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A variational approach to frozen planet orbits in helium

Kai Cieliebak, Urs Frauenfelder, and Evgeny Volkov

Abstract. We present variational characterizations of frozen planet orbits for the helium atom in the
Lagrangian and the Hamiltonian picture. They are based on a nonlocal Levi-Civita regularization
in Barutello, Ortega and Verzini (2021) with different time reparametrizations for the two electrons
and lead to nonlocal functionals. Within this variational setup, we deform the helium problem to
one where the two electrons interact only by their mean values and use this to deduce the existence
of frozen planet orbits.
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1. Introduction

Frozen planet orbits are periodic orbits in the helium atom which play an important role
in its semiclassical treatment [10, 12]. In such an orbit both electrons lie on a line on the
same side of the nucleus. The inner electron undergoes consecutive collisions with the
nucleus while the outer electron (the actual “frozen planet”) stays almost stationary at
some distance, as shown below.z � u - � u-

q2 q1
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An interesting aspect of frozen planet orbits is that they cannot be obtained using
perturbative methods. Indeed, if the interaction between the two electrons is switched off,
both electrons just fall into the nucleus. In order to deal with this problem, in [4] the
second author replaced the instantaneous interaction between the two electrons by a mean
interaction and showed analytically that in this case there exists a unique nondegenerate
frozen planet orbit.

Variational setup. In this paper we present a variational approach to frozen planet orbits
with instantaneous or mean interaction. One difficulty lies in the collisions of the inner
electron with the nucleus, which need to be regularized in order to obtain a good functional
analytic setup. A traditional way to regularize two-body collisions is the Levi-Civita reg-
ularization [7]. In the case of mean interactions our problem has delay and the application
of the traditional Levi-Civita regularization becomes problematic. Fortunately, in a recent
interesting paper by Barutello, Ortega and Verzini [2], a new nonlocal regularization was
discovered. This regularization is motivated by the traditional Levi-Civita regularization,
but in sharp contrast to the latter it is defined on the loop space and therefore fits well with
our problem. Even for loops without collisions this transformation is quite intriguing. It
is not smooth in the usual sense but scale smooth in the sense of Hofer, Wysocki and
Zehnder [6].

We study two functionals Bav and Bin arising from regularizing frozen planet config-
urations for the mean and instantaneous interaction, respectively, as well as their linear
interpolation Br D rBin C .1 � r/Bav, r 2 Œ0; 1�. In general, it is not clear that critical
points of a regularized action functional correspond precisely to the regularized solutions.
It might happen that new exotic solutions appear as critical points; see [2] for examples of
this phenomenon. Excluding such exotic critical points requires a careful analysis and this
analysis occupies the main part of this paper. In particular, we prove (see Theorem 5.1)
the following theorem:

Theorem A. For each r 2 Œ0; 1�, critical points of the regularized action functional Br

correspond precisely to frozen planet orbits for the interpolated interaction.

Symmetries. There is a special case of frozen planet orbits referred to as symmetric frozen
planet orbits. These are frozen planet orbits in which the outer electron has vanishing
velocity whenever the inner electron collides with the nucleus or is at maximal distance
from the nucleus; see [1]. We have the following theorem (see Theorem 6.7):

Theorem B. The regularized action functional Br is invariant under an involution such
that the critical points fixed by the involution are precisely the symmetric frozen planet
orbits.

In view of Theorem B one can think of symmetric frozen planet orbits as a nonlocal
generalization of brake orbits.
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Regularity. In order to study critical points of Br , we introduce its L2-gradient as a map
rBr WX ! Y from a suitable Hilbert manifold X to a Hilbert space Y . It satisfies the
following theorem (see Theorem A.1):

Theorem C. For each r 2 Œ0; 1�, the L2-gradient rBr WX ! Y is a C 1-Fredholm map
of index 0.

This result is nontrivial because rBr involves time reparametrizations depending on
points of X as well as singular terms. Inspection of its proof shows that rBr is not of
class C 2.

Theorem C makes the functionals Br amenable to classical variational methods such
as index theory or Morse theory. In this paper we content ourselves with computing the
mod 2 Euler number �.rBr /, i.e. the count of zeros modulo 2 (after suitable perturbation;
see Appendix C). On symmetric loops we find

�.rBin/ D �.rBav/ D 1;

where the first equality follows from homotopy invariance of the mod 2 Euler number and
the second one from a further deformation and explicit computation (see Appendix D). As
a consequence, we obtain the following corollary (see Theorem 6.1):

Corollary C. For every E < 0 there exists a symmetric frozen planet orbit of energy E.

Hamiltonian formulation. The regularized action functional Br has an intriguing struc-
ture. It consists of two terms. The first term can be interpreted as a kinetic energy, but for a
nonlocal metric which depends on the whole loop. The second term can be interpreted as
the negative of a nonlocal potential which is defined on the loop space of the configuration
space. We explain how in this situation a nonlocal Legendre transform can be carried out
which produces a nonlocal Hamiltonian (see Section 7):

Theorem D. After applying the nonlocal Legendre transform to the regularized action
functional Br , the corresponding Hamiltonian delay equation reproduces frozen planet
orbits.

Thus there are two nonlocal approaches to frozen planet orbits, one Lagrangian and
one Hamiltonian. This produces food for thought for many interesting research projects.
For instance, the Lagrangian action functional has a Morse index at each frozen planet
orbit. On the other hand, the Hessian of the Hamiltonian action functional is a Fredholm
operator which gives rise to a nonlocal Conley–Zehnder index at each frozen planet orbit.
Since in the local case the Morse index corresponds to the Conley–Zehnder index after
Legendre transform we may ask the following question:

Question 1. How are the Morse index and the Conley–Zehnder index for frozen planet
orbits related?
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We remark that for a simple but yet nontrivial delay equation, the regularized free fall,
equality has been established recently in [5].

The correspondence between these indices [11] is an important ingredient in the cele-
brated adiabatic limit argument by Salamon and Weber [8] relating Floer homology with
the heat flow on chain level.

Question 2. Is there an analogy of the adiabatic limit argument of Salamon and Weber
for frozen planet orbits?

2. The Kepler problem

When the interaction between the electrons is ignored, the system decouples into two one-
electron systems, each of which is equivalent to the Kepler problem in celestial mechanics.
In this section we recall the regularization procedure of Barutello, Ortega and Verzini [2]
for the Kepler problem in the plane. It is based on the Levi-Civita regularization map
LWC ! C, z 7! q D z2. Since we are interested in the case that the position q of the
electron remains on the positive real line, we view the Levi-Civita map as a map to the
nonnegative reals R! R�0, z 7! q D z2; see (1).

2.1. Levi-Civita transformation

In this subsection we describe the Levi-Civita transformation without worrying about the
regularity of the involved maps; precise statements will be given in the following subsec-
tions.

We abbreviate by S1 D R=Z the circle. We denote the L2-inner product of z1; z2 2
L2.S1;R/ by

hz1; z2i WD

Z 1

0

z1.�/z2.�/ d�

and the L2-norm of z 2 L2.S1;R/ by

kzk WD
p
hz; zi:

In the sequel we will work with Sobolev spaces H k D W k;2, but the only relevant norms
and inner products will be the ones from L2.

Consider two maps
qWS1 ! R�0; zWS1 ! R

related by the Levi-Civita transformation

q.t/ D z.�/2 (1)

for a time change t $ � satisfying 0$ 0 and

dt

q.t/
D

d�

kzk2
: (2)
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This implies that the mean values of q and 1=q are given by

Nq WD

Z 1

0

q.t/ dt D

Z 1

0

z.�/4

kzk2
d� D

kz2k2

kzk2
(3)

and Z 1

0

dt

q.t/
D

1

kzk2
: (4)

We will denote derivatives with respect to t by a dot and derivatives with respect to � by a
prime. Then the first and second derivatives of q and z (where they are defined) are related
by

Pq.t/ D 2z.�/z0.�/
d�

dt
D
2kzk2z0.�/

z.�/
(5)

and

Rq.t/ D 2kzk2
z00.�/z.�/ � z0.�/2

z.�/2
d�

dt
D
2kzk4

z.�/4

�
z00.�/z.�/ � z0.�/2

�
: (6)

Substituting z2 and z02 by (1) and (5) this becomes

Rq.t/ D
1

q.t/

�
2kzk4

z00.�/

z.�/
�
Pq.t/2

2

�
: (7)

The L2-norm of the derivative of q is given by

k Pqk2 D

Z 1

0

Pq.t/2 dt D

Z 1

0

4kzk4z0.�/2

z.�/2
z.�/2

kzk2
d� D 4kzk2kz0k2: (8)

2.2. Inverting the Levi-Civita transformation

In this subsection we prove that, under suitable technical hypotheses, the Levi-Civita trans-
formation defines a 2-to-1 covering.

We begin with a precise definition of the Levi-Civita transformation. Let z 2
C 0.S1;R/ be a continuous function with finite zero set

Zz WD z
�1.0/:

We associate to z a C 1-map tz WS1 ! S1 by

tz.�/ WD
1

kzk2

Z �

0

z.�/2 d�: (9)

Note that tz.0/ D 0 and

t 0z.�/ D
z.�/2

kzk2
: (10)

Since z has only finitely many zeros, this shows that tz is strictly increasing and we con-
clude the following lemma:
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Lemma 2.1. If z 2 C 0.S1;R/ has only finitely many zeros, then the map tz W S1 ! S1

defined by (9) is a homeomorphism.

It follows that tz WS1 ! S1 has a continuous inverse

�z WD t
�1
z WS

1
! S1:

Since tz is of class C 1, the function �z is also of class C 1 on the complement of the finite
set tz.Zz/ with derivative

P�z.t/ D
kzk2

z.�z.t//2
: (11)

We define a continuous map qWS1 ! R�0 by

q.t/ WD z.�z.t//
2: (12)

Then the two maps z, q are related by the Levi-Civita transformation (1) with � D �z .
Their zero sets

Zz D z
�1.0/ and Zq WD q

�1.0/ D tz.Zz/

are in bijective correspondence via tz (or equivalently �z). Moreover, by (4) we haveZ 1

0

ds

q.s/
D

1

kzk2
<1:

Conversely, suppose we are given a map q 2 C 0.S1;R�0/ with finite zero set Zq satisfy-
ing

R 1
0

ds
q.s/

<1. We associate to q the time reparametrization �q WS1 ! S1,

�q.t/ WD

�Z 1

0

ds

q.s/

��1 Z t

0

1

q.s/
ds: (13)

Then �q.1/ D 1, �q is of class C 1 outside the zero set Zq D q�1.0/ with derivative

� 0q.t/ D

�Z 1

0

ds

q.s/

��1
1

q.t/
; t 2 S1 nZq : (14)

By [2, Lemma 2.1] the map �q WS1 ! S1 is a homeomorphism whose inverse tq WD ��1q
is of class C 1 and satisfies tq.1/ D ��1q .1/ D 1 and

t 0q.�/ D

�Z 1

0

ds

q.s/

�
q.tq.�//; � 2 S1: (15)

Suppose that zWS1 ! R is a continuous function satisfying

z.�/2 D q.tq.�//: (16)

Then z has finite zero set Zz D �q.Zq/, so we can associate to z the homeomorphism
tz WS

1 ! S1 defined by (9) and its inverse �z . We claim that

�q D �z and tq D tz : (17)
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It is enough to check the second equality. For this we computeZ �

0

z.�/2 d� D

Z �

0

q.tq.�// d�

.�/
D

�Z 1

0

ds

q.s/

��1 Z tq.�/

0

ds

D

�Z 1

0

ds

q.s/

��1
tq.�/;

where .�/ follows from the coordinate change � D �q.s/ and (14). Evaluating at � D 1
gives us

1

kzk2
D

Z 1

0

ds

q.s/
: (18)

Therefore,

tz.�/ D
1

kzk2

Z �

0

z.�/2 d� D tq.�/

and (17) is established. Hence q is the Levi-Civita transform of z defined by (12).
Equation (16) does not uniquely determine z for given q because the sign of z can

be arbitrarily chosen on each connected component of S1 nZz . If Zz consists of an even
number of points, then we can determine z up to a global sign by the requirement that
z changes its sign at each zero. Therefore, the preceding discussion shows the following
lemma:

Lemma 2.2. The Levi-Civita transformation z 7! q given by (12) defines, for each even
integer m 2 2N, a surjective 2-to-1 map

LW
®
z 2 C 0.S1;R/

ˇ̌
z has precisely m zeros and switches sign at each zero

¯
!
®
q 2 C 0.S1;R�0/

ˇ̌
z has precisely m zeros and

R 1
0

ds
q.s/

<1
¯
:

The following lemma shows how additional regularity properties translate between z
and q. Near each zero t� of q we define the local sign function

s�.t/ WD

´
�1; t < t�;

C1; t > t�:

If q is of class C 1 outside its zero set, we denote by

Eq.t/ WD
Pq2.t/

2
�

N

q.t/
; t 2 S1 nZq (19)

its Kepler energy at time t , for some fixed N > 0. By (8) it corresponds under the Levi-
Civita transformation to

Ez.�/ WD
2kzk4z0.�/2 �N

z.�/2
; � 2 S1 nZz : (20)
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Lemma 2.3. Let z, q be as in Lemma 2.2 related by the Levi-Civita transform (12), and
let k be a nonnegative integer. Then the following hold:

(a) z 2 H 1.S1;R/ if and only if q 2 H 1.S1;R�0/;

(b) z is of class C k outside its zeros if and only if q is of class C k outside its zeros;

(c) z is of class C 1 on all of S1 if and only if q is of class C 1 outside Zq and for
each t� 2 Zq the following limit exists:

lim
t�¤t!t�

s�.t/
p
q.t/ Pq.t/I

(d) z is of class C 1 with transverse zeros if and only if q is of class C 1 outside Zq
and for each t� 2 Zq the limit in (c) exists and is positive;

(e) the energy Ez W S1 n Zz ! R is defined and extends to a continuous function
S1 ! R if and only if the energy Eq W S1 n Zq ! R is defined and extends to a
continuous function S1 ! R;

(f) the conditions in (e) imply those in (d).

Proof. Part (a) follows immediately from formula (8). For (b) just note that if z is of class
C k outside Zz then tz is of class C kC1 outside Zz , so �z and therefore also q is of class
C kC1 outside tz.Zz/ D Zq , and the same in the reverse direction.

For (c) and (d) suppose that z, q are of classC 1 outside their zero sets. In the following
we will always denote by � , t times related by the time transformation t D tz.�/ D tq.�/.
Consider a zero t� 2 Zq with corresponding �� 2 Zz . Since z switches sign at �� we can
write

z.�/ D "s�.t/
p
q.t/

for � ¤ �� near ��, with some sign " 2 ¹�1; 1º. Inserting this into (5) and solving for z0.�/
yields

z0.�/ D
"s�.t/

p
q.t/ Pq.t/

2kzk2
; (21)

from which (c) and (d) follow.
Part (e) follows immediately fromEz.�/DEq.tz.�//. To see that (e) implies (d), note

first that the existence and continuity of Eq W S1 n Zq ! R implies that q is of class C 1

on S1 nZq . Suppose now that Eq extends to a continuous function S1 ! R, so for each
t� 2 Zq the limit

lim
t�¤t!t�

�
Pq.t/2

2
�

N

q.t/

�
exists. This implies that Pq.t/2 !1 as t ! t�, in particular Pq.t/ ¤ 0 for all t ¤ t� close
to t�. Since q.t/ > 0 for t ¤ t� and q.t�/ D 0, this implies that

Pq.t/ D s�.t/
p
Pq.t/2 D s�.t/

s
2Eq.t/C

2N

q.t/
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for all t ¤ t� close to t�. It follows that

lim
t�¤t!t�

s�.t/
p
q.t/ Pq.t/ D lim

t�¤t!t�

p
2E.t/q.t/C 2N D

p
2N > 0;

which is the condition in (d). This proves the lemma.

Note that z 2 H 1 and the extension of Eq to a continuous function S1 ! R implies
the existence of the integralZ 1

0

Eq.t/ dt D
kPqk2

2
�

Z 1

0

dt

q.t/
;

and therefore
R 1
0

ds
q.s/

<1. Hence Lemma 2.3 implies the following corollary:

Corollary 2.4. For each even m 2 2N the Levi-Civita map L of Lemma 2.2 restricts to a
surjective 2-to-1 map

LWC1ce.S
1;R/! H1

ce.S
1;R�0/;

where

• C1ce.S
1;R/ denotes the set of z 2 C 1.S1;R/ with preciselym zeros such that all zeros

are transverse and the energy Ez extends to a continuous function S1 ! R, and

• H1
ce.S

1;R�0/ denotes the set of q 2 H 1.S1;R�0/ with precisely m zeros such that
q is of class C 1 outside its zeros and the energy Eq extends to a continuous function
S1 ! R.

2.3. Variational characterization of generalized solutions

An electron moving in the electric field of a fixed nucleus with charge N > 0 is described
by Newton’s equation

Rq.t/ D �
N

q.t/2
: (22)

Alternatively, it describes the Kepler problem of a body of mass 1 moving in the gravita-
tional field of a body of mass N . Its periodic solutions avoiding the origin are the critical
points of the Lagrangian action functional

�.q/ WD
1

2

Z 1

0

Pq.t/2 dt C

Z 1

0

N

q.t/
dt:

Since all periodic solutions have collisions there are actually no critical points for this
unregularized functional. Let q and z be related by the Levi-Civita transformation (1).
Using the relations (2), (5) and (18), we rewrite the Lagrangian action of q in terms of z:

�.q/ D
1

2

Z 1

0

4kzk4z0.�/2

z.�/2
z.�/2

kzk2
d� C

N

kzk2

D 2kzk2kz0k2 C
N

kzk2
:
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We denote the resulting action functional of z by

QWH 1.S1;R/ n ¹0º ! R; Q.z/ WD 2kzk2kz0k2 C
N

kzk2
: (23)

Following [2] we call q 2 H 1.S1;R�0/ a generalized solution of (22) if

(1) the zero set Z D q�1.0/ � S1 is finite and has an even number of elements;

(2) on S1 nZ the map q is smooth and satisfies (22);

(3) the energy

E.t/ WD
Pq.t/2

2
�

N

q.t/
; t 2 S1 nZ

extends to a continuous function EWS1 ! R.

Note that the energy E is then constant (by conservation of energy) and negative (for q to
be bounded).

Theorem 2.5 (Barutello, Ortega and Verzini [2]). Under the Levi-Civita transformation
(1) with time change (2), critical points zW S1 ! R of the action functional Q defined
in (23) are in 2-to-1 correspondence with generalized solutions qWS1 ! R�0 of (22).

In the remainder of this section we will spell out the proof of this theorem because it
uses some ingredients that will also be needed in later sections.

2.4. From critical points to generalized solutions

The differential of Q at z 2 H 1.S1;R/ n ¹0º in the direction v 2 H 1.S1;R/ is given by

DQ.z/v D 4kzk2hz0; v0i C 4kz0k2hz; vi �
2N

kzk4
hz; vi: (24)

This shows that a critical point z has a weak second derivative and satisfies the second-
order ODE with constant coefficient

z00.�/ D a z.�/; a D
kz0k2

kzk2
�

N

2kzk6
: (25)

It follows that z is smooth. Moreover, z 2 H 1.S1;R/ implies boundedness of z and thus
forces a < 0. So z is a shifted sine function. In particular, z has transverse zeros in the
sense that z0.�/ ¤ 0 whenever z.�/ D 0. In particular, its zero set

Z WD
®
� 2 S1

ˇ̌
z.�/ D 0

¯
is finite. We associate to z the smooth map tz W S1 ! S1 defined by (9). By Lemma 2.1,
the map tz is a homeomorphism with continuous inverse �z D t�1z W S

1 ! S1. Since tz
is smooth, the function �z is also smooth on the complement of the finite set tz.Z/ with
derivative given by (11). We define a continuous map qWS1 ! S1 by

q.t/ WD z.�z.t//
2:
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Then the two maps z; qWS1! R are smooth except at finitely many points and related by
the Levi-Civita transformation (1) with � D �z . Substituting z00 by (25) in (7) we get the
following ODE for q at points t 2 S1 n tz.Z/:

Rq.t/ D
1

q.t/

�
2kzk4a �

Pq.t/2

2

�
D

1

q.t/

�
c �
Pq.t/2

2

�
(26)

with the constant (using (4) and (8))

c WD 2kzk4a D 2kz0k2kzk2 �
N

kzk2
D
kPqk2

2
�

Z 1

0

N

q.s/
ds:

Since at a local maximum t of q we must have Pq.t/D 0 and Rq.t/ < 0, it follows from (25)
that c < 0, hence Rq < 0 outside its zeros. Consider now two consecutive zeros t� < tC of
q and the smooth map

ˇ WD
Rq

q
W .t�; tC/! R�:

Then (omitting the t ) we have ˇq2 D q Rq D c � Pq2=2 and taking a time derivative yields

P̌q2 C 2ˇq Pq D �Pq Rq D �ˇq Pq;

hence
P̌q D �3ˇ Pq: (27)

Lemma 2.6. Equation (27) for functions q > 0 and ˇ < 0 on .t�; tC/ implies that

ˇ D �
�

q3
(28)

on .t�; tC/ for some constant � > 0.

