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Abstract

We establish the existence of global weak solutions to the initial value problem for a nonlinear variational wave e
utt − c(u)(c(u)ux)x = 0 with general initial data(u(0), ut (0)) = (u0, u1) ∈ W1,2 × L2 under the assumptions that the wa
speedc(u) satisfiesc′(·) � 0 and c′(u0(·)) > 0. Moreover, we obtain high regularity for the spatial derivative∂xu of the wave
amplitudeu away from wherec′(u) = 0. This equation arises from studies in nematic liquid crystals, long waves on a d
chain, and a few other fields. We use Young measure method in the setting ofLp spaces and method of renormalizati
to overcome the difficulty that oscillations in a sequence of approximations get amplified by the quadratic growth term
equation. We use a high space-time estimate for∂xu to handle possible concentrations. This result improves our earlier exis
result for initial data in the spaceW1,∞ × L∞ to the natural spaceW1,2 × L2.

Résumé

Nous prouvons l’éxistence de solutions faibles globales pour le problème de Cauchy concernant une équation d
non variationnellesutt − c(u)(c(u)ux)x = 0 avec des conditions initiales générales(u(0), ut (0))= (u0, u1) ∈ W1,2 × L2 sous
l’hypothèse que la vitesse d’ondec(u) vérifie c′(·) � 0 et c′(u0(·)) > 0. De plus, nous obtenons une régularité élevée p
la dérivée spatiale∂xu de l’amplitudeu de l’onde loin de la zone oùc′(u) = 0. Cette équation intervient dans l’étude d
crystaux liquides nématiques, d’ondes longues dans des chaînes dipolaires et de quelques autres domaines. Nous
méthode des mesures de Young dans le contexte d’espacesLp et la méthode de renormalisation pour résoudre la difficulté
l’amplification par les termes à croissance quadratique de l’équation, des oscillations d’une suite d’approximations. N
servons d’une estimée d’ordre élevé en espace et en temps pour∂xu afin de traiter les concentrations éventuelles. Ce rés
étend nos résultats d’éxistence antérieurs pour des données initiales dans l’espaceW1,∞ × L∞ au cas naturel de l’espac
W1,2 × L2.
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1. Introduction

In this paper, we study the existence and regularity properties of weak solutions to the following nonline
equation


∂2
t u − c(u)∂x(c(u)∂xu) = 0,

u|t=0 = u0,

∂tu|t=0 = u1,

(1.1)

wherec(·) is a given smooth, bounded, and positive function withc′(·) � 0 andc′(u0) > 0, u0(x) ∈ H 1(R), and
u1(x) ∈ L2(R).

One motivation for study (1.1) comes from liquid crystals. We give a brief explanation of how the eq
arises in that context. For further details, see [6,8,9], and [14]. See [22] for modeling long waves on a dipo
and [7] for another field. The mean orientation of the molecules in a nematic liquid crystal is described by a
field of unit vectors,n ∈ S2. We consider a regime in which inertia effects dominate viscosity. The propagat
orientation waves in the director field is then modeled by a constrained variational principle

δ

∫ ∫ {
nt · nt − W(n,∇n)

}
dxdt = 0, n · n = 1,

whereW is the Oseen–Franck potential energy density,

W(n,∇n) = α
∣∣n × (n × n)

∣∣2 + β(∇ · n)2 + γ (n · ∇ × n)2.

This potential energy is determined (up to a null Lagrangian) by the requirement that it is invariant under re
n → −n and under simultaneous rotations of the spatial variables and the director field. The positive co
α,β, γ are elastic constants of the liquid crystal.

A commonly used special case is the one-constant approximation in whichα = β = γ . The potential energy
density then reduces to

W(n,∇n) = α|∇n|2.
The associate variational problem is identical to the variational problem for wave maps from(1+ 3)-dimensional
Minkowski space into two sphere.

The simplest class of solutions for the orientational waves in a liquid crystal consists of planar deform
depending on a single space variable. The director field then has the special form

n = cosu(t, x)ex + sinu(t, x)ey.

Here, the dependent variableu measures the angle of the director field to thex-direction,ex andey are coordinate
vectors in thex andy directions, respectively. In this case, the variational principle forn reduces to

δ

∫ ∫ {
u2

t − c2(u)u2
x

}
dxdt = 0,

with the wave speedc given by

c2(u) = α cos2 u + β sin2 u, (1.2)



P. Zhang, Y. Zheng / Ann. I. H. Poincaré – AN 22 (2005) 207–226 209

Cauchy
oth the

. (1.1).
uthors

tion

ition
ditions
to

l
of the
ated com-
nd
llations.

ntrol the
the Euler–Lagrange equation for this variational principle is (1.1). In the wave map case, we haveα = β, and
Eq. (1.1) reduces to the standard linear wave equation.

We point out that, early in the study of (1.1), Hunter and Saxton [8] derived an asymptotic equation

∂tv + u∂xv = −1

2
v2, v = ∂xu, (1.3)

for (1.1) via weakly nonlinear geometric optics. The global existence and uniqueness of solutions to the
problem is fairly complete, see [8,9] and the authors’ [19]. The study of (1.3) has been very beneficial for b
blow-up result [5] and the current global existence result for the wave Eq. (1.1).

In [5], Glassey, Hunter, and Zheng have shown that singularities can form from smooth data for Eq
Whenc′(·) is of a single sign, some partial existence results are given in [18,20] and [21]. In [18], the a
prove the global existence of weak rarefactive solutions to (1.1) under the conditionsc′(·) � 0, R0 � 0, S0 � 0,
(R0, S0) ∈ Lp(R),p > 3. The notations here are thatR andS are the Riemann invariants, see below. If the condi
c′(·) � 0 is strengthed toc′(·) > 0, then the conditionp > 3 can be relaxed top = 2. If, in addition, the initial data
u0 ∈ Hk+1(R), u1 ∈ Hk(R) for somek � 1, then the solutions are in the same regularity class. In [20], the cond
R0 � 0 is removed for the global existence of weak solutions. And in [21], we completely remove the con
thatR0 � 0, S0 � 0, but with(R0, S0) ∈ L2(R) ∩ L∞(R), in the proof of the global existence of weak solutions
(1.1).

In this paper, we establish the global existence of weak solutions for (1.1) for the wave speedc(u) satisfy-
ing c′(·) � 0 and c′(u0(·)) > 0, and general initial data(R0, S0) ∈ L2(R). The difficulty is that the potentia
oscillations, in terms of DiPerna and Majda [2], get amplified unboundedly by quadratic growth terms
equation, and the possible concentrations in the approximate solutions. We use the generalized compens
pactness ([4] or [16]), the latest development in theLp Young measure method of Lions [13] and Joly, Metivier a
Rauch [11], the renormalization method in [1], and the techniques used in our paper [21] to treat the osci
We obtain high regularity for the space derivative of the wave amplitude∂xu away fromc′(u) = 0, which is the
corresponding version of a Strichartz type inequality for wave equations with constant wave speed, to co
possible concentrations.

Before we present our main result, let us first give the following definition. Our notations areR
+ = (0,∞), Lip

stands for Lipschitz, and

R := ∂tu + c(u)∂xu, S := ∂tu − c(u)∂xu, c̃(·) := 1

4
ln c(·), (1.4)

so thatc̃′(u) = c′(u)
4c(u)

. We useR0(x) = R(0, x) andS0(x) = S(0, x).
With the above notations, we can also write (1.1) in the following form:



∂tR − c(u)∂xR = c̃′(u)(R2 − S2),

∂tS + c(u)∂xS = c̃′(u)(S2 − R2),

∂xu = R − S

2c(u)
,

R|t=0 = R0, S|t=0 = S0.

