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Abstract

We establish the existence of global weak solutions to the initial value problem for a nonlinear variational wave equation
urr — c(u)(c(wuy ), = 0 with general initial datau(0), u; (0)) = (ug, u1) € W2 x L2 under the assumptions that the wave
speed-(u) satisfiese’(-) > 0 and é(ug(-)) > 0. Moreover, we obtain high regularity for the spatial derivatiye of the wave
amplitudeu away from where’ (1) = 0. This equation arises from studies in nematic liquid crystals, long waves on a dipole
chain, and a few other fields. We use Young measure method in the settibg spaces and method of renormalization
to overcome the difficulty that oscillations in a sequence of approximations get amplified by the quadratic growth term of the
equation. We use a high space-time estimaté,ferto handle possible concentrations. This resultimproves our earlier existence
result for initial data in the spad&1->° x L to the natural spac#1-2 x L2.
© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Nous prouvons I'éxistence de solutions faibles globales pour le probleme de Cauchy concernant une équation des onde
non variationnelles;; — c(u)(c(u)uy ), = 0 avec des conditions initiales généraleed), u; (0)) = (ug, u1) € W2 x L2 sous
I'hypothése que la vitesse d’ondeu) vérifie ¢’(-) > 0 etc’(ug(-)) > 0. De plus, nous obtenons une régularité élevée pour
la dérivée spatiald,u de 'amplitudex de I'onde loin de la zone ot/ (1) = 0. Cette équation intervient dans I'étude des
crystaux liquides nématiques, d'ondes longues dans des chaines dipolaires et de quelques autres domaines. Nous utilisons
méthode des mesures de Young dans le contexte d'espécessla méthode de renormalisation pour résoudre la difficulté de
I'amplification par les termes a croissance quadratique de I'équation, des oscillations d'une suite d’approximations. Nous nous
servons d'une estimée d’ordre élevé en espace et en temp$,pogfin de traiter les concentrations éventuelles. Ce résultat
étend nos résultats d’éxistence antérieurs pour des données initiales dans 1WdgXce L>° au cas naturel de I'espace
w2y 12,
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In this paper, we study the existence and regularity properties of weak solutions to the following nonlinear wave
equation

32u — c(u)dy (c(u)dyu) =0,
uli=0 = uo, (1.1)
Orut|i=0 = u1,

wherec(+) is a given smooth, bounded, and positive function wiit) > 0 andc’(ug) > 0, uo(x) € HX(R), and
u1(x) € L3(R).

One motivation for study (1.1) comes from liquid crystals. We give a brief explanation of how the equation
arises in that context. For further details, see [6,8,9], and [14]. See [22] for modeling long waves on a dipole chain
and [7] for another field. The mean orientation of the molecules in a nematic liquid crystal is described by a director
field of unit vectorsn € S2. We consider a regime in which inertia effects dominate viscosity. The propagation of
orientation waves in the director field is then modeled by a constrained variational principle

8//{n,~nt —W(n,vmldxdi=0, n-n=1,
whereW is the Oseen—Franck potential energy density,

w(n, Vn) :a|n x (N x n)|2+ﬂ(V-n)2+y(n-V x Nn)2.

This potential energy is determined (up to a null Lagrangian) by the requirement that it is invariant under reflection
n — —n and under simultaneous rotations of the spatial variables and the director field. The positive constants
a, B, y are elastic constants of the liquid crystal.

A commonly used special case is the one-constant approximation in whicj = y. The potential energy
density then reduces to

W(n, vn) = «|Vn|°.

The associate variational problem is identical to the variational problem for wave mapsifieid)-dimensional
Minkowski space into two sphere.

The simplest class of solutions for the orientational waves in a liquid crystal consists of planar deformations
depending on a single space variable. The director field then has the special form

N =cosu(t, x)e, + sinu(z, x)e,.

Here, the dependent variableneasures the angle of the director field to thdirection,e, ande, are coordinate
vectors in ther andy directions, respectively. In this case, the variational principlenfoeduces to

8//{u,2—c2(u)u§}dxdt=0,

with the wave speed given by

?(u) =acoSu + psirtu, (1.2)
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the Euler-Lagrange equation for this variational principle is (1.1). In the wave map case, we hage and
Eqg. (1.1) reduces to the standard linear wave equation.
We point out that, early in the study of (1.1), Hunter and Saxton [8] derived an asymptotic equation
B,U—i—uaxv:—%vz, v =0yU, (1.3)
for (1.1) via weakly nonlinear geometric optics. The global existence and uniqueness of solutions to the Cauchy
problem is fairly complete, see [8,9] and the authors’ [19]. The study of (1.3) has been very beneficial for both the
blow-up result [5] and the current global existence result for the wave Eq. (1.1).

In [5], Glassey, Hunter, and Zheng have shown that singularities can form from smooth data for Eq. (1.1).
When('(-) is of a single sign, some partial existence results are given in [18,20] and [21]. In [18], the authors
prove the global existence of weak rarefactive solutions to (1.1) under the conditigns 0, Ry < 0, Sp < 0,

(Ro, Sp) € L?(R), p > 3. The notations here are thRfands are the Riemann invariants, see below. If the condition
c'(-) = 0 is strengthed to’(-) > 0, then the conditiop > 3 can be relaxed tp = 2. If, in addition, the initial data

uo € H*1(R), u1 € H*(R) for somek > 1, then the solutions are in the same regularity class. In [20], the condition
Ro < 0 is removed for the global existence of weak solutions. And in [21], we completely remove the conditions
that Rg < 0, So < 0, but with(Rg, So) € L2(R) N L*(R), in the proof of the global existence of weak solutions to
(1.2).

In this paper, we establish the global existence of weak solutions for (1.1) for the wavespgesatisfy-
ing ¢’(-) >0 and¢’(uo(-)) > 0, and general initial datéRo, So) € L2(R). The difficulty is that the potential
oscillations, in terms of DiPerna and Majda [2], get amplified unboundedly by quadratic growth terms of the
equation, and the possible concentrations in the approximate solutions. We use the generalized compensated col
pactness ([4] or [16]), the latest development in #ifeYoung measure method of Lions [13] and Joly, Metivier and
Rauch [11], the renormalization method in [1], and the techniques used in our paper [21] to treat the oscillations.
We obtain high regularity for the space derivative of the wave amplitydeaway fromc’(«) = 0, which is the
corresponding version of a Strichartz type inequality for wave equations with constant wave speed, to control the
possible concentrations.