Proof. Dividing both sides of (28) by qˇ yields

d

dt
log.�ˇ/ D �3

d

dt
log.q/;

which by integration implies the lemma.

The lemma implies that
Rq D ��=q2 (29)

on .t�; tC/. Combining this with (26) yields

�
�

q
D q Rq D c �

Pq2

2
D
kPqk2

2
�

Z 1

0

N

q.s/
ds �

Pq2

2
(30)

on .t�; tC/. Multiplying this equation by �q, the smoothness of q gives

� D lim
t!t˙
�q.t/

�
k Pqk2

2
�

Z 1

0

N

q.s/
ds �

Pq.t/2

2

�
:
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This shows that the constant � is the same for each interval between consecutive zeros
of q, so (30) holds on all of S1 n tz.Z/. Now integrating (30) over S1 yields

� D N;

so (29) becomes Newton’s equation (22). Inserting � D N in (30) shows that the energy

E D
Pq2

2
� �

N

q
D
kPqk2

2
�

Z 1

0

N

q.s/
ds

is constant, so q is a generalized solution of (22).

2.5. From generalized solutions to critical points

Now let q 2 H 1.S1;R�0/ be a generalized solution of (22). Integrating the constant
energy yields

E D

Z 1

0

Pq.t/2

2
dt �

Z 1

0

N

q.t/
dt:

Since q 2 H 1, the first term on the right-hand side is finite and it follows thatZ 1

0

1

q.t/
dt <1:

As in Section 2.2, we associate to q the time reparametrization �q W S1 ! S1 defined
by (13) and its inverse tq D ��1q . Recall that �q is smooth outside the zero setZq D q�1.0/
and tq is of class C 1. We define a continuous function zWS1 ! R by the condition

z.�/2 D q.tq.�//

and the requirement that z changes its sign at each zero. This is possible because q has an
even number of zeros, and it determines z up to a global sign. Using the change of variable
� D �q.t/ we find

kzk2 D

Z 1

0

z.�/2 d� D

�Z 1

0

1

q.s/
ds

��1 Z 1

0

z.�q.t//
2 1

q.t/
dt

D

�Z 1

0

1

q.s/
ds

��1
:

It follows that z and q are related by the Levi-Civita transformation (1) with time change
t ! � D �q satisfying (2).

In the sequel we will drop the arguments t and � . Combining equations (6) and (22)
outside Zq we obtain

�
N

z4
D �

N

q2
D Rq D 2

kzk4

z4
.z00z � z02/;
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hence
z00.�/z.�/ � z0.�/2 D �

N

2kzk4
; � 2 S1 n �q.Zq/: (31)

Consider the function

ˇ WD
z00

z
WS1 n �.Zq/! R:

Inserting this into (31) and using equations (1) and (5) we find

�
N

2kzk4
D ˇz2 � z02 D q

�
ˇ �

Pq2

4kzk4

�
;

and solving for ˇ yields

ˇ.�q.t// D
1

2kzk4

�
Pq.t/2

2
�

N

q.t/

�
D

1

2kzk4
E.t/; t 2 S1 nZq :

Since q is a generalized solution, the energy E is constant and negative, thus ˇ.�/ �
E=2kzk4 < 0 and the definition of ˇ implies

z00.�/ D
E

2kzk4
z.�/; � 2 S1 n �q.Zq/:

The solutions of this ODE are shifted sine functions. So the condition that z switches sign
at each zero implies that it defines a smooth function zWS1 ! R solving the ODE on all
of S1. Rewriting the energy via (4) and (8) as

E D
kPqk2

2
�

Z 1

0

N

q.t/
dt D 2kzk2kz0k2 �

N

kzk2

and inserting this into the ODE, we see that z satisfies ODE (25) and is therefore a critical
point of Q.

Together with the previous subsection this concludes the proof of Theorem 2.5.

3. Mean interaction

In this section we consider a “helium atom” in which the two electrons interact by the
mean values Nqi D

R 1
0
qi .t/ dt according to8̂̂<̂

:̂
Rq1.t/ D �

2

q1.t/2
C

1

. Nq1 � Nq2/2
;

Rq2.t/ D �
2

q2.t/2
�

1

. Nq1 � Nq2/2
;

(32)

where we impose the condition
Nq1 > Nq2: (33)
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3.1. Variational characterization of generalized solutions

Solutions of (32) are the critical points of the action functional

�av.q1; q2/ WD

2X
iD1

�
1

2

Z 1

0

Pqi .t/
2 dt C

Z 1

0

2

qi .t/
dt

�
�

1

Nq1 � Nq2
:

For i D 1; 2 let qi and zi be related by Levi-Civita transformations

qi .t/ D zi .�i .t//
2 (34)

for time changes �i .t/ satisfying �i .0/ D 0 and

dt

qi .t/
D
d�i .t/

kzik2
: (35)

Note that we perform different time changes for the two electrons. Then all the relations
in Section 2.1 hold with .q; z; �/ D .qi ; zi ; �i /. In particular, we can use (3) to rewrite the
interaction term in terms of the zi :

�
1

Nq1 � Nq2
D �

1

kz21k
2

kz1k2
�
kz22k

2

kz2k2

D �
kz1k

2kz2k
2

kz21k
2kz2k2 � kz

2
2k
2kz1k2

:

We denote the resulting mean interaction of .z1; z2/ by

A.z1; z2/ WD �
kz1k

2kz2k
2

kz21k
2kz2k2 � kz

2
2k
2kz1k2

: (36)

This quantity is naturally defined on the space

H1
av WD

®
z D .z1; z2/ 2 H

1.S1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

kz21k
2

kz1k2
>
kz22k

2

kz2k2

¯
: (37)

Note that H1
av is an open subset of the Hilbert space H 1.S1;R2/ and the last condition in

its definition corresponds to condition (33). On H1
av we consider the functional

BavWH
1
av ! R; Bav.z1; z2/ WD Q.z1/CQ.z2/CA.z1; z2/; (38)

with the functionals
Q.zi / D 2kzik

2
kz0ik

2
C

2

kzik2

from (23) with charge N D 2.
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We call .q1; q2/ 2 H 1.S1;R�0 �R�0/ a generalized solution of (32) if for i D 1; 2
the following holds:

(1) Nq1 > Nq2;

(2) the zero sets Zi D q�1i .0/ � S1 are finite and each have an even number of ele-
ments;

(3) the restricted maps qi WS1 nZi ! R�0 are smooth and satisfy (32);

(4) the energies

Ei .t/ WD
Pqi .t/

2

2
�

2

qi .t/
; t 2 S1 nZi

extend to continuous functions Ei WS1 ! R.

Note that the individual energies Ei need not be constant, but their sum is constant and
negative.

Theorem 3.1 (Generalized solutions with mean interaction). Under the Levi-Civita trans-
formations (34) with time changes (35), critical points .z1; z2/ of the action functional Bav

defined in (38) are in 4-to-1 correspondence with generalized solutions .q1; q2/ of (32).

The proof of this theorem will take up the remainder of this section.

3.2. The differential of Bav

The differential of the mean interaction A at .z1; z2/ 2 H1
av in the direction .v1; v2/ 2

H 1.S1;R2/ is given by

DAŒz1; z2�.v1; v2/ D �2
kz2k

2 � hz1; v1i C kz1k
2 � hz2; v2i

kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2

C 2
kz1k

2 � kz2k
2.2kz2k

2 � hz31 ; v1i C kz
2
1k
2 � hz2; v2i/

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

� 2
kz1k

2 � kz2k
2.2kz1k

2 � hz32 ; v2i C kz
2
2k
2 � hz1; v1i/

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

D �2
kz2k

4 � kz21k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz1; v1i

C 2
kz1k

4 � kz22k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz2; v2i

C 4
kz1k

2 � kz2k
4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz31 ; v1i

� 4
kz1k

4 � kz2k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz32 ; v2i: (39)
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Combined with (24) with z D zi , v D vi and N D 2 for the differentials DQ.zi /vi , this
yields the differential of Bav:

DBavŒz1; z2�.v1; v2/ D 4

2X
iD1

�
kzik

2
hz0i ; v

0
i i C kz

0
ik
2
� hzi ; vi i �

hzi ; vi i

kzik4

�
� 2

kz2k
4 � kz21k

2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz1; v1i

C 2
kz1k

4 � kz22k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz2; v2i

C 4
kz1k

2 � kz2k
4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz31 ; v1i

� 4
kz1k

4 � kz2k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

hz32 ; v2i: (40)

3.3. Critical points of Bav

Equation (40) leads to the characterization of critical points of Bav:

Proposition 3.2. A point .z1; z2/ 2 H1
av is a critical point of Bav if and only if .z1; z2/ is

smooth and solves the system of (uncoupled!) ODEs´
z001 D a1z1 C b1z

3
1 ;

z002 D a2z2 C b2z
3
2 ;

(41)

with the constants

a1 D
kz01k

2

kz1k2
�

1

kz1k6
�

kz2k
4 � kz21k

2

2kz1k2 � .kz
2
1k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

;

b1 D C
kz2k

4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

;

a2 D
kz02k

2

kz2k2
�

1

kz2k6
C

kz1k
4 � kz22k

2

2kz2k2 � .kz
2
1k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

;

b2 D �
kz1k

4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

:

Proof. From (40) we see that .z1; z2/ is a critical point of Bav if and only if z1 and z2
have weak second derivatives and satisfy the system of ODEs (41). Bootstrapping these
equations we conclude that z1 and z2 are smooth and the proposition follows.

Corollary 3.3. Suppose that .z1; z2/ is a critical point of Bav. Then z1 and z2 have trans-
verse zeros. In particular, their zero sets

Zi WD
®
� 2 S1

ˇ̌
zi .�/ D 0

¯
; i D 1; 2

are finite.
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Proof. Arguing by contradiction, suppose that there exists a point �0 2 S1 such that
z1.�0/D z

0
1.�0/D 0. Then the function z1 and the zero function both solve the first equa-

tion in (41) with the same initial conditions at �0. By uniqueness of solutions of ODEs
we conclude z1 � 0, contradicting the condition kz1k > 0 in the definition of Hav. An
analogous argument applies to z2.

3.4. From critical points to generalized solutions

Let .z1; z2/ 2H1
av be a critical point of Bav, so by Proposition 3.2 the maps z1; z2WS1!R

are smooth and satisfy (41). For i D 1; 2 we define the smooth maps tzi WS
1 ! S1 by

tzi .�/ WD
1

kzik2

Z �

0

zi .�/
2 d�: (42)

Since by Corollary 3.3 the map zi has only finitely many zeros, it follows from Lemma 2.1
that tzi WS

1 ! S1 is a homeomorphism with continuous inverse �zi WS
1 ! S1. We define

continuous maps qi WS1 ! S1 by

qi .t/ WD zi .�zi .t//
2:

Then for i D 1; 2 the maps zi ; qi WS1 ! R are smooth except at finitely many points and
related by the Levi-Civita transformation (1) with � D �zi . As explained in Section 3.1,
the last condition in the definition of H1

av implies

Nq1 > Nq2:

Let us now focus on i D 1. Substituting z001 by (41) in (7) with q D q1 and z D z1 we
compute at points t 2 S1 n tz1.Z1/,

Rq1 D
�
2kz01k

2
� kz1k

2
�

2

kz1k2
�

kz1k
2 � kz2k

4 � kz21k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

� 1
q1

C
2kz1k

4 � kz2k
4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

�
Pq21
2q1

D

�
2kz01k

2
� kz1k

2
�

2

kz1k2
�

kz1k
4 � kz2k

4 �
kz21k

2

kz1k2

kz1k4 � kz2k4 �
� kz21k2
kz1k2

�
kz22k

2

kz2k2

�2 � Pq212
�
1

q1

C
2kz1k

4 � kz2k
4

kz1k4 � kz2k4 �
� kz21k2
kz1k2

�
kz22k

2

kz2k2

�2
D

�
2kz01k

2
� kz1k

2
�

2

kz1k2
�

kz21k
2

kz1k2� kz21k2
kz1k2

�
kz22k

2

kz2k2

�2 � Pq212
�
1

q1
C

2� kz21k2
kz1k2

�
kz22k

2

kz2k2

�2
D

�
k Pq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Nq1

. Nq1 � Nq2/2
�
Pq21
2

�
1

q1
C

2

. Nq1 � Nq2/2
:
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Thus q1 satisfies the ODE

Rq1 D
�
c1 �

Pq21
2

� 1
q1
C

2

. Nq1 � Nq2/2
(43)

with the constant

c1 D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Nq1

. Nq1 � Nq2/2
: (44)

At the global maximum tmax of q1 equation (43) becomes

c1

q1.tmax/
C

2

. Nq1 � Nq2/2
D Rq1.tmax/ � 0;

hence

c1 � �
2q1.tmax/

. Nq1 � Nq2/2
: (45)

Now let t� < tC be adjacent zeros of q1 and consider the smooth map

ˇ1 WD
Rq1 �

1
. Nq1�Nq2/2

q1
W .t�; tC/! R:

From (43) we obtain

ˇ1q
2
1 D c1 �

Pq21
2
C

q1

. Nq1 � Nq2/2
:

With q1 � q1.tmax/ and inequality (45) this implies

ˇ1q
2
1 � �

Pq21
2
�

q1.tmax/

. Nq1 � Nq2/2
< 0;

hence ˇ1 < 0 on .t�; tC/. Differentiating both sides of the equation for ˇq21 we get

P̌
1q
2
1 C 2ˇ1q1 Pq1 D �Rq1 Pq1 C

Pq1

. Nq1 � Nq2/2
D �ˇ1q1 Pq1

and therefore
P̌
1q1 D �3ˇ1 Pq1:

By Lemma 2.6 this implies that
ˇ1 D �

�

q31

on .t�; tC/ for some constant � > 0. By definition of ˇ1 this yields

Rq1.t/ D �
�

q1.t/2
C

1

. Nq1 � Nq2/2
(46)

for t 2 .t�; tC/. Plugging this into (43) we infer

� D �

�
k Pq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Nq1

. Nq1 � Nq2/2
�
Pq1.t/

2

2

�
q1.t/ �

q1.t/
2

. Nq1 � Nq2/2
(47)
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for t 2 .t�; tC/. In particular, use (5) in the second identity to obtain

� D lim
t!t˙

Pq1.t/
2q1.t/

2
D 2kz1k

4z01.�z1.t˙//
2: (48)

We deduce from this that (46) holds on S1 n tz1.Z1/ with a fixed � independent of the
connected component in S1 n tz1.Z1/. We divide (47) by q1 to get

�

q1.t/
D �
kPq1k

2

2
C

Z 1

0

2

q1.s/
ds C

Nq1

. Nq1 � Nq2/2
C
Pq1.t/

2

2
�

q1.t/

. Nq1 � Nq2/2
: (49)

Integrating this equation yields

�

Z
1

q1.t/
dt D 2

Z 1

0

1

q1.s/
ds;

and therefore
� D 2:

Thus (46) becomes the first equation in (32). Similarly, one obtains for q2 the equation

Rq2 D

�
k Pq2k

2

2
�

Z 1

0

2

q2
dt C

Nq2

. Nq1 � Nq2/2
�
Pq22
2

�
1

q2
�

2

. Nq1 � Nq2/2
:

Setting

ˇ2 WD
Rq2 C

1
. Nq1�Nq2/2

q2

one gets
P̌
2q2 D �3ˇ2 Pq2

implying that there exists � 2 R such that

ˇ2 D �
�

q32
:

Arguing as above one deduces from this that � D 2 and thus q2 satisfies the second equa-
tion in (32).

To see the continuity of E1, we solve (49) (with � D 2) for

E1.t/ D
Pq1.t/

2

2
�

2

q1.t/

D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Nq1

. Nq1 � Nq2/2
�

q1.t/

. Nq1 � Nq2/2

and note that the right-hand side is continuous as a function of t 2 Œ0; 1�. Continuity of E2
follows similarly, and we have shown that .q1; q2/ is a generalized solution of (32).
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3.5. From generalized solutions to critical points

Now let .q1; q2/ 2 H 1.S1;R�0 �R�0/ be a generalized solution of (32). The definition
of a generalized solution implies that q1; q2 2 H1

ce.S
1;R�0/. Corollary 2.4 implies that

the set L�1.q1/ �L�1.q2/ consists of four elements. The goal of this section is to show
that each .z1; z2/ 2 L�1.q1/ � L�1.q2/ is a critical point of Bav. To see this, observe
that smoothness of qi on the complement of its zero set Zqi implies smoothness of zi on
the complement of its zero set Zzi , i 2 ¹1; 2º. In particular, second derivatives of zi make
sense there and we can make the following statement.

Lemma 3.4. Any .z1; z2/ 2 L�1.q1/ � L�1.q2/ satisfies the critical point (41) on the
complement of the set Zz1 [Zz2 .

Assuming this lemma for the moment, recall that z1 and z2 are of class C 1 and (41)
expresses z00i through zi . Thus bootstrapping (41) implies that z1 and z2 are smooth and
(41) holds on the whole S1. Therefore, it remains to prove Lemma 3.4.

Proof of Lemma 3.4. We will show the desired equation for z1. A similar argument will
do the job for z2. Recall the equation satisfied by q1,

Rq1 D �
2

q21
C

1

. Nq1 � Nq2/2
: (50)

Set

ˇ1 WD
Rq1 �

1
. Nq1�Nq2/2

q1
(51)

on S1 nZq1 . Then by (50) we have

ˇ1 D �
2

q31
;

and taking the time derivative we obtain

P̌
1 D

3 � 2

q41
Pq1 D �

3ˇ1 Pq1

q1
:

We multiply both sides by q21 to get

P̌
1q
2
1 D �3ˇ1 Pq1q1:

We bring �2ˇ1 Pq1q1 to the other side to continue:

P̌
1q
2
1 C 2ˇ1 Pq1q1 D �ˇ1 Pq1q1:

We substitute the original definition (51) of ˇ1 into the right-hand side to get

P̌
1q
2
1 C 2ˇ1 Pq1q1 D �Pq1 Rq1 C

Pq1

. Nq1 � Nq2/2
:
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Integrating both sides from 0 to t we get

ˇ1q
2
1 D C �

Pq21
2
C

q1

. Nq1 � Nq2/2

with some constant C 2R. We substitute the original definition (51) of ˇ1 in the left-hand
side to get

Rq1q1 D C �
Pq21
2
C

2q1

. Nq1 � Nq2/2
:

Observe that modulo the exact value of C this is exactly (43), which is equivalent to the
first equation of (41). Therefore, we are left with computing the constant C . For this we
solve the last equation for C and use (50) to obtain

C D
Pq21
2
�
2

q1
�

q1

. Nq1 � Nq2/2
;

and integrating from 0 to 1 gives us

C D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Nq1

. Nq1 � Nq2/2
;

which matches the constant c1 in (44). This concludes the proof of Lemma 3.4, and there-
fore of Theorem 3.1.

4. Instantaneous interaction

In this section we consider the real helium atom in which the two electrons interact by
their Coulomb repulsion according to8̂̂<̂

:̂
Rq1.t/ D �

2

q1.t/2
C

1

.q1.t/ � q2.t//2
;

Rq2.t/ D �
2

q2.t/2
�

1

.q1.t/ � q2.t//2
;

(52)

where we impose the condition

q1.t/ > q2.t/ � 0 for all t 2 S1: (53)

4.1. Variational characterization of generalized solutions

Solutions of (52) are the critical points of the action functional

�in.q1; q2/ WD

2X
iD1

�
1

2

Z 1

0

Pqi .t/
2 dt C

Z 1

0

2

qi .t/
dt

�
�

Z 1

0

1

q1.t/ � q2.t/
dt:
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For i D 1; 2 let qi and zi be related by Levi-Civita transformations

qi .t/ D zi .�zi .t//
2; (54)

where �zi WS
1! S1 is the inverse of tzi WS

1! S1 defined in (9) with zD zi . As in Section
2.1 it follows that

dt

qi .t/
D
d�zi .t/

kzik2
; (55)

so all the relations in Section 2.1 hold with .q; z; �/ D .qi ; zi ; �zi /. In particular, we can
rewrite the last integral in terms of the zi as the instantaneous interaction

	.z1; z2/ WD �
1

kz1k2

Z 1

0

z1.�/
2

z21.�/ � z
2
2.�z2.tz1.�///

d�

D �

Z 1

0

1

z21.�z1.t// � z
2
2.�z2.t//

dt

D
1

kz2k2

Z 1

0

z2.�/
2

z22.�/ � z
2
1.�z1.tz2.�///

d�; (56)

where in the last two equalities we have changed the integration variable to � D �z1.t/

(resp. � D �z2.t/) using (55). Note that the functional 	 is nonlocal due to the appear-
ance of the time changes, which we have written as �zi rather than �i to indicate their
dependence on zi .

