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Abstract

The existence of multiple nonnegative solutions to the anisotropic critical problem
N
> gl
0x;
i=1 !

is proved in suitable anisotropic Sobolev spaces. The solutions correspond to extremal functions of a certain best Sobolev constant.
The main tool in our study is an adaptation of the well-known concentration-compactness lemma of P.-L. Lions to anisotropic
operators. Furthermore, we show that the set of nontrival solutions S is included in LOO(RN ) and is located outside of a ball of
radius T > 0 in LP*(RN).

© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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Résumé

Nous montrons I’existence d’une infinité de solutions positives pour le probleme anisotropique avec exposant critique. La mé-
thode consiste a regarder la meilleure constante d’une inégalité du type Poincaré—Sobolev et a adapter le fameux principe de
concentration-compacité de P. L. Lions. De plus, on montre que 1’ensemble des solutions S est contenu dans L®RN) et est
localisé en dehors d’une boule de rayon T > 0 dans Lr* (]RN ).
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, the existence of nontrivial nonnegative solutions to the anisotropic critical problem

N
‘Za—<

is studied, where the exponents p; and p* satisfy the following conditions

pi—2 ou

9 \
- —> —u” 2 inRY (1)

8)61' 3)6,'

N

pi > 1, ZL_>1,

i=1 P

and the critical exponent p* is defined by
*

N

P=5N 1T _
dizip 1

In the best of our knowledge, anisotropic equations with different orders of derivation in different directions,
involving critical exponents were never studied before. In the subcritical case, we can refer the reader to the recent
paper by 1. Fragala et al. [4].

In the special case p; =2,i €{1,2,..., N}, Problem (1) is reduced to the limiting equation arising in the famous
Yamabe problem [13]:

—Au:uz*fl, u>0 inRV. 2)

Indeed, let (M, g) be a N -dimensional Riemannian manifold and S, be the scalar curvature of the metric g. Consider a

4
conformal metric g on M defined by g := u¥-2 g whose scalar curvature (which is assumed to be constant) is denoted
by Sz, where u is a positive function in C°°(M, R). The unknown function u satisfies then

N -2 N -2 21
—————Seu=———Szu ,
4N -1 4N -1
where A, denotes the Laplace—Beltrami operator. It is clear that, up to a scaling, the limiting problem of (3) (Eq. (3)
without the subcritical term %S qu) is exactly (2). The question of existence of minimizing solutions to (2) was
completely solved by Aubin [1] and G. Talenti [9]. Their proofs are based on symmetrization theory. Notice that this
theory is not relevant in our context since the radial symmetry of solutions cannot hold true because of the anisotropy
of the operator.

In [5], P.-L. Lions introduced the famous concentration-compactness lemma which constitutes a powerful tool
for the study of critical nonlinear elliptic equations. The concentration-compactness lemma allows an elegant and
simple proof of the existence of solutions to (2) by minimization arguments. In the present work, we will adapt the
concentration-compactness lemma to the anisotropic case and show that the infimum

>|m)
Inf —
Wl @y =t ;2] Pi pi

is achieved, of course, the functional space has to be specified.

The motivation of the present work is to give a new result which can provide extremal functions associated to the
critical level corresponding to anisotropic problems involving critical exponents. Notice that the genuine extremal
functions are obtained by minimization on the Nehari manifold associated to the problem and the critical level is
nothing than the energy of these extremal functions.

The natural functional framework of Problem (1) is the anisotropic Sobolev spaces theory developed by [3,6,11,7,
8,10]. Then, let pL.p (R™) be the completion of the space D(R") with respect to the norm

CAgu+ W>0 inM, 3)
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0x;
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It is well known that (Dl*ﬁ @R - 1,5) is a reflexive Banach space which is continuously embedded in LP"(RN).
In what follows, we will assume that

p+ =max{p1, p2,..., pn} < p*,

then p* is the critical exponent associated to the operator:

— 0x; ax; )
i=1

The space pL.p (RN) can also be seen as

0

ax;

Xi

DI RN = {ueLP*(RN):

e L7 (RY) }

In the sequel, we will set p_ = min{py, pa2,..., pn}, p+- =max{p1, p2,...,pn}and p = (p1, p2, ..., pn). Also,
the integral symbol f will denote fRN and || - || p; will denote the usual Lebesgue norm in L/ (RV). We denote by
MRY) (resp. M (RY)) the space of finite measures (resp. positive finite measures) on RV, and by || - || its usual
norm.