Before we present our main result, let us first give the following definition. Our notatioff&*ate (0, co), Lip
stands for Lipschitz, and

R:=0u+c(u)oyu, S:=0u—c)ou, c(-):= %In c(+), (1.4

so that?’ (u) = 2;((‘;)) We useRo(x) = R(0, x) andSo(x) = S(0, x).
With the above notations, we can also write (1.1) in the following form:

%R —c(u)dy R =& (u)(R? — §2),

9S4+ c(u)de S =& (u)(S2 — R?),

_R-5S (1.5)
~ 2cu)’

Rl;—0=Ro, Sl;=0=So.

xU

Definition 1.1. We callu(z, x) an admissible weak solution of (1.1) if
(1) u(t,x) € L*@®R*, HY{(R)) N Lip(R*, L2(R)), and

/(lf),ulz + |c(u)8xu|2) dx < /(|ul|2 + |c(uo)8xu0’2) dx; (1.6)
R R
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(2) For any test functiog (7, x) € C°(R* x R), there holds

f/ (3:pdu — Bxpc?(w)dxu — pc’ (u)c () (3xu)?) dx dt = 0 1.7)
R+ xR

(3) (The entropy condition) For anyo, xo) with 7o > 0, there always exists a positive constahtrg, xo) such that
R(t,x) = —M (10, x0), S(t, x) = —M (10, x0), (1.8)

hold in a neighborhood/ (1o, xo) of (t, x0);
(4) u(t,x) = ug(x) in L(R) andd,u(z, x) — u1(x) in the distributional sense as— 0+.
We shall always assume that there exist two positive conétan@; such that
0<Ci<e()<C, and [P <M, 121 (1.9)
for some positive constantd;.

Theorem 1.1. Letc/(+) > 0, ¢ (uo(+)) > 0, ug € HX(R), andu1 € L?(R). Then(1.1) has a global admissible weak
solutionz in the sense of Definitioh.1. Moreover,

/ [0ulP dxdt < Cq p, VYp<3, (1.10)
Q
where 2 is a small neighborhood of any poift, x) R+ x R at which¢/(u(t, x)) #0,andCgp , is a positive
constant which depends only @ p, |luol| g1, and |luq|| 2.

Remark 1.1. Theorem 1.1 still holds if we replace the assumptigtis > 0 andc’(ug(-)) > 0 by ¢(-) <0 and
¢ (up(+)) < 0. One needs only to replace the entropy condition in (1.8) by

R(t, x) < M(t0, x0), S(t, x) < M (1o, x0),
for (z, x) € N(t9, x0). One can check the proof of Theorem 1.1 for details.
Remark 1.2. Suppose that’ keeps sign, andRo, So) € L (R), then by [21], we know that the following ordinary
differential equations have global solutio@%(x) € Lip([0, 00) x R):

do(x) _
dr
CDéE(x) =X.

te(u(t, (1)), (1.11)

But here as the initial dataRo, So) € L2(R), the entropy condition (1.8) is not enough to prove this result for (1.11).
Actually we do not even know that (1.11) has soluti@ivfé(x) € C([0,00) x R).

Remark 1.3. Motivated by [9] and [19], we point out that we expect multiple weak solution to problem (1.1). Our
weak solutions in Theorem 1.1 are solutions of the dissipative type, because the entropy condition (1.8) guarantee
that: On almost all the blow-up points, y), R(¢,x) — 400 as(¢, x) — (t, y), and similarly forS. But in the
construction of the conservative weak solutions to (1.3) (seef@])x) — —oo ast — t— andv(¢, x) — 400 as

t — t+, if T is the blow-up time of the solution. We plan to explore the uniqueness issue in future work.

In the following, we will try to present our proof as general as we can. Actually only one step in the proof of
Theorem 1.1 uses the assumptions thas > 0 andc’(uo(-)) > 0. We will point the step later (see Remark 3.1).
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2. Approximate solutions and uniform estimates

Similar to [19-21], let us define far> 0

1 1
(6-5) et
Q0:(§) = 1 (2.1)
552, ge < 1.
Let us also use the notatian™ := max(0, ¢) and¢~ := min(0, ¢). We now define the approximate solution se-
quence by the equations
O RE — c(uf) 3 RE =& () (20 (R) — (5)2) + & ()™ (20-£(R®) — (59)?),
3 S* + c(uf)0,S* =& (uf) T (20:(5%) — (R‘E)Z) +& W)™ (20-6(5%) — (R‘E)Z),
a e RS _ SS
Xu - 2C(I/t8) ’ (22)
Iir11 uf(t,x)=0,
(R?, §%)|r=0 = (Ro, So)(x).

That is, R is chopped off in the first equation atelif ¢’ is positive, it is chopped off at 1 /¢ if ¢’ is negative. No
chop-off for S in the first equation. Do the same for the second equation. For convenience, we sometimes omit the
superscript in the approximate solution sequen¢®®, S¢, u®)}.-o.

Assume that(-) satisfies (1.9), but’(-) may change sign.

Lemma 2.1 (Solution of (2.2) with smooth data) et (Ro, So)(x) € C°(R). Then, problen(2.2) has a global
smooth solution(R, S)(z, x) € L¥(Rt, WL2(R)), u(z, x) € L® (R, W2>(R)), which satisfies the energy in-
equalities

/ (R%+ 8?)(1,x)dx < f (R§ + 55)(x) dx (2.3)

and
/f (WHTGE 4+ W)~ G;)dxde < /<Rg + 82)(x) dx, (2.4)
OR

where
GE:=R(R?*—204.(R)) + S(5? = 204.(9))

andG{ > 0andG; < 0. Moreover, if we introduce the plus and minus characterisi¢s(b) as

&F =Lc(u(t, o)),

{ ¢ti|t=0 =b,
then, we have the energy inequality in a characteristic cone
d b b

1
/ Rt} (y), y)dy + / S2(1; (), y)dy < > / (R3 + S3)(x) dx, (2.6)

a d a

P
d
dr (2.5)

wherea < b, andd is where the two characteristics," («) and @,” (b) meet at some positive time, ane: 1 (y)
is the inverse of = ®,' (a), etc.
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Proof. Itis standard to prove the local existence of Lipschitz solutions to (2.2) with smooth initial data. Now, we
let T* be the life span of a Lipschitz solution to (2.2). It can be proved exactly as that in the proof of Lemma 6
of [18] that||R(z, ) ||z~ + ||S(, -) ||z controlsT*; that is to say thal* < +oo implies

Jim ([R@D] o + [ ] o) = +00. (2.7)

Hence, in order to establish the global existence, it suffices to shoWRiat-)| L= + || S(¢, -)|| L~ < 400 for any
t < +00.

