connected, in particular, and has therefore only a finite number of connected
components. Now we consider the (disjoint) union U

l1+ of those connected components of f −1([l1,∞)) that are con-
tained in B̄ , in particular we have

f (w) > l1 ∀w ∈ Ů
l1+ and f (w) = l1 ∀w ∈ ∂U

l1+ , (29)

as l1 is a regular value of f and as f is continuous, and we set

f
l1+ (w) :=

{
l1 w ∈ U

l1+ ,

f (w) w ∈ R
2 \ U

l1 .
(�)
+



556 R. Jakob / Ann. I. H. Poincaré – AN 24 (2007) 549–561
We go on by considering the compact C∞-manifold f −1((−∞, l1]) which again consists of only finitely many con-
nected components, and term U

l1− the union of those connected components that are contained in B̄ . By (29) we infer

Ů
l1+ ∩ Ů

l1− = ∅ and therefore

f
l1+ (w) < l1 ∀w ∈ Ů

l1− and f
l1+ (w) = l1 ∀w ∈ ∂U

l1− ,

again since l1 is a regular value of f , by (�) and as f is continuous, and we set

f l1(w) :=
{

l1 w ∈ U
l1− ,

f
l1+ (w) w ∈ R

2 \ U
l1− .

(��)

Next we apply the same process to f l1 on the level l2 and note that for connected components P 1 of U
l1± and P 2 of

U
l2+ we have P 1 ∩ P 2 = ∅ and for connected components P 1 of U

l1± and P 2 of U
l2− we have either P 1 ∩ P 2 = ∅ or

P 1 � P 2. After that we apply the process to (f l1)l2 on the level l3 and so on, until we have performed the last levelling

step on the level lN . Thus after 2 × N steps we arrive at a finite collection of “level sets” U
lj
± , j = 1, . . . ,N , and at a

function f L on R
2, that we term the ”levelled” function of f , possessing the following properties:

Lemma 4.1. Let f ∈ C∞
c (R2) and a fineness δ be given arbitrarily. Firstly there holds U

lj
± ⊂ B̄ and Ů

lj
+ ∩ Ů

lj
− = ∅ for

j = 1, . . . ,N . Secondly for connected components P j of U
lj
± and P i of U

li+, with j < i, there holds P j ∩ P i = ∅ and

for connected components P j of U
lj
± and P i of U

li− (j < i) there holds either P j ∩ P i = ∅ or P j � P i . Furthermore

U
lj
± are compact 2-dimensional C∞-manifolds with boundary and ∂U

lj
± are closed 1-dimensional C∞-manifolds.

In particular, U
lj
± consist of only a finite number of connected components and ∂U

lj
± are Lebesgue-measurable with

L2(∂U
lj
± ) = 0. Moreover f L satisfies:

f L ∈ C0(B̄) ∩ H 1,2(B), f L|∂B = f |∂B, md
(
f L|B̄

)
� δ. (30)

Proof. The assertions U
lj
± ⊂ B̄ and Ů

lj
+ ∩ Ů

lj
− = ∅ follow immediately from the definition of U

lj
± and as the lj are

regular values of f for j = 1, . . . ,N . Next one obtains simultaneously f L ∈ C0(B̄) and the relations between the

connected components P j of U
lj
± and P i of U

li+ resp. U
li−, with j < i, by induction during the finite levelling process.

As the levels lj are regular values of f ∈ C∞
c (R2) the implicit function theorem yields the assertions about the level

sets U
lj
± and their boundaries ∂U

lj
± at once. Furthermore one has to note that manifolds M are locally connected,

thus their connected components are open in M and compact manifolds can only consist of finitely many. Moreover

L2(∂U
lj
± ) = 0 follows immediately from the implicit function theorem and Proposition 8 of Section 1.11 in [5, p. 101].

Furthermore by construction of the first levelling step we obtain f
l1+ ∈ H 1,1(B) due to Lemma A 6.9 in [2, p. 254],

where we have to use that ∂U
l1+ is a closed C∞-manifold, thus in particular a Lipschitz boundary. Moreover it is also

clear that we have ∇f
l1+ ∈ L2(B,R

2) as f
l1+ ≡ f on R

2 \ U
l1+ and ∇f

l1+ ≡ 0 on Ů
l1+ and since ∂U

l1+ especially satisfies

L2(∂U
l1+ ) = 0. Hence, we have f

l1+ ∈ H 1,2(B). Now, using that ∂U
l1− is a closed C∞-manifold again, especially with

L2(∂U
l1− ) = 0 the same reasoning as above yields that f l1 ∈ H 1,2(B) and again using that ∂U

l2± is a C∞-manifold
just the same reasoning as above yields that (f l1)l2 ∈ H 1,2(B). Hence, after 2 × N steps we arrive at f L ∈ H 1,2(B).
Next, if U

l1+ ∩ ∂B = ∅ we have f
l1+ |∂B ≡ f |∂B , but if U

l1+ ∩ ∂B �= ∅ we obtain by the construction of f
l1+ :

f
l1+ ≡ l1 ≡ f along ∂U

l1+ ∩ ∂B.