2. Existence of extremal functions for a Sobolev type inequality

In this paragraph, we shall prove that a certain best Sobolev constant is achieved.

Theorem 1. Under the above assumptionson p;, i =1,..., N, N > 2, there exists at least one function u € pL.p (]RN ),
u>0u#0:
N i—2
0 du |Pi7° 9 .
—Z—(—u —u)zup 1 inD'(RY).
iz Bxl- axi ax,»

The proof will need two fundamental lemmas, the first one is a result due to M. Troisi [10]:

Lemma 1. (Troisi [10]) There is a constant Ty > 0 depending only on p and N such that:

N

Tolull- <] |

i=1

for all u € DP (RN).

1 N
Y and Nully < — ou
an u * e —_—
" U NTy &

i=

a_x,- ax,-

Di Di

The second lemma is a rescaling type result ensuring the conservation of suitable norms:

LemmaZ.Letot,-=p—*—1,i=1,...,N. ForeveryyeRN,MEDl’ﬁ(RN), and A > 0, if we write x = (x1,...,XN),

i

Y=(1, s YN, V=M (x) = AU x] + Y1, .. AN Xy + YN), we get

llwll p= = llvll p*,
‘ ou v

0x; 0x;
th g A,y o
us, [[ull1,5 = llu™l1,5-

, fori=1,...,N,
pi

Di

Proof. Noticing that ZlN: (o = p*, a straightforward computation with adequate changes of variables gives the
result. O
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Pi
Pi

Proof. From Lemma 1, we obtain that if |[u]| ,» = 1, then

Lemma 3. Let

ou

Yo
S= {__
3x,'

ueDIPRN), Jlull x=1

Then S > 0.

N ou
Z —| =NTy>0. 4
prd KR

pi

Using standard argument, the infimum

N N

1,

Inf{Z—af‘, (ai,...,ap) €RY, Zai >NTy, a; >0} =S5
i=1 i i=1

is achieved and thus this minimum is positive. By relation (4), one concludes that § > S; > 0. O

Corollary 1 of Lemma 3 (Sobolev type inequality). Let p_ = min(py, ..., py), p+ = max(pi, ..., py) and F be
the real valued function defined by

_JoP+ ifo <1
Then for every u € DLP(RN), one has

N

F(llull p+) Z

1

Pi
~P(Vu).

Pi

Bx,

Proof. Let u be in D]’ﬁ(RN). If u = 0 the inequality is true. If u # 0, set w = u/||u|| ,+, then from the definition of §
one has:
N

1
;Pi

Since tPi < tP+ if t > 1 and 1P < tP- otherwise, the result follows from relation (5) and the definition of . O

ow ||”

3)61‘

®)

pi

Remark 1. Along this paragraph, we only need the inequality:

S||u||§j: < P(Vu) whenever [uf » < 1.

We shall call (P) the minimization problem

Mo
(P)  Inf {Z
i Pi

lull =1

Di
du }: Inf {P(Vuw)}.

axi ||, llall =1

Let (u,) C Dl’ﬁ(RN ) be a minimizing sequence for the problem (P). As in [5] and Willem [12], we define the
Levy concentration function:

0n(A) = sup |Mn|p* dx, A>0.
yeRN
E(y, A%, A%N)

Here E(y, A%, ..., A%N) is the ellipse defined by

{Z_(Zl’.”’ZN)GRN Z(lezall) gl}

i=1
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with y = (y1,..., yn) and ¢; > 0 as in Lemma 2. Since for every n, limy_.0 Q,(A) =0 and Q, (1) A—) 1. There
—+00

exists A, > 0 such that Q,,(A,) = % Moreover there exists y, € RY such that

* 1
lun|? dx = 5

. Y
Thus by a change of variables one has for v,, = u},""”":