We establish the estimates (2.3), (2.4), (2.6) fat O< T*. Multiplying the first equation of (2.2) witlR (z, x),
we find

9 R% — 3 (c)R?) = 2¢ () {~R(R? = 2Q:(R)) + R?S — RS?}
+2¢' ()" |~ R(R* —20_.(R)) + R?S — RS?}. (2.8)

Similarly, we find

3 8%+ 9, (c(u)S?) = 28" )| - S (5% — 20.(5)) + RS? — SR?}
+28' )~ | =S(5% —20_.(5)) + RS* — SR?}. (2.9)
Adding (2.8) and (2.9), we find

9 (R%+ 82) — 3, (c)(R? — §%)) = =28 ) T{R(R? — 2Q:(R)) + S($%2 — 20.(9))}
— 28 w) " {R(R* = 20_,(R)) + S(8? —20_,())} <0.  (2.10)

By integrating (2.10) oveR with respect toc, we deduce (2.3) and (2.4). Integrating (2.10) over the characteristic
coneA :={(t,x) | ®;" (a) <x < &, (b), 0< t < T*}, we deduce (2.6).
We establishL* bounds forR and S. Fix a point x € R. We decompose the domain € (0, T*) |
R(t, @, (x)) < 0}into | J:2 (22, 12i+1) in order to utilize the asymmetry in the chop-off of the equations, # 0,
then forz € [0, 1), we have

%R(t, D (x)) = {—5/(u)+S2 + 28 ()" Qe (R} (1, @, (x)). (2.11)
But for R <0, we haveQ_.(R) < —R/e. Thus
%R(r, D, (x)) = —{5’(u)+52 - %R}(t, D, (x)), (2.12)

which directly implies that
M
R(t, & (x)) > —eM’/g(nRonLoo + % / (R§ + S3)(x) dx) (2.13)
1

for 7 € [0,1]. Fori > 1 (orto > 0), asR(#;, @, (x)) = 0, we can repeat the above procedure to yield the same
lower bound forR(z, @, (x)) for 0 < ¢t < T*. Since the solutioliR, S, «) is sufficiently smooth, this implies that

R(.x) > —er“(nRouLoo + 8% / (R2+ SS)(x)dx) (2.14)

forO<r < T*.
We have similarly obtain from (2.2) that

d
ER(I, @7 (0) < {2 W)t Qe (R) — 5’(u)*sz}(t, @, (x)). (2.15)
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Thus, by repeating the proof of (2.14), we can prove
M
R(t,x) < eMl/‘9 <||R()||Loc + f /(Rg + Scz))(x) dX) (216)
1
Similarly, we can obtain an-dependent bound fdf. This completes the proof of Lemma 2.10

Now we can see from Lions—Aubin’s Lemma, see Lemma 3 of [18] for details, that there exists a subsequence
of the approximate solution:*} which converges in the maximum norm on any compact domain of the upper
half plane to a continuous function, x):

u® — u(t,x). (2.17)
We can use the continuity af¢, x) and¢’(x) to obtain uniform estimates ofR?, S¢) in L2t® at any point(z, x)
such that’(u(z, x)) #0.

Lemma 2.2(Local L%t estimate) Let(Ro, So) € L2. For solutions{(R¢, S¢, u®)}s-0 of (2.2), there hold

" ZE’(M)(R — S)(R¥ — §1F) L F(u)R*S*(R — S)(RY™™ — §179)

=W TR (2Q:(R) — R?) + & )" R* (20— (R) — R?) + & (u)T5%(20:(S) — §?)

+& ()" $*(20-.(S) — §?) {8 (RY™® + $1) 4+ 3, (c(u) (ST — RIT))} (2.18)

14«
and

//(R — $)?(R% 4+ §*) dxdr < Cg.q, (2.19)
2

wheres?2 is a small neighborhood of any poittt, x) at whichc’(u(z, x)) #0, « € (0,1), andCy;  is independent
of e.

Proof. We assume without loss of generality thi®, So) € C°(R). We take arnx = do/d; € (0,1) whereds is
an even positive integer ant] an odd positive integer. We then multiply the first equation of (2.2) wkitlir, x)
to yield

1 o o 2 ~/ o
H—a{B,R” — % (ca)RM)} + oot (u)(R — S)RY
=& W) T (2RY Qs (R) — R*S?) + & ()™ (2R*Q—_(R) — R*S?). (2.20)

Splitting 2/@ + «) into (1 — &) /(1 + «) + 1 and regrouping, we have

1 _
ZTCX )R — )R 4 & (u)(RYS? — SRY)

1+a
=& )T RY(20:(R) — R?) + & (u) " R*(20_+(R) — R?) — H%{B,RH“ — 3 (c@R™™)}.  (2.21)
Similarly we have fors:
i :L Zé/(u)(s — R)SYY 4+ & u)(S*R? — RS
= W) TS (20:(S) — %) + & (u)~S%(20-(S) — §%) — 1 {8,577 + 8 (cu)STT)}. (2.22)

1+«
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Combining (2.21) and (2.22), we obtain (2.18).

