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Abstract

In this work we study the structure of extremals of variational problems with vector-valued functions on [0,∞). We show that if
an extremal is not periodic, then the corresponding curve in the phase space does not intersect itself.
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1. Introduction

In this paper we analyze the structure of extremals of infinite horizon variational problems associated with the
functional

T2∫
T1

f
(
z(t), z′(t)

)
dt,

where T1 � 0, T2 > T1, z : [T1, T2] → R
n is an absolutely continuous function and f : Rn × R

n → R
1 belongs to a

space of integrands described below.
Denote by | · | the Euclidean norm in R

n. Let a be a positive constant and let ψ : [0,∞) → [0,∞) be an increasing
function such that ψ(t) → +∞ as t → ∞. Denote by A the set of all continuous functions f : Rn × R

n → R
1 which

satisfy the following assumptions:

A(i) for each x ∈ R
n the function f (x, ·) : Rn → R

1 is convex;
A(ii) f (x,u) � max{ψ(|x|),ψ(|u|)|u|} − a for each (x,u) ∈ R

n × R
n;

A(iii) for each M,ε > 0 there exist Γ, δ > 0 such that∣∣f (x1, u1) − f (x2, u2)
∣∣ � ε max

{
f (x1, u1), f (x2, u2)

}
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for each u1, u2, x1, x2 ∈ R
n which satisfy

|xi | � M, i = 1,2, |ui | � Γ, i = 1,2, |x1 − x2|, |u1 − u2| � δ.

It is easy to show that an integrand f = f (x,u) ∈ C1(R2n) belongs to A if f satisfies assumptions A(i), A(ii) and
if there exists an increasing function ψ0 : [0,∞) → [0,∞) such that

max
{∣∣∂f/∂x(x,u)

∣∣, ∣∣∂f/∂u(x,u)
∣∣} � ψ0

(|x|)(1 + ψ
(|u|)|u|)

for each x,u ∈ R
n.

We consider functionals of the form

If (T1, T2, x) =
T2∫

T1

f
(
x(t), x′(t)

)
dt, (1.1)

where f ∈ A, −∞ < T1 < T2 < ∞ and x : [T1, T2] → R
n is an absolutely continuous (a.c.) function.

For f ∈A, y, z ∈ R
n and real numbers T1, T2 satisfying T1 < T2 we set

Uf (T1, T2, y, z)

= inf
{
If (T1, T2, x): x : [T1, T2] → R

n is an a.c. function satisfying x(T1) = y, x(T2) = z
}
. (1.2)

It is easy to see that −∞ < Uf (T1, T2, y, z) < +∞ for each f ∈ A, each y, z ∈ R
n and all numbers T1, T2 satisfying

T1 < T2.
Let f ∈A. For any a.c. function x : [0,∞) → R

n we set

J (x) = lim inf
T →∞ T −1If (0, T , x). (1.3)

Of special interest is the minimal long-run average cost growth rate

μ(f ) = inf
{
J (x): x : [0,∞) → R

n is an a.c. function
}
. (1.4)

Clearly −∞ < μ(f ) < ∞.
Here we follow [4,7] in defining good functions for variational problems.
An a.c. function x : [0,∞) → R

n is called an (f )-good function if the function

T → If (0, T , x) − μ(f )T , T ∈ (0,∞),

is bounded.
In [16, Theorem 1.1, Proposition 1.1] we showed that for each f ∈ A and each z ∈ R

n there exists an (f )-good
function v : [0,∞) → R

n satisfying v(0) = z.
Propositions 1.1 and 3.1 in [16] imply the following result.

Proposition 1.1. For any a.c. function x : [0,∞) → R
n either If (0, T , x) − T μ(f ) → ∞ as T → ∞ or

sup
{∣∣If (0, T , x) − T μ(f )

∣∣: T ∈ (0,∞)
}

< ∞.

Moreover any (f )-good function x : [0,∞) → R
n is bounded.

We follow [9] in defining c-optimal functions.
An a.c. function v : [0,∞) → R

n is called c-optimal with respect to f (or just c-optimal if the function f is
understood) if sup{|v(t)|: t ∈ [0,∞)} < ∞ and if for each T > 0 the equality

If (0, T , v) = Uf
(
0, T , v(0), v(T )

)
holds.

Note that any c-optimal with respect to f function is (f )-good (see Proposition 2.4).
In [17, Theorem 1.1] it was proved the following result.

Proposition 1.2. For any z ∈ R
n there exists a c-optimal with respect to f function v : [0,∞) → R

n such that v(0) = z.
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The notion of c-optimality is a slight modification of the notion of minimality introduced in [5] and discussed in
[2,12–14]. The difference is that in our paper c-optimal solutions are bounded and defined on the interval [0,∞) while
in [2,12–14] minimal solutions are defined on the whole space R

n and the boundedness is not assumed. Note that an
analogous notion of minimality was used in the study of geodesics (see, for example, [1,6,11]).

Denote by M the set of all functions f ∈ C2(R2n) which satisfy the following assumptions:

∂f/∂ui(x,u) ∈ C2(
R

2n
)

for all (x,u) ∈ R
n × R

n and i = 1, . . . , n;
the matrix (∂2f/∂ui∂uj )(x,u), i, j = 1, . . . , n, is positive definite for all (x,u) ∈ R

2n;

f (x,u) � max
{
ψ

(|x|),ψ(|u|)|u|} − a for all (x,u) ∈ R
n × R

n;
there exist a number c0 > 1 and monotone increasing functions φi : [0,∞) → [0,∞), i = 0,1,2, such that

φ0(t)/t → ∞ as t → ∞,

f (x,u) � φ0
(
c0|u|) − φ1

(|x|), x,u ∈ R
n,

max
{∣∣∂f/∂xi(x,u)

∣∣, ∣∣∂f/∂ui(x,u)
∣∣} � φ2

(|x|)(1 + φ0
(|u|)), x,u ∈ R

n, i = 1, . . . , n.

It is easy to see that M⊂A.
The following two theorems are the main results of the paper.

Theorem 1.1. Let f ∈ M and let v : [0,∞) → R
n be a c-optimal function with respect to f . If there exist numbers

T2 > T1 � 0 such that v(T1) = v(T2), then v(t + T2 − T1) = v(t) for all t � 0.

Theorem 1.2. Let f ∈ M and v1, v2 : [0,∞) → R
n be c-optimal functions with respect to f such that v1(0) = v2(0).

If there exist t1, t2 ∈ [0,∞) such that (t1, t2) �= (0,0) and v1(t1) = v2(t2), then v1(t) = v2(t) for all t ∈ [0,∞).

It should be mentioned that one-dimensional analogs of Theorems 1.1 and 1.2 were obtained in [10, Theorem 1.1]
for c-optimal extremals of variational problems with scalar-valued functions arising in continuum mechanics.