(1.5)

Definition 1.1. We callu(t, x) an admissible weak solution of (1.1) if

(1) u(t, x) ∈ L∞(R+,H 1(R)) ∩ Lip(R+,L2(R)), and∫
R

(|∂tu|2 + ∣∣c(u)∂xu
∣∣2)dx �

∫
R

(|u1|2 + ∣∣c(u0)∂xu0
∣∣2)dx; (1.6)
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(2) For any test functionφ(t, x) ∈ C∞
c (R+ × R), there holds∫ ∫

R+×R

(
∂tφ∂tu − ∂xφc2(u)∂xu − φc′(u)c(u)(∂xu)2)dxdt = 0; (1.7)

(3) (The entropy condition) For any(t0, x0) with t0 > 0, there always exists a positive constantM(t0, x0) such that

R(t, x) � −M(t0, x0), S(t, x) � −M(t0, x0), (1.8)

hold in a neighborhoodN (t0, x0) of (t0, x0);
(4) u(t, x) → u0(x) in L2(R) and∂tu(t, x) → u1(x) in the distributional sense ast → 0+.

We shall always assume that there exist two positive constantC1,C1 such that

0< C1 � c(·) � C2, and
∣∣c(l)(·)∣∣ � Ml, l � 1 (1.9)

for some positive constantsMl .

Theorem 1.1. Let c′(·) � 0, c′(u0(·)) > 0, u0 ∈ H 1(R), andu1 ∈ L2(R). Then(1.1)has a global admissible wea
solutionu in the sense of Definition1.1. Moreover,∫ ∫

Ω

|∂xu|p dxdt � CΩ,p, ∀p < 3, (1.10)

whereΩ is a small neighborhood of any point(t, x) ∈ R+ × R at whichc′(u(t, x)) 	= 0, andCΩ,p is a positive
constant which depends only onΩ,p,‖u0‖H1, and‖u1‖L2.

Remark 1.1. Theorem 1.1 still holds if we replace the assumptionsc′(·) � 0 andc′(u0(·)) > 0 by c′(·) � 0 and
c′(u0(·)) < 0. One needs only to replace the entropy condition in (1.8) by

R(t, x) � M(t0, x0), S(t, x) � M(t0, x0),

for (t, x) ∈N (t0, x0). One can check the proof of Theorem 1.1 for details.

Remark 1.2. Suppose thatc′ keeps sign, and(R0, S0) ∈ L∞(R), then by [21], we know that the following ordinar
differential equations have global solutionsΦ±

t (x) ∈ Lip([0,∞) × R):


dΦ±
t (x)

dt
= ±c

(
u
(
t,Φ±

t (x)
))

,

Φ±
0 (x) = x.

(1.11)

But here as the initial data(R0, S0) ∈ L2(R), the entropy condition (1.8) is not enough to prove this result for (1.
Actually we do not even know that (1.11) has solutionsΦ±

t (x) ∈ C([0,∞) × R).

Remark 1.3. Motivated by [9] and [19], we point out that we expect multiple weak solution to problem (1.1)
weak solutions in Theorem 1.1 are solutions of the dissipative type, because the entropy condition (1.8) gu
that: On almost all the blow-up points(τ, y), R(t, x) → +∞ as (t, x) → (τ, y), and similarly forS. But in the
construction of the conservative weak solutions to (1.3) (see [9]),v(t, x) → −∞ ast → τ− andv(t, x) → +∞ as
t → τ+, if τ is the blow-up time of the solution. We plan to explore the uniqueness issue in future work.

In the following, we will try to present our proof as general as we can. Actually only one step in the pr
Theorem 1.1 uses the assumptions thatc′(·) � 0 andc′(u0(·)) > 0. We will point the step later (see Remark 3.1
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2. Approximate solutions and uniform estimates

Similar to [19–21], let us define forε > 0

Qε(ξ) :=




1

ε

(
ξ − 1

2ε

)
, ξε � 1,

1

2
ξ2, ξε < 1.

(2.1)

Let us also use the notationζ+ := max(0, ζ ) andζ− := min(0, ζ ). We now define the approximate solution s
quence by the equations



∂tR
ε − c(uε)∂xR

ε = c̃′(uε)+
(
2Qε(R

ε) − (Sε)2
) + c̃′(uε)−

(
2Q−ε(R

ε) − (Sε)2
)
,

∂tS
ε + c(uε)∂xS

ε = c̃′(uε)+
(
2Qε(S

ε) − (Rε)2
) + c̃′(uε)−

(
2Q−ε(S

ε) − (Rε)2
)
,

∂xu
ε = Rε − Sε

2c(uε)
,

lim
x→−∞uε(t, x) = 0,

(Rε, Sε)|t=0 = (R0, S0)(x).

(2.2)

That is,R is chopped off in the first equation at 1/ε if c′ is positive, it is chopped off at−1/ε if c′ is negative. No
chop-off forS in the first equation. Do the same for the second equation. For convenience, we sometimes
superscriptε in the approximate solution sequence{(Rε, Sε, uε)}ε>0.

Assume thatc(·) satisfies (1.9), butc′(·) may change sign.

Lemma 2.1 (Solution of (2.2) with smooth data). Let (R0, S0)(x) ∈ C∞
c (R). Then, problem(2.2) has a global

smooth solution(R,S)(t, x) ∈ L∞(R+,W1,∞(R)), u(t, x) ∈ L∞(R+,W2,∞(R)), which satisfies the energy in
equalities∫

(R2 + S2)(t, x)dx �
∫

(R2
0 + S2

0)(x)dx (2.3)

and
∞∫

0

∫
R

(
c′(uε)+G+

ε + c′(uε)−G−
ε

)
dxdt �

∫
(R2

0 + S2
0)(x)dx, (2.4)

where

G±
ε := R

(
R2 − 2Q±ε(R)

) + S
(
S2 − 2Q±ε(S)

)
andG+

ε � 0 andG−
ε � 0. Moreover, if we introduce the plus and minus characteristicsΦ±

t (b) as


d

dt
Φ±

t = ±c
(
u(t,Φ±

t )
)
,

Φ±
t |t=0 = b,

(2.5)

then, we have the energy inequality in a characteristic cone

d∫
a

R2(t+a (y), y)dy +
b∫

d

S2(t−b (y), y
)
dy � 1

2

b∫
a

(R2
0 + S2

0)(x)dx, (2.6)

wherea < b, andd is where the two characteristicsΦ+
t (a) andΦ−

t (b) meet at some positive time, andt = t+a (y)

is the inverse ofy = Φ+
t (a), etc.
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Proof. It is standard to prove the local existence of Lipschitz solutions to (2.2) with smooth initial data. No
let T ∗ be the life span of a Lipschitz solution to (2.2). It can be proved exactly as that in the proof of Lem
of [18] that‖R(t, ·)‖L∞ + ‖S(t, ·)‖L∞ controlsT ∗; that is to say thatT ∗ < +∞ implies

lim
t→T ∗

(∥∥R(t, ·)∥∥
L∞ + ∥∥S(t, ·)∥∥

L∞
) = +∞. (2.7)

Hence, in order to establish the global existence, it suffices to show that‖R(t, ·)‖L∞ + ‖S(t, ·)‖L∞ < +∞ for any
t < +∞.