Let (¢, x) be a point in the upper half plane so thdtu(z, x)) # 0. For definiteness, let us assume that
¢ (u(t, x)) > cg. Using the uniform convergence of, and the continuity ot’, we can find a small neighbor-
hood £2; of (¢, x) such that’ (u®(z, x)) > co/2 in $2; for all sufficiently smalle. Next we take an arbitrary open
subset2 of £21 with 2 C €21, and a cutoff functiory (¢, x) € C2°(£21) with x (¢, x) = 1 on£2. Then multiplying
x to both sides of (2.18) and integrating the resulting identity avemwe use integration by parts and the energy
bounds in Lemma 2.1 to obtain

// x[(R — )R — §17%) 4 R¥S%(R — $)(RY™ — $T7%) ] dxdf < Cy .- (2.23)
Regrouping the integrand in (2.23), we obtain (2.19) by the definitign. of O

To prove the precompactness of the approximate solufi@issS?}, we need the following type of entropy
condition for{R¢, $¢}:

Lemma 2.3. Let(Ro, So) € L2(R). Letzo > 0 and (g, xg) be any point at whick’ (u (1o, x0)) # 0, then there exists
a neighborhoodV (zg, xo) of (70, xg) and some nonnegative constatzy, xg) which is independent ef such that

sign(c’(u®))R* (1, x) = —M (to, x0), sign(c’(u®)) S°(t, x) = —M (to, x0), (2.24)
hold for all (¢, x) € M (o, x0).

Proof. Without loss of generality, we may assume thai(zg, x0)) > 0, and denote’(u(fo, xo)) by co. Then
by (2.17), for small enough, there is a balB,) (1o, x0) = {(t, x)||t — t0? + |x — x0|? < 1?}, such that

¢ (ut,x) > %O, and ¢ (u®(t,x)) = %0 for (¢, x) € By (to, x0), (2.25)

for all sufficiently smalle. As u®(z, x) € L® (R, WL (R)) (modify (Ro, So) if necessary), the plus and minus
characteristic® '~ (y) defined by

d e & &
GO 0) = £ (1. 97 ).

(M=o =y,
can pass through any point in the upper plane.
Fix ay € R. Assume thafri, 72] is the largest time interval such that @, (y)) € By (19, xo) for t € [11, 2],

and|zs, t4] is the largest time interval such th@t @;"~ (y)) € By 2(to, xo) for ¢ € [13, t4]. By (1.9) and (2.25), we
have

(2.26)

t3—11 =01 (2.27)

for some positive constast By (2.6), we can find some positive const&ht, which depends only on th&? norm
of (Ro, So), such that

o0

/(|E/(u8)|(S€)2)(s, @57 (y)) ds < Ka. (2.28)
0

Let us takeK, = 2,/K1/(codn). Then if R® (1, <Dfl”(y)) > —K>, by (2.2) and (2.26), we have

dR*(1, 9] () _

5 —& W) (SO (r. &7 (), teln.r2
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Integrating the above inequality ovigi, t] with ¢ < 2, we find by (2.28) that
t
RE(1, ;" (y)) = R*(11, @, () — / & W) (S)%(s, @5 () ds > —K2 — K. (2.29)
141

Otherwise, let us assume

RE(t, @, (y)) < —Kz forreln, 1], t <1, (2.30)
andR?(t, @£~ (y)) = —K2. Then by the proof of (2.29), we have
RE(t, @, (») > —K2— K1, f2>t>7. (2.31)

And by (2.1), (2.2) and (2.26), there holds

W =& W) ((R)? — (8% (1, @0~ (), telt,tl.

Let us divide the equation byR¢)2 and then integrate it ovéry, 1] to obtain

1 1 ’ ' §6\?
— = - — | & (s, 227 (y) ds—l—/E'(uS)(—) 5,57 (y))ds
REt, @77 () RE(t1, @17 () u/ w2 0) ] g) 00
co K1 codn
<—=(t— — = 2.32
2 t1)+K22 3 (2.32)
if 11+ 8n <t < 1, where we have used (2.25), (2.28), and (2.30). Thus we have
8
R°(t, @) (y)) 2 ———, te€ln+dn, 1l (2.33)
codn
Let us takeM (7o, xg) = max(K1 + K2, 8/(codn)). By summing up (2.29), (2.31) and (2.33), we have
R*(t, @, (y)) = —M(to, x0), 1€ [t1+3n,12]. (2.34)

This together with (2.27) imply that
R®(t,x) > —M (10, x0), for (z,x) € By 2(to, x0). (2.35)
Similarly, we can prove
S¢(t,x) = —M(to, x0), for (t,x) € By 2(10, x0). (2.36)
Combining (2.35) and (2.36), and taking(ro, xo) = B, 2(0, x0), We obtain (2.24). O
We are going to assume the particular conditie0® > 0 andc’(uo(-)) > 0 in the next lemma. The condition
c’'(up(+)) > 0 drives the solutio{R, S) away from possible negative infinity in a thin initial layer, while the con-

dition ¢(-) > 0 will maintain the lower bounds for the rest of the time. We note that Sobolev embedding gives a
positive constant. such that|ug||z~ < L whenug € H1(R).

Lemma 2.4. Letc/(-) >0, ¢/ (uo(-)) > 0, and(Ro, So) € L2(R), letzo > 0 be any sufficiently small posig/e number.
Then for anyx € R and anyr > g, there exist a neighbourhooli (7, x) and some positive constam, which
depends only on the2 norm of (Ro, So), to, and¢’(ug), such that

RE(t,x) > —M, S€(t,x)>—M (2.37)
for all (z,x) e N(t, X).
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Proof. For any compact subséy of R, there exists a constarg > 0 such that
c(uo(x)) =co, VxeCy. (2.38)
Thus by (2.17), we find that for sufficiently smadl there holds

c'(u(to,x)) > %0, xeCy. (2.39)
Hence in particular, (2.24) and its proof imply that
R¢(to, x) > —Mo(t0), x €Cy, (2.40)

whereMy(tg) depends only on the? norm of (Ro, So), fo, andeg. Then, (2.40) and a proof similar to that of (2.29)
imply that

Rg(l‘, @f’_(y)) > —Mo(tg) — K1 =M1, t=>toy, ye(Cq. (2.41)
Now let us take a countable compact subggtsuch thaiC; C C;;1 andR = [ 72, C;. Then by a proof similar to

that of (2.41), we can find for eadéta constani/; (1p) > 0, which depends only on the? norm of (Rg, So) andco,
such that