The infinite horizon variational problems considered in [10] are associated with the functional

T2∫
T1

f
(
z(t), z′(t), z′′(t)

)
dt,

where T1 � 0, T2 > T1, z ∈ W 2,1([T1, T2]) and f : R3 → R
1 belongs to a certain space of integrands. The main

result of [10, Theorem 1.1] establishes that if a c-optimal function v is not periodic, then the corresponding curve
{(v(t), v′(t)): t ∈ [0,∞)} in the phase plane does not intersect itself. Note that in [10] the proof of this result was
strongly based on the fact that the curve {(v(t), v′(t)): t ∈ [0,∞)} is a subset of R

2 and on the existence of c-
optimal periodic functions established in [8,15]. In our case for the variational problems with vector-valued functions
the existence of c-optimal periodic functions is not guaranteed and the situation becomes more difficult and less
understood.

It is known that if a function f ∈ M is strictly convex and ȳ ∈ R
n is a unique solution of the minimization problem

f (z,0) → min, z ∈ R
n, then there exists a c-optimal periodic function which is equal to ȳ for all t � 0 [20]. For a

general f ∈ M the existence of c-optimal periodic functions is a difficult problem which is still open.
Note that in [19] we considered an integrand

f (x,u) = |x|2|x − e|2 + |u|2, x,u ∈ R
n,

where e = (1,1, . . . ,1) ∈ R
n and constructed a c-optimal function which is not periodic.

Now we consider two examples of integrands belonging to the set M. In the first example we construct f ∈ M
such that there is a periodic c-optimal with respect to f function which is not constant.

Example 1. Let n = 2. Define a function f : R2 × R
2 → R

1 by

f (x1, x2, u1, u2) = (
x2 + x2 − 1

)2 + (u1 + x2)
2 + (u2 − x1)

2, (x1, x2), (u1, u2) ∈ R
2.
1 2
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It is not difficult to see that f ∈ M under an appropriate choice of ψ and a. Clearly f (x,u) � 0 for all x,u ∈ R
2.

Set w(t) = (cos(t), sin(t)) for all t ∈ [0,∞). It is clear that f (w(t),w′(t)) = 0 for all t ∈ [0,∞). This implies that
μ(f ) = 0. Now it is easy to see that w is a periodic c-optimal with respect to f function.

In our second example we construct a function f ∈ M such that any c-optimal with respect to f function is not
periodic.

Example 2. Let n = 4. Define a function f : R4 × R
4 → R

1 by

f (x1, x2, x3, x4, u1, u2, u3, u4) = (
x2

1 + x2
2 − 1

)2 + (u1 + x2)
2 + (u2 − x1)

2 + (
x2

3 + x2
4 − 1

)2

+ (u3 + πx4)
2 + (u4 − πx3)

2, (x1, x2, x3, x4), (u1, u2, u3, u4) ∈ R
4.

It is not difficult to see that f ∈ M under an appropriate choice of ψ and a. Clearly f (x,u) � 0 for all x,u ∈ R
4. Set

w(t) = (
cos(t), sin(t), cos(πt), sin(πt)

)
for all t ∈ R

1. It is clear that f (w(t),w′(t)) = 0 for all t ∈ R
1. This implies that

μ(f ) = 0. (1.5)

Let v : [0,∞) → R
4 be a c-optimal with respect to f function. We show that v is not periodic. Let us assume the

converse. Then there exists a real number T > 0 such that

v(t + T ) = v(t) for all t ∈ [0,∞). (1.6)

We have already mentioned that any c-optimal with respect to f function is (f )-good (see Proposition 2.4). Therefore
v is an (f )-good function. Since the function f is nonnegative relations (1.5) and (1.6) imply that

T∫
0

f
(
v(t), v′(t)

)
dt = 0.

Since f ∈M we have v ∈ C2([0,∞)) (see Proposition 5.1), f (v(t), v′(t)) = 0 for all t ∈ [0, T ] and, in particular,

f
(
v(0), v′(0)

) = 0. (1.7)

It follows from (1.7) and the definition of f that there exist s1 ∈ [0,2π) and s2 ∈ [0,2) such that

v(0) = (
cos(s1), sin(s1), cos(πs2), sin(πs2)

)
. (1.8)

For all t � 0 define

u(t) = (
cos(s1 + t), sin(s1 + t), cos

(
π(s2 + t)

)
, sin

(
π(s2 + t)

))
.

By the definition of f and u the equality f (u(t), u′(t)) = 0 holds for all t � 0. Since the function f is nonnegative
this implies that u is a c-optimal with respect to f function. In view of (1.6), (1.8) and the definition of u

v(T ) = v(0) = u(0).

Together with Theorem 1.2 this equality implies that v(t) = u(t) for all t ∈ [0,∞). It follows from this equality, (1.6)
and the definition of u that for all t � 0(

cos(s1 + t + T ), sin(s1 + t + T ), cos
(
π(s2 + t + T )

)
, sin

(
π(s2 + t + T )

))
= (

cos(s1 + t), sin(s1 + t), cos
(
π(s2 + t)

)
, sin

(
π(s2 + t)

))
.

Since the equality above holds for all t � 0 we obtain that (2π)−1T and T/2 are integers. The contradiction we have
reached proves that v is not periodic.

Clearly, Theorem 1.1 is a particular case of Theorem 1.2. We state them as two separate results because in the paper
we will only prove Theorem 1.1 and provide explanations concerning the proof of Theorem 1.2.

The paper is organized as follows. In Section 2 we explain the main ideas of the proofs of Theorems 1.1 and 1.2 and
compare them with the proof of Theorem 1.1 of [10]. Section 2 also contains several auxiliary results. An important
notion of a minimal limiting set is introduced and studied in Section 3. A basic lemma for the proofs of Theorems 1.1
and 1.2 is proved in Section 4. Theorem 1.1 is proved in Section 5.
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2. Preliminaries

By a simple modification of the proof of Proposition 4.4 in [8] (see also [16]) we obtain the following proposition.

Proposition 2.1. Let f ∈ A. Then for each T > 0 and each x, y ∈ R
n

Uf (0, T , x, y) = T μ(f ) + πf (x) − πf (y) + θ
f
T (x, y), (2.1)

where πf : Rn → R
1 is a continuous function defined by

πf (x) = inf
{

lim inf
T →∞

[
If (0, T , v) − μ(f )T

]
: v : [0,∞) → R

n is an a.c. function satisfying v(0) = x
}
,

x ∈ R
n, (2.2)

and (T , x, y) → θ
f
T (x, y) ∈ R

1, (T , x, y) ∈ (0,∞) × R
n × R

n is a continuous nonnegative function which satisfies
the following condition:

for every T > 0 and every x ∈ R
n there is y ∈ R

n for which θ
f
T (x, y) = 0.