The instantaneous interaction 	 is naturally defined on the space

H1
in WD

®
z D .z1; z2/ 2 H

1.S1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

z21.�/ � z
2
2.�z2.tz1.�/// > 0 for all � 2 S1

¯
: (57)

Note that H1
in is an open subset of the Hilbert space H 1.S1;R2/ and the last condition in

its definition corresponds to condition (53). Since integrating condition (53) leads to the
averaged condition (33), which is in turn equivalent to the last condition in the definition
of H1

av in Section 3.1, we have
H1

in � H1
av: (58)

On H1
in we consider the functional

BinWH
1
in ! R; Bin.z1; z2/ WD Q.z1/CQ.z2/C 	.z1; z2/; (59)

with the functionals
Q.zi / D 2kzik

2
kz0ik

2
C

2

kzik2

from (23) with charge N D 2.
We call .q1; q2/ 2 H 1.S1;R�0 �R�0/ a generalized solution of (52) if for i D 1; 2

the following holds:
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(1) q1.t/ > q2.t/ for all t 2 S1;

(2) the zero sets Zi D q�1i .0/ � S1 are finite and each have an even number of ele-
ments;

(3) the restricted maps qi WS1 nZi ! R�0 are smooth and satisfy (52);

(4) the energies

Ei .t/ WD
Pqi .t/

2

2
�

2

qi .t/
; t 2 S1 nZi

extend to continuous functions Ei WS1 ! R.

Note that the individual energies Ei need not be constant, but the total energy

E D E1.t/CE2.t/C
1

q1.t/ � q2.t/

is constant and negative.

Theorem 4.1 (Generalized solutions with instantaneous interaction). Under the Levi-
Civita transformations (54) with time changes (55), critical points .z1; z2/ of the action
functional Bin defined in (59) are in 4-to-1 correspondence with generalized solutions
.q1; q2/ of (52).

The proof of this theorem will take up the remainder of this section.

4.2. The differential of Bin

In this subsection we compute the differential of Bin at .z1; z2/ 2H1
in in the direction

.v1; v2/ 2H
1.S1;R2/. For this we will need for i D 1; 2 the derivative of the time change

tzi with respect to zi in the direction vi . By (99) it is given by

Dtzi .vi /.�/ D
2

kzik2

Z �

0

zi .�/vi .�/ d� �
2hzi ; vi i

kzik4

Z �

0

zi .�/
2 d�: (60)

Using this we now compute the differential of the instantaneous interaction 	 at .z1; z2/ 2
H1

in with respect to z1 in the direction v1 2 H 1.S1;R/. Using the first expression for 	

in (56) we obtain

D1	Œz1; z2�.v1/

D
2hz1; v1i

kz1k4

Z 1

0

z21.�/

z21.�/ � z
2
2.�z2.tz1.�///

d�

C
2

kz1k2

Z 1

0

z1.�/z
2
2.�z2.tz1.�///v1.�/�

z21.�/ � z
2
2.�z2.tz1.�///

�2 d�
�

2

kz1k2

Z 1

0

z21.�/z2.�z2.tz1.�///z
0
2.�z2.tz1.�/// P�z2.tz1.�//Dtz1.v1/.�/�

z21.�/ � z
2
2.�z2.tz1.�///

�2 d�:
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We rewrite the third term on the right-hand side as

�
2

kz1k2

Z 1

0

z21.�/z2.�z2.tz1.�///z
0
2.�z2.tz1.�/// P�z2.tz1.�//Dtz1.v1/.�/�

z21.�/ � z
2
2.�z2.tz1.�///

�2 d�

D �
2kz2k

2

kz1k2

Z 1

0

z21.�/z
0
2.�z2.tz1.�///Dtz1.v1/.�/

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�
D �

4kz2k
2

kz1k4

Z 1

0

z21.�/z
0
2.�z2.tz1.�///

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2�Z �

0

z1.�/v1.�/ d�

�
d�

C
4kz2k

2hz1; v1i

kz1k6

Z 1

0

z21.�/z
0
2.�z2.tz1.�///

R �
0
z1.�/

2 d�

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�
D �

4kz2k
2

kz1k4

Z 1

0

�Z 1

�

z21.�/z
0
2.�z2.tz1.�///

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d��z1.�/v1.�/ d�
C
4kz2k

2hz1; v1i

kz1k4

Z 1

0

z21.�/z
0
2.�z2.tz1.�///tz1.�/

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�:
Here for the first equality we have used formula (11) for P�zi , and for the second one we
have used (60). For the third equality we have switched the order of integration in the first
integral, and we have used (42) to replace

R �
0
z1.�/

2 d� by kz1k2tz1.�/.
By symmetry, the expression forD2	Œz1; z2�.v2/ is the same with a global minus sign

and the roles of .z1; v1/ and .z2; v2/ reversed. Putting everything together, we obtain the
differential of Bin:

dBinŒz1; z2�.v1; v2/

D 4

2X
iD1

�
kz0ik

2
� hzi ; vi i C kzik

2
hz0i ; v

0
i i �
hzi ; vi i

kzik4

�
C
2hz1; v1i

kz1k4

Z 1

0

z21.�/

z21.�/ � z
2
2.�z2.tz1.�///

d�

C
2

kz1k2

Z 1

0

z1.�/z
2
2.�z2.tz1.�///v1.�/�

z21.�/ � z
2
2.�z2.tz1.�///

�2 d�
�
4kz2k

2

kz1k4

Z 1

0

�Z 1

�

z21.�/z
0
2.�z2.tz1.�///

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d��z1.�/v1.�/ d�
C
4kz2k

2hz1; v1i

kz1k4

Z 1

0

z21.�/z
0
2.�z2.tz1.�///tz1.�/

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�
�
2hz2; v2i

kz2k4

Z 1

0

z22.�/

z22.�/ � z
2
1.�z1.tz2.�///

d�

�
2

kz2k2

Z 1

0

z2.�/z
2
1.�z1.tz2.�///v2.�/�

z22.�/ � z
2
1.�z1.tz2.�///

�2 d�
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C
4kz1k

2

kz2k4

Z 1

0

�Z 1

�

z22.�/z
0
1.�z1.tz2.�///

z1.�z1.tz2.�///
�
z22.�/ � z

2
1.�z1.tz2.�///

�2 d��z2.�/v2.�/ d�
�
4kz1k

2hz2; v2i

kz2k4

Z 1

0

z22.�/z
0
1.�z1.tz2.�///tz2.�/

z1.�z1.tz2.�///
�
z22.�/ � z

2
1.�z1.tz2.�///

�2 d�: (61)

4.3. Critical points of Bin

Equation (61) leads to the characterization of critical points of Bin:

Proposition 4.2. A point .z1; z2/ 2 H1
in is a critical point of Bin if and only if .z1; z2/

is smooth and solves the following system of coupled nonlocal integral–differential equa-
tions:

z001.�/ D
kz01k

2z1.�/

kz1k2
�
z1.�/

kz1k6

C
z1.�/

2kz1k6

Z 1

0

z21.�/

z21.�/ � z
2
2.�z2.tz1.�///

d�

C
z1.�/z

2
2.�z2.tz1.�///

2kz1k4
�
z21.�/ � z

2
2.�z2.tz1.�///

�2
�
kz2k

2z1.�/

kz1k6

Z 1

�

z21.�/z
0
2.�z2.tz1.�///

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�
C
kz2k

2z1.�/

kz1k6

Z 1

0

z21.�/z
0
2.�z2.tz1.�///tz1.�/

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�;
z002.�/ D

kz02k
2z2.�/

kz2k2
�
z2.�/

kz2k6

�
z2.�/

2kz2k6

Z 1

0

z22.�/

z22.�/ � z
2
1.�z1.tz2.�///

d�

�
z2.�/z

2
1.�z1.tz2.�///

2kz2k4
�
z22.�/ � z

2
1.�z1.tz2.�///

�2
C
kz1k

2z2.�/

kz2k6

Z 1

�

z22.�/z
0
1.�z1.tz2.�///

z1.�z1.tz2.�///
�
z22.�/ � z

2
1.�z1.tz2.�///

�2 d�
�
kz1k

2z2.�/

kz2k6

Z 1

0

z22.�/z
0
1.�z1.tz2.�///tz2.�/

z1.�z1.tz2.�///
�
z22.�/ � z

2
1.�z1.tz2.�///

�2 d�:

(62)

Proof. From (61) we see that .z1; z2/ is a critical point of Bin if and only if z1 and z2
have weak second derivatives and satisfy the system of equations (62). Bootstrapping
these equations we conclude that z1 and z2 are smooth and the proposition follows.
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Corollary 4.3. Suppose that .z1; z2/ is a critical point of Bin. Then z1 has no zeros and
z2 has transverse zeros. In particular, their zero sets

Zi WD
®
� 2 S1

ˇ̌
zi .�/ D 0

¯
; i D 1; 2

are finite.

Proof. Let .z1; z2/ 2 H1
in be a critical point of Bin. It follows directly from the definition

of H1
in that z1.t/ > 0 for all t 2 S1. Next note that .z1; z2/ solves the system of coupled

nonlinear integral–differential equations (62) which has the form´
z001.�/ D f1.�/z1.�/;

z002.�/ D f2.�/z2.�/;
(63)

where fi W S1 ! R, i D 1; 2 are smooth functions depending on .z1; z2/. Disregarding
the dependence of the fi on .z1; z2/, we can view .z1; z2/ as a solution to the system of
uncoupled linear ODEs (63).

Arguing by contradiction, suppose now that there exists a point �0 2 S1 such that
z2.�0/ D z

0
2.�0/ D 0. Then the function z2 and the zero function both solve the second

equation in (63) with the same initial conditions at �0. By uniqueness of solutions of ODEs
we conclude z2 � 0, contradicting the condition kz2k > 0 in the definition of Hin.

4.4. From critical points to generalized solutions

Let .z1; z2/ 2H1
in be a critical point of Bin, so by Proposition 4.2 the maps z1; z2WS1!R

are smooth and satisfy (62). As in the previous section, for i D 1; 2 we define the smooth
maps tzi W S

1 ! S1 by (42). Since by Corollary 4.3 the map zi has only finitely many
zeros, it follows from Lemma 2.1 that tzi WS

1! S1 is a homeomorphism with continuous
inverse �zi WS

1 ! S1. We define continuous maps qi WS1 ! S1 by

qi .t/ WD zi .�zi .t//
2: (64)

Then for i D 1; 2 the maps zi ; qi W S1 ! R are smooth except at finitely many points
and related by the Levi-Civita transformation (1) with � D �zi . The last condition in the
definition of H1

in implies

q1.t/ > q2.t/ for all t 2 S1:

Let us now focus on i D 1. Although by Corollary 4.3 the function z1 has no zeros, in the
following argument we will allow z1 to have a finite set Z1 of zeros; this will ensure that
the same argument carries over to z2 (which may have zeros). At points t 2 S1 n tz1.Z1/
we compute the following:

Rq1.t/q1.t/ D 2kz1k
4 z
00
1.�z1.t//

z1.�z1.t//
�
Pq1.t/

2

2
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D 2kz1k
2
� kz01k

2
�

2

kz1k2
�
Pq21.t/

2

C
1

kz1k2

Z 1

0

z1.�z1.s//
2

z21.�z1.s// � z
2
2.�z2.s//

P�z1.s/ ds

C
z22.�z2.t//�

z21.�z1.t// � z
2
2.�z2.t//

�2
�
2kz2k

2

kz1k2

Z 1

t

z21.�z1.s//z
0
2.�z2.s//

z2.�z2.s//
�
z21.�z1.s// � z

2
2.�z2.s//

�2 P�z1.s/ ds
C
2kz2k

2

kz1k2

Z 1

0

z21.�z1.s//z
0
2.�z2.s//s

z2.�z2.s//
�
z21.�z1.s// � z

2
2.�z2.s//

�2 P�z1.s/ ds
D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Pq21.t/

2
C

Z 1

0

1

q1.s/ � q2.s/
ds

C
q2.t/

.q1.t/ � q2.t//2
� 2kz2k

2

Z 1

t

d
ds
z2.�z2.s//

P�z2.s/z2.�z2.s//.q1.s/ � q2.s//
2
ds

C 2kz2k
2

Z 1

0

s d
ds
z2.�z2.s//

P�z2.s/z2.�z2.s//.q1.s/ � q2.s//
2
ds

D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Pq21.t/

2
C

Z 1

0

1

q1.s/ � q2.s/
ds

C
q2.t/

.q1.t/ � q2.t//2
�

Z 1

t

2z2.�z2.s//
d
ds
z2.�z2.s//

.q1.s/ � q2.s//2
ds

C

Z 1

0

2sz2.�z2.s//
d
ds
z2.�z2.s//

.q1.s/ � q2.s//2
ds

D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Pq21.t/

2
C

Z 1

0

1

q1.s/ � q2.s/
ds

C
q2.t/

.q1.t/ � q2.t//2
�

Z 1

t

d
ds
z22.�z2.s//

.q1.s/ � q2.s//2
ds

C

Z 1

0

s d
ds
z22.�z2.s//

.q1.s/ � q2.s//2
ds

D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds �

Pq21.t/

2
C

Z 1

0

1

q1.s/ � q2.s/
ds

C
q2.t/

.q1.t/ � q2.t//2
�

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds

C

Z 1

0

s Pq2.s/

.q1.s/ � q2.s//2
ds: (65)

Here, the first equality comes from (7) with q D q1 and z D z1. In the second one we
substitute z001 by (62) and change variables � D �z1.s/ in the integrals. In the third one we
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use the following replacements from (64), (4), (8) and (11):

zi .�zi .s//
2
D qi .s/;

1

kz1k2
D

Z 1

0

1

q1.s/
ds;

4kz1k
2
� kz01k

2
D kPq1k

2; P�z1.s/ D
kz1k

2

z1.�z1.s//
2

and the chain rule for d
ds
z2.�z2.s//. In the fourth one we use (11) to replace P�z2.s/, in the

fifth one the chain rule for d
ds
z22.�z2.s//, and in the sixth one (64) to insert q2.s/. Thus q1

satisfies the integral–differential equation

Rq1 D

�
c1 �

Pq21
2
C

q2

.q1 � q2/2
�

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds

�
1

q1
(66)

with the constant

c1 D
kPq1k

2

2
�

Z 1

0

2

q1.s/
ds C

Z 1

0

1

q1.s/ � q2.s/
ds C

Z 1

0

s Pq2.s/

.q1.s/ � q2.s//2
ds:

Now let t� < tC be adjacent zeros of q1 and consider the smooth map

ˇ1 WD
Rq1 �

1
.q1�q2/2

q1
W .t�; tC/! R:

From (66) we obtain

ˇ1q
2
1 D Rq1q1 �

q1

.q1 � q2/2

D c1 �
Pq21
2
C

1

q2 � q1
�

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds:

Taking the time derivative of this expression for ˇ1q21 we obtain

P̌
1q
2
1 C 2ˇ1q1 Pq1 D �Rq1 Pq1 �

Pq2 � Pq1

.q2 � q1/2
C

Pq2

.q1 � q2/2

D �Rq1 Pq1 C
Pq1

.q1 � q2/2

D �ˇ1q1 Pq1:

Therefore, dividing both sides by q1, we get

P̌
1q1 D �3ˇ1 Pq1:

This is exactly (27). We apply Lemma 2.6 to get

ˇ1 D �
�

q31
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on .t�; tC/ for some constant � > 0. Here positivity of � follows again because by defi-
nition ˇ1 < 0 at the maximum of q1 on .t�; tC/. We substitute the definition of ˇ1 in the
last displayed equation and solve for Rq1 to get

Rq1.t/ D �
�

q1.t/2
C

1

.q1.t/ � q2.t//2
; t 2 .t�; tC/: (67)

We solve the last equation for �=q1 and substitute Rq1q1 by (65) to get

�

q1.t/
D �Rq1.t/q1.t/C

q1.t/

.q1.t/ � q2.t//2

D �
kPq1k

2

2
C

Z 1

0

2 ds

q1.s/
C
Pq1.t/

2

2
�

Z 1

0

ds

q1.s/ � q2.s/
C

1

q1.t/ � q2.t/

C

Z 1

t

Pq2.s/ ds

.q1.s/ � q2.s//2
�

Z 1

0

s Pq2.s/ ds

.q1.s/ � q2.s//2
: (68)

We multiply both sides of the last equation by q1.t/, take the limit t ! t˙ and recall that
q1.t˙/ D 0 to get

� D lim
t!t˙

Pq1.t/
2q1.t/

2
D 2kz1k

4z01.�z1.t˙//
2: (69)

Therefore, � is a global constant independent of the interval .t�; tC/. (This argument is
actually only needed for q2 in place of q1; for q1 itself, since it has no zeros, we can
replace .t�; tC/ by all of S1 from the outset).

Now note that, by Fubini’s theorem, for every integrable function f W Œ0; 1�! R we
have Z 1

0

dt

Z 1

t

f .s/ ds D

Z 1

0

ds f .s/

Z s

0

dt D

Z 1

0

sf .s/ ds:

Integrating both sides of (68) from 0 to 1 and applying this identity to

f .s/ WD
Pq2

.q1.s/ � q2.s//2
;

we obtain
� D 2:

Thus (67) becomes the first equation in (52). Similarly, we deduce that q2 satisfies the
second equation in (52) outside its zero set.

To see the continuity of the energy E1, we solve (68) (with � D 2) for

E1.t/ D
Pq1.t/

2

2
�

2

q1.t/

D
kPq1k

2

2
�

Z 1

0

2 ds

q1.s/
C

Z 1

0

ds

q1.s/ � q2.s/
�

1

q1.t/ � q2.t/

�

Z 1

t

Pq2.s/ ds

.q1.s/ � q2.s//2
C

Z 1

0

s Pq2.s/ ds

.q1.s/ � q2.s//2
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and note that the right-hand side is continuous as a function of t 2 Œ0; 1�. Continuity of E2
follows similarly, and we have shown that .q1; q2/ is a generalized solution of (52).

4.5. From generalized solutions to critical points

Now let .q1; q2/ 2 H 1.S1;R�0 �R�0/ be a generalized solution of (52). The definition
of a generalized solution implies that q1; q2 2 H1

ce.S
1;R�0/. Corollary 2.4 implies that

the set L�1.q1/ �L�1.q2/ consists of four elements. The goal of this section is to show
that each .z1; z2/ 2 L�1.q1/ �L�1.q2/ is a critical point of Bin. To see this, recall that
q1 has no zeros, so smoothness of q1 implies smoothness of z1. Smoothness of q2 on the
complement of its zero set Zq2 implies smoothness of z2 on the complement of its zero
set Zz2 . In particular, second derivatives of z2 make sense there and we can make the
following statement.

Lemma 4.4. Any .z1; z2/ 2 L�1.q1/ �L�1.q2/ satisfies the critical point equation (62)
on the complement of the set Zz2 .

Assuming this lemma for the moment, recall from Corollary 2.4 that z2 is of class C 1

and that (62) expresses z002 through z1, z01, z2, z02. Thus bootstrapping (62) implies that z2
is smooth and (62) holds on the whole of S1. Therefore, it remains to prove Lemma 4.4.

Proof of Lemma 4.4. We will show the desired equation for z1 pretending that it has a
possibly nonempty zero set Zq1 . A similar argument will do the job for z2. Recall the
equation satisfied by q1,

Rq1 D �
2

q21
C

1

.q1 � q2/2
: (70)

Set

ˇ1 WD
Rq1 �

1
.q1�q2/2

q1
(71)

on S1 nZq1 . Then by (70) we have

ˇ1 D �
2

q31
;

and taking a time derivative we obtain

P̌
1 D

3 � 2

q41
Pq1 D �

3ˇ1 Pq1

q1
:

We multiply both sides by q21 to get

P̌
1q
2
1 D �3ˇ1 Pq1q1:

We bring �2ˇ1 Pq1q1 to the other side to continue:

P̌
1q
2
1 C 2ˇ1 Pq1q1 D �ˇ1 Pq1q1:
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We substitute the original definition (71) of ˇ1 into the right-hand side to get

P̌
1q
2
1 C 2ˇ1 Pq1q1 D �Pq1 Rq1 C

Pq2

.q1 � q2/2
�
Pq2 � Pq1

.q2 � q1/2
:

Integrating both sides from t to 1 we get

ˇ1q
2
1 D �

Pq21
2
�

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds C

q2 � q1

.q2 � q1/2
C C (72)

for some constant C 2 R. We bring � q1
.q2�q1/2

to the left-hand side and rewrite (71) in the
form

ˇ1q
2
1 C

q1

.q2 � q1/2
D Rq1q1:

Therefore (72) transforms to

Rq1q1 D �
Pq21
2
�

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds C

q2

.q2 � q1/2
C C: (73)

Observe that modulo the exact value of C this is exactly (66), which is equivalent to
the first equation of (62) An analogous discussion applied to q2 will lead to the second
equation of (62). Therefore, we are left with computing the constant C .