R(1, @] (1)) = —Mi(10), y€eCi, t>10. (2.42)
On the other hand, &s, @, (y)) can pass through any point in the upper half plane, for@n) € (7, oo) x R,

we can always find a neighbourhodd(z, x) such that every point of/(z, x) can be reached by a characteristic
curve(t, @, (y)) starting fromy e C; for some fixed . Hence by (2.42), we have

REé(t,x) > —M;(tp), (t,x)eN({E, X). (2.43)
Similar argument foS€ yields a similar inequality as (2.43) f&i€. The proof of the lemma is complete

3. Precompactness

Let (Ro, So) € L%(R). Let j.(x) be the standard Friedrichs’ mollifier, and(x) = x(2) with x (x) € CZ(R)
andy (x) = 1 aroundr = 0. We denoteRj = (Roxe) * je andSy = (Soxe) * je. Then by Lemma 2.1, problem (2.2)
has a global smooth solutiqik®, $¢, «u®) with the initial data(Rg, Sp). Moreover, we have

/ (R + (59)%) (1, x) dx < / (R§+ Sp)(x)dx  (1=0). (3.1)

We shall also use energy estimate (2.6) and (2.19) in this new setting.
We establish the precompactnesg@¢, S¢, u®)(t, x)} in this section.
Next, for the convenience of the reader, we recall the following lemma (see Lemmas 9-10 of [18]).

Lemma 3.1(Time-distinguished Young measure [17,15,11,8})ere exist a subsequence of the solution sequence
{R%(z, x), S¢(t, x)}, which we still denote byR®(z, x), S¢(z, x)} for convenience, and three families of Young
measures’t (£) onR, v2 () on R, and x4, (¢, n) onR?, such that for all continuous functiong(x) € C°(R),

Y (x) € CX(R), g(€,n) € C®(R?) with g(&,n) = o((|€] + [n)?) as|&| + || — oo for somep < 2, ande(t, x) €
CX(R* x R), there hold

im [ (R opwar= [ [ revwaiea

R RxR

im [ (st enppeods= [ [ rmvedma 32)
R

RxR
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uniformly in every compact subset[6f co), and

lim / / ¢(R*(1.x), §°(t, 1)) p(t, x) dxlr = [ / f $(€. (. ) ey (. ) dxdlr, (33)
OR OR R

xR

Moreover,

tE[O,oo)H// FE)¥ (x)dvt (€)dx is continuous,

RxR
IG[0,00)H// F (¥ (x)dv2 () dx is continuous, (3.4)
RxR
and
Hix (E.m) = v (&) @ VA (). (3.5)

Furthermore, by Proposition 3.1.3 of [11] and Lemma 3.1, we find that

£ e L°(R", L*(R x R, dx ® dv, (£))),

neL®(RY, L2(R x R, dx ® dvZ (n))). (3.6)
We remark that (3.5) implies directly that

R¢S* —~ RS ase—0 (3.7)

in the sense of distributions. Glassey, Hunter and Zheng [6] have derived (3.7) by applying the div-curl lemma for a
sequence of energy conservative weak solut{@fi&, x)} of (1.1), assuming thdt? (z, x)} is uniformly bounded
in WLP(R* x R) for somep > 2. Here we have provided a local version of this uniform estimate, but we do not
need the energy conservation assumption for the approximate solutions.

We shall use the notation

g(R,S)=/g(§,n)duzx(€,n).
R

Thus, (R, S) represents the weak star limit pg¢, §¢} in L>°(R*, L2(R)) or the weak limit inL2((0, T) x R) for
all T < oo.
With the above preparation, we can now establish the precompactnig®s 6f}.

Lemma 3.2 (Precompactness diR¢, $¢)}). Let ¢/(-) > 0, ¢/(ug(-)) > 0, and (Ro(x), So(x)) € L%(R). Then
Vi (€) =85, (&) andvi () = 85, ., (1)

Proof. Since the proof of),lx &) = Sﬁ(m) (&) is the same as that mﬁ(n) = 83(,’)6)(;7), we present only the proof
for the former. -

The idea is to derive an evolution equation (inequality) for the quaRrfity: R 2, so that itis zero for all positive
time if it is zero at time zero which is true in our case. In the derivation of the evolution equation we need to cut off
desired multipliers and mollify various equations that are true only in the weak sense. We will present the proof of
Theorem 1.1 as general as we can. The assumptiong that 0 andc’(up(-)) > 0 will only be used in step 6.
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Step 1.Derivation of the equation foR.
We write the first equation of (2.2) in the form

3R — 0 (c)R) = =& W) (R® = §°)% = EF[(R")? = 2Q:(R)] =& [(R)* —20-(R)].  (38)

We claim that there holds in the sense of distributions

& W) (R — §°)2 — & (u) f / (6 —m2dux (5, m) =& ) (R2+ S2 - 2R S). (3.9)
]RZ

The claim will follow from Lemma 3.1 and estimate (2.19). At a paintx) wherec’(u(z, x)) # 0, we assume
without loss of generality that (u(z, x)) > 0. We take a neighborhoa@ of (¢, x) wherec'(u®(z, x)) > Mo > 0
for all smalle > 0. We take a smooth cut-off functiof(¢) with v (£) =1 for |£] <1 and supp C {£ | |€] < 2}.
Then, by (2.19), we have

//}RS(R‘? — 59| (1 — w(’%)) drdr < Cmeag(r, x) € 2 | RE > k}P < ck2/7, (3.10)
2
wherel—l, = ﬁ for any O< o < 1. While by Lemma 3.1, for any test functignz, x) € C2°(£2), there holds
® €
tim [ [ 2wt R re - s%w(%) ardr= [ [ ot [[se- n)W(%) djur o€, ) dxdr. (3.11)
OR R+ xR R2
By summing up (3.6), (3.10), (3.11) and Lebesgue Dominated Convergence Thedrem as we find
o
lim f / 67 ()R (R® — 5°) drdlr = / / 67 ) / / £(E — 1) dju < (8, ) dxdlr. (3.12)
OR R+ xR R2
A similar proof yields that
o
tim [ f 67 (u%)S° (R — §°) cxdr = f f 62 ) / f 1(E — ) e o (€, ) Al (3.13)
OR R+ xR R2

It follows from (3.12) and (3.13) that Claim (3.9) holds for all test functigns C°(£2(z, x)).