* 1 *
v, |? dx = = = sup / v, P dx.

yeRN
B(0,1) B(y,1)
Since
vy, ouy
Nonllpx = llunllpx,  ||z—| = s P(Vup)=P(Vv,)
axi |, axi |l

we deduce that (v,,) is bounded in pL.p (R™) and is also a minimizing sequence for (). We may then assume that:

vp — v in DLP(RY),

o 55 (o = W)IP = pi in MERY),
lon — v|P" = v in MTRY),

v, — v ae. in RV,

We define:
N
=3
— Pi
i=1
N .
_ 1 vy, |7
= lim i — dx, 6
Hoo R~1>I‘II}OO II{HZ pi / ax; * ©
i=1 "7 y[>R
Voo = lim 1im lun|?" dx. @)
R—>+400 n
|x|>R

We start with some general lemmas. First by the Brezis—Lieb’s Lemma [2], direct computations give the following

Lemma 4.

|vn|p* =" +v in S)JT+(RN).

The lemma which follows gives some reverse Holder type inequalities connecting the measures v, © and u;,
I1<i<N.

Lemma 5. Under the above statement, one has for all ¢ € CZ° RN)
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Proof. Let g € CSO(RN) and set w, = v, — v. Since [ |@y, |7 |w,|P dx —+> 0, we then have:
n——+0oo

0 pi
lim/‘—((pwn) dx =lim/ || P
n 0x; n

Thus from Lemma 1, it follows that

L oY i
(/ e dv) —hm(f pwal? dx) <T1011<f e dm)N”’. ©)

On the other hand, since

Wn

Pi
dx:/lsvl”" dpui. ®)

i

/le”’duz p+/l<p|”’du pallul™ </|¢|f’+du> (10)

applying the estimates (9) and (10) and knowing that Z =1+ * , we deduce

zlp
1 1

P e bl Pt
(/W dv) <p T L (f|<p|f’+du)

This ends the proof. 0O

We then have |[v]|,+ < 1. Soif ||v]|,+ =1 then v is an extremal function since P(Vv) < liminf, P(Vv,) =S and
S < P(Vv). Thus, we want to show that fact, by proving that if it is not true then we have a concentration of v at a
single point and therefore v = 0.

Main Lemma.
Iollp = 1.
The remainder of this section is devoted to the proof of the main Lemma

Lemma 6. If v # 0 then

: T A p*
lim v, — vllf. =1~ vll). <1.

Proof. From Brezis—Lieb’s Lemma we have:
* * *
tim(Jlun 12 = 1o, = vl1%) = vl
Since ||v, || px = 1, we derive the result. O

Lemma 7.
[771_
Slvll 7 < flwll.

Proof. For large n, according to Lemma 6, we have:

/|vn — P dx < 1.

Thus for all ¢ € C‘?O(RN), |¢]oo < 1, it holds:

(/W |vn—v|”>"* <Z /| K

pi
M dx + o, (1),
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Letting n — 400, one gets:

P+ N
* p* 1 .
S(/ lpl” dv) <Z;/|¢|P‘ dpi < llpell. (1)
i=1 1

Using the density of CSO(RN ) in C.(RN), we get then

P+
p* p*
S sup lpl” dv < el
WGCE(RN)! [¢loo=1

that is the desired result. O

Lemma 8. Let yg be in C'(R), 0 < yr <1, yg=1if |x| > R+ 1, Yyr(x) =0 if |x| < R. Then for any y; > 0,
i=0,...,N, the two equalities

Voo = lim lim |vn|p dx,
R—+40c0 n

hold true, where v and |« are defined by (6), (7).