We denote d(x,B) = inf{|x − y|: y ∈ B} for x ∈ R
n, B ⊂ R

n and denote by dist(A,B) the Hausdorff metric for
two sets A,B ⊂ R

n. For every bounded a.c. function x : [0,∞) → R
n define

Ω(x) = {
y ∈ R

n: there exists a sequence {ti}∞i=0 ⊂ (0,∞) for which ti → ∞, x(ti) → y as i → ∞}
(2.3)

which is called a limiting set of x.
Let f ∈ A. For each τ1 ∈ R

1, τ2 > τ1, each r1, r2 ∈ [τ1, τ2] satisfying r1 < r2 and each a.c. function u : [τ1, τ2] →
R

n set

Γ f (r1, r2, u) = If (r1, r2, u) − πf
(
u(r1)

) + πf
(
u(r2)

) − (r2 − r1)μ(f ). (2.4)

In view of Proposition 2.1

Γ f (r1, r2, u) � 0 for each τ1 ∈ R
1, τ2 > τ1, each r1, r2 ∈ [τ1, τ2] satisfying r1 < r2 and

each a.c. function u : [τ1, τ2] → R
n. (2.5)

Let T1 ∈ R
1 and T2 > T1. It is clear that for each pair of a.c. functions v1, v2 : [T1, T2] → R

n satisfying v1(Ti) =
v2(Ti), i = 1,2, the following equality holds:

If (T1, T2, v1) − If (T1, T2, v2) = Γ f (T1, T2, v1) − Γ f (T1, T2, v2).

Hence for each y, z ∈ R
n the following two variational problems are equivalent:

If (T1, T2, v) → min,

v : [T1, T2] → R
n is an a.c. function such that v(T1) = y, v(T2) = z

and

Γ f (T1, T2, v) → min,

v : [T1, T2] → R
n is an a.c. function such that v(T1) = y, v(T2) = z.

In the sequel we prefer to minimize the functional Γ f (·, ·, ·) because it is always nonnegative by Proposition 2.1
and has other useful properties. For example, in view of Proposition 1.1 for any (f )-good function v we have
sup{Γ f (0, T , v): T ∈ [0,∞)} < ∞. In [16, Theorem 8.3] we proved that for any x ∈ R

n there exists an (f )-good
function v such that v(0) = x and Γ f (0, T , v) = 0 for all T > 0. In this paper we need to deal with the following
question:

Is it possible for given y, z ∈ R
n to find q > 0 and an a.c. function v : [0, q] → R

n such that v(0) = y, v(q) = z and
that Γ f (0, q, v) is small?

In general the existence of such q and v is not guaranteed but they do exist if y, z belong to certain subsets of R
n.

These subsets play an important role in our study.
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Note that analogs of the notion of a limiting set and the functional Γ f (·, ·, ·) were used in [10] for the class of
variational problems studied there. As we have mentioned before the existence of a c-optimal periodic extremal plays
an important role in the proof of Theorem 1.1 of [10]. The following two properties are the most important ingredients
in the proof of Theorem 1.1 of [10]:

(a1) For any c-optimal extremal v there exists a c-optimal periodic extremal u such that {(u(t), u′(t)): t ∈ [0,∞)} is
contained in the limiting set of the curve {(v(t), v′(t)): t ∈ [0,∞)};

(a2) Let u be a c-optimal periodic extremal and ε > 0. Then there exist numbers q, δ > 0 such that for each
h1, h2 ∈ R

2 satisfying d(hi, u([0,∞)) � δ, i = 1,2, and each T � q there exists v ∈ W 2,1([0, T ]) which satisfies(
v(0), v′(0)

) = h1,
(
v(T ), v′(T )

) = h2, Γ f (0, T , v) � ε.

For the variational problems with vector-valued functions considered in this paper the existence of c-optimal pe-
riodic functions is not guaranteed and the situation becomes more difficult. In order to overcome this difficulty we
consider the collection of all limiting sets ordering by inclusion and show that the following properties hold:

(b1) Let v : [0,∞) → R
n be an (f )-good function. Then there is a minimal limiting set which is contained in the

limiting set Ω(v) of v (see Lemma 3.2);
(b2) Let D be a minimal limiting set and let ε > 0. Then there exist numbers q, δ > 0 such that for each h1, h2 ∈ R

n

satisfying d(hi,D) � δ, i = 1,2, and each T � q there exists an a.c. function v : [0, T ] → R
n which satisfies

v(0) = h1, v(T ) = h2, Γ f (0, T , v) � ε

(see Lemma 4.2).

The property (b1) is established in Section 3 while the property (b2) is established in Section 4. Then arguing
as in the proof of Theorem 1.1 of [10] and replacing (a1) and (a2) by (b1) and (b2) we can complete the proofs of
Theorems 1.1 and 1.2. Note that the proof of the property (b2) is more complicated than the proof of its analog (a2)
because in (a2) we have periodicity of u.

In the sequel we use the following auxiliary results.

Proposition 2.2. [16, Proposition 5.1] Let g ∈ A, y : [0,∞) → R
n be a (g)-good function and let ε > 0. Then there

exists T0 > 0 such that for each T � T0, �T > T

Ig
(
T , �T ,y

)
� Ug

(
T , �T ,y(T ), y

(�T )) + ε.

Proposition 2.3. [16, Theorem 6.1] Assume that f ∈ A. Then the mapping (T1, T2, x, y) → Uf (T1, T2, x, y) is con-
tinuous for T1 ∈ (0,∞), T2 ∈ (T1,∞), x, y ∈ R

n.

Proposition 2.4. [16, Proposition 5.2] Let f ∈ A, S0, S1 > 0 and let x : [0,∞) → R
n be an a.c. function such that

|x(t)| � S0 for all t ∈ [0,∞) and If (0, i, x) � Uf (0, i, x(0), x(i))+S1, i = 1,2, . . . . Then x is an (f )-good function.

Proposition 2.5. [3] Assume that f ∈ A, M1 > 0, 0 � T1 < T2, xi : [T1, T2] → R
n, i = 1,2, . . . , is a sequence of a.c.

functions such that If (T1, T2, xi) � M1, i = 1,2, . . . . Then there exist a subsequence {xik }∞k=1 and an a.c. function
x : [T1, T2] → R

n such that If (T1, T2, x) � M1, xik (t) → x(t) as k → ∞ uniformly on [T1, T2] and x′
ik

→ x′ as

k → ∞ weakly on L1(Rn; (T1, T2)).

Lemma 2.1. Let M,ε > 0.Then there exist Γ, δ > 0 such that∣∣f (x1, u1) − f (x2, u2)
∣∣ � ε min

{
f (x1, u1), f (x2, u2)

}
for each u1, u2, x1, x2 ∈ R

n which satisfy

|xi | � M, |ui | � Γ, i = 1,2, |x1 − x2|, |u1 − u2| � δ. (2.6)
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Proof. Choose ε0 ∈ (0,1) such that

(1 − ε0)
−1ε0 < ε. (2.7)

By A(iii) there are Γ, δ > 0 such that∣∣f (x1, u1) − f (x2, u2)
∣∣ � ε0 max

{
f (x1, u1), f (x2, u2)

}
(2.8)

for each u1, u2, x1, x2 ∈ R
n satisfying (2.6).