To compute C we use (70) to get rid of Rq on the left-hand side of (73) and obtain

�
2

q1
C

q1

.q1 � q2/2
D �

Pq21
2
�

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds C

q2

.q2 � q1/2
C C:

We solve the last equation for C ,

C D �
2

q1
C

1

q1 � q2
C
Pq21
2
C

Z 1

t

Pq2

.q1 � q2/2
ds;

and integrate both sides from 0 to 1. Noting thatZ 1

0

dt

Z 1

t

Pq2.s/

.q1.s/ � q2.s//2
ds D

Z 1

0

ds

Z s

0

dt
Pq2.s/

.q1.s/ � q2.s//2

D

Z 1

0

s Pq2.s/ ds

.q1.s/ � q2.s//2
;

this gives us

C D �

Z 1

0

2 ds

q1.s/
C

Z 1

0

ds

q1.s/ � q2.s/
C
kPq1k

2

2
C

Z 1

0

s Pq2 ds

.q1 � q2/2
;

which matches the constant in (65). This concludes the proof of Lemma 4.4, and therefore
of Theorem 4.1.
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5. Interpolation

We now interpolate linearly between the instantaneous and mean interactions. That is, for
r 2 Œ0; 1� we consider the system of coupled ODEs8̂̂<̂

:̂
Rq1.t/ D �

2

q1.t/2
C

r

.q1.t/ � q2.t//2
C

1 � r

.barq1 � Nq2/2
;

Rq2.t/ D �
2

q2.t/2
�

r

.q1.t/ � q2.t//2
�

1 � r

. Nq1 � Nq2/2
:

(74)

For r D 0 this agrees with system (32) for mean interaction, and for r D 1with system (52)
for instantaneous interaction. Solutions of (74) are critical points of the functional r�in C

.1 � r/�av, which under Levi-Civita transformation corresponds to the functional

Br WD rBin C .1 � r/BavWH
1
av

(58)
� H1

in ! R (75)

which computes as

Br .z1; z2/ D rBin.z1; z2/C .1 � r/Bav.z1; z2/

D 2

2X
iD1

�
kzik

2
� kz0ik

2
C

1

kzik2

�
�

rkz1k
2 � kz2k

2

kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2

�
1 � r

kz1k2

Z 1

0

z1.�/
2

z21.�/ � z
2
2.�z2.tz1.�///

d�:

We define a generalized solution .q1; q2/ of (74) as in Section 4.1, only instead of (52) it
now solves (74). Then we have the following generalization of Theorems 3.1 and 4.1.

Theorem 5.1 (Generalized solutions for interpolated interaction). Under the Levi-Civita
transformations (54) with time changes (55), critical points .z1; z2/ of the action func-
tional Br , r 2 Œ0; 1� are in 4-to-1 correspondence with generalized solutions .q1; q2/
of (74).

Proof. The proof is very similar to the proofs of Theorems 3.1 and 4.1. Critical points of
Br are solutions of the problem

z001.�/ D
kz01k

2z1.�/

kz1k2
�
z1.�/

kz1k6
C
.1 � r/z1.�/

2kz1k6

Z 1

0

z1.�/
2

z21.�/ � z
2
2.�z2.tz1.�///

d�

C
.1 � r/z1.�/z

2
2.�z2.tz1.�///

2kz1k4
�
z21.�/ � z

2
2.�z2.tz1.�///

�2
�
.1 � r/kz2k

2z1.�/

kz1k6

Z 1

�

z21.�/z
0
2.�z2.tz1.�///

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�
C
.1 � r/kz2k

2z1.�/

kz1k6

Z 1

0

z21.�/z
0
2.�z2.tz1.�///tz1.�/

z2.�z2.tz1.�///
�
z21.�/ � z

2
2.�z2.tz1.�///

�2 d�
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�
rkz2k

4kz21k
2z1.�/

2kz1k2
�
kz21k

2kz2k2 � kz
2
2k
2kz1k2

�2
C

rkz2k
4z31.�/�

kz21k
2kz2k2 � kz

2
2k
2kz1k2

�2 ; (76)

z002.�/ D
kz02k

2z2.�/

kz2k2
�
z2.�/

kz2k6
�
.1 � r/z2.�/

2kz2k6

Z 1

0

z2.�/
2

z22.�/ � z
2
1.�z1.tz2.�///

d�

�
.1 � r/z2.�/z

2
1.�z1.tz2.�///

2kz2k4
�
z22.�/ � z

2
1.�z1.tz2.�///

�2
C
.1 � r/kz1k

2z2.�/

kz2k6

Z 1

�

z22.�/z
0
1.�z1.tz2.�///

z1.�z1.tz2.�///
�
z22.�/ � z

2
1.�z1.tz2.�///

�2 d�
�
.1 � r/kz1k

2z2.�/

kz2k6

Z 1

0

z22.�/z
0
1.�z1.tz2.�///tz2.�/

z1.�z1.tz2.�///
�
z22.�/ � z

2
1.�z1.tz2.�///

�2 d�
C

rkz1k
4kz22k

2z2.�/

2kz2k2
�
kz21k

2kz2k2 � kz
2
2k
2kz1k2

�2
�

rkz1k
4z32.�/�

kz21k
2kz2k2 � kz

2
2k
2kz1k2

�2 (77)

which interpolates between problems (41) and (62).
Suppose now that .z1; z2/ is a critical point of Br and define

qi .t/ WD z
2
i .�zi .t//; i 2 ¹1; 2º:

From (76) we obtain for q1 the equation

2 Rq1.t/q1.t/ D kPq1k
2
�

Z 1

0

4

q1.s/
ds � Pq21.t/C

Z 1

0

2.1 � r/

q1.s/ � q2.s/
ds

C
2.1 � r/q2.t/

.q1.t/ � q2.t//2
�

Z 1

t

2.1 � r/ Pq2.s/

.q1.s/ � q2.s//2
ds

C

Z 1

0

2.1 � r/s Pq2.s/

.q1.s/ � q2.s//2
ds �

2r Nq1

. Nq1 � Nq2/2
C

4rq1.t/

. Nq1 � Nq2/2
; (78)

which interpolates between (43) and (65). As before, outside collisions we define

ˇ1 WD
Rq1 �

r
.q1�q2/2

�
1�r

. Nq1�Nq2/2

q1
:

Again ˇ1 solves the ODE
P̌
1q1 D �3ˇ1 Pq1

and it follows that
ˇ1 D �

�

q31
;
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where � is locally constant on the complement of collisions on the circle. Using the con-
tinuity of z01, it follows again that � is constant and from (78) we conclude that � D 2.
Therefore, outside of collisions q1 solves the first equation in (74). Similarly, it follows
that outside collisions q2 solves the second equation in (74). The converse direction is
proved similarly to the previous cases.

6. Existence of symmetric frozen planet orbits

A simple frozen planet orbit of period T > 0 is a map q D .q1; q2/ 2 H 1.R=TZ;R2/
with the following properties:

(1) q1.t/ > q2.t/ � 0 for all t 2 R=TZ;

(2) q2 has a unique zero at t D 0;

(3) .q1; q2/W .0; T /! R2 is smooth and satisfies (52);

(4) the energies

Ei .t/ WD
Pqi .t/

2

2
�

2

qi .t/
; t 2 .0; T /

extend to continuous functions Ei WR=TZ! R.

Here simplicity corresponds to the second condition, and every frozen planet orbit is a
multiple cover of a simple one. Recall that the individual energiesEi need not be constant,
but the total energy

E D E1.t/CE2.t/C
1

q1.t/ � q2.t/

is constant and negative. A simple frozen planet orbit of period T > 0 is called symmetric
if it satisfies in addition

q.t/ D q.T � t / for all t 2 R=TZ:

In this section we prove the following result which corresponds to Theorem C in the
introduction.

Theorem 6.1. For every E < 0 there exists a symmetric simple frozen planet orbit of
energy E.

Rescaling. Let q D .q1; q2/WR! .R�0/2 be a generalized solution of (52) of period T
and energy E. Direct computation shows that for each c > 0,

qc.t/ WD c
2q.c�3t /

is again a generalized solution of (52) of period c3T and energy c�2E. Therefore, given
a generalized solution q of (52) of period 1 and negative energy, rescaling yields similar
solutions with any prescribed period, or alternatively with any prescribed negative energy.
As a consequence, we will from now on restrict our discussion to generalized solutions of
period 1.
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6.1. Symmetries

In this subsection we describe the symmetries of the variational problems in Sections 2, 3
and 4.

The Kepler problem. The functional Q in (23) is obviously invariant under the following
transformations:

• time shift Tsz.�/ WD z.s C �/, s 2 S1;

• time reversal Rz.�/ WD z.��/;

• sign reversal Sz.�/ WD �z.�/;

where z 2 H 1.S1;R/ n ¹0º.

Lemma 6.2. The homeomorphism tz WS1! S1 defined in (9) and its inverse �z transform
under time shift and reversal as

tTsz.�/ D tz.s C �/ � tz.s/; �Tsz.t/ D �z.t C tz.s// � s; (79)

tRz.�/ D �tz.��/; �Rz.t/ D ��z.�t /: (80)

Proof. For the first equation of (79) we compute

tTsz.�/ D
1

kTszk2

Z �

0

z.s C �/2 d�

D
1

kzk2

�Z sC�

0

z.�/2 d� �

Z s

0

z.�/2 d�

�
D tz.s C �/ � tz.s/:

For the second equation of (79) note that tTsz can be written as a composition of three
homeomorphisms of the circle:

tTsz D T�tz.s/ ı tz ı Ts :

The inverse �Tsz of tTsz is the composition of the three inverse homeomorphisms in the
opposite order:

�Tsz D T�s ı �z ı Ttz.s/:

The first equation of (80) follows from

tRz.�/ D

R �
0
.Rz/2.�/ d�

kRzk2
D

R �
0
z2.��/ d�

kzk2
D �

R ��
0
z2.�/ d�

kzk2
D �tz.��/;

and the second equation of (80) follows from the first one by splitting tRz into three
homeomorphisms in analogy with the above.

We discuss what these symmetries correspond to under the Levi-Civita transformation
q.t/ D z.�z.t//

2. Let qs.t/ denote the Levi-Civita transformation of Tsz. Then

qs.t/D .Tsz.�Tsz.t///
2
D .Tsz.�z.tz.s/C t /� s//

2
D z.�z.t C tz.s///

2
D q.tz.s/C t /:
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We see that the time shift Ts applied to z corresponds to the time shift Ttz.s/ applied to
the Levi-Civita transformation q of z. Analogous but simpler arguments show that time
reversal corresponds to time reversal Rq.t/D q.�t /, and sign reversal corresponds to the
identity Sq.t/D q.t/. Thus, the first two symmetries of z correspond to actual symmetries
of the Kepler problem, while the sign change Sz D �z just expresses the fact that the
Levi-Civita transformation defines a 2-to-1 correspondence.

Mean and instantaneous interactions. The problems with interaction have the follow-
ing symmetries.

Lemma 6.3. The functionals Bav and Bin in (38) and (59) are invariant under the follow-
ing transformations of z D .z1; z2/:

• joint time shift Tsz.�/ WD z.s C �/, s 2 S1;

• joint time reversal Rz.�/ WD z.��/;

• separate sign reversals S1.z1; z2/ WD .�z1; z2/ and S2.z1; z2/ WD .z1;�z2/.

Proof. Invariance of Bav and Bin under joint time shift Ts and separate sign changes
Si is obvious, and so is invariance of Bav under joint time reversal R (in fact, Bav is
even invariant under separate time reversals). For invariance of Bin under R we write the
instantaneous interaction from (56) in the form

	.z1; z2/ D

Z 1

0

dt

z22.�z2.t// � z
2
1.�z1.t//

:

Using Lemma 6.2 we compute

.Rzi /.�Rzi .t// D zi .��Rzi .t// D zi .�zi .�t //

for i D 1; 2, and therefore

	.R.z1; z2// D

Z 1

0

dt

z22.�z2.�t // � z
2
1.�z1.�t //

D

Z 1

0

dt

z22.�z2.t// � z
2
1.�z1.t//

D 	.z1; z2/:

6.2. Twisted loops

Theorems 2.5, 3.1 and 4.1 establish a correspondence between critical points of the func-
tionals Q, Bav and Bin and generalized solutions with an even number of zeros. In this
subsection we explain how to deal with generalized solutions with an odd number of zeros.

The Kepler problem. Consider q 2H 1.S1;R�0/ satisfying all conditions on a general-
ized solution of (22) except that it has an odd number of zeros. By slight abuse of notation
we will still refer to such q as a “generalized solution”. Recall that S1 D R=Z. Then we
can view q as a map Qq 2 H 1.R=2Z;R�0/ with an even number of zeros and associate to
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it as in Section 2.5 a homeomorphism �q WR=2Z! R=2Z and a map z 2 H 1.R=2Z;R/
such that

z.�q.t//
2
D Qq.t/; t 2 R=2Z:

By construction these maps satisfy

Qq.t C 1/ D Qq.t/; �q.t C 1/ D �q.t/; z.t C 1/ D �z.t/; t 2 R=2Z:

This leads us to introduce for each k 2 N0 the Hilbert space of twisted loops,

H k
twist.S

1;R/ WD
®
z 2 H k.R=2Z;R/

ˇ̌
z.� C 1/ D �z.�/ for all �

¯
with the inner product

hz; vi WD

Z 1

0

z.�/v.�/ d� D
1

2

Z 2

0

z.�/v.�/ d�:

Note that H k
twist.S

1;R/ is the fixed point set of the linear involution

� D S ı T1WH
k.R=2Z;R/! H k.R=2Z;R/; �z.�/ D �z.� C 1/;

where T1 and S are the time shift by 1 and the sign reversal from Section 6.1. Thus
H k

twist.S
1;R/ is a closed linear subspace of H k.R=2Z;R/, with inner product the one

induced from H k.R=2Z;R/ divided by 2. We define

QWH 1
twist.S

1;R/ n ¹0º ! R; Q.z/ WD 2kzk2kz0k2 C
N

kzk2

by the same formula as in (23). As in Section 2.4 it follows that z 2 H 1
twist.S

1;R/ n ¹0º is
a critical point of Q if and only if

hz0; v0i C haz; vi D 0 for all v 2 H 1
twist.S

1;R/; (81)

with the constant

a D
kz0k2

kzk2
�

N

2kzk6
:

To proceed we need the following lemma.

Lemma 6.4. Suppose that f; g 2 H 0
twist.S

1;R/ satisfy

hf; v0i C hg; vi D 0 for all v 2 H 1
twist.S

1;R/:

Then f 2 H 1
twist.S

1;R/ with weak derivative f 0 D g.

Proof. By definition of H 0
twist.S

1;R/ we have f; g 2 H 0.R=2Z;R/ with f .� C 1/ D
�f .�/ and g.� C 1/ D �g.�/, so the hypothesis of the lemma readsZ 2

0

f .�/v0.�/ d� C

Z 2

0

g.�/v.�/ d� D 0 (82)
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for all v 2 H 1.R=2Z;R/ with v.� C 1/ D �v.�/. By definition of the weak derivative,
we need to show that (82) holds for all v 2 H 1.R=2Z;R/ (not necessarily satisfying
v.� C 1/D�v.�/). Multiplying by bump functions and using linearity, it suffices to show
this for v 2 H 1.R=2Z;R/ with support in an interval I � R=2Z of length less than 1.
Given such v we define Qv 2 H 1.R=2Z;R/ by

Qv.�/ WD

8̂̂<̂
:̂
v.�/; � 2 I;

�v.� � 1/; � � 1 2 I;

0 otherwise:

Using f .� C 1/ D �f .�/ and Qv0.� C 1/ D �Qv0.�/ we computeZ 2

0

f .�/ Qv0.�/ d� D

Z
I

f .�/ Qv0.�/ d� C

Z
I

f .� C 1/ Qv0.� C 1/ d�

D

Z
I

f .�/ Qv0.�/ d� C

Z
I

f .�/ Qv0.�/ d�

D 2

Z 2

0

f .�/v0.�/ d�;

and similarly Z 2

0

g.�/ Qv.�/ d� D 2

Z 2

0

g.�/v.�/ d�:

Since (82) holds with Qv in place of v, we conclude

0 D

Z 2

0

f .�/ Qv0.�/ d� C

Z 2

0

g.�/ Qv.�/ d� D 2

�Z 2

0

f .�/v0.�/ d� C

Z 2

0

g.�/v.�/ d�

�
and the lemma is proved.

Let us now return to the critical point z 2 H 1
twist.S

1;R/ n ¹0º of Q satisfying (81)
above. Applying Lemma 6.4 with f D z0 and g.z/ D az, we conclude that z 2
H 2

twist.S
1;R/ and its second weak derivative satisfies

z00 D az:

This is the same ODE (25) as for critical points in the untwisted case. Now the arguments
in Section 2 carry over without further changes to show the following twisted version of
Theorem 2.5.

Theorem 6.5. Under the Levi-Civita transformation (1) with time change (2), critical
points z of the action functional QWH 1

twist.S
1;R/ n ¹0º !R on twisted loops are in 2-to-1

correspondence with generalized solutions qW S1 ! R�0 of (22) having an odd number
of zeros.
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Mean and instantaneous interactions. Consider now the helium atom. Recall that in a
frozen planet configuration the inner electron q2 should undergo repeated collisions with
the nucleus while the outer electron q1 experiences no collisions. If in period 1 the inner
electron undergoes an odd number of collisions (for example a single one), the Levi-Civita
transformed maps z1, z2 will be 2-periodic and satisfy

z1.� C 1/ D z1.�/; z2.� C 1/ D �z2.�/:

This leads us to introduce for each k 2 N0 the Hilbert space of twisted loops

H k
twist.S

1;R2/ WD
®
z D .z1; z2/ 2 H

k.R=2Z;R/
ˇ̌
z1.� C 1/ D z1.�/;

z2.� C 1/ D �z2.�/ for all �
¯

with the inner product

hz; vi WD

2X
iD1

Z 1

0

z.�/v.�/ d� D
1

2

2X
iD1

Z 2

0

z.�/v.�/ d�:

Note that H k
twist.S

1;R2/ is the fixed point set of the linear involution

� D S2 ı T1WH
k.R=2Z;R2/! H k.R=2Z;R2/; �z.�/ D .z1.� C 1/;�z2.� C 1//;

where T1 and S2 are the joint time shift by 1 and sign reversal in the second component
from Section 6.1. ThusH k

twist.S
1;R2/ is a closed linear subspace ofH k.R=2Z;R2/, with

inner product the one induced fromH k.R=2Z;R2/ divided by 2. We define open subsets

zH1
av WD

®
z D .z1; z2/ 2 H

1
twist.S

1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

kz21k
2

kz1k2
>
kz22k

2

kz2k2

¯
and

zH1
in WD

®
z D .z1; z2/ 2 H

1
twist.S

1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

z21.�/ � z
2
2.�z2.tz1.�/// > 0 for all � 2 S1

¯
(83)

as in Sections 3 and 4, and we define the mean and instantaneous interaction functionals
and their interpolation

BavW zH
1
av ! R; Bin;Br W

zH1
in ! R

by the same formulas as in (38), (59) and (75). Note that in formulas (40) and (61) for the
derivatives of Bav and Bin, the leading-order terms hz0i ; v

0
i i are the same as in the Kepler

problem. Arguing as above using Lemma 6.4, we thus conclude that critical points of Bav

and Br on twisted loops still satisfy the same equations (41) and (77) as in the untwisted
case. Therefore, in analogy with Theorem 6.5, we obtain the following twisted version of
Theorems 3.1 and 5.1.
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Theorem 6.6. Under the Levi-Civita transformations (34) with time changes (35), criti-
cal points .z1; z2/ of the action functional Br W

zH1
av ! R on twisted loops are in 4-to-1

correspondence with generalized solutions .q1; q2/ of (32) with q1 having an even and q2
an odd number of zeros. Similarly, for each r 2 Œ0; 1� critical points .z1; z2/ of the action
functional Br W

zH1
in ! R on twisted loops are in 4-to-1 correspondence with generalized

solutions .q1; q2/ of (74) with q1 having an even and q2 an odd number of zeros.