Now let us denotej := {(z, x), ¢’ (u(z, x)) # 0}. For any(z, x) € G, let us denote&?(z, x) a neighborhood of
(¢, x) such that (3.9) holds for all test functiopse C2°(£2(z, x)). Then for any test functiop(z, x) € C2°(RT x R)
and anyz > 0, asH = suppp N{(z, x)|c’ (u(t, x))| > a} is a compact subset @f, it can be covered by a finite union
of 2(,x;),i =1,..., N. By basic topology, we can take a partition of unity subordin::xﬂ@)ﬁ’;1 2, x;), i.e.,
there arep; (¢, x) € C°(£2(t;, x;)), such thaﬁjf\'zl ¢ (t,x) = 1for (¢, x) € H. Next, let us decompose the left-hand
side of (3.9) in the following form:

/ / 0 (u®) (R — §°)?dxdr = / / Qewiza + Lew)<a) 9 @) (R — §7)2dxdr, (3.14)

and

N
lim // L) 2a @€ @) (RE — $%)?dx dr = lim Z// L) a9hi€ ) (RE — $°)? dxdr
e—0 8%0i=1

N
= Z/f Lie@iza9$i€ ()(R — S)2dxdr = // L @y za9 W) (R — $)?dxdt, (3.15)
i=1
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and trivially by (3.1), we have

‘// 1 uy1<a®C ) (R — $%)2dxdt| < Ca. (3.16)

By summing up (3.14)—(3.16), we take—> 0 thena — 0 in (3.14), we prove claim (3.9).
Now, from (2.4), we find easily that

T
IimO// E’i(ug)[(Re)Z —20+.(R*)]dxdr=0. (3.17)
OR

Thus, again by (3.5)—(3.6), (3.9), and (3.17), we have
R — 0y (c(u)R) = —&'(u)(R2 — 2R 5 + §2). (3.18)

Step 2.Cut-off of (R¢)2.
Similarly to [19], let us define fok > 0

1 2
552 €] <A,
£ lEI<a, N
TE)=1r  E=A, Si(E) = /\(g—i), £,
—h, E<—A,

A
—1(s+3) £<—x

We multiply the first equation of (2.2) witi, (R®) to obtain

3 Sp(R®) — 0 (c(u®)Sx(R?)) = =28 (u®)(R® — S°)S1(R*) + & (u®) T T).(R®)(2Q: (R®) — (58)2)

+& W) TR (20— (R®) — (5°)7). (3.19)

By Lemma 3.1, a similar proof of (3.9) and (3.17), we find that

&' W) (R® — §%)S1(R*) = &' (u)(R — S)Si(R),

& (W) T(R*)(2Q¢(R) — (55)2) + & W) Th(R*)(2Q-¢(R") — (55)2) — &' ()T (R)(R? — §?).
Takinge — 0in (3.19), we obtain

3 S3(R) — 3 (c(w)S5.(R)) = & u){—2RS;(R) + T5.(R)R2 + 255, (R) — T:.(R) S2}. (3.20)

Step 3.Cut-off of R 2,
Convolving (3.18) with the standard Friedrichs’ mollifigr, we find

R = (cu)RE) = —(F W) (R — $)2) * ji + v, (3:21)

whereR® = [ R(t, ) je(x — y)dy andy, = ji * d:(c(u)R) — 9, (c(u)R;). By DiPerna—Lions renormalization
Lemma 2.3 of Lions [12] and Lebesgue Dominated Convergence Theorem in the time direction, we hade
in L&)C(RJr x R) (or see Lemma 2.1 of [1]). Again, we multiply (3.21) with(R¢) to find

3 Sp(R®) — x (c(u) S5 (R))
= -2 W)(R — S (R*) + [~ (¢ W) (R = $)?) * jo + ve + 26 W) (R — S)R®] T,.(R®). (3.22)
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Takinge — 01in (3.22), we find

%S (R) — 0y (c(w)S,.(R)) = [ w)(R — $)2 4+ 2¢"(u)(R — )R] T5.(R) — 2¢"(u) (R — §)Sp(R).
Or
3 Si.(R) — 0y (c(u)S1(R))
=& W){—2RS,(R) + T, (R)R” + 255,(R) — T, (R)S? — T,(R)(R2 — R?)}. (3.23)

Step 4.Evolution equation forR2 — R*".
By subtracting (3.23) from (3.20), we find

3 (S1(R) — Sx(R)) — 0x (c(@)(Si(R) — Si(R)))
=& (u){~2RS,(R) + To(R)R? + 2R S,(R) — T,(R)R

+25(S5(R) — S3(R)) — (Ty(R) — T, (R))S2 + T, (R)(R2 — R}, (3.24)

But, by the explicit structures f; (-) and 75 (-), we find

—2E85,(8) + To(§)E% = —M(E — 1) 2Less — A2(E — To(8)) + A(E + 1) Le< s,

2RS;(R) — TL(R)R* = (R — 1)1z, +32(R = Tu(R) — MR + 121z, (3.25)
Since

E2=28(8) + (§ — ) Leza + (E+ 1) lec o (3.26)
we have

RZ— (R)*=2(S(R) — $,(R) + (R — M)?1g>s — (R — 0)1gs,;
+ (R +2)2Lggs — (R+1)?1gc . (3.27)
Summing up (3.24)—(3.27), we find that

3 (S1(R) = S1(R)) — 0x (c(w)(S1(R) — S1(R)))
=& {(T.(R) = 2)[(R — )gzr — (R — 1)?1ps,; ]
+ (T.(R) + M[(R+12Lrg—1 — (R+ 1z ;] = A [T(R) - Tu(B)]
— (To(R) = To.(R)) S2 + 2(5 + T.(R)) (Sx(R) — S1(R))}
= W{(T.(R) — 1) (R — M)ZLgzs + (T.(R) + 1) (R + V)21 s
+(T.(R) = Thi(R) (52 = 22) + 2(S + Tu(R)) (5, (R) — Sx(R))}. (3.28)