Assume that u1, u2, x1, x2 ∈ R
n satisfy (2.6). Then (2.8) holds. We may assume without loss of generality that

f (x2, u2) � f (x1, u1). (2.9)

Relations (2.8) and (2.9) imply that

f (x2, u2) − f (x1, u1) � ε0f (x2, u2) (2.10)

and

(1 − ε0)f (x2, u2) � f (x1, u1). (2.11)

By (2.9), (2.10), (2.7) and (2.11)∣∣f (x2, u2) − f (x1, u1)
∣∣ � ε0f (x2, u2) � ε0(1 − ε0)

−1f (x1, u1)

� εf (x1, u1) = ε min
{
f (x1, u1), f (x2, u2)

}
.

Lemma 2.1 is proved. �
Lemma 2.1 implies the following auxiliary result.

Lemma 2.2. Let M,ε > 0. Then there exist Γ, δ > 0 such that∣∣f (x1, u1) − f (x2, u2)
∣∣ � ε min

{
f (x1, u1), f (x2, u2)

}
for each u1, u2, x1, x2 ∈ R

n which satisfies

|xi | � M, i = 1,2, |u1| � Γ, |x1 − x2|, |u1 − u2| � δ.

Lemma 2.3. Let M0,M1 > 0. Then there exists a positive number L such that for each x1, x2, u1, u2 ∈ R
n satisfying

|x1| � M0, |x1 − x2|, |u1 − u2| � M1 (2.12)

the following inequality holds:∣∣f (x1, u1) − f (x2, u2)
∣∣ � L2 + Lmin

{
f (x1, u1), f (x2, u2)

}
. (2.13)

Proof. By Lemma 2.2 there are δ0,Γ0 such that∣∣f (x1, u1) − f (x2, u2)
∣∣ � 2−1 min

{
f (x1, u1), f (x2, u2)

}
(2.14)

for each x1, x2, u1, u2 ∈ R
n satisfying

|x1|, |x2| � M0 + M1 + 2, |u1| � Γ0, |x1 − x2|, |u1 − u2| � δ0. (2.15)

Assume that x1, x2, u1, u2 ∈ R
n satisfy (2.15). Then (2.14) holds and

f (x1, u1), f (x2, u2) � 0. (2.16)

Inequality (2.14) implies that

f (x1, u1) � (3/2)f (x2, u2), f (x2, u2) � (3/2)f (x1, u1). (2.17)

Choose a natural number q such that

(M1 + 1)q−1 < δ0. (2.18)
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Assume that x1, x2, y1, y2 ∈ R
n satisfy

|x1 − x2|, |y1 − y2| � M1, |x1|, |x2| � M0 + M1 + 2, |y1| � Γ0 + M1 + 1. (2.19)

For i = 0, . . . , q define(
x(i), y(i)

) = (x1, y1) + iq−1(x2 − x1, y2 − y1). (2.20)

Clearly,(
x(0), y(0)

) = (x1, y1),
(
x(q), y(q)

) = (x2, y2). (2.21)

Let i ∈ {0, . . . , q − 1}. By (2.20), (2.19) and (2.18)∣∣x(i) − x(i+1)
∣∣ � q−1|x2 − x1| � M1q

−1 < δ0,∣∣y(i) − y(i+1)
∣∣ � q−1|y2 − y1| � M1q

−1 < δ0,∣∣x(i)
∣∣, ∣∣x(i+1)

∣∣ � M0 + M1 + 2,
∣∣y(i)

∣∣, ∣∣y(i+1)
∣∣ � Γ0.

It follows from these inequalities and the choice of δ0, Γ0 (see (2.14), (2.15)) that∣∣f (
x(i), y(i)

) − f
(
x(i+1), y(i+1)

)∣∣ � 2−1 min
{
f

(
x(i), y(i)

)
, f

(
x(i+1), y(i+1)

)}
and

0 � f
(
x(i), y(i)

)
� 2f

(
x(i+1), y(i+1)

)
� 4f

(
x(i), y(i)

)
.

These inequalities imply that

max
{
f

(
x(i), y(i)

)
: i = 0, . . . , q

}
� 2q min

{
f (x1, y1), f (x2, y2)

}
.

By this inequality and (2.21)∣∣f (x2, y2) − f (x1, y1)
∣∣ = max

{
f

(
x(0), y(0)

)
, f

(
x(q), y(q)

)} − min
{
f

(
x(0), y(0)

)
, f

(
x(q), y(q)

)}
� 2q min

{
f (x1, y1), f (x2, y2)

} − min
{
f (x1, y1), f (x2, y2)

}
� 2q min

{
f (x1, y1), f (x2, y2)

}
.

Thus we have shown that for each x1, x2, y1, y2 ∈ R
n satisfying (2.19) the following relation holds:∣∣f (x2, y2) − f (x1, y1)

∣∣ � 2q min
{
f (x1, y1), f (x2, y2)

}
. (2.22)

Since f is a continuous function there is a number q1 > 0 such that for each x1, x2, u1, u2 ∈ R
n satisfying

|xi |, |ui | � 2M0 + 2M1 + 2Γ0 + 2, i = 1,2,

the following inequality holds:∣∣f (x1, u1) − f (x2, u2)
∣∣ � q1. (2.23)

Choose a number

L > 2q + (a + 1)q1 + 1 + a. (2.24)

Assume that x1, x2, u1, u2 ∈ R
n satisfy (2.12). There are two cases:

|u1| � Γ0 + M1 + 1 (2.25)

and

|u1| < Γ0 + M1 + 1. (2.26)

Assume that (2.25) holds. Then it follows from (2.24), (2.25), (2.12), (2.19) and (2.22) that∣∣f (x2, u2) − f (x1, u1)
∣∣ � 2q min

{
f (x1, u1), f (x2, u2)

}
< Lmin

{
f (x1, u1), f (x2, u2)

}
and (2.13) is true.

Assume that (2.26) is true. Then by (2.12), (2.26) and the choice of q1 (2.23) is valid. Relations (2.24) and (2.23)
imply (2.13). Thus (2.13) is true in both cases. Lemma 2.3 is proved. �
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3. Minimal sets

Let f ∈ A. Denote by D(f ) the collection of all sets Ω(v) where v : [0,∞) → R
n is an (f )-good function.

Let D1,D2 ∈D(f ). We say that D1 � D2 if and only if D1 ⊂ D2.
A set D0 ∈ D(f ) is called minimal if for each D ∈ D(f ) satisfying D � D0 we have D = D0.
Note that the following lemma holds.

Lemma 3.1. For each D ∈ D(f ) there exists a minimal element D0 of D(f ) such that D0 � D.

For the proof of Lemma 3.1 see Lemma 9.1 of [16].
It is easy to see that Lemma 3.1 implies the following auxiliary result.

Lemma 3.2. Let v : [0,∞) → R
n be an (f )-good function. Then there is a minimal element D of D(f ) such that

D ⊂ Ω(v).