6.3. Symmetric loops

In order to study symmetric frozen planet orbits, we introduce for each k 2N0 the Hilbert
space of symmetric loops

H k
sym.S

1;R2/ WD
®
z D .z1; z2/ 2 H

k
twist.S

1;R2/
ˇ̌
z.�/ D z.1 � �/ for all �

¯
with the inner product induced fromH k

twist.S
1;R2/. ThusH k

sym.S
1;R2/ is the fixed point

set of the linear involution

� D R ı T1WH
k
twist.S

1;R2/! H k
twist.S

1;R2/; �z.�/ D z.1 � �/;

where T1 and R are the joint time shift by 1 and joint time reversal from Section 6.1.
Elements .z1; z2/ 2 H k

sym.S
1;R2/ are 2-periodic loops satisfying for all � 2 R=2Z

the conditions

z1.�/ D z1.� C 1/ D z1.1 � �/; z2.�/ D �z2.� C 1/ D z2.1 � �/:

Taking derivatives they imply

z01.�/ D z
0
1.� C 1/ D �z

0
1.1 � �/; z02.�/ D �z

0
2.� C 1/ D �z

0
2.1 � �/:

In particular, at � D 0 and � D 1=2 they imply

z01.0/ D z2.0/ D 0; z01.1=2/ D z
0
2.1=2/ D 0:

Thus z1 is 1-periodic with critical points at � D 0 and � D 1=2, while z2 is 2-periodic with
zeros at � D 0 and � D 1 and with critical points at � D 1=2 and � D 3=2.

The images qi .t/ D zi .�zi .t//
2 under the Levi-Civita transformation are 1-periodic

and symmetric, i.e.
qi .t/ D qi .1 � t /; t 2 S1:

In particular, if in addition .q1; q2/ satisfies ODE (52), then .q1; q2/ is a symmetric frozen
planet orbit.

Again, we define open subsets

yHk
av WD

®
z D .z1; z2/ 2 H

k
sym.S

1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

kz21k
2

kz1k2
>
kz22k

2

kz2k2

¯
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and

yHk
in WD

®
z D .z1; z2/ 2 H

k
sym.S

1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

z21.�/ � z
2
2.�z2.tz1.�/// > 0 for all � 2 S1

¯
; (84)

and we define the mean and instantaneous interaction functionals and their interpolation

BavW yH
1
av ! R; BinW yH

1
in ! R; Br W

yH1
av

(58)
� yH1

in ! R

by the same formulas as in (38), (59) and (75). Arguing as in the previous subsection,
using a variant of Lemma 6.4, we conclude that critical points of Bav and Br on symmetric
loops still satisfy the same equations (41) and (77) and we obtain the following symmetric
version of Theorems 3.1 and 5.1.

Theorem 6.7. Under the Levi-Civita transformations (34) with time changes (35), critical
points .z1; z2/ of the action functional BavW yH

1
av ! R on symmetric loops are in 4-to-1

correspondence with symmetric generalized solutions .q1; q2/ of (32) with q1 having an
even and q2 an odd number of zeros. Similarly, for each r 2 Œ0; 1� critical points .z1; z2/
of the action functional Br W

yH1
in ! R on symmetric loops are in 4-to-1 correspondence

with symmetric generalized solutions .q1; q2/ of (74) with q1 having an even and q2 an
odd number of zeros (i.e. with symmetric frozen planet orbits).

6.4. Proof of the existence Theorem 6.1

Now we are ready to prove Theorem 6.1. By the rescaling discussion following the theo-
rem, it suffices to consider the case of period 1 without prescribing the energy.

Using the notation of the previous subsection we define

X WD
®
z D .z1; z2/ 2 yH

2
in

ˇ̌
zi .�/ > 0 for all � 2 .0; 1/ and i D 1; 2

¯
: (85)

This is an open subset of the Hilbert space H 2
sym.S

1;R2/ and thus a Hilbert manifold.
Note that the twisting conditions z1.� C 1/ D z1.�/ and z2.� C 1/ D �z2.�/ imply that
z1.�/ > 0 for all � 2 R and z2.�/ < 0 for � 2 .1; 2/. This ensures that z2 is simple of
minimal period 2 and it removes the symmetries zi 7! ˙zi . We consider the Hilbert space

Y WD H 0
sym.S

1;R2/

and the L2-gradient (see beginning of Appendix A) of the interpolation functional Br D

.1 � r/Bin C rBav,

rBr D .1 � r/rBin C rrBavWX ! Y; r 2 Œ0; 1�:

According to Theorem A.1, for each r 2 Œ0; 1� this is a C 1-Fredholm map of index zero.
Thus

F W Œ0; 1� �X ! Y; .r; z/ 7! rBr .z/

is a C 1-Fredholm map of index 1.
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According to Theorem 6.7, for each r 2 Œ0; 1� zeros z 2 X of rBr correspond under
the Levi-Civita transformation to symmetric generalized solutions q D .q1; q2/WS1!R2

of (74). The condition z2.�/ > 0 for all � 2 .0; 1/ in the definition of X implies that q2
has a unique zero at t D 0. By the main result in [1] there exists a constant � such that

max
t2S1

°
q1.t/;

1

q1.t/ � q2.t/

±
� �

for all such solutions q of (74) and all r 2 Œ0;1�. Thus on .r; z/ 2F �1.0/ the function z21.t/
is uniformly bounded from above and the difference z21.�z1.t// � z

2
2.�z2.t// is uniformly

bounded away from zero. In view of ODE (77), this implies that the zero set F �1.0/ �
Œ0; 1��X is compact. Hence F W Œ0; 1��X! Y is a homotopy as in Theorem C.1 between
f0 D rBin and f1 D rBav, and it follows that f0, f1 have well-defined mod 2 Euler
numbers satisfying

�.rBin/ D �.rBav/:

By Theorem D.1, the mod 2 Euler number of rBav satisfies

�.rBav/ D 1:

Together with the previous displayed equation this shows that �.rBin/ D 1, so rBin

possesses a zero whose Levi-Civita transform is the desired symmetric frozen planet orbit.
This concludes the proof of Theorem 6.1.

7. Hamiltonian formulation

In this section we present the Hamiltonian formulations of the problems described in the
previous sections. They will all be derived from a general result proved in the first subsec-
tion.

7.1. Legendre transform

In this subsection we describe an abstract Legendre transform which will be applied to
the helium atom in the following subsections. For concreteness we restrict to the case that
the configuration space is Rn, but everything could be easily extended to more general
configuration manifolds.

For k 2 N0 we abbreviate H k WD H k.S1;Rn/. We denote the derivative of q 2 H 1

by Pq. Suppose we are given an open subset U1 � H 1 and a Lagrange function

LWU1
�H 0

! R; .q; v/ 7! L.q; v/:

We say that L possesses a continuous L2-gradient if L is of class C 1 and there exists a
continuous map

rL D .r1L;r2L/WU
1
�H 0

! H 0
�H 0
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uniquely defined by the conditions

hriL.q; v/; wi D DiL.q; v/w for all w 2 H 1;

where h ; i is the L2-inner product and DiL denotes the derivative with respect to the i th
variable. We associate to such L its Lagrangian action

�LWU
1
! R; q 7! L.q; Pq/:

This is a C 1-function whose Fréchet derivative at q 2 U1 in the direction w 2 H 1 is

D�L.q/w D D1L.q; Pq/w CD2L.q; Pq/ Pw D hr1L.q; Pq/; wi C hr2L.q; Pq/; Pwi:

It follows that q 2 U1 is a critical point of � if and only if r2L.q; Pq/ 2 H 1 and the
following Euler–Lagrange equation holds:

d

dt
r2L.q; Pq/ D r1L.q; Pq/: (86)

Let us impose the following condition on L:

(L) There exists a differentiable map

F WU1
�H 0

! H 0; .q; p/ 7! F.q; p/

such that for each q 2 U1 the map H 0 ! H 0, v 7! r2L.q; v/ is a homeomor-
phism with inverse p 7! F.q; p/.

In particular, the map F then satisfies

r2L.q; F.q; p// D p: (87)

Then we associate to L its fibrewise Legendre transform

H WU1
�H 0

! R; H .q; p/ WD hp; F.q; p/i �L.q; F.q; p//:

Using (87) we compute, for w 2 H 1,

D1H .q; p/w

D hp;D1F.q; p/wi �D1L.q; F.q; p//w �D2L.q; F.q; p//D1F.q; p/w

D hp � r2L.q; F.q; p//;D1F.q; p/wi � hr1L.q; F.q; p//; wi

D �hr1L.q; F.q; p//; wi;

D2H .q; p/w

D hF.q; p/; wi C hp;D2F.q; p/wi �D2L.q; F.q; p//D2F.q; p/w

D hF.q; p/; wi C hp � r2L.q; F.q; p//;D2F.q; p/wi

D hF.q; p/; wi:
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This shows that H has a continuous L2-gradient which is related to that of L by

r1H .q; p/ D �r1L.q; F.q; p//;

r2H .q; p/ D F.q; p/:
(88)

On the other hand, to any Hamilton function H WU1 � H 0 ! R with continuous L2-
gradient we can associate its Hamiltonian action

AH WU
1
�H 0

! R; AH .q; p/ WD hp; Pqi �H .q; p/:

Its derivatives in the direction w 2 H 1 are given by

D1AH .q; p/w D hp; Pwi � hr1H .q; p/; wi;

D2AH .q; p/w D hPq;wi � hr2H .q; p/; wi:

It follows that .q; p/ 2 U1 �H 0 is a critical point of AH if and only if p 2 H 1 and the
following Hamilton equations hold:

Pp D �r1H .q; p/;

Pq D r2H .q; p/:
(89)

Proposition 7.1. Let LWU1 �H 0! R be a Lagrange function with continuous gradient
satisfying condition (L) and H WU1 � H 0 ! R its fibrewise Legendre transform. Then
the assignments .q; p/ 7! q and q 7! .q; p D r2L.q; Pq// define a 1-to-1 correspondence
between critical points .q; p/ of AH and critical points q of �L.

Proof. Let q 2 U1 be a critical point of �L, so p WD r2L.q; Pq/ 2 H 1 and q solves (86).
Then condition (L) and the second equation in (88) give

Pq D F.q; p/ D r2H .q; p/;

and (86) and the first equation in (88) give

Pp D
d

dt
r2L.q; Pq/ D r1L.q; Pq/ D �r1L.q; F.q; p// D r1H .q; p/:

So .q; p/ solves (89) and is therefore a critical point of AH .
Conversely, let .q; p/ 2 U1 �H 0 be a critical point of AH , so p 2 H 1 and .q; p/

solves (89). Then the second equation in (89) and the second equation in (88) give

Pq D r2H .q; p/ D F.q; p/;

which by condition (L) implies r2L.q; Pq/ D p 2 H 1. Now the first equation in (89) and
the first equation in (88) give

d

dt
r2L.q; Pq/ D Pp D r1H .q; p/ D �r1L.q; F.q; p// D r1L.q; Pq/:

So q solves (86) and is therefore a critical point of �L.
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Remark 7.2. Inspection of the preceding proof shows that formulas for the derivatives of
H do not involve derivatives of F . This suggests that Proposition 7.1 should still hold if
in condition (L) we only assume continuity of F rather than differentiability.

Example 7.3. Classically, the Lagrangian LWU1 �H 0 ! R has the form

L.q; v/ D

Z 1

0

L.q.t/; v.t// dt

for a smooth Lagrangian density LWU � Rn ! R, where U � Rn is an open subset and
U1 D H 1.S1; U /. Then

H .q; p/ D

Z 1

0

H.q.t/; p.t// dt

with H WU � Rn ! R the fibrewise Legendre transform of L, and the Euler–Lagrange
and Hamilton equations take the traditional form for i D 1; : : : ; n:

d

dt

@L

@ Pqi
D
@L

@qi

and

Ppi D �
@H

@qi
; Pqi D

@H

@pi
:

This example covers the instantaneous interaction Lagrangian Lin for helium in the
original coordinates q D .q1; q2/ 2 R2C away from collisions. The more general setting in
Proposition 7.1 will be needed in the following subsections to deal with the Lagrangians
Bav and Bin in the new coordinate z D .z1; z2/, which do not have the form in Exam-
ple 7.3.

7.2. The Kepler problem

For the Kepler problem, the function Q defined in (23) is the Lagrangian action �L asso-
ciated to the Lagrange function

LWU1
�H 0.S1;R/! R; L.z; w/ D 2kzk2kwk2 C

N

kzk2
(90)

with U1 D H 1.S1;R/ n ¹0º. The computation of the differential in Section 2.4 shows
that L has a continuous L2-gradient. The associated momentum � is given by

� D r2L.z; w/ D 4kzk
2w;

which can be solved for w as

w D
�

4kzk2
D F.z; �/:
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Note that the map F is smooth in .z; �/. It follows that k�k2 D 16kzk4kwk2 and the
associated Hamilton function becomes

H .z; �/ D h�; F.z; �/i �L.z; F.z; �// D
k�k2

8kzk2
�

N

kzk2
; (91)

with Hamiltonian action

AH .z; �/ D h�; z
0
i �
k�k2

8kzk2
C

N

kzk2
: (92)

By Proposition 7.1, critical points of AH are in 1-to-1 correspondence to critical points
of Q.

7.3. Mean interaction

For the helium atom with mean interaction, the function Bav defined in (38) is the La-
grangian action �Lav associated to the Lagrange function

LavWH
1
av �H

0.S1;R2/! R; Lav.z; w/ D L.z1; w1/CL.z2; w2/CA.z1; z2/;

where H1
av and A are defined in (37) and (36), and L is the Kepler Lagrangian from (90)

with charge N D 2. The computation of the differential in Section 3.2 shows that Lav has
a continuous L2-gradient. Since the interaction term A does not depend on the wi , the
associated momenta �i are given as in the Kepler case by

�i D 4kzik
2wi ;

wi D
�i

4kzik2
D F.zi ; �i /

and the associated Hamilton function becomes

Hav.z; �/ D H .z1; �1/CH .z2; �2/ �A.z1; z2/

D

2X
iD1

�
k�ik

2

8kzik2
�

2

kzik2

�
C

kz1k
2kz2k

2

kz21k
2kz2k2 � kz

2
2k
2kz1k2

;

with Hamiltonian action

AHav.z; �/ D h�1; z
0
1i C h�2; z

0
2i �Hav.z; �/

D

2X
iD1

�
h�1; z

0
1i �

k�ik
2

8kzik2
C

2

kzik2

�
�

kz1k
2kz2k

2

kz21k
2kz2k2 � kz

2
2k
2kz1k2

:

By Proposition 7.1, critical points of AHav are in 1-to-1 correspondence to critical points
of Bav.
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7.4. Instantaneous interaction

For the helium atom with instantaneous interaction, the function Bin defined in (59) is the
Lagrangian action �Lin associated to the Lagrange function

LinWH
1
in �H

0.S1;R2/! R; Lin.z; w/ D L.z1; w1/CL.z2; w2/C 	.z1; z2/;

where H1
in and 	 are defined in (57) and (56), and L is the Kepler Lagrangian from (90)

with charge N D 2. The computation of the differential in Section 4.2 shows that Lin has
a continuous L2-gradient. Since the interaction term 	 does not depend on the wi , the
associated momenta �i are given as in the Kepler case by

�i D 4kzik
2wi ; wi D

�i

4kzik2
D F.zi ; �i /

and the associated Hamilton function becomes

Hin.z; �/ D H .z1; �1/CH .z2; �2/ � 	.z1; z2/

D

2X
iD1

�
k�ik

2

8kzik2
�

2

kzik2

�
C

Z 1

0

1

z21.�z1.t// � z
2
2.�z2.t//

dt;

with Hamiltonian action

AHin.z; �/ D h�1; z
0
1i C h�2; z

0
2i �Hin.z; �/

D

2X
iD1

�
h�1; z

0
1i �

k�ik
2

8kzik2
C

2

kzik2

�
�

Z 1

0

1

z21.�z1.t// � z
2
2.�z2.t//

dt:

By Proposition 7.1, critical points of AHin are in 1-to-1 correspondence to critical points
of Bin.

A. Differentiability and Fredholm property

Let W � H 1.S1;R2/ be an open subset and

BWW ! R

be a Fréchet differentiable map. We say that B possesses an L2-gradient if for each z 2
W the derivative DB.z/WH 1.S1;R2/ ! R extends to a continuous linear functional
L2.S1;R2/! R. In this case the L2-gradient

rBWW ! L2.S1;R2/

is uniquely defined by the condition

hrB.z/; vi D DB.z/.v/ for all v 2 L2.S1;R2/;

where h ; i is the L2-inner product and DB denotes the Fréchet derivative.
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The natural domain of definition for such a functional B is an open subset of H 1.
However, for the applications in this article we are only interested in functionals that pos-
sess L2-gradients of class C 1. Since for the functionals we consider this is only the case
when their domain of definition is restricted toH 2, we restrict the following discussion to
subsets of H 2.

Recall the setup from Section 4. The set

Hin D
®
z D .z1; z2/ 2 H

2.S1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

z21.�/ � z
2
2.�z2.tz1.�/// > 0 for all � 2 S1

¯
is an open subset of the Hilbert space H 2.S1;R2/ D W 2;2.S1;R2/ and equipped with
the H 2-topology. We consider the instantaneous interaction functional

BinWHin ! R; z D .z1; z2/ 7! Q.z1; z2/C I.z1; z2/

with the free (noninteracting) term

Q.z1; z2/ D 2

2X
iD1

�
kzik

2
� kz0ik

2
C

1

kzik2

�
and the instantaneous interaction term

I.z1; z2/ D �
1

kz1k2

Z 1

0

z1.�/
2

z21.�/ � z
2
2.�z2.tz1.�///

d�

D
1

kz2k2

Z 1

0

z2.�/
2

z22.�/ � z
2
1.�z1.tz2.�///

d�:

For each z 2Hin the derivativeDBin.z/WH
2.S1;R2/!R extends to a continuous linear

functional L2.S1;R2/! R (see the formulas for DQ.z/ in the proof of Theorem A.1
and for DI.z/ in (105) below), so we can define its L2-gradient as above. An analogous
discussion applies to the mean interaction functional

BavWHav ! R; z D .z1; z2/ 7! Q.z1; z2/CA.z1; z2/

from Section 4 with the mean interaction term

A.z1; z2/ D �
kz1k

2kz2k
2

kz21k
2kz2k2 � kz

2
2k
2kz1k2

;

defined on the open subset

Hav D
®
z D .z1; z2/ 2 H

2.S1;R2/
ˇ̌
kz1k > 0; kz2k > 0;

kz21k
2

kz1k2
>
kz22k

2

kz2k2

¯
of the Hilbert space H 2.S1;R2/. Intersecting (58) with H 2.S1;R2/ gives us

Hin � Hav:

The goal of this appendix is the proof of the following theorem:
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Theorem A.1. On neighbourhoods of their respective zero sets, the L2-gradients rBinW

Hin ! L2.S1;R2/ and rBavWHav ! L2.S1;R2/, as well as their interpolation rBr D

.1 � r/rBin C rrBavWHav � Hin ! L2.S1;R2/ are C 1-Fredholm maps of index zero.
The same holds for their restrictions to the spaces of symmetric orbits yH2

av!L
2
sym.S

1;R2/

(resp. yH2
in ! L2sym.S

1;R2/) defined in (84).

Proof. The derivative of the free term applied to v D .v1; v2/ 2 L2.S1;R2/ is

DQ.z/v D 4

2X
iD1

�
kzik

2
hz0i ; v

0
i i C kz

0
ik
2
hzi ; vi i �

1

kzik4
hzi ; vi i

�
D 4

2X
iD1

D
�kzik

2z00i C kz
0
ik
2zi �

1

kzik4
zi ; vi

E
;

hence its L2-gradient has components

riQ.z/ D 4
�
�kzik

2z00i C kz
0
ik
2zi �

1

kzik4
zi

�
; i D 1; 2: (93)

This obviously defines a C 1-map rQWHav ! L2.S1;R2/. To see that the derivative of
rQ at w D .w1; w2/ is Fredholm of index zero we write the leading term of rQ near
w as z 7! �4.kw1k2z001 ; kw2k

2z002/. The latter map is a restriction of the obvious linear
index zero Fredholm map H 2.S1;R2/ ! L2.S1;R2/ (the kernel is spanned and the
image is complemented by constants). The remaining lower-order terms give a compact
perturbation, so rQ is a nonlinear C 1-Fredholm map Hav ! L2.S1;R2/ of index zero.