Proof. Asin Willem [12], one has:

* * *
f [va]” dx</|vn|p %deg f lva|? dx,

|x|>R+1 [x|>R
v, | vl
ax,‘ \
[x|>R+1 |x|>R

We conclude with the definition of vy and poo. O

v, |7
3)6,‘

vy,

0x;

Lemma 9. Let w, = v, — v. Then, forany y; >0,i =0,..., N, we get

Voo = lim im [ |wn]? ¥ dx
o n R k]
R—o0 n

lim fim f Own | g
= l1m lm e .
foo R—o0 n ax; R

Proof. Since

lim /ww*wm— lim /a—”p
R—>+00 R = rlteo d

Xi
Thus

and

Vi
Vidx =0.

. - * . - *
lim hm/|wn|p YR dx = lim 11m/|v,,|” YR dx = v
R—oo n R—o0 n
and

v, P

dw,, |P
lim li
A, IPZ s

= 1 1
-y f

0x;
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Lemma 10.

Pt
3

Svge < fhoo-
Proof. From Lemma 6, we know that for n large enough, we have
/ vE wal?” < / |wa|”" dx < 1.

Thus by Sobolev inequality (Corollary 4 of Lemma 3), it follows

RS B
* P
S n P d < - " n
(/h/wa | x) ;:1 o f‘axi (Yrwn)

P+
o

N
_ " _ 1 d
lim I P < lim i E — |5z
S(R_l)rJrrloo lgnf [YRrw,| dx) Rm lim < /)axi (Yrwn)
=

Since

N
1 ad
lim E —/‘ VR
no=piJ | o

pi

’

]

pi
(12)

Pi
[w, |PF =0,

then
pi N

— 1 0
lim li — | |
i T3 [ v

Relation (12) and Lemma 9 give:
p_;t
Svge < fhoo- O

Following again the arguments used in [12] we claim that:

Lemma 11.

: 2 p*
I=limlva s = llvll,e + VI 4 voo-
n
Proof. From Lemma 4, we have:

* *
[oal? = oI +v.

Thus

lim lim (1—wg*)|vn|P*dx:/|v|p*dx+/dv.

R—+oc0 n

Rewriting ||v, || Z* as
* * * * %
ponll = [ (=l [l
we obtain
limlv 1% = Tim lim [ (1 =2 ) wl?" + lim Gim | 2 [o,l?" = [o]%% + V] +veo. O
o 7 = timtim (1= 0 ol + tim T [ g ol = ol vl v
Next, we shall prove the following corollary:

Corollary 1 (Of Lemma 5). There exists an at most countable index set J of distinct points {x;}jcy C RN and
nonnegative weights aj and bj, j € J, such that:
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1 v= Zjej ajdy;.
(2) 158 2 Zjej bj(sxj

Pt

(3) Saj"* <bj, Vjel.

Proof. The proof follows essentially the concentration compactness principle of P.L. Lions [5] because we have the
reverse Holder type inequalities of Lemma 5.
Indeed, the second statement of this lemma implies that for all Borelian sets £ C R", one has:

V(E)<CMM(E)£- (13)
Since the set D = {x € RY: n({x}) > 0} is at most countable because p € M (RYN), therefore D = {xj, jeJ}and
b; = n({x;}) satisfies pu > Zje] bjdy;.

Relation (13) implies that v is absolutely continuous with respect to u, i.e., v < u and

v(B(x,r))

(B (x,r))
provided that u(B(x, r)) # 0 (remember that p* > p. ). Thus, we have:

(B
E) = 7d ,
VE) = E/H”?m(B( ry )

< cun(BGr,r) e

and

B
Dyv(x) = lim M =0, pae onRY\D.
r=0 ((B(x,r))
Setting a; = D, v(x;)b;, relation (13) implies that v has only atoms that are given by {x;}, that we have already

get. O

Letp e C OQ(RN ), (xj) =1, |l¢llc = 1. Then, using statement (1) of this corollary and relation (11), we have

_+ 2t
( [ o dv) <Z / 17 dy. (14)