Lemma 3.3. Let D ∈ D(f ) and z ∈ D. Then there exists an a.c. function v : R1 → D such that

v(0) = z and Γ f (−T ,T , v) = 0 for all T > 0.

Proof. There is an (f )-good function u : [0,∞) → R
n such that

Ω(u) = D. (3.1)

In view of Proposition 1.1

sup
{∣∣u(t)

∣∣: t ∈ [0,∞)
}

< ∞. (3.2)

Since z ∈ Ω(u) there exists a sequence of positive numbers {ti}∞i=1 such that ti → ∞ as i → ∞ and that

u(ti) → z as i → ∞. (3.3)

By Proposition 2.2 the following property holds:

(a) For each ε > 0 there is T (ε) > 0 such that for each T1 � T (ε), T2 > T1

If (T1, T2, u) � Uf
(
T1, T2, u(T1), u(T2)

) + ε.

By Proposition 1.1 and (2.4) sup{Γ f (0, T ,u): T > 0} < ∞. In view of this inequality and (2.5) the following property
holds:

(b) For each ε > 0 there is T (ε) > 0 such that for each T1 � T (ε), T2 > T1

Γ f (T1, T2, u) � ε.

For every integer i � 1 set

vi(t) = u(t + ti ), t ∈ [−ti ,∞). (3.4)

It follows from (3.4), property (a), (3.2) and Proposition 2.3 that for each natural number k the sequence
{If (−k, k, vi): i is an integer and ti � k} is bounded. By Proposition 2.5 there exist a subsequence {viq }∞q=1 of the

sequence {vi}∞i=1 and an a.c. function v : R1 → R
n such that for each natural number k

viq (t) → v(t) as q → ∞ uniformly on [−k, k], (3.5)

If (−k, k, v) � lim inf
q→∞ If (−k, k, viq ). (3.6)

Relations (3.5), (3.4), (3.3) and (3.1) imply that

v(0) = lim viq (0) = lim u(tiq ) = z

q→∞ q→∞
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and that for each t ∈ R
1

v(t) = lim
q→∞viq (t) = lim

q→∞u(t + tiq ) ∈ Ω(u) = D.

It follows from (2.4), (3.4)–(3.6), the continuity of the function πf (see Proposition 2.1) and property (b) that for all
integers k � 1

Γ f (−k, k, v) = If (−k, k, v) − πf
(
v(−k)

) + πf
(
v(k)

) − 2kμ(f )

� lim inf
q→∞

[
If (−k, k, viq ) − πf

(
viq (−k)

) + πf
(
viq (k)

) − 2kμ(f )
]

= lim inf
q→∞ Γ f (−k, k, viq ) = lim inf

q→∞ Γ f (−k + tiq , k + tiq , u) = 0.

Together with (2.5) this implies that Γ f (−k, k, v) = 0 for all integers k � 1. Lemma 3.3 is proved. �
Lemma 3.4. Let D be a minimal element of D(f ), v : [0,∞) → D be an (f )-good function and let ε > 0. Then there
is L > 0 such that dist({v(t): t ∈ [0,L]},D) � ε.

Proof. Clearly Ω(v) ⊂ D. Since D is a minimal element of D(f ) we have Ω(v) = D. This equality implies the
validity of Lemma 3.4. �
Lemma 3.5. Let D be a minimal element of D(f ) and let ε > 0. Then there exists a natural number k such that for
each a.c. function v : [0, k] → D satisfying Γ f (0, k, v) = 0 the following inequality holds:

dist
(
D,

{
v(t): t ∈ [0, k]}) � ε.

Proof. Let us assume the converse. Then for each natural number k there exists an a.c. function vk : [0, k] → D such
that

Γ f (0, k, vk) = 0 and dist
(
D,vk

([0, k])) > ε. (3.7)

Let i � 1 be an integer. Since the set D is bounded and the function πf is continuous it follows from (3.7) and
(2.4) that the sequence {If (0, i, vk)}∞k=i is bounded. Together with Proposition 2.5 this implies that there exist a
subsequence {vkj

}∞j=1 and an a.c. function v : [0,∞) → R
n such that for each integer i � 1

vkj
(t) → v(t) as j → ∞ uniformly on [0, i], (3.8)

If (0, i, v) � lim inf
j→∞ If (0, i, vkj

). (3.9)

Relation (3.8) implies that

v(t) ∈ D for all t ∈ [0,∞). (3.10)

It follows from (2.4), (2.5), (3.8), (3.9), the continuity of πf (see Proposition 2.1) and (3.7) that for each integer i � 1

0 � Γ f (0, i, v) = If (0, i, v) − πf
(
v(0)

) + πf
(
v(i)

) − iμ(f )

� lim inf
j→∞

[
If (0, i, vkj

) − πf
(
vkj

(0)
) + πf

(
vkj

(i)
) − iμ(f )

]
= lim inf

j→∞ Γ f (0, i, vkj
) = 0.

Thus

Γ f (0, i, v) = 0 for all integers i � 1. (3.11)

By (3.10), (3.11) and Lemma 3.4 there is a natural number L such that

dist
(
v
([0,L]),D)

� ε/4. (3.12)
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In view of (3.8) there exists a natural number q > L such that∣∣vq(t) − v(t)
∣∣ � ε/4 for all t ∈ [0,L]. (3.13)

Relations (3.13) and (3.12) imply that

dist
(
vq

([0,L]),D)
� ε/2.

Since q > L and vq([0, q]) ⊂ D we conclude that

dist
(
vq

([0, q]),D)
� ε/2.

This inequality contradicts (3.7). The contradiction we have reached proves Lemma 3.5. �
4. A basic lemma

Assume that f ∈ A∩ C1(R2n) and satisfies the following assumptions:

A(iv) For each M > 0 there exists c0 > 0 such that∣∣(∂f/∂x)(x,u)
∣∣, ∣∣(∂f/∂u)(x,u)

∣∣ � c0
(
f (x,u) + c0

)
for each x,u ∈ R

n satisfying |x| � M .

In this section we prove the following auxiliary result.

Lemma 4.1. Let D be a minimal element of D(f ) and ε ∈ (0,1). Then there exists a number q > 0 such that for each
h1, h2 ∈ D there exists an a.c. function v : [0, q] → R

n which satisfies

v(0) = h1, v(q) = h2, Γ f (0, q, v) � ε.