For the mean interaction, the components of the L2-gradient are read off from (39) to
be

r1AŒz1; z2� D �2
kz2k

4 � kz21k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

z1

C 4
kz1k

2 � kz2k
4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

z31 ;

r2AŒz1; z2� D C2
kz1k

4 � kz22k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

z2

� 4
kz1k

4 � kz2k
2

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

z32 :

(94)

Since these are C 1-maps whose derivatives at each point are compact linear operators,
this proves the assertion for Bav (which also follows from Theorem D.1).

Existence of the restriction of rQ to yH2
av ! L2sym.S

1;R2/ as a Fredholm map of
index zero is straightforward. So Theorem A.1 follows from Proposition A.2 below.

Proposition A.2. On a neighbourhood of the zero set of B, the gradient rI WHin !

L2.S1;R2/ of the interaction term defines a C 1-map whose derivative at each point is a
compact linear operator H 2.S1;R2/! L2.S1;R2/.



K. Cieliebak, U. Frauenfelder, and E. Volkov 50

The proof of this proposition will occupy the rest of this appendix. It uses some tech-
nical lemmas from Appendix B.

A.1. Reparametrizations of the circle

Here we collect some facts about reparametrizations of the circle that are used throughout
this article. In this subsection we consider a map z 2 C 1.S1;R/ with finite zero set

Z WD
®
� 2 S1

ˇ̌
z.�/ D 0

¯
:

As in Section 2.2, we associate to z a C 2-map tz WS1 ! S1 by

tz.�/ WD
1

kzk2

Z �

0

z.�/2 d� (95)

with derivative

t 0z.�/ D
z.�/2

kzk2
: (96)

By Lemma 2.1, the map tz is a homeomorphism with continuous inverse

�z WD t
�1
z WS

1
! S1: (97)

Since tz is of class C 2, the function �z is also of class C 2 on the complement of the finite
set tz.Z/ with derivative

P�z.t/ D
kzk2

z.�z.t//2
: (98)

In Section 4 we need the Fréchet derivatives of tz and �z with respect to z. The derivative
of tz with respect to z in the direction v 2 L2.S1;R/ is given by

Dtz.v/.�/ D
2

kzk2

Z �

0

z.�/v.�/ d� �
2hz; vi

kzk4

Z �

0

z.�/2 d�: (99)

For future use observe that Dtz defines a bounded operator L2.S1;R/ ! H 1.S1;R/
depending continuously on z. Indeed, the first summand is a composition of multiplication
with a continuous function and integrating from 0 to � . The multiplication is a continuous
operator toL2, and integration is a continuous operator toH 1. Boundedness of the second
summand can be seen analogously. Continuous dependence on z is clear.

Using (99) and (96), we derive a formula for the derivative of �z :

0 D D.tz ı �z/.v/.t/

D Dtz.v/.�z.t//C t
0
z.�z.t//D�z.v/.t/

D
2

kzk2

Z �z.t/

0

z.�/v.�/ d� �
2hz; vi

kzk4

Z �z.t/

0

z.�/2 d� C
z.�z.t//

2

kzk2
D�z.v/.t/;
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thus

D�z.v/.t/ D
2hz; vi

kzk2z.�z.t//2

Z �z.t/

0

z.�/2 d� �
2

z.�z.t//2

Z �z.t/

0

z.�/v.�/ d�: (100)

The instantaneous interaction term in Section 4 involves the expression

�.�/ WD z22.�/ � z
2
1.�z1.tz2.�///; (101)

whose derivative with respect to z1 in the direction v 2 L2.S1;R/ is given by

.D1�/.v/.�/ D �2z1.�z1.tz2.�///v.�z1.tz2.�///

� 2z1.�z1.tz2.�///z
0
1.�z1.tz2.�///D�z1.v/.tz2.�//: (102)

We also sometimes need the transformation of � under time change

�.�z2.tz1.�/// D z
2
2.�z2.tz1.�/// � z

2
1.�/ < 0 (103)

and its derivative

D1
�
�.�z2.tz1.�///

�
.v/.�/

D 2z2.�z2.tz1.�///z
0
2.�z2.tz1.�/// P�z2.tz1.�//Dtz1.v/.�/ � 2z1.�/v.�/

D 2kz2k
2 z
0
2.�z2.tz1.�///

z2.�z2.tz1.�///
Dtz1.v/.�/ � 2z1.�/v.�/: (104)

A.2. L2-gradient of the instantaneous interaction term

We write the interaction term as

I.z1; z2/ D
1

kz2k2
	.z1; z2/;

with

	.z1; z2/ WD

Z 1

0

z2.�/
2

z22.�/ � z
2
1.�z1.tz2.�///

d� D

Z 1

0

z2.�/
2

�.�/
d�:

Since kz2k > 0, it is enough to prove Proposition A.2 with 	 in place of I . In the
remainder of this appendix we will prove compactness and continuous dependence for
the z1-derivative of the z1-component of the L2-gradient r	; the treatments of the z2-
component and the z2-derivatives of both components are analogous and will be omitted.

Recall that �.�/ never vanishes; we will use this without further mention in the com-
putations below.

Derivative of 	 . Let us compute the derivative of 	 with respect to z1 in the direction
v 2 L2.S1;R/:

D1	.z1; z2/.v/ D �

Z 1

0

z22.�/

�.�/2
D1�.v/.�/ d�
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D 2

Z 1

0

z22.�/

�.�/2
z1.�z1.tz2.�///v.�z1.tz2.�/// d�

C 2

Z 1

0

z22.�/

�.�/2
z1.�z1.tz2.�///z

0
1.�z1.tz2.�///D�z1.v/.tz2.�// d�

D 2

Z 1

0

z22.�/

�.�/2
z1.�z1.tz2.�///v.�z1.tz2.�/// d�

C
4hz1; vi

kz1k2

Z 1

0

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///

Z �z1 .tz2 .�//

0

z1.�/
2 d� d�

� 4

Z 1

0

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///

Z �z1 .tz2 .�//

0

z1.�/v.�/ d� d�

DW

3X
iD1

Di
1	.z1; z2/.v/: (105)

Here, in the second equality we have used (102), in the third equality we have substi-
tuted D�z1.v/ using (100) with z D z1, and we denote the resulting three summands by
Di
1	.z1; z2/.v/, i D 1; 2; 3.

Our next goal is to rewrite D1	.z1; z2/.v/ as the L2-inner product of v with the first
component of the L2-gradient of 	,

D1	.z1; z2/v D hr1	.z1; z2/; vi for all v 2 L2.S1;R/:

Coordinate change in the integrals. In order to write the first term in (105) as an L2-
inner product with v, we perform the following coordinate change that will also be used
later. For � 2 S1 we set

� WD �z1.tz2.�// 2 S
1;

so that
� D �z2.tz1.�//

and from equations (96) and (98) we get

d� D P�z2.tz1.�//t
0
z1
.�/ d� D

kz2k
2

kz1k2
z21.�/

z22.�/
d�: (106)

So, after renaming the integration variable from � to � , the first term in (105) becomes

D1
1	.z1; z2/.v/ D 2

Z 1

0

z22.�/

�.�/2
z1.�z1.tz2.�///v.�z1.tz2.�/// d�

D 2
kz2k

2

kz1k2

Z 1

0

z31.�/v.�/

�.�z2.tz1.�///
2
d�:

The second term in (105) already has the form of an L2-inner product with v. Using (95)
to insert tz.�/ and renaming the integration variable � to � it becomes

D2
1	.z1; z2/.v/ D 4hz1; vi

Z 1

0

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
tz1.�z1.tz2.�/// d�:



A variational approach to frozen planet orbits in helium 53

Switching the order of integration. To write the third term as an inner product, we
need to switch the order of integration in the double integral. The general setup for this
is the following. Let f; F W S1 ! R be continuous functions. Let �1W S1 ! S1 be a C 1-
homeomorphism with �.0/ D 0 and finitely many critical points. ThenZ 1

0

d� F.�/

Z �1.�/

0

f .�/ d� D

Z 1

0

d� f .�/

Z 1

��11 .�/

F.�/ d�

D

Z 1

0

d� f .�/

Z 1

��11 .�/

F.�/ d�:

We apply this formula with

�1.�/ WD �z1.tz2.�//; f .�/ WD z1.�/v.�/

to the third term in (105). To deal with the integration limits observe that the inverse of �1
is given by ��11 .�/ D �z2.tz1.�//. Thus we find

D3
1	.z1; z2/.v/ D �4

Z 1

0

d�
z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///

Z �z1 .tz2 .�//

0

z1.�/v.�/ d�

D �4

Z 1

0

z1.�/v.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�:

Altogether this gives us the formula for the first component of the L2-gradient

r1	.z1; z2/ D 2
kz2k

2

kz1k2
z31.�/

�.�z2.tz1.�///
2

C 4z1.�/

Z 1

0

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
tz1.�z1.tz2.�/// d�

� 4z1.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�

DW

3X
iD1

V i
1.z1; z2/.�/: (107)

Note that, since� and z1 never vanish, r1	.z1; z2/ exists as an L2-function and depends
continuously on .z1; z2/ 2 Hin.

A.3. Hessian part 1

In this subsection we consider the first part of the gradient in (107),

V1
1 .z1; z2/.�/ D 2

kz2k
2

kz1k2
z31.�/

�.�z2.tz1.�///
2
:
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Differentiating it with respect to z1 in the direction v 2 H 2.S1;R/ we obtain

kz1k
2

2kz2k2
D1V

1
1 .z1; z2/.v/.�/ D �

2

kz1k2
z31.�/

�.�z2.tz1.�///
2
hz1; vi

C 3
z21.�/v.�/

�.�z2.tz1.�///
2

� 2
z31.�/

�.�z2.tz1.�///
3
D1
�
�.�z2.tz1.�///

�
.v/.�/

D �
2

kz1k2
z31.�/

�.�z2.tz1.�///
2
hz1; vi

C 3
z21.�/v.�/

�.�z2.tz1.�///
2

� 4
z31.�/kz2k

2z02.�z2.tz1.�///

�.�z2.tz1.�///
3z2.�z2.tz1.�///

Dtz1.v/.�/

C 4
z31.�/z1.�/v.�/

�.�z2.tz1.�///
3
; (108)

where we have used (104) to replace D1.�.�z2.tz1.�////.v/.�/. We need to show that
each of the four summands on the right-hand side as a function of v defines a compact
linear operator H 2.S1;R/ ! L2.S1;R/ that depends continuously on .z1; z2/ 2 Hin

with respect to the operator norm.
The first summand is a one-dimensional operator (hence compact) whose image is

spanned by a function that lies in H 1.S1;R/ and depends continuously on .z1; z2/ by
Lemmas B.8 and B.7.

The second and fourth summands are multiplication operators with functions that lie
in H 1.S1;R/ and depend continuously on .z1; z2/ by Lemmas B.8 and B.7. They are
compact because they are compositions

H 2.S1;R/ ,! H 1.S1;R/! H 1.S1;R/ ,! L2.S1;R/;

where the middle map is multiplication with a fixed H 1-function and the two inclusions
are compact.

For the third summand first note that by formula (99) with z D z1 the map v 7!
Dtz1.v/ defines a bounded linear operator H 2.S1;R/! H 1.S1;R/ depending continu-
ously on z1. The third term is the composition of this operator and several multiplication
operators. The functions by which we multiply lie in H 1.S1;R/ except for 1

z2.�z2 .tz1 .�///
,

which lies in L2.S1; R/. They depend continuously on .z1; z2/ by Lemmas B.8,
B.7 and B.9. To show compactness of this operator we write it as the composition of
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continuous linear maps

H 2.S1;R/! H 1.S1;R/ ,! C 0.S1;R/! L2.S1;R/;

where the first map sends v 7! Dtz1.v/, the third map is multiplication by 1
z2.�z2 .tz1 .�///

,
and the canonical inclusion in the middle is compact by the Rellich embedding theorem.
This concludes the discussion of V1

1 .

A.4. Hessian part 2

The second part of the gradient in (107) has the form

V2
1 .z1; z2/.�/ D 4z1.�/

Z 1

0

g.z1; z2/.�/tz2.�/ d�;

with

g.z1; z2/.�/ WD
z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
:

Differentiating it with respect to z1 in the direction v 2 H 2.S1;R/ we obtain

1

4
D1V

2
1 .z1; z2/.v/.�/ D v.�/

Z 1

0

g.z1; z2/.�/tz2.�/ d�

C z1.�/

Z 1

0

D1g.z1; z2/.v/.�/tz2.�/ d�

C z1.�/

Z 1

0

g.z1; z2/.�/Dtz2.v/.�/ d�:

Note that g.z1; z2/.�/ agrees with the integrand of the third part of the gradient in (107).
It is shown in the next subsection that g.z1; z2/ 2 C 0.S1;R/ depends continuously on
.z1; z2/, and v 7! D1g.z1; z2/.v/ defines a bounded linear operator H 2.S1; R/ !
L2.S1; R/ that depends continuously on .z1; z2/. Equations (95) and (99) show that
tz2 2 C

0.S1;R/ depends continuously on z2, and v 7! Dtz2.v/ defines a bounded lin-
ear operator H 2.S1;R/! L2.S1;R/ that depends continuously on z2. This shows that
the right-hand side as a function of v defines a bounded linear operator H 2.S1;R/!
L2.S1;R/ that depends continuously on .z1; z2/2Hin. It is compact because the first term
is a scalar multiplication operator composed with the compact inclusion H 2.S1;R/ ,!
L2.S1;R/, and the other two terms have one-dimensional images.

A.5. Hessian part 3

In this subsection we consider the third part of the gradient in (107),

V3
1 .z1; z2/.�/ D �4z1.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�:
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Differentiating it with respect to z1 in the direction v 2 H 2.S1;R/ we obtain

�
1

4
D1V

3
1 .z1; z2/.v/.�/ D v.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�

� z1.�/
z22.�z2.tz1.�///

�.�z2.tz1.�///
2

z01.�/

z1.�/
P�z2.tz1.�//Dtz1.v/.�/

C z1.�/

Z 1

�z2 .tz1 .�//

z22.�/D1

� 1

�.�/2

�
.v/

z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�

C z1.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
D1

�z01.�z1.tz2.�///
z1.�z1.tz2.�///

�
.v/ d�

DW

4X
iD1

Tiv.�/:

Again, we need to show that each Ti defines a compact linear operator H 2.S1;R/ !
L2.S1;R/ that depends continuously on .z1; z2/ 2 Hin. In the integrals we will use the
change of variables � WD �z1.tz2.�// from Section A.2. The integrand transforms accord-
ing to formula (106). To change the limits of integration note that � 2 Œ�z2.tz1.�//; 1�
corresponds to � 2 Œ�; 1�.

Now we discuss the four terms one by one. We will omit the arguments .S1;R/ and
simply write H 2 instead of H 2.S1;R/ etc.

The first term. A change of integration variable turns the first term into

T1v.�/ D v.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�

D v.�/
kz2k

2

kz1k2

Z 1

�

z01.�/z1.�/

�.�z2.tz1.�///
2
d�:

By Lemmas B.8 and B.7 the integrand is continuous and depends continuously on .z1; z2/
as a map Hin!C 0. Therefore, T1 defines a bounded linear operatorH 2!H 1 depending
continuously on .z1; z2/, and composition with the inclusionH 1 ,!L2 makes it compact.

The second term. Using (95) to replace P�z2.tz1.�// turns the second term into

T2v.�/ D �z1.�/
z22.�z2.tz1.�///

�.�z2.tz1.�///
2

z01.�/

z1.�/

kz2k
2

z22.�z2.tz1.�///
Dtz1.v/.�/

D �
z01.�/kz2k

2

�.�z2.tz1.�///
2
Dtz1.v/.�/:

Formula (99) with z D z1 shows that v 7! Dtz1.v/ defines a bounded operator H 2 !

H 1 depending continuously on .z1; z2/. Together with Lemmas B.8 and B.7 this implies
that T2 defines a bounded operator H 2 ! H 1 depending continuously on .z1; z2/, and
composition with the inclusion H 1 ,! L2 makes it compact.
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The third term. We rewrite the third term as

T3v.�/ D z1.�/

Z 1

�z2 .tz1 .�//

z22.�/
�2.D1�/.v/.�/

�.�/3
z01.�z1.tz2.�///

z1.�z1.tz2.�///
d�

D �2z1.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/3
z01.�z1.tz2.�///

z1.�z1.tz2.�///

�
�2z1.�z1.tz2.�///v.�z1.tz2.�///

� 2z1.�z1.tz2.�///z
0
1.�z1.tz2.�///D�z1.v/.tz2.�//

�
d�

D 4
kz2k

2

kz1k2
z1.�/

Z 1

�

z1.�/z
0
1.�/

�.�z2.tz1.�///
3

�
z1.�/v.�/C z1.�/z

0
1.�/Xv.�/

�
d�:

Here in the second equality we have used (102) to replace .D1�/.v/.�/, in the third
equality we change the integration variable, and we have abbreviated (replacing D�z1.v/
via (100))

Xv.�/ WD D�z1.v/.tz1.�// D
2

z21.�/

�
kz1k

2.�/

kz1k2
hz1; vi � hz1; vi.�/

�
: (109)

The map v 7! Xv defines a bounded operator H 2 ! H 1 depending continuously on
.z1; z2/. Together with Lemmas B.8 and B.7 this implies that T3 defines a bounded oper-
ator H 2 ! H 1 depending continuously on .z1; z2/, and composition with the inclusion
H 1 ,! L2 makes it compact.

The fourth term. We rewrite the fourth term as

T3v.�/ D z1.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2
D1
�
.log z1/0.�z1.tz2.�///

�
.v/ d�

D z1.�/

Z 1

�z2 .tz1 .�//

z22.�/

�.�/2

h� v0.�/
z1.�/

�
z01.�/

z21.�/
v.�/

�ˇ̌̌
�D�z1 .tz2 .�//

C .log z1/00.�z1.tz2.�///D�z1.v/.tz2.�//
i
d�

D
kz2k

2

kz1k2
z1.�/

Z 1

�

z21.�/

�.�z2.tz1.�///
2

h� v0.�/
z1.�/

�
z01.�/

z21.�/
v.�/

�
C .log z1/00.�/Xv.�/

i
d�;

with Xv.�/ from (109). By Lemma B.7 the function

� 7! .log z1/00.�/ D
z001.�/z1.�/ � z

0
1.�/

2

z1.�/2

lies in L2 and depends continuously on z1 2 H 2. All other terms in the integrand are
continuous functions of � that depend continuously on .z1; z2/ by Lemmas B.8 and B.7
together with (109). So the integrand belongs to L2.S1;R/, hence the integral belongs to
H 1.S1;R/, thus T4 defines a bounded operator H 2 ! H 1 depending continuously on
.z1; z2/, and composition with the inclusion H 1 ,! L2 makes it compact.
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This finishes the discussion of V3
1 , and thus of the z1-derivative of the z1-component

of the L2-gradient r	. The treatments of the z2-component and the z2-derivatives of
both components are analogous and will be omitted. This concludes the proof of Proposi-
tion A.2.

B. Some lemmas on continuous dependence

In this appendix we prove some technical lemmas on continuous dependence that were
used in Appendix A. We will freely use the notation from Appendix A.

B.1. The basic lemma on continuous dependence

We say that a function f 2 C 1.S1;R/ has transverse zeros if for all t 2 S1 with f .t/D 0
we have f 0.t/ ¤ 0. We define the following open subset of H 2.S1;R/:

H2
0 WD

®
z 2 H 2.S1;R/

ˇ̌
z has transverse zeros

¯
:

Note that by Proposition 4.2 and Corollary 4.3, for a critical point .z1; z2/ of the functional
Bin from Section 4 both components z1, z2 belong to H2

0 . Similarly, we define

C10 WD
®
f 2 C 1.S1;R/

ˇ̌
f has transverse zeros

¯
:

We introduce the maps

F WH2
0 ! C10 ; F .z/ WD z3 ı �z ;

with �z defined in (97), and

G WC10 ! L2.S1;R/; G .f / WD
1

f 1=3

(defined outside the zero set of f ). Our goal in this section is to prove the following
lemma:

Lemma B.1. The map

G ı F WH2
0 ! L2.S1;R/; z 7!

1

z ı �z

is continuous.

The statement naturally splits in two – continuity of F and continuity of G .

Lemma B.2. The map F is continuous.

Lemma B.3. The map G is continuous.
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In the proofs we will use the following standard fact whose easy proof we omit.

Lemma B.4. Denote by Homeo.S1/ the space of homeomorphisms of S1 equipped with
the C 0-topology. Then the inversion h 7! h�1 defines a continuous map Homeo.S1/!
Homeo.S1/.