We comment that the tergT; (R) — T,\(R))S_2 is difficult. We will use renormalization to handle it. The term
Gy =W [(TA(R) = 1) (R — M)2Lg>) + (To(R) + 1) (R + 1)21g< s — (To(R) — Tr(R)) 3% (3.29)

will be shown to be nonpositive. The remaining term of product in (3.28) is not hard. In step 5 we do some
preparation for handling the two difficult terms.
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Step 5a.An inequality. We claim that

1, — —
5 (LR = TL(R)* < S:(B) = $(R). (3.30)

In fact, by Cauchy inequality, we have

2

Th(R)? = ( f Tk(s>dv}x(s)> < (Tu(R)>. (3.31)
Using the identities

E=TE) +E—-MNlezp +E+ Mg,

R=T,(R) + (R = M)1gs, + R+ M1z, (3.32)
we have

T.(R)TA(R) = To.(R)R — Th(R)(R — M) 1g>i — To(R)(R + M) 1r<_s

= (T.(R))* ~ TL(R)((R — M1xzs — (R — Mg,
— LR ((R+M1rg—r — R+ Mg ;)

Thus

(To(R) — T.(R))? = To(R)2 + (T(R))? — 2T (R) T7.(R)

< (TA(R))2 - (T;\(I_?))Z +2L.(R)((R — M1z — (R = M1gs,;)
+2L.(R)((R+M)1rg—s — (R+M)1gc ;) (3.33)

Using

1
S)(€) — 5(3(&))2 = A(E — M) Lesp — AE + W) Le< s,
we then by (3.33) have

__ — 1 = T »
SR = 5B = 5 (TR = (HR)) + 1R~ DTkzr — (R = Dlgs;)
—M(R+M)1g<s — (R+ Mlge )
L I
> S(L(R) = TiR)* + (= TR) (R =M 1gsr — (R = Hlgs,)
— (2 + TR (R + M Ir<—n — (R+ M1z ;)
1 = =2
> S (TR ~ TLi(®)",

where in the last step of the above we used the fact(iRat 1)|r>, is a convex function andR + A)|r<—. is a
concave function. This proves (3.30).

Step 5b.A convergence. We shall need the almost everywhere convergence:
T,.(R) =T (R) — 0 (3.34)

asix — oco. We first have by Cauchy—Schwarz inequality that

|§—T)\(R)|=f[(5 Wiz + E+ MLl ]dvt () < /E dvf', (€).
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This together with (3.6) yield that
Ali_)mooHI_% ~ LB y1q0.71xr) =0 YT > 0.

Similarly, we can prove that lif, o || R — TA(R)||L1([0,T]XR) = 0. Then by the triangle inequality, we obtain

A|Lmoo|| T.(R) — T,.(R) ||Ll([O’T]X]R) =0, VT >0.

Step 5c.Another inequality. Letro, xo) € RT x R such that’ (u(to, xo)) > 0, we claim that there is a neighborhood
N (2o, x0) Of (to, xo) and some positive constamk(to, xo) such that whenever > M (1o, xo), the termG;, defined
in (3.29) satisfies

G, <0, (t,x)eN(t0, x0). (3.35)
In fact, by Lemma 2.3, we find that there is a smaller neighborh®@g, xo) of (9, xo0) and some positive
constantM (to, xo) such thatR® > —M (to, xo). Furthermore, for ang (¢, x) € C2°(N (0, x0)), fo > 0, there holds

IimO/ & (1, )& ) (To(R) + 1) (R® 4 1)?1e <5 dxdr

= // ¢ (t,x)& W) (T(R) + 1) (R + 1) 21g<—y dxdr. (3.36)
Thus by taking. > M (tg, xo) in the above, we find
&' w)(To.(R) + 1) (R +1)?1g<c—3 =0, for (r,x) € N(to, x0). (3.37)
Similarly for A > M(tg, xp), there holds
—3.28 ) (T5.(R) — To(R)) = —2%¢ ) (T;7(R) — T,F(R)) <0, (3.38)
for (¢, x) € N (1o, x0), Where
b A EZ=A,
L= {s, £<A,
which is a concave function. Trivially, there holds
& w)(T.(R) — 1) (R — M)21g>1 <0, for (1, x) € N (tg, x0). (3.39)

Summing up (3.36)—(3.39), we prove (3.35). Exactly similarly to the proof of (3.35), we can prove that (3.35)
still holds whenc’ (u(#g, xp)) < O.

Step 6a.Renormalization. B

We let f3.(1, x) := S5.(R) — S»(R). Notice thatf, (¢, x) € L°(RT, L2(R)) for any fixedx. Thus by DiPerna—
Lions folklore Lemma 2.3 (Lions [12]) and Lebesgue Dominated Convergence Theorem in the time direction again,
we have

0 [ = u(cu) ) = G % je + & {2(S + T (R)) £ + S2[T(R) = To(R)]} + ve, (3.40)

where f£ (t,x) := [ fi(t,y)je(x — y)dy andy, — 0 in L (RT x R). For anyn > 0, we multiply the above
equation (3.40) withs (/£ +n)~Y/2 to yield

a(ff+mY? = o (ca)(ff +m?)

1 _ _ _ _
= <§G/\ % je +& ) (R + Tx@))ff)(ff + ) 7Y2 =28 (u)(R — ) (ff +mY/?

1 — — _ 1
+ 58 0 SP(ff + n YT (R) - To.(R)) + SO+ Y2y, (3.41)
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By takinge — 0in (3.41), we find
¥ (fr +mY2 = d (cay(fo +mY?)

1 — _ _
= (EGA +&w)(R+ TA<R>)fA)<fA + 1) Y2 =28 (u)(R = $)(fr. + n)Y/?