We establish the estimates (2.3), (2.4), (2.6) for 0� t < T ∗. Multiplying the first equation of (2.2) withR(t, x),
we find

∂tR
2 − ∂x

(
c(u)R2) = 2c̃′(u)+

{−R
(
R2 − 2Qε(R)

) + R2S − RS2}
+ 2c̃′(u)−

{−R
(
R2 − 2Q−ε(R)

) + R2S − RS2}. (2.8)

Similarly, we find

∂tS
2 + ∂x

(
c(u)S2) = 2c̃′(u)+

{−S
(
S2 − 2Qε(S)

) + RS2 − SR2}
+ 2c̃′(u)−

{−S
(
S2 − 2Q−ε(S)

) + RS2 − SR2}. (2.9)

Adding (2.8) and (2.9), we find

∂t (R
2 + S2) − ∂x

(
c(u)(R2 − S2)

) = −2c̃′(u)+
{
R

(
R2 − 2Qε(R)

) + S
(
S2 − 2Qε(S)

)}
− 2c̃′(u)−

{
R

(
R2 − 2Q−ε(R)

) + S
(
S2 − 2Q−ε(S)

)}
� 0. (2.10)

By integrating (2.10) overR with respect tox, we deduce (2.3) and (2.4). Integrating (2.10) over the characte
cone∆ := {(t, x) | Φ+

t (a) � x � Φ−
t (b), 0� t < T ∗}, we deduce (2.6).

We establishL∞ bounds forR and S. Fix a point x ∈ R. We decompose the domain{t ∈ (0, T ∗) |
R(t,Φ−

t (x)) < 0} into
⋃∞

i=0(t2i , t2i+1) in order to utilize the asymmetry in the chop-off of the equations. Ift0 = 0,
then fort ∈ [0, t1), we have

d

dt
R

(
t,Φ−

t (x)
)
�

{−c̃′(u)+S2 + 2c̃′(u)−Q−ε(R)
}(

t,Φ−
t (x)

)
. (2.11)

But for R � 0, we haveQ−ε(R) � −R/ε. Thus

d

dt
R

(
t,Φ−

t (x)
)
� −

{
c̃′(u)+S2 − M

ε
R

}(
t,Φ−

t (x)
)
, (2.12)

which directly implies that

R(t,Φ−
t (x)) � −eMt/ε

(
‖R0‖L∞ + M1

8C1

∫
(R2

0 + S2
0)(x)dx

)
(2.13)

for t ∈ [0, t1]. For i � 1 (or t0 > 0), asR(ti,Φ
−
ti

(x)) = 0, we can repeat the above procedure to yield the s
lower bound forR(t,Φ−

t (x)) for 0� t < T ∗. Since the solution(R,S,u) is sufficiently smooth, this implies that

R(t, x) � −eMt/ε

(
‖R0‖L∞ + M1

8C1

∫
(R2

0 + S2
0)(x)dx

)
(2.14)

for 0� t < T ∗.
We have similarly obtain from (2.2) that

d
R

(
t,Φ−

t (x)
)
�

{
2c̃′(u)+Qε(R) − c̃′(u)−S2}(t,Φ−

t (x)
)
. (2.15)
dt
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Thus, by repeating the proof of (2.14), we can prove

R(t, x) � eMt/ε

(
‖R0‖L∞ + M1

8C1

∫
(R2

0 + S2
0)(x)dx

)
. (2.16)

Similarly, we can obtain anε-dependent bound forS. This completes the proof of Lemma 2.1.�
Now we can see from Lions–Aubin’s Lemma, see Lemma 3 of [18] for details, that there exists a subse

of the approximate solutions{uε} which converges in the maximum norm on any compact domain of the u
half plane to a continuous functionu(t, x):

uε → u(t, x). (2.17)

We can use the continuity ofu(t, x) andc′(u) to obtain uniform estimates on(Rε, Sε) in L2+α at any point(t, x)

such thatc′(u(t, x)) 	= 0.

Lemma 2.2(LocalL2+α estimate). Let (R0, S0) ∈ L2. For solutions{(Rε, Sε, uε)}ε>0 of (2.2), there hold

1− α

1+ α
c̃′(u)(R − S)(R1+α − S1+α) + c̃′(u)RαSα(R − S)(R1−α − S1−α)

= c̃′(u)+Rα
(
2Qε(R) − R2) + c̃′(u)−Rα

(
2Q−ε(R) − R2) + c̃′(u)+Sα

(
2Qε(S) − S2)

+ c̃′(u)−Sα
(
2Q−ε(S) − S2) − 1

1+ α

{
∂t (R

1+α + S1+α) + ∂x

(
c(u)(S1+α − R1+α)

)}
(2.18)

and ∫ ∫
Ω

(R − S)2(Rα + Sα)dxdt � CΩ,α, (2.19)

whereΩ is a small neighborhood of any point(t, x) at whichc′(u(t, x)) 	= 0, α ∈ (0,1), andCΩ,α is independen
of ε.

Proof. We assume without loss of generality that(R0, S0) ∈ C∞
c (R). We take anα = d2/d1 ∈ (0,1) whered2 is

an even positive integer andd1 an odd positive integer. We then multiply the first equation of (2.2) withRα(t, x)

to yield

1

1+ α

{
∂tR

1+α − ∂x

(
c(u)R1+α

)} + 2

1+ α
c̃′(u)(R − S)R1+α

= c̃′(u)+
(
2RαQε(R) − RαS2) + c̃′(u)−

(
2RαQ−ε(R) − RαS2). (2.20)

Splitting 2/(1+ α) into (1− α)/(1+ α) + 1 and regrouping, we have

1− α

1+ α
c̃′(u)(R − S)R1+α + c̃′(u)(RαS2 − SR1+α)

= c̃′(u)+Rα
(
2Qε(R) − R2) + c̃′(u)−Rα

(
2Q−ε(R) − R2) − 1

1+ α

{
∂tR

1+α − ∂x

(
c(u)R1+α

)}
. (2.21)

Similarly we have forS:

1− α

1+ α
c̃′(u)(S − R)S1+α + c̃′(u)(SαR2 − RS1+α)

= c̃′(u)+Sα
(
2Qε(S) − S2) + c̃′(u)−Sα

(
2Q−ε(S) − S2) − 1 {

∂tS
1+α + ∂x

(
c(u)S1+α

)}
. (2.22)
1+ α
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Combining (2.21) and (2.22), we obtain (2.18).
Let (t, x) be a point in the upper half plane so thatc′(u(t, x)) 	= 0. For definiteness, let us assume t

c′(u(t, x)) � c0. Using the uniform convergence ofuε, and the continuity ofc′, we can find a small neighbo
hoodΩ1 of (t, x) such thatc′(uε(t, x)) � c0/2 in Ω1 for all sufficiently smallε. Next we take an arbitrary ope
subsetΩ of Ω1 with Ω ⊂ Ω1, and a cutoff functionχ(t, x) ∈ C∞

c (Ω1) with χ(t, x) = 1 onΩ . Then multiplying
χ to both sides of (2.18) and integrating the resulting identity overΩ , we use integration by parts and the ene
bounds in Lemma 2.1 to obtain∫ ∫

χ
[
(R − S)(R1+α − S1+α) + RαSα(R − S)(R1−α − S1−α)

]
dxdt � Cα,χ . (2.23)

Regrouping the integrand in (2.23), we obtain (2.19) by the definition ofχ . �
To prove the precompactness of the approximate solutions{Rε,Sε}, we need the following type of entrop

condition for{Rε,Sε}:

Lemma 2.3. Let (R0, S0) ∈ L2(R). Let t0 > 0 and(t0, x0) be any point at whichc′(u(t0, x0)) 	= 0, then there exists
a neighborhoodN (t0, x0) of (t0, x0) and some nonnegative constantM(t0, x0) which is independent ofε, such that

sign
(
c′(uε)

)
Rε(t, x) � −M(t0, x0), sign

(
c′(uε)

)
Sε(t, x) � −M(t0, x0), (2.24)

hold for all (t, x) ∈N (t0, x0).