Proof of Lemma B.2. Formula (95) for the homeomorphism tz shows that it depends con-
tinuously on z. Therefore, by Lemma B.4, its inverse �z depends continuously on z as
well. This shows that F lands in C 0.S1;R/ and is continuous as a map to C 0.S1;R/.
Next we set f WD F .z/ and write out its derivative with respect to t :

f 0.t/ D 3z2.�z.t//z
0.�z.t// P�z.t/ D 3z

2.�z.t//z
0.�z.t//

kzk2

z.�z.t//2
D kzk2z0.�z.t//:

Since z0 2C 0.S1;R/ and �z depend continuously on z, we see that f 0 lands in C 0.S1;R/
and depends continuously on z. Altogether this shows that F is a continuous map to
C 1.S1;R/. Transversality of zeros for z and the above formula for f 0.t/ imply transver-
sality of zeros for f . This completes the proof of Lemma B.2.

B.2. Proof of Lemma B.3

Desingularization procedure. The key point in the proof of Lemma B.3 is the question
of how to deal with integrals of the type

J D

Z
S1

dt

f 2=3.t/

for a function f 2 C10 . The idea is to apply a coordinate change that turns the integrand
into a continuous one. For this consider a C 1-homeomorphism �WS1 7! S1 that restricts
to a C 1-diffeomorphism S1 n f �1.0/ 7! S1 n f �1.0/ and satisfies

�.�/ D ti C .� � ti /
3 near each zero ti of f :

We perform the coordinate change t D �.�/ in the integral J . Then near a zero ti of f ,
using t � ti D .� � ti /3, the integrand in J becomes

dt

f 2=3.t/
D
�0.�/ d�

f 2=3.t/
D
3.� � ti /

2 d�

f 2=3.t/
D 3

� .t � ti /2
f 2.t/

�1=3
d�

D 3
� f .t/
t � ti

��2=3
d�: (110)

Since f is a C 1-function, the quotient f .t/=.t � ti / extends continuously over t D ti
by the derivative f 0.ti /, which is nonzero because f 2 C10 . Therefore, the function t 7!
3.f .t/
t�ti

/�2=3 extends continuously over t D ti by 3f 0.ti /�2=3. Composing this with the
continuous function �, we conclude the following lemma:
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Lemma B.5. For f , � as above the coefficient in front of d� in the pullback ��. dt

f 2=3.t/
/

extends uniquely to a continuous function

gWS1 ! R; g.�/ D

8̂<̂
:

�0.�/

f 2=3.�.�//
; f .�/ ¤ 0;

3f 0.ti /
�2=3; � D ti zero of f :

(111)

We need to globalize this procedure, assigning to each f 2 C10 a map � D �f with the
properties above in a continuous fashion. For this, we introduce some notation. We write
C10 as the disjoint union

C10 D
a
m2N0

Um;

where Um is the set of f 2 C10 with precisely m zeros. Let

Xm WD
®
.t1; : : : ; tm/ 2 .S

1/m
ˇ̌
t1 < t2 < � � � < tm < t1

¯ı
Zm

be the configuration space of m cyclically ordered points on S1 modulo cyclic permuta-
tions (with the quotient topology). Assigning to a function its cyclically ordered zero set
defines a canonical continuous map

ZWUm ! Xm:

Let Gm be the set of C 1-homeomorphisms �WS1 ! S1 with the following properties:

• � has precisely m critical points (i.e. zeros of �0) t1; : : : ; tm.

• For each l D 1; : : : ; m let

ıi WD
1

4
min

®
ti � ti�1; tiC1 � ti

¯
(112)

be the distance of ti to the nearest zero, where we stipulate t0 WD tm 2 S1. Then we
require that

�.�/ D .� � ti /
3
C ti

for all � 2 .ti � ıi ; ti C ıi /.

We equip Gm with the C 1-topology. Assigning to a function its cyclically ordered set of
critical points defines a canonical continuous map

� WGm ! Xm:

Since � is a fibration with contractible fibres, there exists a continuous section

sWXm ! Gm:

So we obtain a continuous map

s ıZWUm ! Gm; f 7! �f WD s ıZ.f /:
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For different m 2 N0 these maps together give a continuous map

C10 D
a
m2N0

Um ! G WD
a
m2N0

Gm; f 7! �f (113)

with the property that the critical points of �f are precisely the zeros of f . It follows that
f , �f satisfy the hypotheses of Lemma B.5; we denote the resulting continuous function
by gf WS1 ! R.

Lemma B.6. The map C10 ! C 0.S1;R/, f 7! gf is continuous.

Proof. We will use the following criterion for uniform convergence of a sequence of func-
tions gnWS1 ! R to a function gWS1 ! R (which holds more generally for functions on
any compact metric space):

gn ! g uniformly, gn.�n/! g.�/ for every sequence �n ! �: (114)

Consider now a converging sequence fn ! f in C10 and denote gn WD gfn , g WD gf ,
�n WD �fn , � WD �f . Let �n! � be a converging sequence in S1. Then by the criterion we
need to show that gn.�n/! g.�/. We distinguish two cases.

Case 1: f .�/ ¤ 0. Then uniform convergence fn ! f implies fn.�n/ ! f .�/, so
fn.�n/ ¤ 0 for all sufficiently large n. Hence by Lemma B.5 we have

gn.�n/ D
�0n.�n/

f
2=3
n .�n.�n//

and g.�/ D
�0.�/

f 2=3.�.�//
:

Note that f .�.�// ¤ 0 and fn.�n.�n// ¤ 0 for large n. Continuity of the map f 7! �f
implies that �n ! � in C 1.S1; S1/, hence �n ! � and �0n ! �0 uniformly. Applying the
above criterion repeatedly it follows that �0n.�n/! �0.�/, �n.�n/! �.�/, fn.�n.�n//!
f .�.�// ¤ 0, and therefore gn.�n/! g.�/.

Case 2: f .�/ D 0. In this case let t1 < � � � < tm < t1 be the zeros of f . Then for large n
the function fn also hasm zeros t1;n < � � � < tm;n < t1;n such that ti;n! ti as n!1 for
each i . Hence the positive numbers ıi and ıi;n defined via (112) (the latter using the ti;n)
also satisfy ıi;n! ıi as n!1. We have � D ti for some i . Since �n! � D ti and �n! �,
it follows that for large n both �n and tn WD �n.�n/ lie in the interval .ti;n � ıi;n; ti;nC ıi;n/.

Let us assume first that �n ¤ ti;n, hence also tn ¤ ti;n for all sufficiently large n. Then
fn.�n/ ¤ 0 for all sufficiently large n, and by Lemma B.5 and (110) we have

gn.�n/ D
�0n.�n/

f
2=3
n .tn/

D 3
� fn.t/

tn � ti;n

��2=3
and g.�/ D 3f 0.ti /

�2=3:

By the mean value theorem we have fn.tn/=.tn � ti;n/ D f 0.�n/ for some �n between
ti;n and tn. Then ti;n ! ti and tn ! ti implies �n ! ti , so uniform convergence f 0n ! f

yields f 0n.�n/! f 0.ti / ¤ 0 and thus gn.�n/! g.�/.
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If �n D ti;n for some arbitrarily large n, then for these n by Lemma B.5 we have
gn.�n/ D 3f 0n.ti;n/

�2=3, which also converges to g.�/ D 3f 0.ti /
�2=3 as n ! 1. This

concludes the proof of Lemma B.6.

Proof of Lemma B.3. Consider a sequence ¹fnºn2N � C10 converging to f 2 C10 in
C 1.S1;R/. We need to show f

�1=3
n ! f �1=3 in L2.S1;R/. We write the squared L2-

distance as
kf �1=3 � f �1=3n k

2
L2
D AC An � 2Bn (115)

with

A WD

Z 1

0

dt

f 2=3.t/
; An D

Z 1

0

dt

f
2=3
n .t/

; Bn D

Z 1

0

dt

f
1=3
n .t/f 1=3.t/

:

By (110) we have

A D

Z 1

0

gf .�/ d�; An D

Z 1

0

gfn.�/ d�;

where gf ; gfn W S
1 ! R are the continuous functions assigned to f , fn in Lemma B.5.

From the convergence fn ! f in C10 and Lemma B.6 we obtain gfn ! gf in C 0.S1;R/
and thus An ! A. So in view of (115) we are done if we can show Bn ! A.

To prove this we introduce some notation. For h 2 C10 and a measurable subset I � S1

we denote

A.h; I / WD

Z
I

dt

h2=3.t/
dt:

By (110) we have

A.h; I / D

Z
��1
h
.I /

gh.�/ d� � j�
�1
h .I /j kghkC 0.S1;R/;

where h 7! �h and h 7! gh are the continuous maps from (113) and Lemma B.6, respec-
tively, and jI j denotes the Lebesgue measure of I . It follows from the definition of �h that
j��1
h
.I /j depends continuously on h 2 C10 and can be made arbitrarily small by making

jI j small.
Now let " > 0 be given and consider the compact subset

Z WD ¹fnºn2N [ ¹f º � C10 :

Since the zero set of fn converges to that of f , there exists for each  > 0 a union I � S1

of open intervals containing the zero set of f with the following properties:

(i) there exist ı > 0 and N 2 N such that jfnj � ı on S1 n I for all n � N ;

(ii) jI j �  .

By the preceding discussion we can choose  > 0 so small that

max
h2Z

A.h; I / � max
h2Z
j��1h .I /j max

h2Z
kghkC 0.S1;R/ < "=3: (116)
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We set

Bn.I / WD

Z
I

dt

f
1=3
n .t/f 1=3.t/

:

Using the Cauchy–Schwarz inequality and (116) we estimate

jBn.I /j
2
�

Z
I

dt

f
2=3
n .t/

Z
Ik

dt

f 2=3.t/
D A.fn; I /A.f; I / � "

2=9 (117)

for all n � N . Now we split Bn � A into summands

Bn � A D Bn.I / � A.f; I /C

Z
S1nI

� 1

f
1=3
n .t/f 1=3.t/

�
1

f 2=3.t/

�
dt

and estimate it by the triangle inequality:

jBn � Aj � jBn.I /j C jA.f; I /j C

Z
S1nI

ˇ̌̌ 1

f
1=3
n .t/f 1=3.t/

�
1

f 2=3.t/

ˇ̌̌
dt:

By property (i) above we have jfnj � ı and jf j � ı > 0 on the compact set S1 n I , so
the integrand in the last integral converges uniformly to zero on S1 n I . Therefore, there
exists an integer N1 � N such that the last integral is smaller than "=3 for all n � N1.
Together with equations (116) and (117) this implies

jBn � Aj < "=3C "=3C "=3 D "

for all n � N1. This proves Bn ! A, which concludes the proof of Lemma B.3 and thus
of Lemma B.1.

B.3. Further lemmas on continuous dependence

We will frequently use the following standard result for which we denote

H 1
¤0.S

1;R/ WD
®
f 2 H 1.S1;R/

ˇ̌
f .t/ ¤ 0 for all t

¯
:

Lemma B.7. There are continuous maps

H 1.S1;R/ �H 1.S1;R/! H 1.S1;R/; .f; g/ 7! fg

and
H 1
¤0.S

1;R/! H 1.S1;R/; f 7! 1=f:

Proof. The first assertion is just the well-known fact that H 1.S1;R/ is a Banach algebra.
For the second assertion we abbreviate H 1

¤0
WD H 1

¤0
.S1;R/ etc. The map H 1

¤0
! L2,

f 7! 1=f is the composition of continuous maps

H 1
¤0 ,! C 0

¤0 ! C 0
¤0 ,! L2;
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where the middle map sends f 7! 1=f and the other two maps are the canonical inclu-
sions. The map H 1

¤0
! L2, f 7! .1=f /0 D �f 0=f 2 is the composition of continuous

maps
H 1
¤0 ! C 0

¤0 ˚ L
2
! L2;

where the first map sends f 7! .�1=f 2; f 0/ and the second map is multiplication. To-
gether this proves the lemma.

Lemma B.8. The following maps are continuous:

H2
0 ! H 1.S1;R/; z 7! z2 ı �z ;

.H 2.S1;R/ �H2
0 / \Hin ! H 1.S1;R/; .z1; z2/ 7!

�
� 7! z22.�z2.tz1.�///

�
;

.H 2.S1;R/ �H2
0 / \Hin ! H 1.S1;R/; .z1; z2/ 7!

�
� 7! �.�z2.tz1.�///

�
;

where � is defined in (101).

Proof. For the first map, continuous dependence of �z on z (which follows from Lemma
B.4) implies that z2 ı �z depends continuously on z as an element of L2.S1;R/. For its
time derivative

d

dt
z2.�z.t// D 2z.�z.t// P�z.t/ D 2z.�z.t//

kzk2

z.�z.t//2
D 2

kzk2

z.�z.t//
;

continuous dependence follows from Lemma B.1.
For the second map, observe that z1 never vanishes. Therefore, tz1 is a C 1-diffeo-

morphism of S1 depending continuously on z1. Together with the statement about the
first map this concludes the argument. Continuity of the third map now follows directly
from (103).

Lemma B.9. The map

.H 2.S1;R/ �H2
0 / \Hin ! L2.S1;R/

defined by

.z1; z2/ 7!
�
� 7!

1

z2.�z2.tz1.�///

�
is continuous.

Proof. Recall from the previous proof that tz1 is a C 1-diffeomorphism of S1 depending
continuously on z1. This together with Lemma B.1 completes the proof.

C. The mod 2 Euler number

Throughout this appendixX denotes a Hilbert manifold (an open subset of a Hilbert space
will suffice for our purposes), Y an open neighbourhood of 0 in a Hilbert space and
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k 2 N0. We say that a C 1-map f WX ! Y is transverse to 0 if 0 is a regular value of
f , i.e. Df.x/W TxX ! T0Y is surjective for all x 2 f �1.0/. Our goal is to prove the
following theorem:

Theorem C.1. To each C 1-Fredholm map f WX ! Y of index 0 with compact zero set
f �1.0/ we can associate its mod 2 Euler number �.f / 2 Z=2Z which is uniquely char-
acterized by the following axioms:

• (Transversality) If f is transverse to 0, then �.f / D jf �1.0/j mod 2.

• (Excision) For any open neighbourhoods zX � X of f �1.0/ and zY � Y of 0 such that
f . zX/ � zY we have �.f / D �.f j zX W zX ! zY /.

• (Cobordism) IfW is a Hilbert manifold with boundary andF WW ! Y aC 1-Fredholm
map of index 1 with compact zero set F �1.0/, then �.F j@W W @W ! Y / D 0.

• (Homotopy) Let f0; f1WX ! Y be C 1-Fredholm maps of index 0 with compact zero
sets. If there exists a C 1-Fredholm map F W Œ0; 1� � X ! Y of index 1 with compact
zero set F �1.0/ such that F j¹iº�X D fi for i D 0; 1, then �.f0/ D �.f1/.

Note that the (homotopy) axiom is just a special case of the (cobordism) axiom.
The invariant �.f / in Theorem C.1 can be viewed as a special case of either the

Caccioppoli–Smale degree defined in [9], or of the Euler class of a G-moduli problem
defined in [3] (with trivial group G). The main improvement of Theorem C.1 over those
results is the fact that in the (cobordism) we require only regularity C 1 instead of C 2. This
is not entirely obvious because the Sard–Smale theorem [9] for a Fredholm map of index 1
requires regularity C 2. While this improvement may seem boring from the viewpoint of
general theory, it is crucial for the application in this paper because the functional rBin is
of class C 1 but not C 2.

The main idea of the proof of Theorem C.1 is the following. Given a C 1-Fredholm
map f WX ! Y of index 0 with compact zero set f �1.0/ we use the Sard–Smale theo-
rem [9] to C 1-approximate f by a C 1-Fredholm map gWX ! Y of index 0 transverse
to 0. We define �.f / WD �.g/ WD jg�1.0/j. To see that this is well defined we join g0
to g1 by a convex linear combination GW Œ0; 1� � X ! Y . The map G is a C 1-Fredholm
map of index 1. We want to approximate G by a C 1-Fredholm map zG transverse to 0 and
such that zG.i; x/ D G.i; x/ for i D 0; 1. The direct application of the Sard–Smale theo-
rem [9] is not sufficient, since Fredholm maps of index 1 produce a loss of regularity by 1.
On the other hand, Lemma C.2 below applies and we conclude by the standard argument
that M WD zG�1.0/ is a compact C 1-manifold with boundary @M D g�10 .0/q g�11 .0/.
Therefore, �.g0/ D jg�10 .0/j D jg�11 .0/j D �.g1/.

The proof of Lemma C.2 below uses a three-step approximation, where the key appli-
cation of the Sard–Smale theorem [9] occurs on step (3) to a C1-map defined on an open
subset of the domain, so the loss of regularity does not happen. To get to this nice situation
of step (3) we use the fact that the restriction of F to @W (notation of Lemma C.2) has
index 0 and can therefore be approximated by the Sard–Smale theorem [9] without the
loss of regularity.
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Lemma C.2. LetW be a Hilbert manifold with boundary and F WW ! Y aC k-Fredholm
map of index k 2 N with compact zero set F �1.0/ such that F j@W is transverse to 0.
Then F can be C k-approximated by a C k-Fredholm map zF WW ! Y of index k with
compact zero set zF �1.0/ such that F j@W D zF j@W and zF WW ! Y is transverse to 0. In
particular, zF �1.0/ is a compact C k-manifold of dimension k with boundary @ zF �1.0/ D
.F j@W /

�1.0/.

Proof. (1) Let gW @W ! Y be a C1-map which is sufficiently C k-close to f WD F j@W
so that the map .1 � t /f C tg is transverse to zero for each t 2 Œ0; 1� and the map

Œ0; 1� � @W ! Y; .t; x/ 7! .1 � t /f .x/C tg.x/

is Fredholm of index k with compact zero set. Let N Š Œ0; 2/ � @W � W be a collar
neighbourhood of @W Š ¹0º � @W . Pick a smooth cutoff function 'WR ! Œ0; 1� with
compact support in .0; 2/ which equals 1 in a neighbourhood of 1. Define GWW ! Y by

G.t; x/ WD .1 � '.t//F.t; x/C '.t/g.x/

for .t; x/ 2 N and G WD F on W nN . Then GWW ! Y is a C k-Fredholm map of index
k such that Gj@W D F j@W and G is C1 in a neighbourhood of ¹1º � @W . By choosing
N sufficiently small we can ensure that G has compact zero set and GjN is transverse
to 0.

(2) Set zN WD Œ0; 1/� @W �N . We C k-approximateG by a C k-Fredholm mapH WW !
Y of index k with compact zero set such that H D G on zN and H is C1 on W n zN .

(3) Using the Sard–Smale theorem [9], we C k-approximate the restriction H j
W n zN

by a
C1-Fredholm map zF WW n zN ! Y with compact zero set which agrees with H near
¹1º � @W and is transverse to zero. This map extends via H over zN to the desired map
zF WW ! Y .

Proof of Theorem C.1. Uniqueness: Let f WX ! Y be a C 1-Fredholm map of index 0
with compact zero set f �1.0/. By the Sard–Smale theorem [9], we can C 1-approximate
f by a C 1-Fredholm map gWX ! Y of index 0 which is transverse to 0. By choosing g
sufficiently C 1-close to f we can ensure that

F W Œ0; 1� �X ! Y; .t; x/ 7! .1 � t /f .x/C tg.x/

is a C 1-Fredholm map of index 1 with compact zero set. So by the (homotopy) and
(transversality) axioms �.f / is uniquely determined by

�.f / D �.g/ D jg�1.0/j mod 2:

Existence: On maps f as in the theorem which are transverse to 0 we define �.f / WD
jf �1.0/j mod 2 by the (transversality) axiom. We claim that then the (cobordism) axiom



A variational approach to frozen planet orbits in helium 67

holds under the additional assumption that f WD F j@W is transverse to 0. To see this, we
apply Lemma C.2 to find a C 1-Fredholm map zF WW ! Y of index 1whose zero setM WD
zF �1.0/ is a compact C 1-manifold of dimension 1 with boundary @M D f �1.0/. Since
M has an even number of boundary points, we conclude jf �1.0/j D 0 mod 2 and the
claim is proved. As a special case, the (homotopy) axiom also holds under the additional
assumption that f0 and f1 are transverse to 0.

Now let f W X ! Y be any C 1-Fredholm map of index 0 with compact zero set
f �1.0/. We choose g, F as in the proof of uniqueness and define �.f / WD �.g/ D

jg�1.0/j. To see that this is well defined, let gi ; Fi , i D 0; 1 be two such choices. Then the
maps F0, F1 can be joined by a cutoff construction to aC 1-Fredholm mapGW Œ0;1��X!
Y of index 1with compact zero set such thatGj¹iº�X D gi for i D 0;1, and the special case
of the (homotopy) axiom implies �.f0/ D �.f1/. So �.f / is well defined. By construc-
tion, it satisfies the (transversality) and (excision) axioms. The (cobordism) axiom follows
from the special case above, and the (homotopy) axiom is a special case of this.