Since this argument holds true for each step of the levelling process we finally see that f L|∂B ≡ f |∂B . If we suppose
that there exists an open subset G of B such that maxḠ f L − max∂G f L > δ, then due to �Z < δ there would be
some level lj ∈ Z such that max∂G f L < lj but maxḠ f L > lj . Hence, together with the continuity of f L we would
have on a connected component G′ ( �= ∅) of G ∩ (f L)−1((lj ,∞)) � G

f L(w) > lj ∀w ∈ G′ and f L(w) = lj ∀w ∈ ∂G′,

which implies that f L ≡ f on G′ and G′ ⊂ U
lj
+ . Therefore we must have f L ≡ li on G′ for some i � j by the

construction of f L and the second part of the assertion of the lemma, which is a contradiction. Similarly one proves
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that min∂G f L − minḠ f L � δ for all open subsets G of B again by the construction of f L and the second part of the
assertion of the lemma, hence md(f L|B̄ ) � δ. �
5. Levelling of the components of distorted surfaces Aπ

As in Section 3 we consider a fixed integrand F meeting (A) and (R∗), some smooth surface π ∈ C∞
c (R2,R

3) and
its distortion π̃ := Aπ , where A := (a1, a2, a3)

	 ∈ GL3(R) is defined at the beginning of Section 3. Its components
satisfy

π̃i = 〈ai,π〉 = (Oiπ)i = π ′i
i (31)

for i = 1,2,3, where we termed π ′ i := Oiπ . We set m := mini=1,2,3{minB̄ π̃i} and M := maxi=1,2,3{maxB̄ π̃i} and
choose a partition

Z : m = l0 < l1 < · · · < lN < lN+1 = M

of the interval [m,M] of fineness �Z < δ, for an arbitrarily given δ > 0, such that the levels lj , j = 1, . . . ,N , are
regular values of the three components π̃i simultaneously. At first we level the first component, i.e. π̃1 �→ (π̃1)

L,
abbreviate (π ′1)L := ((π ′1

1 )L,π ′1
2 ,π ′1

3 ) and prove (see also (6.6) in [12])

Lemma 5.1. For an arbitrary π ∈ C∞
c (R2,R

3) there holds:

F(π) �F
(
O−1

1

(
π ′1)L)

. (32)

Proof. We abbreviate π ′ := π ′1 = O1π . It will suffice to consider only the first step of the levelling process on
the level l1 applied to π ′

1 = π̃1. Let D be the open kernel of a connected component D̄ of the level set U
l1+ which

is a compact C∞-manifold with boundary by Lemma 4.1. Now we choose an atlas A := {(Vj ,ψj )j=0,...,k} of D̄

such that ∂D ⊂ ⋃k
j=1 Vj and a subordinate partition of unity {ηj }j=0,...,k . Furthermore a careful examination of

the implicit function theorem (see [5, p. 303]) shows that we may arrange the charts ψj :B+
rj

(0)
∼=−→ Vj ∩ D̄ such

that γj := ψj |[−rj ,rj ] : [−rj , rj ]
∼=−→ Vj ∩ ∂D yields a parametrization of Vj ∩ ∂D with respect to its arc length, for

j = 1, . . . , k, implying that ((γj )
′
2,−(γj )

′
1) yields an outward pointing unit normal field νj along Vj ∩ ∂D. Since we

have π ′
1 ≡ l1 along ∂D we infer:

d

ds
π ′

1

(
γj (s)

) ≡ 0 ∀s ∈ [−rj , rj ], (33)

for j = 1, . . . , k. Now we consider the vector field h(z1, z2, z3) := (−z2,0,0) on R
3. Firstly we note that rot h ≡

(0,0,1), thus setting N := (N1,N2,N3) := π ′
u ∧ π ′

v we have N3 = 〈roth(π ′),π ′
u ∧ π ′

v〉 on R
2. Furthermore we set

w := (〈h(π ′),π ′
v〉,−〈h(π ′),π ′

u〉) ∈ C∞
c (R2,R

2). Using π ′
uv = π ′

vu due to Schwarz one easily calculates:

divw = 〈
roth(π ′),π ′

u ∧ π ′
v

〉
on R

2.