Proof. By Lemma 3.3 there exists an a.c. function ṽ : R1 → D such that

Γ f (−T ,T , ṽ) = 0 for all T > 0. (4.1)

Relations (4.1) and (2.4) imply that for each T > 0

πf
(
ṽ(T )

) = −If (0, T , ṽ) + πf
(
ṽ(0)

) + μ(f )T . (4.2)

This equality implies that the function πf ◦ ṽ : [0,∞) → R
n is absolutely continuous. Therefore there exists r0 > 0

such that the functions ṽ, πf ◦ ṽ are differentiable at r0. Set

v∗(t) = ṽ(t − 1 + r0), t ∈ R
1. (4.3)

Clearly

v∗
(
R

1) ⊂ D. (4.4)

In view of (4.1), (4.3) and (2.4)

Γ f (−T ,T , v∗) = 0 for all T > 0. (4.5)

By (4.3) v∗ and πf ◦ v∗ are differentiable at 1. Choose

c1 > sup
{|z|: z ∈ D

} + 8. (4.6)

For each τ ∈ [0,∞) define

Pτ (t) = t
(
v∗(τ ) − v∗(1)

)
, t ∈ R

1, z(τ ) = v∗(τ ) − v∗(1), (4.7)

ψ(τ) = If (0,1, v∗ + Pτ ). (4.8)
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Let τ � 0. We show that ψ(τ) is finite. By A(ii) ψ(τ) > −∞. In view of (4.8) and (4.7)

ψ(τ) =
1∫

0

f
(
v∗(t) + tz(τ ), v′∗(t) + z(τ )

)
dt. (4.9)

It follows from the boundedness of v∗ (see (4.4)), the inequality If (0,1, v∗) < ∞ and Lemma 2.3 that ψ(τ) < ∞.
Hence ψ(τ) is finite for all τ � 0.

We show that ψ is differentiable at t = 1. Let h � 0 and h �= 1. By (4.9) and (4.7)

(h − 1)−1(ψ(h) − ψ(1)
) = (h − 1)−1

1∫
0

[
f

(
v∗(t) + tz(h), v′∗(t) + z(h)

) − f
(
v∗(t), v′∗(t)

)]
dt. (4.10)

Set

ξh(t) = (h − 1)−1[f (
v∗(t) + tz(h), v′∗(t) + z(h)

) − f
(
v∗(t), v′∗(t)

)]
, t ∈ [0,1]. (4.11)

Clearly the function ξh is integrable. Denote by Ω the set of all points t ∈ [0,1] such that v′∗(t) exists. It is clear that
the Lebesgue measure of the set [0,1] \ Ω is zero. By (4.11) and the mean value theorem for each t ∈ Ω there exists
λh(t) ∈ [0,1] such that

ξh(t) = (h − 1)−1[(∂f/∂x)
(
v∗(t) + λh(t)tz(h), v′∗(t) + λh(t)z(h)

)
tz(h)

+ (∂f/∂u)
(
v∗(t) + λh(t)tz(h), v′∗(t) + λh(t)z(h)

)
z(h)

]
. (4.12)

By A(iv) there is L0 > 0 such that∣∣(∂f/∂x)(x,u)
∣∣, ∣∣(∂f/∂u)(x,u)

∣∣ � L0
(
f (x,u) + L0

)
(4.13)

for each x,u ∈ R
n satisfying |x| � 4c1 + 4.

It follows from (4.12), (4.4), (4.7), (4.6) and (4.13) that for all t ∈ Ω∣∣ξh(t)
∣∣ � |h − 1|−1[(t∣∣z(h)

∣∣ + ∣∣z(h)
∣∣)L0

(
L0 + f

(
v∗(t) + λh(t)tz(h), v′∗(t) + λh(t)z(h)

))]
. (4.14)

In view of Lemma 2.3 there is L1 > 0 such that for each x1, x2, u1, u2 ∈ R
n satisfying

|x1| � 2c1 + 2, |x1 − x2|, |u1 − u2| � 4c1 + 4 (4.15)

the following inequality holds:∣∣f (x1, u1) − f (x2, u2)
∣∣ � L1

(
L1 + f (x1, u1)

)
. (4.16)

It follows from the choice of L1 (see (4.15), (4.16)), (4.4), (4.6) and (4.7) that for all t ∈ Ω

f
(
v∗(t) + λh(t)tz(h), v′∗(t) + λh(t)z(h)

)
� f

(
v∗(t), v′∗(t)

) + L1
(
L1 + f

(
v∗(t), v′∗(t)

))
.

Together with (4.14) this inequality implies that for all t ∈ Ω∣∣ξh(t)
∣∣ � |h − 1|−12

∣∣z(h)
∣∣[L2

0 + L0L
2
1 + L0(L1 + 1)f

(
v∗(t), v′∗(t)

)]
. (4.17)

We have shown that (4.17) is valid for all t ∈ Ω and all h � 0 such that h �= 1. Since v∗ is differentiable at 1 (4.7)
implies that there exists

lim
h→1

(h − 1)−1z(h) = v′∗(1) ∈ R
n. (4.18)

By (4.18) and (4.7) there exists L2 > 0 such that

|h − 1|−1
∣∣z(h)

∣∣ � L2 for all h ∈ [
(3/4), (5/4)

] \ {1}. (4.19)

Combined with (4.17) this inequality implies that for all h ∈ [(3/4), (5/4)] \ {1} and all t ∈ Ω∣∣ξh(t)
∣∣ � 2L2

[
L2

0 + L0L
2
1 + L0(L1 + 1)f

(
v∗(t), v′∗(t)

)]
. (4.20)

Relations (4.12), (4.8) and (4.18) imply that for all t ∈ Ω there exists
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lim
h→1

ξh(t) = (∂f/∂x)
(
v∗(t), v′∗(t)

)
t lim

h→1
(h − 1)−1z(h) + (∂f/∂u)

(
v∗(t), v′∗(t)

)
lim
h→1

(h − 1)−1z(h)

= (∂f/∂x)
(
v∗(t), v′∗(t)

)
tv′∗(1) + (∂f/∂u)

(
v∗(t), v′∗(t)

)
v′∗(1). (4.21)

It follows from (4.10), (4.11), (4.20), (4.21) and the Lebesgue theorem that there exists a finite limit

lim
h→1

(h − 1)−1(ψ(h) − ψ(1)
) = lim

h→1

1∫
0

ξh(t)dt

=
1∫

0

(
(∂f/∂x)

(
v∗(t), v′∗(t)

)
tv′∗(1) + (∂f/∂u)

(
v∗(t), v′∗(t)

)
v′∗(1)

)
dt.