+ %a’w)ﬁm + ) Y3(T,(R) - To(R)). (3.42)
Moreover, by (3.30), we find that
S2(fi +m Y2 T(R) — Th(R)| < 282 (3.43)
Thus, by (3.34) and Lebesgue Dominated Convergence Theorem, we find for-afythat
im [[S20f+ ) MHT(R) = TR | o, rpm) =0- (3.44)

Trivially, by (3.6) and Lebesgue Dominated Convergence Theorem, we have
. 15 =2
lim fi(r,x)=S(R?=R") =: f(t,x). (3.45)
A—00 2

Moreover, by summing up (3.42) with (3.43), we find that;, ( f;, +1)~/?} is uniformly bounded irngcl((O, T)x
R) + L°°([0, T, L1(R)) with respect to. andy for all T > 0. Thus by a diagonal process fBr we can find two
sequenced;}, {n;}, with A; — oo, n; — 0 asi, j — oo, such that for all" > 0, there holds

Gu(fy, +n) 2=~ G (3.46)
in the sense of distributions as> oo, j — oo. Thus by summing up (3.42)—(3.46), takihg= 1;, n = n; in (3.42),
and leti — oo, thenj — oo, we find
1 _
38 — dx(cw)g) = EG + 27 (u)Sg (3.47)
whereg(z, x) ;== /f (&, x).

Step 6b.Nonpositivity of G. Now let us assume that(-) > 0 andc’(uo(+)) > 0. By Lemma 2.4 and a similar proof
of (3.35), for any small enouglg and any(, ¥) € R* x R with 7 > 1o, there is a neighborhoolf (7, x) such that
(3.35) holds forx > M. Thus for all test function & ¢ € C°(N (7, x)), we have

/ / ¢Gdxdr= lim lim / / 9Gy, (o, + 1) Y?dxdr <O, (3.48)
J—00i—>00
N (,5) N(#.%)
which implies thatG| \/; z) < 0 in the sense of distributions. Thus, by the local property of the distributions, we
find that

Gl 1,00) xR IS @ distribution, ands | ;y,00)xr < 0. (3.49)

ThenG|;,,00) xR 1S actually a nonpositive Radon measure.
By summing up (3.47), (3.49), we find

9,8 — Ox (c(u)g) <28 (u)Sg, (g, 00) x R. (3.50)
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Step 6c. Re-renormalization. Notice thai(z, x) € L°(R*, L2(R)). Thus again by DiPerna—Lions folklore
(3.51)

Lemma 2.3 (Lions [12]), we obtain
38" — 0x(cw)g®) <2¢'(u)Sg® + ve. N (f0,00) x R
where 0< g (7, x) := [ g(t, y) je(x — y) dy andy, (7, x) - 0in L&)C(RJr x R).
On the other hand, parallel to the proof of (3.18), we can prove that
S+ 0, (cu)S) ==& w)(R — S)2. (3.52)
Moreover, by the third equation of (2.2), there holds
2c(w)uy =R —S. (3.53)
Subtracting (3.52) from (3.18), we obtain
% (R —8) = dx(c)(R+5)) =0.
Substituting (3.53) into the above equation, we find
x (c)(2u; — (R+ 5))) =0;
that is
U = %(1_?—1—3). (3.54)
Dividing (3.51) with/c(u), we obtain
3, (J%) — 0, (Vews®) < \/:E_u) in (5, 00) x R. (3.55)
(3.56)

Takinge — 0 in (3.55), we obtain
r( g ) — x(v/c(u)g) <0, in (10, 00) x R.

Je(u)

Step 6d.The precompactness.
Firstly by the definition ofg(z, x), we haveg(r, x) € L®([R*, L2(R)). So, if we takeg (x) € C2°(R) with
¢(x) =1 for x| < 1 andg(x) =0 for x| > 2, thenc=Y/2g¢ (%) € L°(RT, L1(R)). We note then that almost all

t € Ris a Lebesgue point of, (c=2(u)g) (¢, x)¢ (£) dx.
By the energy inequality (3.1) and the proof of (6.39) in [18], which imply that
im / ( / & — RY2duL (6) + f (- 5)2dv,2x(n)) dr =0, (357)
—
R R R
we find that
(3.58)

. g X
| — Jdx=0.
[@0/ @ (t,x)¢<n> X
R
Furthermore, motivated by [10] and [13], let us take be one of its Lebesgue pOintﬁ(c_l/z(u)g)(t, X) X

¢ () dx, and takey? (1) € C2°(R™) such that

8 _
1//(g(t):{o, téiort>t+8,
1, 6§<r<t—34,
C C _ _
Oéatl/fe(t)gg, t €0, d], —8,1#%)23, te[t—46,1+8].
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Letus muItipIyingw‘s(t)qS(jl—‘) to (3.56) and integrating oveﬁ, o0) x R toyield

[ ool [ov ()

+8
1
/f < )dxdt—l——/ 8¢’(£)’\/c(u)gdxdt
c(u n n
<C/8// d ¢<x) ( )' dxdr. (3.59)
< T — X .
Jew) \n &
5/4 R
Takingd — 0in (3.59) and using (3.58), we find
/ (z)¢>(>d< ()ddt<c
X X g Uux X —F—=
Jel N
which together Fatou’s Lemma yields that
(t,x)dx = (3.60)
| 7w
Due to arbitrariness af, we obtain
g(t,x)=0, a.e.(t,x)eR" xR. (3.61)

Hencef(¢,x) =0 a.e.(t,x) e RT x R and therefore;1 (§) =g (). Similarly, we can prove that (n)
85, (M- This completes the proof of the lemmat

Remark 3.1. By (3.35) and (3.48), the assumptions thdt) > 0 andc’ (o) > O were used only to prove that the
distributionG < 0 around the s€f(z, x): ¢’(u(t, x)) = 0}. That s to say, if we can prove this without the restriction,
we can actually improve Theorem 1.1 for general wave spéedwith ¢’(-) changing sign.

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Firstly, by (2.37), there holds (1.8), and by (3.53) and (3.54), we find
R =8u+ c(u)dyu, S =d,u — c(u)dyu. (3.62)
Secondly, by (3.18), (3.52), and Lemma 3.2, we find that

{ %R — dx(c)R) =—&u)(R — 52,

9:S + 8x (c)S) = —& w)(R — §)? (3.63)

hold in the sense of distributions. Summing up the two equations of (3.63) and using (3.62), we find that there
holds (1.7). Moreover, by (3.1) and (3.62), there holds (1.6). By (2.19) and (3.53), there holds (1.10). This completes
the proof of Theorem 1.1. O
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