We shall consider ¢ € C?O(RN), 0 < ¢ < 1, support(¢) C B(0,1), ¢(0) = 1. We fix j € J and set x; =
(Xj1,..nXjn), gi = pip*/(p* —pi), i=1,...,N. Then o; = % satisfy Z/lcv=10‘k —a;q; = 0. For ¢ > 0, we

define, for every z e RY, 7= (z1,..., 2n):
_ 71 — X1 IZN —Xj N
¢£(Z)—¢< T pan ) (15)

Thus we have:

(16)

/
axl 3)(,
and then

pi
[l e <(f15
0x; 0X;

Lemma 12. Let x; € D and ¢, be the function defined above associated to x ;. Then:

i Pi

q. 1—,]:—* i
dz) ( / o] dz> — 0. 17
e—0
1

B(xj,max; i)

Sa] 7 < Tom im § f e 8”" d
1m Iim .
8—)0 n p, € x
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Proof. Since 0 < ¢, < 1 then f oyl |1’* dx < 1. From Corollary 4 of Lemma 3, it follows

(/qsp*wm dx) Z /' - (@eun)

From relation (17), we have

e |”

pi

(18)

lim [v|Pi dx = 0. (19)

e—0

Since

—v|Pidx =0, (20)

n—-+00

ax,

then one has:

r—r—ilﬂaap )
1m Iim — —_— V.
— Di ax; "

e—>0 n
1=

v, |P

i¢sf dx. 1)

8x,~

Pi o N 1
dx = lim li —
=i, |
From relations (18) and (21), knowing that |vj, |P* — |v|P" + v (see Lemma 4), we obtain
S 811_% hlzn Z / ol
Lemma 13. Assume that

>
i— Pi
Then

0
Un dx. O

vy, |7
0x;

—~ @ inMT(RY).

12 1
(1) Forall j € J, Saj” < limg_, ¢ f(support ¢g) (one has support ¢ C B(xj, max; €9 )).

_ By
@ Al = Slvl 7 + P(Vv).
(3) S =1imy s to0 POVOIZIEN + oo > POVD) + SIVI 7 + jroe.

Proof. From Lemma 12, since ¢%* < ¢, and

X </¢€dﬂ9
p

;+ 11m/¢>gd,u hmu< (x], max e%» 22)

I<iKN

v, |P

N o
fim _/¢m
m 2 ]

one obtains

This shows that {x;} s are all atomic points of (i and since Z
deduces from relation (22) that

iz SZ“" 8XJ+ZP
l

jelJ

i=1 | |pi is orthogonal to the atomic part of (i, one

Pi

(23)

Bx,

This implies in particular that:

P+
il=8Y al” +P(Vv). (24)
jeJ
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P+

Since < 1 one has

Pt
P

[)71,
(Ta)" <Xaf
jeJ jelJ

Asv =73 ;c;a;dy;, itholds

i=>"aj,

jedJ

which means, combining relations (24) to (26), that:

Il = Sivl ot P(Vv).

For the last statement, we argue as before:

S =1lim P(Vuv,)
n

v, |P
3)6,'

8v,,

= lim lim (1—¢R)Z

R—+o00 n
RN

where yg=1lon x| >R+ 1,0<yr <1, ¢Yyr=0if |x| <R, Yyg € CR).
By the definition of fi, one has:

N1 9w, |7
lim lim | (1 — — || dx
Jim_tim WY |5

and (see Lemma 8):

lim lim/I//R
R—+4o00 n p,

thus, by the preceding statements:

dx+ lim limwa
Pz

R—+o00 n

=liII€n/(1—1ﬂR)dﬁ= 1Al

v, |

dx = ,
9x; Moo

S=I|/1||+MOO/P(VU)+SIIVIIP + Uoo- O
Lemma 14. If ||v]| p+ < 1 then ||v|| =1, voo =0 and v =0.

Proof. From Lemma 10, we know that
P_—j;
Svge < hoo-
And by Corollary 4 of Lemma 3, we have
Sllvllbt < P(Vo).