Thus ψ is differentiable at t = 1. Define a function φ : [0,∞) → R
1 by

φ(t) = ψ(t) − μ(f ) − πf
(
v∗(0)

) + πf
(
v∗(t)

)
, t ∈ [0,∞). (4.22)

Since ψ,πf ◦ v∗ are differentiable at 1 we have that φ is also differentiable at 1. By (4.22), (4.8), (4.7), (2.4) and (2.5)
for each t � 0

φ(t) = If (0,1, v∗ + Pt ) − μ(f ) − πf
(
v∗(0)

) + πf
(
v∗(t)

)
= If (0,1, v∗ + Pt ) − μ(f ) − πf

(
(v∗ + Pt )(0)

) + πf
(
(v∗ + Pt)(1)

) = Γ f (0,1, v∗ + Pt ) � 0. (4.23)

Thus

φ(t) � 0 for all t � 0. (4.24)

In view of (4.23), (4.5) and (4.7)

φ(1) = Γ f (0,1, v∗) = 0. (4.25)

Let us define a constant q > 0. It follows from Proposition 2.3 and the continuity of the function πf that there exists
a sequence of positive numbers {δi}∞i=0 such that

δ0 ∈ (
0,8−1ε

)
, δi+1 < δi, i = 0,1, . . . , (4.26)

and that for each integer i � 0 and each x1, x2, y1, y2 ∈ R
n which satisfy

d(xj ,D), d(yj ,D) � 8, j = 1,2, |xj − yj | � δi, j = 1,2, (4.27)

the following inequalities hold:∣∣Uf (0,1, x1, x2) − Uf (0,1, y1, y2)
∣∣ � 2−i−8ε, (4.28)∣∣πf (xj ) − πf (yj )

∣∣ � 2−i−8ε, j = 1,2. (4.29)

By Lemma 3.5, (4.4) and (4.5) there exists an integer L � 10 such that for all T � 0

dist
(
D,

{
v∗(t): t ∈ [T ,T + L]}) � 4−1δ0. (4.30)

In view of Lemma 3.5, (4.4) and (4.5) there exists a sequence of numbers {Tp}∞p=1 such that

Tp � 2L + 8,
∣∣v∗(0) − v∗(Tp)

∣∣ � 2−8δp, p = 1,2, . . . . (4.31)

Fix a positive number ε0 for which

ε0 < 2−8L−1ε. (4.32)

Relations (4.24), (4.25) and the differentiability of φ at 1 imply that φ′(1) = 0 and that there exists a positive number
Δ such that

Δ < 2−8, (4.33)

φ(t) = φ(t) − φ(1) � |t − 1|2−1ε0 for all t ∈ [1 − Δ,1 + Δ]. (4.34)
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Choose an integer

N > 64(L + 1)Δ−1 (4.35)

and put

q =
N∑

i=1

Ti + 8L + 8. (4.36)

Let h1, h2 ∈ D. We show that there exists an a.c. function v : [0, q] → R
n such that

v(0) = h1, v(q) = h2, Γ f (0, q, v) � ε.

Relation (4.30) which holds for all T � 0 implies that there exist numbers t1, t2 such that

t1 ∈ [0,L], t2 ∈ [8,L + 8], ∣∣hj − v∗(tj )
∣∣ � δ0/4, j = 1,2. (4.37)

Set

Δ0 = (N − 1)−1(8L + 8 − (t2 − t1)
)
. (4.38)

In view of (4.38), (4.37), (4.35) and (4.33)

0 � Δ0 < Δ. (4.39)

It follows from (4.31), (4.37) and Proposition 2.5 that there exists an a.c. function w0 : [0, T1 − t1] → R
n such that

w0(0) = h1, w0(t) = v∗(t1 + t), t ∈ [1, T1 − t1 − 1],
w0(T1 − t1) = v∗(0), (4.40)

If (τ, τ + 1,w0) = Uf
(
0,1,w0(τ ),w0(τ + 1)

)
, τ = 0, T1 − t1 − 1.

We will estimate Γ f (0, T1 − t0,w0). In view of (4.40), (2.4) and (4.5)

Γ f (0, T1 − t1,w0) = Γ f (0,1,w0) + Γ f (1, T1 − t1 − 1,w0) + Γ f (T1 − t1 − 1, T1 − t1,w0)

= Γ f (0,1,w0) + Γ f (T1 − t1 − 1, T1 − t1,w0)

= If (0,1,w0) − πf
(
w0(0)

) + πf
(
w0(1)

) − μ(f ) + If (T1 − t1 − 1, T1 − t1,w0)

− πf
(
w0(T1 − t1 − 1)

) + πf
(
w0(T1 − t1)

) − μ(f )

= Uf
(
0,1, h1, v∗(t1 + 1)

) − πf (h1) + πf
(
v∗(t1 + 1)

) − μ(f )

+ Uf
(
0,1, v∗(T1 − 1), v∗(0)

) − πf
(
v∗(T1 − 1)

) + πf
(
v∗(0)

) − μ(f ). (4.41)

By the choice of δ0 (see (4.26)–(4.29)), (4.4), (4.37) and (4.31)∣∣Uf
(
0,1, h1, v∗(t1 + 1)

) − Uf
(
0,1, v∗(t1), v∗(t1 + 1)

)∣∣ � 2−8ε,∣∣Uf
(
0,1, v∗(T1 − 1), v∗(0)

) − Uf
(
0,1, v∗(T1 − 1), v∗(T1)

)∣∣ � 2−8ε,∣∣πf (h1) − πf
(
v∗(t1)

)∣∣, ∣∣πf
(
v∗(0)

) − πf
(
v∗(T1)

)∣∣ � 2−8ε.

Together with (4.41) and (4.5) these inequalities imply that

Γ f (0, T1 − t1,w0) � Uf
(
0,1, v∗(t1), v∗(t1 + 1)

) − πf
(
v∗(t1)

) + πf
(
v∗(t1 + 1)

) − μ(f )

+ Uf
(
0,1, v∗(T1 − 1), v∗(T1)

) − πf
(
v∗(T1 − 1)

) + πf
(
v∗(T1)

) − μ(f ) + 4 × 2−8ε

� Γ f (T1 − 1, T1, v∗) + Γ f (t1, t1 + 1, v∗) + 2−6ε = 2−6ε. (4.42)

Let k � 1 be an integer. It follows from (4.39), (4.33), (4.31), (4.7) and Proposition 2.5 that there exists an a.c.
function wk : [0,Δ0 + Tk+1] → R

n such that
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wk(t) = v∗(t) + P1−Δ0(t), t ∈ [0,1],
wk(t) = v∗(t − Δ0), t ∈ [1,Δ0 + Tk+1 − 1], wk(Δ0 + Tk+1) = v∗(0), (4.43)

If (Δ0 + Tk+1 − 1,Δ0 + Tk+1,wk) = Uf
(
0,1,wk(Δ0 + Tk+1 − 1),wk(Δ0 + Tk+1)

)
.