Proof. Without loss of generality, we may assume thatc′(u(t0, x0)) > 0, and denotec′(u(t0, x0)) by c0. Then
by (2.17), for small enoughη, there is a ballBη(t0, x0) = {(t, x)||t − t0|2 + |x − x0|2 � η2}, such that

c′(u(t, x)
)
� c0

2
, and c′(uε(t, x)

)
� c0

4
for (t, x) ∈ Bη(t0, x0), (2.25)

for all sufficiently smallε. As uε(t, x) ∈ L∞(R+,W1,∞(R)) (modify (R0, S0) if necessary), the plus and minu
characteristicsΦε,±

t (y) defined by


d

dt
Φ

ε,±
t (y) = ±c

(
uε

(
t,Φ

ε,±
t (y)

))
,

Φ
ε,±
t (y)|t=0 = y,

(2.26)

can pass through any point in the upper plane.
Fix a y ∈ R. Assume that[t1, t2] is the largest time interval such that(t,Φ

ε,−
t (y)) ∈ Bη(t0, x0) for t ∈ [t1, t2],

and[t3, t4] is the largest time interval such that(t,Φ
ε,−
t (y)) ∈ Bη/2(t0, x0) for t ∈ [t3, t4]. By (1.9) and (2.25), we

have

t3 − t1 � δη (2.27)

for some positive constantδ. By (2.6), we can find some positive constantK1, which depends only on theL2 norm
of (R0, S0), such that

∞∫
0

(∣∣c̃′(uε)
∣∣(Sε)2)(s,Φε,−

s (y)
)
ds � K1. (2.28)

Let us takeK2 = 2
√

K1/(c0δη). Then ifRε(t1,Φ
ε,−
t1

(y)) � −K2, by (2.2) and (2.26), we have

dRε(t,Φ
ε,−
t (y)) � −c̃′(uε)(Sε)2(t,Φε,−

t (y)
)
, t ∈ [t1, t2].
dt
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Integrating the above inequality over[t1, t] with t � t2, we find by (2.28) that

Rε
(
t,Φ

ε,−
t (y)

)
� Rε

(
t1,Φ

ε,−
t1

(y)
) −

t∫
t1

c̃′(uε)(Sε)2(s,Φε,−
s (y)

)
ds � −K2 − K1. (2.29)

Otherwise, let us assume

Rε
(
t,Φ

ε,−
t (y)

)
� −K2 for t ∈ [t1, τ ], τ � t2, (2.30)

andRε(τ,Φε,−
τ (y)) = −K2. Then by the proof of (2.29), we have

Rε
(
t,Φ

ε,−
t (y)

)
� −K2 − K1, t2 � t � τ. (2.31)

And by (2.1), (2.2) and (2.26), there holds

dRε(t,Φ
ε,−
t (y))

dt
= c̃′(uε)

(
(Rε)2 − (Sε)2)(t,Φε,−

t (y)
)
, t ∈ [t1, τ ].

Let us divide the equation by(Rε)2 and then integrate it over[t1, t] to obtain

1

Rε(t,Φ
ε,−
t (y))

= 1

Rε(t1,Φ
ε,−
t1

(y))
−

t∫
t1

c̃′(uε
(
s,Φε,−

s (y)
))

ds +
t∫

t1

c̃′(uε)

(
Sε

Rε

)2(
s,Φε,−

s (y)
)
ds

� −c0

4
(t − t1) + K1

K2
2

� −c0δη

8
(2.32)

if t1 + δη � t � τ , where we have used (2.25), (2.28), and (2.30). Thus we have

Rε
(
t,Φ

ε,−
t (y)

)
� − 8

c0δη
, t ∈ [t1 + δη, τ ]. (2.33)

Let us takeM(t0, x0) = max(K1 + K2,8/(c0δη)). By summing up (2.29), (2.31) and (2.33), we have

Rε
(
t,Φ

ε,−
t (y)

)
� −M(t0, x0), t ∈ [t1 + δη, t2]. (2.34)

This together with (2.27) imply that

Rε(t, x) � −M(t0, x0), for (t, x) ∈ Bη/2(t0, x0). (2.35)

Similarly, we can prove

Sε(t, x) � −M(t0, x0), for (t, x) ∈ Bη/2(t0, x0). (2.36)

Combining (2.35) and (2.36), and takingN (t0, x0) = Bη/2(t0, x0), we obtain (2.24). �
We are going to assume the particular conditionsc(·) � 0 andc′(u0(·)) > 0 in the next lemma. The conditio

c′(u0(·)) > 0 drives the solution(R,S) away from possible negative infinity in a thin initial layer, while the co
dition c(·) � 0 will maintain the lower bounds for the rest of the time. We note that Sobolev embedding g
positive constantL such that‖u0‖L∞ � L whenu0 ∈ H 1(R).

Lemma 2.4. Letc′(·) � 0, c′(u0(·)) > 0, and(R0, S0) ∈ L2(R), let t0 > 0 be any sufficiently small positive numb
Then for anyx̄ ∈ R and anyt̄ > t0, there exist a neighbourhoodN (t̄ , x̄) and some positive constantM , which
depends only on theL2 norm of(R0, S0), t0, andc′(u0), such that

Rε(t, x) � −M, Sε(t, x) � −M (2.37)

for all (t, x) ∈ N (t̄ , x̄).
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Proof. For any compact subsetC1 of R, there exists a constantc0 > 0 such that

c′(u0(x)) � c0, ∀x ∈ C1. (2.38)

Thus by (2.17), we find that for sufficiently smallt0, there holds

c′(u(t0, x)
)
� c0

2
, x ∈ C1. (2.39)

Hence in particular, (2.24) and its proof imply that

Rε(t0, x) � −M0(t0), x ∈ C1, (2.40)

whereM0(t0) depends only on theL2 norm of(R0, S0), t0, andc0. Then, (2.40) and a proof similar to that of (2.2
imply that

Rε
(
t,Φ

ε,−
t (y)

)
� −M0(t0) − K1 =: M1, t � t0, y ∈ C1. (2.41)

Now let us take a countable compact subsetsCi such thatCi ⊂ Ci+1 andR = ⋃∞
i=1 Ci . Then by a proof similar to

that of (2.41), we can find for eachi a constantMi(t0) > 0, which depends only on theL2 norm of(R0, S0) andc0,
such that

Rε
(
t,Φ

ε,−
t (y)

)
� −Mi(t0), y ∈ Ci, t � t0. (2.42)

On the other hand, as(t,Φε,−
t (y)) can pass through any point in the upper half plane, for any(t̄ , x̄) ∈ (t0,∞) × R,

we can always find a neighbourhoodN (t̄ , x̄) such that every point ofN (t̄ , x̄) can be reached by a characteris
curve(t,Φ

ε,−
t (y)) starting fromy ∈ Ci for some fixedi. Hence by (2.42), we have

Rε(t, x) � −Mi(t0), (t, x) ∈ N (t̄ , x̄). (2.43)

Similar argument forSε yields a similar inequality as (2.43) forSε . The proof of the lemma is complete.�

3. Precompactness

Let (R0, S0) ∈ L2(R). Let jε(x) be the standard Friedrichs’ mollifier, andχε(x) = χ(x
ε
) with χ(x) ∈ C∞

c (R)

andχ(x) = 1 aroundx = 0. We denoteRε
0 = (R0χε)∗ jε andSε

0 = (S0χε)∗ jε . Then by Lemma 2.1, problem (2.2
has a global smooth solution(Rε, Sε, uε) with the initial data(Rε

0, S
ε
0). Moreover, we have∫ (

(Rε)2 + (Sε)2)(t, x)dx �
∫

(R2
0 + S2

0)(x)dx (t � 0). (3.1)

We shall also use energy estimate (2.6) and (2.19) in this new setting.
We establish the precompactness of{(Rε, Sε, uε)(t, x)} in this section.
Next, for the convenience of the reader, we recall the following lemma (see Lemmas 9–10 of [18]).