From the last statement of Lemma 13 and the above inequalities we deduce that:
23
§ = S((WI5) 7 vl o +ud).
Thus we obtain, due to Lemma 11, that

P+

((Ilvllp)” +IIv||P +ud ) <1 =(I|v||p + vl + o) 7

m&

Using the inequality

=3 p+

23
(Ilvlll7 + IVl + voo) 7 IIUIIP +|IVII1’*+v ,

751

(25)

(26)
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we get
Pt ; Pt Pt
»”

F Pt —* *
P
loll e 4+ vl 7 + vl = ([0l 4 vl + voo)

It follows that ||vIIZ*, lv|| and v, are equal either to O or to 1. But using the fact that v < %, since fB(o 1 |v,,|p* dx =
%, we conclude that v, =0, [|v]| p» < 1 (by our assumption) so that v =0 and thus |v||=1. O

Lemma 15. If ||v|| ,+ < 1 then the measure v is concentrated at a single point 7 = x;,,.

Proof. Since

Pt
2

P
S=lill+peo=8) a/
jeJ

(see relation (24)) and 1 = ||v|| =) ._, a;, we then have:

jeJ
2 py =
(Z@/) BB <Za/> "
jed jeJ jeJ
Thus the a; are equal either to zero or to 1 that is, there is only one index ip such that g;; = 1 and a; = 0 for

Jj #io: V=ai03x,0- O

End of the proof of the main Lemma. If ||v||,+ < 1 thus v concentrates at x;, and |[v|| = 1. On the other hand, we
have

1 * *
5 = sup / lonl? > / lval? dx — vl =1,
2 yeRN
ye
B(y,1) B(x,-o,l)

which is impossible, we conclude then that ||v| ,» =1. O

Consequently, the function v is a (nontrivial) extremal function that can be chosen nonnegative (replacing v by |v]).

End of the proof of Theorem 1. From usual Lagrange multiplier rule, there is 1o > 0, such that:

N )
d [|aov|P" v * =
S (== = )=rv""" inD"P(RV.
izl 3)6,' 3)61‘ 3x,'
_L _ L
A similar rescaling argument used above (say v(i Xty e, Ay "N xn)) gives the result. O

The multiplicity of solutions comes directly from Lemma 2, that is:

Lemma 16. Let @ € R, «; =ozf)—j —a,i=1,...,Nandu € S. Then,forall)»G]Riforallzz(zl,...,z/v) e RV,
the function defined by

u)‘*z(x) = A“u(k“lxl 471, ANy + ZN),
with x = (x1, ..., xy) belongs to S.

Proof. It is the same as for Lemma 2 using a direct computation. 0O
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3. Some properties of the solutions of (1)
We want to show first the:

Proposition 1. Any nonnegative solution u being in DLP(RN) of (1) belongs to L4(RN) for all p* < g < +00.
Proof. We follow the proof of [4]. Let a > 0. Let j be fixed in {1, ..., N}, for L > 0 (large) we define ¢; | =
umin[u®?i, LPi] € D"“P(RN) and for all i

|9;u|PT 2 8ud; ;1 > min[uPi, LV ]|;ulPi  ae., 27)
and

|9 (1 - min[u®, L])|” < (a + 1P min[u®Pi, LP7]|3;ul?i  ae. (28)

Choosing ¢; 1 as a test function, one has:

/mln [uPi, LPi]19ju|P7 dx < Z/|8 ulPi=2y; uB,(ijdx_/u/’ min[u®P7, LPi]dx. (29)

i= 1

RN RN

Introducing £ > 0, one has:

/ uP” min[uPi, LPi]dx < kPi / uP” dx + / uP” min[uPi, LPi]dx. (30)
RN RN uzk

Writing that:
ful’* min[u?i, LPi]dx = / uP"~PiuPi(minfu?, L])" dx. 31
uz=k uz=k

The Holder inequality applied to the right-hand side of relation (31) shows that:

pj

-5 N
fup*min[ual’f,LPf]dx<< / up*dx) 1 <[(umin[u“,L])p )1 . (32)
RN

u>k u>k

By the Troisi’s inequality (see Lemma 1)