Now combining this with the divergence theorem for Lipschitz boundaries (see [2, p. 252]) and (33) we arrive at:

∫
D

N3 dudv =
∫
D

divw dudv =
∫

∂D

〈w,ν〉ds =
k∑

j=1

∫
∂D∩Vj

ηj 〈w,νj 〉ds

=
k∑

j=1

rj∫
−rj

(ηjw1)
(
γj (s)

)
(γj )

′
2 − (ηjw2)

(
γj (s)

)
(γj )

′
1 ds

=
k∑

j=1

rj∫
−r

(
ηj

(−π ′
2(π

′
1)v

))(
γj (s)

)
(γj )

′
2 − (

ηjπ
′
2(π

′
1)u

)(
γj (s)

)
(γj )

′
1 ds
j
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= −
k∑

j=1

rj∫
−rj

(ηjπ
′
2)

(
γj (s)

) d

ds
π ′

1

(
γj (s)

)
ds = 0. (34)

If we use h̃(z1, z2, z3) := (z3,0,0), with rot h̃ = (0,1,0), we obtain analogously:

∫
D

N2 dudv =
k∑

j=1

rj∫
−rj

(ηjπ
′
3)

(
γj (s)

) d

ds
π ′

1

(
γj (s)

)
ds = 0, (35)

on account of (33). Furthermore, as we have ∇(π ′
1)

l1+ ≡ 0 on D we see:

Nl1 :=
⎛
⎝N

l1
1

N
l1
2

N
l1
3

⎞
⎠ :=

(
((π ′

1)
l1+)u

(π ′
2)u

(π ′
3)u

)
∧

(
((π ′

1)
l1+)v

(π ′
2)v

(π ′
3)v

)

=
(

(π ′
2)u(π

′
3)v − (π ′

2)v(π
′
3)u

0
0

)
=

(
N1
0
0

)
.

Thus by Lemma 3.1 we can conclude now:

F ′(N) − F ′(Nl1) = F ′(N1,N2,N3) − F ′(N1,0,0) � k2N2 + k3N3.

Integration of this inequality over D yields∫
D

F ′(N)dudv −
∫
D

F ′(Nl1)dudv � k2

∫
D

N2 dudv + k3

∫
D

N3 dudv = 0,

where we used (34) and (35). Hence, by (π ′
1)

l1+ ≡ π ′
1 on B \ U

l1+ we obtain∫
B

F ′(N)dudv �
∫
B

F ′(Nl1)dudv.

Thus due to O1 ∈ SO(3) we finally achieve after 2 × N levelling steps:

F(π) =
∫
B

F
(
O−1

1 (O1πu ∧ O1πv)
)

dudv =
∫
B

F ′(N)dudv

�
∫
B

F
(
O−1

1

(
(π ′)Lu ∧ (π ′)Lv

))
dudv =F

(
O−1

1 (π ′)L
)
. �

Furthermore we shall also level the second and third component of π̃ , i.e. π̃i �→ (π̃i)
L for i = 2,3. Abbreviating

(π ′2)L := (π ′2
1 , (π ′2

2 )L,π ′2
3 ) and (π ′3)L := (π ′3

1 ,π ′3
2 , (π ′3

3 )L) we gain by (21) and (22) analogously for i = 2,3:

F(π) �F
(
O−1

i

(
π ′ i)L)

, (36)

where one has to use the vector fields h2 := (0,−z3,0), h̃2 := (0, z1,0) for i = 2 and h3 := (0,0, z2), h̃3 := (0,0,−z1)

for i = 3 to obtain the counterparts of the central equations (34) and (35). Next we prove (see also (6.7) in [12])

Lemma 5.2. For an arbitrary π ∈ C∞
c (R2,R

3) there holds

D(π) −D
(
O−1

i

(
π ′ i)L) =D

(
π ′ i

i − (
π ′ i

i

)L)
, (37)

for i = 1,2,3.
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Proof. For i = 1 we abbreviate again π ′ := π ′1. We consider the union L := ⋃N
j=1 Ů

lj
± of all level sets that arise

during the levelling process applied to π̃1 = π ′
1. Now combining the facts that π ′

2 and π ′
3 remain unchanged on B and

that π ′
1 remains unchanged on B \L, while we level π ′

1, and that ∇π ′
1 ≡ 0 on L we infer:

D(π ′) −D
(
(π ′)L

) =DL(π ′
1) −DL

(
(π ′

1)
L
) =DL(π ′

1)

=DL
(
π ′

1 − (π ′
1)

L
) =D

(
π ′

1 − (π ′
1)

L
)
.