Lemma 3.1(Time-distinguished Young measure [17,15,11,3]). There exist a subsequence of the solution sequ
{Rε(t, x), Sε(t, x)}, which we still denote by{Rε(t, x), Sε(t, x)} for convenience, and three families of You
measuresν1

tx(ξ) on R, ν2
tx(η) on R, andµtx(ξ, η) on R

2, such that for all continuous functionsf (λ) ∈ C∞
c (R),

ψ(x) ∈ C∞
c (R), g(ξ, η) ∈ C∞(R2) with g(ξ, η) = o((|ξ | + |η|)p) as|ξ | + |η| → ∞ for somep < 2, andϕ(t, x) ∈

C∞
c (R+ × R), there hold

lim
ε→0

∫
R

f
(
Rε(t, x)

)
ψ(x)dx =

∫ ∫
R×R

f (ξ)ψ(x)dν1
tx(ξ)dx,

lim
ε→0

∫
f

(
Sε(t, x)

)
ψ(x)dx =

∫ ∫
f (η)ψ(x)dν2

tx(η)dx, (3.2)
R R×R
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cut off
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uniformly in every compact subset of[0,∞), and

lim
ε→0

∞∫
0

∫
R

g
(
Rε(t, x), Sε(t, x)

)
ϕ(t, x)dxdt =

∞∫
0

∫
R

∫ ∫
R×R

g(ξ, η)ϕ(t, x)dµtx(ξ, η)dxdt. (3.3)

Moreover,

t ∈ [0,∞) 
→
∫ ∫

R×R

f (ξ)ψ(x)dν1
tx(ξ)dx is continuous,

t ∈ [0,∞) 
→
∫ ∫

R×R

f (η)ψ(x)dν2
tx(η)dx is continuous, (3.4)

and

µtx(ξ, η) = ν1
tx(ξ) ⊗ ν2

tx(η). (3.5)

Furthermore, by Proposition 3.1.3 of [11] and Lemma 3.1, we find that

ξ ∈ L∞(
R

+,L2(
R × R,dx ⊗ dν1

tx(ξ)
))

,

η ∈ L∞(
R

+,L2(
R × R,dx ⊗ dν2

tx(η)
))

. (3.6)

We remark that (3.5) implies directly that

RεSε ⇀ RS asε → 0 (3.7)

in the sense of distributions. Glassey, Hunter and Zheng [6] have derived (3.7) by applying the div-curl lemm
sequence of energy conservative weak solutions{uε(t, x)} of (1.1), assuming that{uε(t, x)} is uniformly bounded
in W1,p(R+ × R) for somep > 2. Here we have provided a local version of this uniform estimate, but we d
need the energy conservation assumption for the approximate solutions.

We shall use the notation

g(R,S) =
∫
R

g(ξ, η)dµtx(ξ, η).

Thus,(R,S) represents the weak star limit of{Rε,Sε} in L∞(R+,L2(R)) or the weak limit inL2((0, T )× R) for
all T < ∞.

With the above preparation, we can now establish the precompactness of{Rε,Sε}.

Lemma 3.2 (Precompactness of{(Rε, Sε)}). Let c′(·) � 0, c′(u0(·)) > 0, and (R0(x), S0(x)) ∈ L2(R). Then
ν1
tx(ξ) = δR(t,x)(ξ) andν2

tx(η) = δS(t,x)(η).

Proof. Since the proof ofν1
tx(ξ) = δR(t,x)(ξ) is the same as that ofν2

tx(η) = δS(t,x)(η), we present only the proo
for the former.

The idea is to derive an evolution equation (inequality) for the quantityR2 −R
2
, so that it is zero for all positive

time if it is zero at time zero which is true in our case. In the derivation of the evolution equation we need to
desired multipliers and mollify various equations that are true only in the weak sense. We will present the p
Theorem 1.1 as general as we can. The assumptions thatc′(·) � 0 andc′(u0(·)) > 0 will only be used in step 6.
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Step 1.Derivation of the equation forR.
We write the first equation of (2.2) in the form

∂tR
ε − ∂x

(
c(uε)Rε

) = −c̃′(uε)(Rε − Sε)2 − c̃′+[
(Rε)2 − 2Qε(R

ε)
] − c̃′−[

(Rε)2 − 2Q−ε(R
ε)

]
. (3.8)

We claim that there holds in the sense of distributions

c̃′(uε)(Rε − Sε)2 ⇀ c̃′(u)

∫ ∫
R2

(ξ − η)2 dµtx(ξ, η) = c̃′(u)(R2 + S2 − 2R S ). (3.9)

The claim will follow from Lemma 3.1 and estimate (2.19). At a point(t, x) wherec′(u(t, x)) 	= 0, we assume
without loss of generality thatc′(u(t, x)) > 0. We take a neighborhoodΩ of (t, x) wherec′(uε(t, x)) > M0 > 0
for all smallε > 0. We take a smooth cut-off functionψ(ξ) with ψ(ξ) = 1 for |ξ | � 1 and suppψ ⊂ {ξ | |ξ | � 2}.
Then, by (2.19), we have∫ ∫

Ω

∣∣Rε(Rε − Sε)
∣∣(1− ψ

(
Rε

k

))
dxdt � C meas

{
(t, x) ∈ Ω | Rε � k

}1/p � Ck−2/p, (3.10)

where 1
p

= α
2(2+α)

for any 0< α < 1. While by Lemma 3.1, for any test functionφ(t, x) ∈ C∞
c (Ω), there holds

lim
ε→0

∞∫
0

∫
R

φc̃′(uε)Rε(Rε − Sε)ψ

(
Rε

k

)
dxdt =

∫ ∫
R+×R

φc̃′(u)

∫ ∫
R2

ξ(ξ − η)ψ

(
ξ

k

)
dµt,x(ξ, η)dxdt. (3.11)

By summing up (3.6), (3.10), (3.11) and Lebesgue Dominated Convergence Theorem ask → ∞, we find

lim
ε→0

∞∫
0

∫
R

φc̃′(uε)Rε(Rε − Sε)dxdt =
∫ ∫

R+×R

φc̃′(u)

∫ ∫
R2

ξ(ξ − η)dµt,x(ξ, η)dxdt. (3.12)

A similar proof yields that

lim
ε→0

∞∫
0

∫
R

φc̃′(uε)Sε(Rε − Sε)dxdt =
∫ ∫

R+×R

φc̃′(u)

∫ ∫
R2

η(ξ − η)dµt,x(ξ, η)dxdt. (3.13)

It follows from (3.12) and (3.13) that Claim (3.9) holds for all test functionsϕ ∈ C∞
c (Ω(t, x)).