</(umin[u ”*)”1* <cz</|a wmin[u®, L]) |”’) (33)

RN

Setting

I; _(/|a (u min[u®, L])|”’>

relations (28) to (33), lead to:

L
i

.
ek:/up dx,

u>k

/|8j (u - min[u®, L])|" dx < (a + 1P /min[“apja LP7]|9;u|P7 dx

<@+ 1)”""“”([ ur dx)

pi[ N Lri
+c(a+1)pf'ei’ﬁ|:2<f|8i(umin[ua,L])|p’> li| .

i=1
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Thus, for all j:

I g(a+1)k“</uﬂ*dx) +c(a+1)s__’_(21) (34)

The relation (34) infers:

P

N N p* N L_L* N
szg(aﬂ)k“(Znun,’ji)+c(a+1)<z ! )(Zzi). (39)
j=1 i=l

j=1

11
Since limy— 400 Zj L€ p’ ”" =0, there exists k, > 0 such that for all k > kg, such that c¢(a + 1) Z?’:l skp'i "<

Thus relation (35) mfers then

p

N
> 2(a+1)k“2||u|| for k > ky.
i=1

By the Troisi’s inequality, one has:

P*

|u - min[uc, L]|, » CZIJ<ZC((1+1)k”Z||u||pJ.

j=1 Jj=1
Letting L — 400, one has:

r*

N
|t <2c(@+ Dk ] 2
j=1

Let ¢ = (a + 1) p*, then we obtain the result. 0O

Proposition 2. Any nonnegative solution u being in pl.p (RN) of (1) belongs to L®(RN). Moreover; there exists a
number 1y depending only on p;, N such that
lull p» =70 >0, foru nontrivial.

Proof. For u > 0 solution of (1), we set A, = {x € R, u(x) > 7} and |A,]| its Lebesgue measure. Since p* > p,,
one can choose ¢ > p* so that

. 1 p* 1 1
e=——4(1-=—|(1-= > 0.
p q p*) p+—1

Let ¢ = (u — k), for k > 0 fixed. Choosing this function as a test function and using Proposition 1, one has:

dor P
axi

! *_ 1-20-L
=/u1’ Y=y <erlA O g (36)

*_
with ¢; = [Ju]l2 .

Since [|@g |l p* < [[ull p+, thus the Corollary 4 of Lemma 3 and relation (36) imply:

» g a-25a
okl < <3l Ax il (37)
pi
with
cr=—— Max (Jul;i"),  ea=ce.

S p_ 1IN
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Thus,
=24
il pe < cal Ag| 7310775 (38)
1

with ¢4 = c; = By Cavalieri’s principle, Holder inequality and relation (38), one has, for all k£ > O:

+00

-t

/ |ArldT = /(M — k) () dx <AL 7 el e < cal Arl' . (39)

k RN
This last relation is a Gronwall inequality, which shows that Yk > 0

I+e¢ = o

lullos <k + ——[@ =R |7 e (40)

Setting
o € 14e L

Y= =D b=l el

and noticing that
lull?.

l@ =R+, < =

thus relation (40) becomes:
bo v
llulloo < ;}E(f)[k + k—y} =@+ Dy 7 by (41)

Separating the contribution of |||, and ||u||p*, we have a continuous map A:R; — R, and constants c5 > 0 and 8
depending only on p4, p. so that

||u||oo<CS||U||5A(””||p*)v (42)
with
_ pr-1
T (pr—DU+e)1+y)

Thus, from relation (42), we deduce

1

* —p; I+e)(1

A(O’)=|:O'£p Max (O_p+ p./)](+9)( -H/).
ISjSN

1-(-L20) pL
llell oo *0 < osllull, A(llullpr) for u#0. (43)

But the number « =1 — (1 — %*) =0, so relation (43) implies that there is a number 7y > 0 depending only p;, p*
such that flul| ,» > 19 >0. O
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