Together with the invariance of the Euclidean scalar product with respect to the action of SO(3) we finally achieve the
assertion (37) for i = 1. For i = 2,3 the proof works analogously. �

A combination of (32), (36) and (37) yields

D
(
π ′ i

i − (
π ′ i

i

)L)
� 1

k

(
I(π) − I

(
O−1

i

(
π ′ i)L))

, (38)

for i = 1,2,3. Furthermore we define π̃L := ((π̃1)
L, (π̃2)

L, (π̃3)
L) and πL := A−1π̃L (= A−1(Aπ)L) and state (see

also Lemma 6.3 in [12])

Lemma 5.3. The surface πL has the following properties:
(i) πL ∈ C0(B̄,R

3) ∩ H 1,2(B,R
3),

(ii) πL|∂B = π |∂B ,
(iii) md((AπL)i |B̄ ) � δ for i = 1,2,3.
(iv) Using the matrix norm ‖B‖ := supx∈S2 |Bx| on Mat3,3(R) we have:

D
(
πL − π

)
� ‖A−1‖2

k

(
3∑

i=1

I(π) − I
(
O−1

i

(
π ′ i)L))

. (39)

Proof. The points (i), (ii) and (iii) follow immediately from Lemma 4.1 and the definition of πL. Moreover we
calculate by (31) and (38):

D
(
πL − π

) =D
(
A−1(π̃L − π̃

))
�

∥∥A−1
∥∥2

(
3∑

i=1

D
(
(π̃i)

L − π̃i

))

= ∥∥A−1
∥∥2

(
3∑

i=1

D
((

π ′ i
i

)L − π ′ i
i

))
� ‖A−1‖2

k

(
3∑

i=1

I(π) − I
(
O−1

i

(
π ′ i)L))

. �

6. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Now let ϕ ∈ C0(∂B,R
3)∩H 1/2,2(∂B,R

3) be prescribed boundary values. By Proposition 3.1
there exists a minimizing element {Xn} for I in M(ϕ), i.e. {Xn} ∈ M(ϕ) satisfies

lim
n→∞I

(
Xn

) = m(ϕ). (40)

By Proposition 3.2 there exists a mollified sequence {πn} := {Xn
εn

} ⊂ C∞
c (R2,R

3) such that

∥∥πn − Xn
∥∥

C0(B̄)
+ ∥∥πn − Xn

∥∥
H 1,2(B)

<
1

n
∀n ∈ N. (41)

Firstly we infer from (41) and {Xn} ∈ M(ϕ):∥∥πn|∂B − ϕ
∥∥

C0(∂B)
�

∥∥πn|∂B − Xn|∂B

∥∥
C0(∂B)

+ ∥∥Xn|∂B − ϕ
∥∥

C0(∂B)
−→ 0, (42)

for n → ∞, which shows that {πn} ∈ M(ϕ). Secondly a combination of (41) with Proposition 3.4 and (40) yields∣∣I(
πn

) − m(ϕ)
∣∣ �

∣∣I(
πn

) − I
(
Xn

)∣∣ + ∣∣I(
Xn

) − m(ϕ)
∣∣ −→ 0, (43)
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where we also used that D(Xn) � 1
k
I(Xn) � const ∀n ∈ N due to (40). Hence, {πn} is a minimizing element for I in

M(ϕ) again. Now we level the components of π̃n := Aπn, i.e. π̃n �→ (π̃n)L, with decreasing fineness δn ↘ 0. Firstly
by (30) and (42) we have

O−1
i

((
πn

)′ i)L∣∣
∂B

= πn|∂B −→ ϕ in C0(∂B,R
3), (44)

and therefore {O−1
i ((πn)′ i )L} ∈ M(ϕ), for i = 1,2,3. Furthermore by (32), (36) and (37) we obtain

I
(
O−1

i

((
πn

)′ i)L)
� I

(
πn

) ∀n ∈ N,

for i = 1,2,3. Combining this with (23) and (43) we conclude:

m(ϕ) � lim inf
n→∞ I

(
O−1

i

((
πn

)′ i)L)
� lim

n→∞I
(
πn

) = m(ϕ),

implying that {O−1
i ((πn)′ i )L} is a minimizing element for I in M(ϕ), for i = 1,2,3. If we insert this and (43) into

(39), applied to πn, we obtain:

0 �D
((

πn
)L − πn

)
� ‖A−1‖2

k

(
3∑

i=1

I
(
πn

) − I
(
O−1

i

((
πn

)′ i)L)) −→ 0, (45)

for n → ∞. Combining this with (28) and noting that {D(πn)} and {D((πn)L)} are bounded due to (43) and (45) we
arrive at:∣∣I((

πn
)L) − m(ϕ)

∣∣ �
∣∣I((

πn
)L) − I

(
πn

)∣∣ + ∣∣I(
πn

) − m(ϕ)
∣∣ −→ 0, (46)

for n → ∞. Moreover by Lemma 5.3(ii) and (42) we know that(
πn

)L|∂B = πn|∂B −→ ϕ in C0(∂B,R
3).

Hence, together with Lemma 5.3(i) and (46) we see that {(πn)L} is a minimizing element for I in M(ϕ). Now recalling
Lemma 5.3(iii) we gather the following facts about the sequence {A(πn)L}:

A
(
πn

)L∣∣
∂B

−→ Aϕ in C0(∂B,R
3),

md
((

A
(
πn

)L)
i

∣∣
B̄

)
� δn ↘ 0 for i = 1,2,3,

D
(
A

(
πn

)L)
� ‖A‖2D

((
πn

)L)
� const ∀n ∈ N.

Hence, we can apply Proposition 3.3 and obtain a subsequence {A(πnj )L} and a surface π∗ ∈ C0(B̄,R
3) ∩

H 1,2(B,R
3) such that

A
(
πnj

)L∣∣
B̄

−→ π∗ in C0(B̄,R
3),

md(π∗
i ) = 0, for i = 1,2,3, and π∗|∂B ≡ Aϕ. Thus, if we rename {A(πnj )L} into {A(πn)L} we conclude:(
πn

)L∣∣
B̄

−→ A−1π∗ in C0(B̄,R
3), (47)

with A−1π∗|∂B ≡ ϕ. As we already know D((πn)L) � const this entails in particular ‖(πn)L‖H 1,2(B) � const, ∀n ∈ N,
implying the existence of a further subsequence {(πnj )L} with(

πnj
)L∣∣

B
⇀ A−1π∗ in H 1,2(B,R

3).
We set X∗ := A−1π∗. Now using the weak lower semicontinuity of I due to [1], Theorem II.4, (see [7, p. 12]) we
conclude together with (46) and (23):

j (ϕ) := inf
H

1,2
ϕ (B)∩C0(B̄)

I � I(X∗) � lim inf
j→∞ I

((
πnj

)L) = m(ϕ) � j (ϕ). (48)

Moreover in [7, p. 34], it is proved that the (unique) minimizer Y of I within the class H 1,2
ϕ (B,R

3) lies already in
C0(B̄,R

3), if ϕ ∈ C0(∂B,R
3) ∩ H 1/2,2(∂B,R

3), which implies

I(Y ) = inf
H

1,2
(B)

I � inf
H

1,2
(B)∩C0(B̄)

I � I(Y ).

ϕ ϕ
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Combining this with (48) we finally obtain:

I(X∗) = j (ϕ) = inf
H

1,2
ϕ (B)

I,

with md((AX∗)i) = md(π∗
i ) = 0, for i = 1,2,3. �

Proof of Theorem 1.2. Firstly by hypothesis we have the equicontinuity and uniform boundedness of the distorted
boundary values {AXn|∂B}, thus we gain a convergent subsequence {AXnj |∂B} in C0(∂B,R

3) by Arzelà–Ascoli’s
theorem, which we rename again {AXn|∂B}. Now we infer by Theorem 1.1 that {AXn} ⊂ C0(B̄,R

3) ∩ H 1,2(B,R
3)

satisfies md((AXn)i) = 0 for i = 1,2,3. Hence, together with D(AXn) � ‖A‖2D(Xn) � const we see that Proposi-
tion 3.3 implies the existence of a further subsequence {AXnj } and some surface Y ∈ C0(B̄,R

3) ∩ H 1,2(B,R
3) such

that

AXnj −→ Y in C0(B̄,R
3)

and md(Yi) = 0 for i = 1,2,3. Thus the subsequence {Xnj } converges uniformly to X̄ := A−1Y ∈ C0(B̄,R
3) ∩

H 1,2(B,R
3) and md((AX̄)i) = 0 for i = 1,2,3. Together with the required boundedness of {D(Xn)} we obtain

‖Xnj ‖H 1,2(B) � const, ∀j ∈ N, and therefore the asserted weak H 1,2-convergence in (7) for a further subsequence. �
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