Now let us denoteG := {(t, x), c′(u(t, x)) 	= 0}. For any(t, x) ∈ G, let us denoteΩ(t, x) a neighborhood o
(t, x) such that (3.9) holds for all test functionsϕ ∈ C∞

c (Ω(t, x)). Then for any test functionϕ(t, x) ∈ C∞
c (R+×R)

and anya > 0, asH = suppϕ ∩{(t, x)|c′(u(t, x))| � a} is a compact subset ofG, it can be covered by a finite unio
of Ω(ti, xi), i = 1, . . . ,N. By basic topology, we can take a partition of unity subordinate to

⋃N
i=1 Ω(ti, xi), i.e.,

there areφi(t, x) ∈ C∞
c (Ω(ti , xi)), such that

∑N
i=1 φi(t, x) = 1 for (t, x)∈H. Next, let us decompose the left-ha

side of (3.9) in the following form:∫ ∫
ϕc̃′(uε)(Rε − Sε)2 dxdt =

∫ ∫
(1|c′(u)|�a + 1|c′(u)|�a)ϕc̃′(uε)(Rε − Sε)2 dxdt, (3.14)

and

lim
ε→0

∫ ∫
1|c′(u)|�aϕc̃′(uε)(Rε − Sε)2 dxdt = lim

ε→0

N∑
i=1

∫ ∫
1|c′(u)|�aϕφi c̃

′(uε)(Rε − Sε)2 dxdt

=
N∑∫ ∫

1|c′(u)|�aϕφi c̃
′(u)(R − S)2 dxdt =

∫ ∫
1|c′(u)|�aϕc̃′(u)(R − S)2 dxdt, (3.15)
i=1
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and trivially by (3.1), we have∣∣∣∣
∫ ∫

1|c′(u)|�aϕc̃′(uε)(Rε − Sε)2 dxdt

∣∣∣∣ � Ca. (3.16)

By summing up (3.14)–(3.16), we takeε → 0 thena → 0 in (3.14), we prove claim (3.9).
Now, from (2.4), we find easily that

lim
ε→0

T∫
0

∫
R

c̃′±(uε)
[
(Rε)2 − 2Q±ε(R

ε)
]
dxdt = 0. (3.17)

Thus, again by (3.5)–(3.6), (3.9), and (3.17), we have

∂tR − ∂x

(
c(u)R

) = −c̃′(u)(R2 − 2R S + S2). (3.18)

Step 2.Cut-off of (Rε)2.
Similarly to [19], let us define forλ > 0

Tλ(ξ) =
{

ξ, |ξ | � λ,

λ, ξ � λ,

−λ, ξ � −λ,

Sλ(ξ) =




1

2
ξ2, |ξ | � λ,

λ
(
ξ − λ

2

)
, ξ � λ,

−λ
(
ξ + λ

2

)
, ξ � −λ.

We multiply the first equation of (2.2) withTλ(R
ε) to obtain

∂tSλ(R
ε) − ∂x

(
c(uε)Sλ(R

ε)
) = −2c̃′(uε)(Rε − Sε)Sλ(R

ε) + c̃′(uε)+Tλ(R
ε)

(
2Qε(R

ε) − (Sε)2)
+ c̃′(uε)−Tλ(R

ε)
(
2Q−ε(R

ε) − (Sε)2). (3.19)

By Lemma 3.1, a similar proof of (3.9) and (3.17), we find that

c̃′(uε)(Rε − Sε)Sλ(R
ε) ⇀ c̃′(u)(R − S)Sλ(R),

c̃′(uε)+Tλ(R
ε)

(
2Qε(R

ε) − (Sε)2) + c̃′(uε)−Tλ(R
ε)

(
2Q−ε(R

ε) − (Sε)2) ⇀ c̃′(u)Tλ(R)(R2 − S2).

Takingε → 0 in (3.19), we obtain

∂tSλ(R) − ∂x

(
c(u)Sλ(R)

) = c̃′(u)
{−2RSλ(R) + Tλ(R)R2 + 2SSλ(R) − Tλ(R) S2

}
. (3.20)

Step 3.Cut-off of R
2
.

Convolving (3.18) with the standard Friedrichs’ mollifierjε, we find

∂tR
ε − ∂x

(
c(u)Rε

) = −(
c̃′(u)(R − S)2

) ∗ jε + γε, (3.21)

whereRε = ∫
R

R(t, y)jε(x − y)dy andγε = jε ∗ ∂x(c(u)R ) − ∂x(c(u)Rε). By DiPerna–Lions renormalizatio
Lemma 2.3 of Lions [12] and Lebesgue Dominated Convergence Theorem in the time direction, we haveγε → 0
in L1

loc(R
+ × R) (or see Lemma 2.1 of [1]). Again, we multiply (3.21) withTλ(R

ε) to find

∂tSλ(R
ε) − ∂x

(
c(u)Sλ(R

ε)
)

= −2c̃′(u)(R − S)Sλ(R
ε) + [−(

c̃′(u)(R − S)2
) ∗ jε + γε + 2c̃′(u)(R − S)Rε

]
Tλ(R

ε). (3.22)
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Takingε → 0 in (3.22), we find

∂tSλ(R ) − ∂x

(
c(u)Sλ(R )

) = [−c̃′(u)(R − S)2 + 2c̃′(u)(R − S)R
]
Tλ(R ) − 2c̃′(u)(R − S )Sλ(R ).

Or

∂tSλ(R) − ∂x

(
c(u)Sλ(R)

)
= c̃′(u)

{−2RSλ(R) + Tλ(R)R
2 + 2SSλ(R) − Tλ(R)S2 − Tλ(R)(R2 − R

2
)
}
. (3.23)

Step 4.Evolution equation for “R2 − R
2
”.

By subtracting (3.23) from (3.20), we find

∂t

(
Sλ(R) − Sλ(R)

) − ∂x

(
c(u)

(
Sλ(R) − Sλ(R)

))
= c̃′(u)

{−2RSλ(R) + Tλ(R)R2 + 2RSλ(R) − Tλ(R)R
2

+ 2S(Sλ(R) − Sλ(R)) − (Tλ(R) − Tλ(R))S2 + Tλ(R)(R2 − R
2
)
}
. (3.24)

But, by the explicit structures ofSλ(·) andTλ(·), we find

−2ξSλ(ξ) + Tλ(ξ)ξ2 = −λ(ξ − λ)21ξ�λ − λ2(ξ − Tλ(ξ)
) + λ(ξ + λ)21ξ�−λ,

2RSλ(R) − Tλ(R)R
2 = λ(R − λ)21R�λ + λ2(R − Tλ(R)

) − λ(R + λ)21R�−λ. (3.25)

Since

ξ2 = 2Sλ(ξ) + (ξ − λ)21ξ�λ + (ξ + λ)21ξ�−λ, (3.26)

we have

R2 − (R)2 = 2(Sλ(R) − Sλ(R)) + (R − λ)21R�λ − (R − λ)21R�λ

+ (R + λ)21R�−λ − (R + λ)21R�−λ. (3.27)

Summing up (3.24)–(3.27), we find that

∂t

(
Sλ(R) − Sλ(R)

) − ∂x

(
c(u)

(
Sλ(R) − Sλ(R)

))
= c̃′(u)

{(
Tλ(R) − λ

)[
(R − λ)21R�λ − (R − λ)21R�λ

]
+ (

Tλ(R) + λ
)[

(R + λ)21R�−λ − (R + λ)21R�−λ

] − λ2[Tλ(R) − Tλ(R)
]

− (
Tλ(R) − Tλ(R)

)
S2 + 2

(
S + Tλ(R)

)(
Sλ(R) − Sλ(R)

)}
= c̃′(u)

{(
Tλ(R) − λ

)
(R − λ)21R�λ + (

Tλ(R) + λ
)
(R + λ)21R�−λ

+ (
Tλ(R) − Tλ(R)

)
(S2 − λ2) + 2

(
S + Tλ(R)

)(
Sλ(R) − Sλ(R)

)}
. (3.28)

We comment that the term(Tλ(R) − Tλ(R))S2 is difficult. We will use renormalization to handle it. The term

Gλ := c̃′(u)
{(

Tλ(R) − λ
)
(R − λ)21R�λ + (Tλ(R) + λ) (R + λ)21R�−λ − (

Tλ(R) − Tλ(R)
)
λ2} (3.29)

will be shown to be nonpositive. The remaining term of product in (3.28) is not hard. In step 5 we do
preparation for handling the two difficult terms.
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Step 5a.An inequality. We claim that

1

2

(
Tλ(R) − Tλ(R)

)2 � Sλ(R) − Sλ(R). (3.30)

In fact, by Cauchy inequality, we have

Tλ(R)2 =
(∫

Tλ(ξ)dν1
tx(ξ)

)2

�
(
Tλ(R)

)2
. (3.31)

Using the identities

ξ = Tλ(ξ) + (ξ − λ)1ξ�λ + (ξ + λ)1ξ�−λ,

R = Tλ(R) + (R − λ)1R�λ + (R + λ)1R�−λ, (3.32)

we have

Tλ(R)Tλ(R) = Tλ(R)R − Tλ(R)(R − λ)1R�λ − Tλ(R)(R + λ)1R�−λ

= (
Tλ(R)

)2 − Tλ(R)
(
(R − λ)1R�λ − (R − λ)1R�λ

)
− Tλ(R)

(
(R + λ)1R�−λ − (R + λ)1R�−λ

)
.