D. The mod 2 Euler number of the mean interaction functional

In this section we prove the following result which is used in the proof of the existence
Theorem 6.1, but which may also be of independent interest.

Theorem D.1. The L2-gradient of the mean interaction functional on symmetric loops,

rBavW yH
2
in ! H 0

sym.S
1;R2/;

is a C 1-Fredholm map whose mod 2 Euler number equals 1.

It follows from the main result in [4] that rBav has a unique zero .z1; z2/. To conclude
that its mod 2 Euler number equals 1, we would need to prove invertibility of the Hessian
DrBav.z1; z2/, or equivalently (since the Fredholm index is zero) triviality of its kernel.
This is still complicated because the Hessian has many terms and the equations for an
element .v1; v2/ in its kernel are coupled. Therefore, we will instead further deform the
mean interaction functional to one for which the equations decouple, and then compute
the mod 2 Euler number of the latter.

D.1. Decoupling the mean interaction

In this subsection we describe the deformation of the mean interaction functional on sym-
metric loops to one for which the equations decouple. We will first phrase it in terms of the
original (physical) coordinates q.t/; the Levi-Civita transformation to the new coordinates
z.�/ will be considered in the next subsection.

In the following discussion we adapt some arguments from [1] to our situation. In
order to be consistent with the notation in that paper, we replace the period 1 used in this
paper before by period 2 as in [1], and consider the restriction of a symmetric loop to half
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a period. Thus we consider

q1 2 C
1.Œ0; 1�; .0;1//; q2 2 C

0.Œ0; 1�; Œ0;1// \ C1.Œ0; 1/; .0;1//

satisfying

Pq1.0/D Pq1.1/D Pq2.0/D q2.1/D 0 and q1.t/ > q2.t/� 0 for all t 2 Œ0; 1�: (118)

We assume that .q1; q2/ solves a system of second-order ODEs coupled through their
means, 8̂̂<̂

:̂
Rq1.t/ D �

2

q1.t/2
C f1. Nq1; Nq2/;

Rq2.t/ D �
2

q2.t/2
� f2. Nq1; Nq2/;

(119)

where fi . Nq1; Nq2/ are continuous functions defined for Nq1 > Nq2 � 0 satisfying

f1. Nq1; Nq2/ > 0 and f2. Nq1; Nq2/ � 0 for all Nq1 > Nq2 � 0: (120)

Lemma D.2. Under the above assumptions the following hold.

(a) The map q1 is constant, q1.t/ � Nq1, where Nq1 > 0 solves the equation

Nq21f1. Nq1; Nq2/ D 2: (121)

(b) The map q2 is strictly concave and strictly decreasing with maximum qmax
2 D

q2.0/ satisfying the estimates

1

2
�
qmax
2

2
� Nq2 � q

max
2 � 2C

f2. Nq1; Nq2/

2
: (122)

Proof. We abbreviate f1 D f1. Nq1; Nq2/.

(a) Note first that, since q1 solves the first equation in (119), it is actually smooth and
1-periodic. It attains its maximum at some time tmax 2 Œ0; 1� satisfying Pq.tmax/ D 0 and

Rq1.tmax/ D �
2

q1.tmax/2
C f1 � 0:

It follows that for all t 2 Œ0; 1� we have

Rq1.t/ D �
2

q1.t/2
C f1 � �

2

q1.tmax/2
C f1 � 0:

By periodicity this implies Rq1 � 0, so Pq1 is constant. Again by periodicity this implies
Pq1 � 0, so q1 � Nq1 is constant and the first equation in (119) becomes (121).

(b) Since f2 � 0, the second equation in (119) implies Rq2.t/ < 0 for all t 2 Œ0; 1/, so q2
is strictly concave. Together with Pq2.0/ D 0 this implies Pq2.t/ < 0 for all t 2 .0; 1/, so q2
is strictly decreasing with maximum qmax

2 D q2.0/ > 0.
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For the first inequality in (122), we use the second equation in (119) and f2 � 0 to
estimate for all t 2 Œ0; 1/:

Pq2.t/ D

Z t

0

Rq2.s/ ds � �

Z t

0

2

q2.s/2
ds � �

Z t

0

2

.qmax
2 /2

ds D �
2

.qmax
2 /2

t:

Together with q2.1/ D 0 this implies

�qmax
2 D q2.1/ � q2.0/ D

Z 1

0

Pq2.t/ dt � �
2

.qmax
2 /2

Z 1

0

t dt D �
1

.qmax
2 /2

;

hence .qmax
2 /3 � 1 and thus qmax

2 � 1.
The second inequality in (122) follows from concavity of q2: for all t 2 Œ0; 1� we have

q2.t/ � .1 � t /q2.0/C tq2.1/ D .1 � t /q
max
2 ;

and it follows that

Nq2 D

Z 1

0

q2.t/ dt � q
max
2

Z 1

0

.1 � t / dt D
qmax
2

2
:

The third inequality in (122) is clear, so it remains to prove the fourth one. Since q2 is
strictly decreasing and q2.0/ � 1, there exists a unique t0 2 Œ0; 1/ with q2.t0/ D 1. Then
for all t 2 Œ0; t0� we have q2.t/ � 1, and therefore

Rq2.t/ D �
2

q2.t/2
� f2 � �2 � f2;

Pq2.t/ D

Z t

0

Rq2.s/ ds � �.2C f2/t

for all t 2 Œ0; t0�. This implies

1 � qmax
2 D q2.t0/ � q2.0/ D

Z t0

0

Pq2.t/ dt � �.2C f2/

Z t0

0

t dt

D �
t20
2
.2C f2/;

and with t0 � 1 we obtain

qmax
2 � 1C

t20
2
.2C f2/ � 1C

1

2
.2C f2/ D 2C

f2

2
:

Compactness. We wish to consider families of problems (119) as above parametrized by
pairs of functions .f1; f2/ satisfying (120). For compactness of the corresponding space
of solutions .q1; q2/ we need

• a uniform lower bound Nq1 � qmax
2 � ı > 0, and

• a uniform upper bound Nq1 � c <1,



K. Cieliebak, U. Frauenfelder, and E. Volkov 70

where “uniform” means independent of the parameter. In view of Lemma D.2, this is
ensured by the following sufficient condition: for all solutions . Nq1; Nq2/ of

Nq21f1. Nq1; Nq2/ D 2;
1

2
� Nq2 � 2C

f2. Nq1; Nq2/

2
; Nq1 > Nq2 (123)

we have uniform lower and upper bounds

Nq1 � 2 Nq2 � ı > 0 and Nq1 � c <1: (124)

Indeed, by Lemma D.2 the averages . Nq1; Nq2/ of a solution .q1; q2/ of problem (119)
satisfy conditions (123), and in view of qmax

2 � 2 Nq2 the first inequality in (124) implies
the uniform lower bound Nq1 � qmax

2 � ı > 0. The following lemma describes a situation
where this sufficient condition is satisfied.

Lemma D.3. Suppose that

f1. Nq1; Nq2/ D
1

. Nq1 � Nq2/2
and 0 � f2. Nq1; Nq2/ �

1

. Nq1 � Nq2/2
:

Then each solution . Nq1; Nq2/ of (123) satisfies

Nq1 D .2C
p
2/ Nq2;

as well as the lower and upper bounds

Nq1 � 2 Nq2 �
1
p
2

and Nq1 � .2C
p
2/
�
2C

2

.1C
p
2/2

�
:

Proof. In this case the first equation in (123) becomes the homogeneous quadratic equa-
tion

Nq21 D
2

f1. Nq1; Nq2/
D 2. Nq1 � Nq2/

2;

which has the solutions Nq1 D .2 ˙
p
2/ Nq2. The condition Nq1 > Nq2 enforces Nq1 D .2 C

p
2/ Nq2. Together with Nq2 � 1=2 this implies the lower bound

Nq1 � 2 Nq2 D
p
2 Nq2 �

p
2

2
;

as well as

Nq1 � Nq2 D .1C
p
2/ Nq2 �

1C
p
2

2
:

With the condition on f2 this yields an upper bound on Nq2,

Nq2 � 2C
f2. Nq1; Nq2/

2
� 2C

1

2. Nq1 � Nq2/2
� 2C

2

.1C
p
2/2

;

and thus on Nq1,

Nq1 D .2C
p
2/ Nq2 � .2C

p
2/
�
2C

2

.1C
p
2/2

�
:
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Fixing f1. Nq1; Nq2/ D 1
. Nq1�Nq2/2

, Lemma D.3 allows us to linearly interpolate between
f2. Nq1; Nq2/ D

1
. Nq1�Nq2/2

and f2 D 0. We are thus led to consider the decoupled mean inter-
action problem 8̂̂<̂

:̂
Rq1.t/ D �

2

q1.t/2
C

1

. Nq1 � Nq2/2
;

Rq2.t/ D �
2

q2.t/2
:

(125)

Note that the second equation is a pure Kepler problem which is not coupled to the first
one. It has a unique solution q2W Œ0; 1�! Œ0;1/ with Pq2.0/ D q2.1/ D 0 and we denote
by

a WD Nq2

its average. Note that by Lemma D.2 it satisfies

1=2 � a � 2:

Inserting Nq2 D a into the first equation, Lemma D.3 shows that it has a unique solution
q1, which is constant and given by

qt .t/ � Nq1 D .2C
p
2/a:

This concludes our discussion of compactness. In the next subsection we will consider its
Levi-Civita transformation and use it to prove Theorem D.1.

D.2. A Fredholm homotopy

Let X and Y be as in Section 6.4. For r 2 Œ0; 1� we consider the map

F r D .F1; F
r
2 /WX ! Y

given by
F1.z1; z2/ WD �z

00
1 C a1.z1; z2/z1 C b1.z1; z2/z

3
1 ;

F r2 .z1; z2/ WD �z
00
2 C a

r
2.z1; z2/z2 C b

r
2.z1; z2/z

3
2

with the functions

a1.z1; z2/ D
kz01k

2

kz1k2
�

1

kz1k6
�

kz2k
4 � kz21k

2

2kz1k2 � .kz
2
1k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

;

b1.z1; z2/ D C
kz2k

4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

;

ar2.z1; z2/ WD
kz02k

2

kz2k2
�

1

kz2k6
C r

kz1k
4 � kz22k

2

2kz2k2 � .kz
2
1k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

;

br2.z1; z2/ WD �r
kz1k

4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

:
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For r D 1 comparison with equations (93) and (94) shows that

r1Bav.z1; z2/ D 4kz1k
2F1.z1; z2/; r2Bav.z1; z2/ D 4kz2k

2F 12 .z1; z2/:

Thus, up to the irrelevant positive factors 4kzik2, F 1 agrees with rBav. In particular, the
zeros of F 1 satisfy the coupled ODEs (41).

For r D 0 the first component remains unchanged and comparison with (93) shows
that

rQ.z2/ D 4kz2k
2F 02 .z1; z2/: (126)

So the second component of F 0 is decoupled from the first one and corresponds to a pure
Kepler problem.

The discussion in Section 3 shows that under the Levi-Civita transformations qi .t/ D
zi .�zi .t//

2, zeros of F r correspond to generalized solutions of the coupled ODEs8̂̂<̂
:̂
Rq1.t/ D �

2

q1.t/2
C

1

. Nq1 � Nq2/2
;

Rq2.t/ D �
2

q2.t/2
�

r

. Nq1 � Nq2/2
:

(127)

By definition of the space X , the qi are symmetric and therefore, after replacing their
period 1 by 2, they satisfy conditions (118) in the previous subsection. By the discussion
in that subsection, the qi satisfy a lower bound q1.t/ � q2.t/ � ı > 0 and an upper bound
q1.t/ � c <1, uniform in r 2 Œ0; 1�. This implies that the zero set of the C 1-Fredholm
homotopy

F W Œ0; 1� �X ! Y; .r; z1; z2/ 7! F r .z1; z2/

is compact, so by the (homotopy) axiom in Theorem C.1, the mod 2 Euler numbers satisfy

�.rBav/ D �.F
1/ D �.F 0/:

To prove Theorem D.1, it thus remains to compute �.F 0/. By the discussion in the pre-
vious subsection, F 0 has a unique zero .z1; z2/ whose components correspond under the
Levi-Civita transformation qi .t/D zi .�zi .t//2 to the unique solution q2 of the pure Kepler
problem and the constant solution q1.t/ � Nq2 D .2C

p
2/a, where a D Nq2. In particular,

the first component is constant and given by

z1.t/ � Nz1 D
p
.2C

p
2/a: (128)

It thus remains to prove that the derivativeDF 0.z1; z2/ at its unique zero .z1; z2/ has triv-
ial kernel. Suppose .v1; v2/ 2 kerDF 0.z1; z2/. Since the second component F 02 .z1; z2/D
F 02 .z2/ is independent of z1, this implies DF 02 .z2/v2 D 0 In the next subsection we will
show the following proposition:

Proposition D.4. The derivative DF 02 .z2/ at the Kepler orbit z2 has trivial kernel.
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It follows that v2 D 0 and v1 satisfies D1F1.z1; z2/v1 D 0. In Section D.4 we will
show the following proposition:

Proposition D.5. For the Kepler orbit z2, the derivative of the map z1 7! F1.z1; z2/ at
its unique zero has trivial kernel.

This implies v1 D 0 and thus concludes the proof of Theorem D.1.

D.3. Hessian of the Kepler problem

In this subsection we prove Proposition D.4. Consider the map

F WZ ! H 0
sym.S

1;R/; F .z/ D �z00 C a.z/z; a.z/ D
kz0k2

kzk2
�

1

kzk6
(129)

defined on the space

Z WD
®
z 2 H 2

sym.S
1;R/

ˇ̌
z.�/ > 0 for all � 2 .0; 1/

¯
:

Thus F corresponds to the map F 02 of the previous subsection describing simple sym-
metric solutions of the Kepler problem, where we have renamed z2 to z and a02 to a. The
unique zero of F is given by

z.�/ D � sin.��/;

where � > 0 is uniquely determined by the equation F.z/ D 0, or equivalently

a.z/ D ��2:

We need to show that the derivative of F at its zero z has trivial kernel. In the direction
v 2 H 2

sym.S
1;R/ it is given by

DF.z/v D �v00 C a.z/v C
�
Da.z/v

�
z

with

Da.z/v D
2hz0; v0i

kzk2
�
2kz0k2hz; vi

kzk4
C
6hz; vi

kzk8

D
2

kzk2

D
�z00 �

kz0k2

kzk2
z C

3

kzk6
z; v

E
D

2

kzk2

�
�2a.z/C

2

kzk6

�
hz; vi;

where for the last equality we have used F.z/ D 0. Using a.z/ D ��2, it follows that an
element v in the kernel of DF.z/ satisfies

� v00 � �2v C bhz; viz D 0 (130)
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with the constant
b D

4

kzk2

�
�2 C

1

kzk6

�
> 0:

It follows that v is smooth. Multiplying (130) by v and integrating from 0 to 1 yields

h�v00; vi � �2kvk2 C bhz; vi2 D 0: (131)

Since v extends to an odd 2-periodic function, it has a Fourier expansion

v.�/ D

1X
kD1

ck sin.�k�/; ck 2 R:

We deduce v0.�/ D
P1
kD1 �kck cos.�k�/ and thus the Poincaré inequality

h�v00; vi D kv0k2 D
1

2

1X
kD1

�2k2c2k �
1

2

1X
kD1

�2c2k D �
2
kvk2:

Hence (131) can only hold if bhz;vi2� 0, i.e. hz;viD 0, and equality holds in the Poincaré
inequality, i.e. ck D 0 for all k � 2. Thus v.�/D c1 sin.��/, and hv; zi D 0 implies v D 0.
This concludes the proof of Proposition D.4.

D.4. Hessian of the Kepler problem with constant force

In this subsection we prove Proposition D.5. Denote by z2 the unique symmetric Kepler
orbit from the previous subsection and by q2.t/D z2.�.t//2 its Levi-Civita transform. We
denote its average using (3) by

a WD Nq2 D
kz22k

kz2k2
> 0:

Using this, we rewrite the functions a1 and b1 from Section D.2 as

a1.z1; z2/ D
kz01k

2

kz1k2
�

1

kz1k6
�

kz2k
4 � kz21k

2

2kz1k2 � .kz
2
1k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

D
kz01k

2

kz1k2
�

1

kz1k6
�

kz21k
2

2kz1k2 � .kz
2
1k
2 � a � kz1k2/2

;

b1.z1; z2/ D
kz2k

4

.kz21k
2 � kz2k2 � kz

2
2k
2 � kz1k2/2

D
1

.kz21k
2 � a � kz1k2/2

:

Renaming z1 to z, we thus consider the map

F WW ! H 0
sym.S

1;R/; F .z/ D �z00 C a1.z/z C b1.z/z
3 (132)
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with

a1.z/ WD
kz0k2

kzk2
�

1

kzk6
�

kz2k2

2kzk2 � .kz2k2 � a � kzk2/2
;

b1.z/ WD
1

.kz2k2 � a � kzk2/2
> 0;

defined on the space

W WD
®
z 2 H 2.S1;R/

ˇ̌
z.�/ > 0 for all � 2 S1; kz2k2 > akzk2

¯
:

So F corresponds to the map z1 7! F1.z1; z2/ in Proposition D.5. By the discussion in
Section D.1, the unique zero of F is the constant function

z.�/ � Nz;

where Nz > 0 is uniquely determined by the equation F.z/ D 0, or equivalently

a1. Nz/C b1. Nz/ Nz
2
D 0: (133)

We need to show that the derivative of F at its zero Nz has trivial kernel. In the direction
v 2 H 2

sym.S
1;R/ it is given by

DF. Nz/v D �v00 C .a1 C 3b1 Nz
2/v C c1

with the constants a1 D a1. Nz/, b2 D b1. Nz/ and

c1 WD hra1. Nz/; viNz C hrb1. Nz/; viNz
3:

Using (133) the equation DF. Nz/v D 0 thus becomes

v00 D 2b1 Nz
2v C c1: (134)

As in the proof of Lemma D.2 it follows that v is constant: it attains its maximum at some
time �max 2 S

1 satisfying

v00.�max/ D 2b1 Nz
2v.�max/C c1 � 0:

From b1 > 0 it follows that for all � 2 S1 we have

v00.�/ D 2b1 Nz
2v.�/C c1 � 2b1 Nz

2v.�max/C c1 � 0;

which by periodicity implies that v.�/ � Nv is constant. Plugging this into (134) yields

� Nv D 0 (135)

with the constant
� WD 2b1. Nz/ Nz

2
Cra1. Nz/ Nz Crb1. Nz/ Nz

3:
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To compute �, we plug z D Nz into a1 and b1 to get

a1. Nz/ D �
1

Nz6
�

1

2 Nz2. Nz2 � a/2
;

b1. Nz/ D
1

Nz4. Nz2 � a/2

and compute their derivatives (as functions R! R)

ra1. Nz/ D
6

Nz7
C
2 Nz. Nz2 � a/2 C Nz2 � 2. Nz2 � a/ � 2 Nz

2 Nz4. Nz2 � a/4

D
6

Nz7
C

3 Nz2 � a

Nz3. Nz2 � a/3
;

rb1. Nz/ D �
4 Nz3. Nz2 � a/2 C Nz4 � 2. Nz2 � a/ � 2 Nz

Nz8. Nz2 � a/4

D
4a � 8 Nz2

Nz5. Nz2 � a/3
:

From (133) we obtain

0 D a1. Nz/C b1. Nz/ Nz
2
D �

1

Nz6
�

1

2 Nz2. Nz2 � a/2
C

1

Nz2. Nz2 � a/2
;

and therefore
1

Nz6
D

1

2 Nz2. Nz2 � a/2
:

Using this and the preceding formulas we compute

� D 2b1. Nz/ Nz
2
Cra1. Nz/ Nz Crb1. Nz/ Nz

3

D
2

Nz2. Nz2 � a/2
C

6

Nz6
C
3 Nz2 � aC 4a � 8 Nz2

Nz3. Nz2 � a/3

D
2C 3

Nz2. Nz2 � a/2
C

3a � 5 Nz2

Nz3. Nz2 � a/3

D
5 Nz2 � 5aC 3a � 5 Nz2

Nz3. Nz2 � a/3

D
�2a

Nz3. Nz2 � a/3
< 0:

Hence (135) implies Nv D 0. This concludes the proof of Proposition D.5, and therefore of
Theorem D.1.
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