Thus (
Tλ(R) − Tλ(R)

)2 = Tλ(R)2 + (
Tλ(R)

)2 − 2Tλ(R)Tλ(R)

�
(
Tλ(R)

)2 − (
Tλ(R)

)2 + 2Tλ(R)
(
(R − λ)1R�λ − (R − λ)1R�λ

)
+ 2Tλ(R)

(
(R + λ)1R�−λ − (R + λ)1R�−λ

)
. (3.33)

Using

Sλ(ξ) − 1

2

(
Tλ(ξ)

)2 = λ(ξ − λ)1ξ�λ − λ(ξ + λ)1ξ�−λ,

we then by (3.33) have

Sλ(R) − Sλ(R) = 1

2

((
Tλ(R)

)2 − (
Tλ(R)

)2) + λ
(
(R − λ)1R�λ − (R − λ)1R�λ

)
− λ

(
(R + λ)1R�−λ − (R + λ)1R�−λ

)
� 1

2

(
Tλ(R) − Tλ(R)

)2 + (
λ − Tλ(R)

)(
(R − λ)1R�λ − (R − λ)1R�λ

)
− (

λ + Tλ(R)
)(

(R + λ)1R�−λ − (R + λ)1R�−λ

)
� 1

2

(
Tλ(R) − Tλ(R)

)2
,

where in the last step of the above we used the fact that(R − λ)|R�λ is a convex function and(R + λ)|R�−λ is a
concave function. This proves (3.30).

Step 5b.A convergence. We shall need the almost everywhere convergence:

Tλ(R) − Tλ(R) → 0 (3.34)

asλ → ∞. We first have by Cauchy–Schwarz inequality that

∣∣R − Tλ(R)
∣∣ =

∫ [
(ξ − λ)1ξ�λ + (ξ + λ)1ξ�−λ

]
dν1

t,x(ξ) � 1
∫

ξ2 dν1
t,x(ξ).
λ
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od

(3.35)

again,
This together with (3.6) yield that

lim
λ→∞

∥∥R − Tλ(R)
∥∥

L1([0,T ]×R)
= 0, ∀T > 0.

Similarly, we can prove that limλ→∞ ‖R − Tλ(R)‖L1([0,T ]×R) = 0. Then by the triangle inequality, we obtain

lim
λ→∞

∥∥Tλ(R) − Tλ(R)
∥∥

L1([0,T ]×R)
= 0, ∀T > 0.

Step 5c.Another inequality. Let(t0, x0) ∈ R
+ ×R such thatc′(u(t0, x0)) > 0, we claim that there is a neighborho

N (t0, x0) of (t0, x0) and some positive constantM(t0, x0) such that wheneverλ � M(t0, x0), the termGλ defined
in (3.29) satisfies

Gλ � 0, (t, x)∈ N (t0, x0). (3.35)

In fact, by Lemma 2.3, we find that there is a smaller neighborhoodN (t0, x0) of (t0, x0) and some positive
constantM(t0, x0) such thatRε � −M(t0, x0). Furthermore, for anyφ(t, x) ∈ C∞

c (N (t0, x0)), t0 > 0, there holds

lim
ε→0

∫ ∫
φ(t, x)c̃′(uε)

(
Tλ(R) + λ

)
(Rε + λ)21Rε�−λ dxdt

=
∫ ∫

φ(t, x)c̃′(u)
(
Tλ(R) + λ

)
(R + λ)21R�−λ dxdt. (3.36)

Thus by takingλ > M(t0, x0) in the above, we find

c̃′(u)
(
Tλ(R) + λ

)
(R + λ)21R�−λ = 0, for (t, x) ∈ N (t0, x0). (3.37)

Similarly for λ > M(t0, x0), there holds

−λ2c̃′(u)
(
Tλ(R) − Tλ(R)

) = −λ2c̃′(u)
(
T +

λ (R) − T +
λ (R)

)
� 0, (3.38)

for (t, x) ∈N (t0, x0), where

T +
λ (ξ) =

{
λ, ξ � λ,

ξ, ξ � λ,

which is a concave function. Trivially, there holds

c̃′(u)
(
Tλ(R) − λ

)
(R − λ)21R�λ � 0, for (t, x) ∈N (t0, x0). (3.39)

Summing up (3.36)–(3.39), we prove (3.35). Exactly similarly to the proof of (3.35), we can prove that
still holds whenc′(u(t0, x0)) < 0.

Step 6a.Renormalization.
We letfλ(t, x) := Sλ(R) − Sλ(R). Notice thatfλ(t, x) ∈ L∞(R+,L2(R)) for any fixedλ. Thus by DiPerna–

Lions folklore Lemma 2.3 (Lions [12]) and Lebesgue Dominated Convergence Theorem in the time direction
we have

∂tf
ε
λ − ∂x(c(u)f ε

λ ) = Gλ ∗ jε + c̃′(u)
{
2
(
S + Tλ(R)

)
f ε

λ + S2
[
Tλ(R) − Tλ(R)

]} + γε, (3.40)

wheref ε
λ (t, x) := ∫

R
fλ(t, y)jε(x − y)dy andγε → 0 in L1

loc(R
+ × R). For anyη > 0, we multiply the above

equation (3.40) with1
2(f ε

λ + η)−1/2 to yield

∂t (f
ε
λ + η)1/2 − ∂x

(
c(u)(f ε

λ + η)1/2)
=

(
1

2
Gλ ∗ jε + c̃′(u)

(
R + Tλ(R)

)
f ε

λ

)
(f ε

λ + η)−1/2 − 2c̃′(u)(R − S))(f ε
λ + η)1/2

+ 1
c̃′(u)S2(f ε

λ + η)−1/2(Tλ(R) − Tλ(R)
) + 1

(f ε
λ + η)−1/2γε. (3.41)
2 2
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f

, we
By takingε → 0 in (3.41), we find

∂t (fλ + η)1/2 − ∂x

(
c(u)(fλ + η)1/2)

=
(

1

2
Gλ + c̃′(u)

(
R + Tλ(R)

)
fλ

)
(fλ + η)−1/2 − 2c̃′(u)(R − S))(fλ + η)1/2

+ 1

2
c̃′(u)S2(fλ + η)−1/2(Tλ(R) − Tλ(R)

)
. (3.42)

Moreover, by (3.30), we find that

S2(fλ + η)−1/2
∣∣Tλ(R) − Tλ(R)

∣∣ � 2S2. (3.43)

Thus, by (3.34) and Lebesgue Dominated Convergence Theorem, we find for anyT > 0 that

lim
λ→∞

∥∥S2(fλ + η)−1/2(Tλ(R) − Tλ(R)
)∥∥

L1([0,T ]×R)
= 0. (3.44)

Trivially, by (3.6) and Lebesgue Dominated Convergence Theorem, we have

lim
λ→∞fλ(t, x) = 1

2
(R2 − R

2
) =: f (t, x). (3.45)

Moreover, by summing up (3.42) with (3.43), we find that:{Gλ(fλ+η)−1/2} is uniformly bounded inH−1
loc ((0, T )×

R) + L∞([0, T ],L1(R)) with respect toλ andη for all T > 0. Thus by a diagonal process forT , we can find two
sequences,{λi}, {ηj }, with λi → ∞, ηj → 0 asi, j → ∞, such that for allT > 0, there holds

Gλi
(fλi

+ ηj )
−1/2 ⇀ G (3.46)

in the sense of distributions asi → ∞, j → ∞. Thus by summing up (3.42)–(3.46), takingλ = λi, η = ηj in (3.42),
and leti → ∞, thenj → ∞, we find

∂tg − ∂x

(
c(u)g

) = 1

2
G + 2c̃′(u)Sg (3.47)

whereg(t, x) := √
f (t, x).

Step 6b.Nonpositivity ofG. Now let us assume thatc′(·) � 0 andc′(u0(·)) > 0. By Lemma 2.4 and a similar proo
of (3.35), for any small enought0 and any(t̄ , x̄) ∈ R

+ × R with t̄ > t0, there is a neighborhoodN (t̄ , x̄) such that
(3.35) holds forλ > M . Thus for all test function 0� ϕ ∈ C∞

c (N (t̄ , x̄)), we have∫ ∫
N (t̄ ,x̄)

ϕGdxdt = lim
j→∞ lim

i→∞

∫ ∫
N (t̄ ,x̄)

ϕGλi
(fλi

+ ηj )
−1/2 dxdt � 0, (3.48)

which implies thatG|N (t̄ ,x̄) � 0 in the sense of distributions. Thus, by the local property of the distributions
find that

G|(t0,∞)×R is a distribution, andG|(t0,∞)×R � 0. (3.49)

ThenG|(t0,∞)×R is actually a nonpositive Radon measure.
By summing up (3.47), (3.49), we find

∂tg − ∂x

(
c(u)g

)
� 2c̃′(u)Sg, (t0,∞) × R. (3.50)
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e

ll
Step 6c. Re-renormalization. Notice thatg(t, x) ∈ L∞(R+,L2(R)). Thus again by DiPerna–Lions folklor
Lemma 2.3 (Lions [12]), we obtain

∂tg
ε − ∂x

(
c(u)gε

)
� 2c̃′(u)Sgε + γε, in (t0,∞) × R (3.51)

where 0� gε(t, x) := ∫
g(t, y)jε(x − y)dy andγε(t, x) → 0 in L1

loc(R
+ × R).

On the other hand, parallel to the proof of (3.18), we can prove that

∂tS + ∂x(c(u)S) = −c̃′(u)(R − S)2. (3.52)

Moreover, by the third equation of (2.2), there holds

2c(u)ux = R − S. (3.53)

Subtracting (3.52) from (3.18), we obtain

∂t (R − S) − ∂x(c(u)(R + S)) = 0.

Substituting (3.53) into the above equation, we find

∂x

(
c(u)

(
2ut − (R + S)

)) = 0;
that is

ut = 1

2
(R + S). (3.54)

Dividing (3.51) with
√

c(u), we obtain

∂t

(
gε

√
c(u)

)
− ∂x

(√
c(u)gε

)
� γε√

c(u)
, in (t0,∞) × R. (3.55)

Takingε → 0 in (3.55), we obtain

∂t

(
g√
c(u)

)
− ∂x

(√
c(u)g

)
� 0, in (t0,∞) × R. (3.56)

Step 6d.The precompactness.
Firstly by the definition ofg(t, x), we haveg(t, x) ∈ L∞(R+,L2(R)). So, if we takeφ(x) ∈ C∞

c (R) with
φ(x) = 1 for |x| � 1 andφ(x) = 0 for |x| > 2, thenc−1/2gφ(x

n
) ∈ L∞(R+,L1(R)). We note then that almost a

t ∈ R is a Lebesgue point of
∫

R
(c−1/2(u)g)(t, x)φ(x

n
)dx.

By the energy inequality (3.1) and the proof of (6.39) in [18], which imply that

lim
t→0

∫
R

(∫
R

(ξ − R )2 dν1
tx(ξ) +

∫
R

(η − S )2 dν2
tx(η)

)
dx = 0, (3.57)

we find that

lim
t→0

∫
R

g√
c(u)

(t, x)φ

(
x

n

)
dx = 0. (3.58)

Furthermore, motivated by [10] and [13], let us taket̄ to be one of its Lebesgue point of
∫

R
(c−1/2(u)g)(t, x) ×

φ(x
n
)dx, and takeψδ(t) ∈ C∞

c (R+) such that

ψδ(t) =

0, t � δ

2
or t � t̄ + δ,

1, δ � t � t̄ − δ,

0� ∂tψ
ε(t) � C

, t ∈ [0, δ], −∂tψ
ε(t) � C

, t ∈ [t̄ − δ, t̄ + δ].

δ δ
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e
n,

at there
mpletes
Let us multiplyingψδ(t)φ(x
n
) to (3.56) and integrating over( δ

4,∞) × R to yield

C

δ

t̄+δ∫
t̄−δ

∫
R

g√
c(u)

φ

(
x

n

)
dxdt � −

t̄+δ∫
t̄−δ

∫
R

∂tψ
δ g√

c(u)
φ

(
x

n

)
dxdt

�
δ∫

δ/4

∫
R

∂tψ
δ g√

c(u)
φ

(
x

n

)
dxdt + 1

n

t̄+δ∫
0

∫
R

ψδ

∣∣∣∣φ′
(

x

n

)∣∣∣∣√c(u)g dxdt

� C/δ

δ∫
δ/4

∫
R

g√
c(u)

φ

(
x

n

)
dx + C

n

t̄+δ∫
0

∫
R

∣∣∣∣φ′
(

x

n

)∣∣∣∣g dxdt. (3.59)

Takingδ → 0 in (3.59) and using (3.58), we find

C

∫
R

g√
c(u)

(t̄ , x)φ

(
x

n

)
dx � C

n

t̄∫
0

∫
R

∣∣∣∣φ′
(

x

n

)∣∣∣∣g dxdt � C√
n
,

which together Fatou’s Lemma yields that∫
R

g√
c(u)

(t̄ , x)dx = 0. (3.60)

Due to arbitrariness of̄t , we obtain

g(t, x) = 0, a.e.(t, x) ∈ R
+ × R. (3.61)

Hencef (t, x) = 0 a.e.(t, x) ∈ R
+ × R and thereforeν1

tx(ξ) = δR(t,x)(ξ). Similarly, we can prove thatν2
tx(η) =

δS(t,x)(η). This completes the proof of the lemma.�
Remark 3.1. By (3.35) and (3.48), the assumptions thatc′(·) � 0 andc′(u0) > 0 were used only to prove that th
distributionG � 0 around the set{(t, x): c′(u(t, x)) = 0}. That is to say, if we can prove this without the restrictio
we can actually improve Theorem 1.1 for general wave speedc(u) with c′(·) changing sign.

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Firstly, by (2.37), there holds (1.8), and by (3.53) and (3.54), we find

R = ∂tu + c(u)∂xu, S = ∂tu − c(u)∂xu. (3.62)

Secondly, by (3.18), (3.52), and Lemma 3.2, we find that{
∂tR − ∂x

(
c(u)R

) = −c̃′(u)(R − S)2,

∂tS + ∂x

(
c(u)S

) = −c̃′(u)(R − S)2 (3.63)

hold in the sense of distributions. Summing up the two equations of (3.63) and using (3.62), we find th
holds (1.7). Moreover, by (3.1) and (3.62), there holds (1.6). By (2.19) and (3.53), there holds (1.10). This co
the proof of Theorem 1.1. �
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