Relations (4.43) and (4.7) imply that

wk(0) = v∗(0). (4.44)

We will show that

Γ f (0, Tk+1 + Δ0,wk) � 2−1ε0Δ0 + 2−k−8ε. (4.45)

By (4.43) and (4.5)

Γ f (0, Tk+1 + Δ0,wk) = Γ f (0,1,wk) + Γ f (1, Tk+1 + Δ0 − 1,wk) + Γ f (Tk+1 + Δ0 − 1, Tk+1 + Δ0,wk)

= Γ f (0,1,wk) + Γ f (Tk+1 + Δ0 − 1, Tk+1 + Δ0,wk). (4.46)

In view of (4.43), (2.4), (4.8), (4.7) and (4.22)

Γ f (0,1,wk) = If (0,1,wk) − πf
(
wk(0)

) + πf
(
wk(1)

) − μ(f )

= If (0,1, v∗ + P1−Δ0) − πf
(
v∗(0) + P1−Δ0(0)

) + πf
(
v∗(1) + P1−Δ0(1)

) − μ(f )

= ψ(1 − Δ0) + πf
(
v∗(0)

) + πf
(
v∗(1 − Δ0)

) − μ(f ) = φ(1 − Δ0). (4.47)

Relations (4.47), (4.34) and (4.39) imply that

Γ f (0,1,wk) = φ(1 − Δ0) � 2−1ε0Δ0. (4.48)

It follows from (2.4) and (4.44) that

Γ f (Tk+1 + Δ0 − 1, Tk+1 + Δ0,wk)

= If (Tk+1 + Δ0 − 1, Tk+1 + Δ0,wk) − πf
(
wk(Tk+1 + Δ0 − 1)

) + πf
(
wk(Tk+1 + Δ0)

) − μ(f )

= Uf
(
0,1,wk(Δ0 + Tk+1 − 1),wk(Δ0 + Tk+1)

) − πf
(
v∗(Tk+1 − 1)

) + πf
(
v∗(0)

) − μ(f )

= Uf
(
0,1, v∗(Tk+1 − 1), v∗(0)

) − πf
(
v∗(Tk+1 − 1)

) + πf
(
v∗(0)

) − μ(f ). (4.49)

By the choice of {δi}∞i=0 (see (4.26)–(4.29)), (4.4) and (4.3),∣∣Uf
(
0,1, v∗(Tk+1 − 1), v∗(0)

) − Uf
(
0,1, v∗(Tk+1 − 1), v∗(Tk+1)

)∣∣ � 2−k−8ε,∣∣πf
(
v∗(0)

) − πf
(
v∗(Tk+1)

)∣∣ � 2−k−9ε.

Together with (4.49) and (4.5) these inequalities imply that

Γ f (Tk+1 + Δ0 − 1, Tk+1 + Δ0,wk) � Uf
(
0,1, v∗(Tk+1 − 1), v∗(Tk+1)

) − μ(f )

− πf
(
v∗(Tk+1 − 1)

) + πf
(
v∗(Tk+1)

) + 2−k−8ε

� Γ f (Tk+1 − 1, Tk+1, v∗) + 2−k−8ε = 2−k−8ε.

Combined with (4.46) and (4.48) this inequality implies that (4.45) holds. Proposition 2.5 implies that there exists an
a.c. function u0 : [0, t2] → R

n such that

u0(t) = v∗(t), t ∈ [0, t2 − 1], u0(t2) = h2,

I f (t2 − 1, t2, u0) = Uf
(
0,1, u0(t2 − 1), u0(t2)

)
.

(4.50)

In view of (4.50), (4.5) and (2.4)

Γ f (0, t2, u0) = Γ f (0, t2 − 1, u0) + Γ f (t2 − 1, t2, u0) = Γ f (t2 − 1, t2, u0)

= Uf
(
0,1, v∗(t2 − 1), h2

) + πf
(
v∗(t2 − 1)

) + πf (h2) − μ(f ). (4.51)

By (4.4), the choice of {δi}∞ (see (4.26)–(4.29)) and (4.37)
i=0
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∣∣Uf
(
0,1, v∗(t2 − 1), h2

) − Uf
(
0,1, v∗(t2 − 1), v∗(t2)

)∣∣ � 2−8ε,∣∣πf
(
v∗(t2)

) − πf (h2)
∣∣ � 2−8ε.

Together with (4.51), (4.4) and (4.5) these inequalities imply that

Γ f (0, t2, u0) � Uf
(
0,1, v∗(t2 − 1), v∗(t2)

) − πf
(
v∗(t2 − 1)

) + πf
(
v∗(t2)

) + 2−7ε − μ(f )

� Γ f (t2 − 1, t2, v∗) + 2−7 = 2−7ε. (4.52)

Relations (4.38) and (4.36) imply that

T1 − t1 +
N−1∑
k=1

(Δ0 + Tk+1) + t2 = T1 − t1 + 8L + 8 − t2 + t1 +
N−1∑
k=1

Tk+1 + t2 =
N∑

k=1

Tk + 8L + 8 = q. (4.53)

It follows from (4.53) (4.40), (4.43), (4.44) and (4.50) that there exists an a.c. function v : [0, q] → R
n such that

v(t) = w0(t), t ∈ [0, T1 − t1], v(t) = wk

(
t −

(
k∑

i=1

Ti + (k − 1)Δ0 − t1

))
,

t ∈
[

k∑
i=1

Ti + (k − 1)Δ0 − t1,

k+1∑
i=1

Ti + kΔ0 − t1

]
, k = 1, . . . ,N − 1, (4.54)

v(t) = u0

(
t −

(
N∑

i=1

Ti + (N − 1)Δ0 − t1

))
, t ∈

[
N∑

i=1

Ti + (N − 1)Δ0 − t1, q

]
.

By (4.54), (4.40), (4.53) and (4.50)

v(0) = w0(0) = h1, v(q) = u0(t2) = h2. (4.55)

In view of (4.54), (4.42), (4.45), (4.52), (4.38) and (4.32)

Γ f (0, q, v) = Γ f (0, T1 − t1,w0) +
N−1∑
k=1

Γ f (0, Tk+1 + Δ0,wk) + Γ f (0, t2, u0)

� 2−6ε +
N−1∑
k=1

(
2−1ε0Δ0 + 2−k−8ε

) + 2−7ε

� 2−5ε + (N − 1)2−1ε0Δ0 � 2−5ε + 2−1ε0(9L + 16) � 2−1ε.

This completes the proof of Lemma 4.1. �
Lemma 4.2 (Basic Lemma). Let D be a minimal element of D(f ) and ε ∈ (0,1). Then there exist numbers q, δ > 0
such that for each h1, h2 ∈ R

n satisfying d(hi,D) � δ, i = 1,2, and each T � q there exists an a.c. function
v : [0, T ] → R

n which satisfies

v(0) = h1, v(T ) = h2, Γ f (0, T , v) � ε.

Proof. By Lemma 4.1 there exists a number q > 2 such that for each z1, z2 ∈ D there exists an a.c. function
v : [0, q − 2] → R

n such that

v(0) = z1, v(q − 2) = z2, Γ f (0, q − 2, v) � ε/4. (4.56)

It follows from Proposition 2.3 and the continuity of the function πf that there exists δ ∈ (0, ε) such that for each
x1, x2, y1, y2 ∈ R

n which satisfy

d(xj ,D), d(yj ,D) � 8, j = 1,2, |xj − yj | � δ, j = 1,2, (4.57)

the following inequalities hold:
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∣∣Uf (0,1, x1, x2) − Uf (0,1, y1, y2)
∣∣ � ε/16, (4.58)∣∣πf (xj ) − πf (yj )

∣∣ � ε/16, j = 1,2. (4.59)

Let T � q and h1, h2 ∈ R
n satisfy

d(hi,D) � δ, i = 1,2. (4.60)

Clearly there exist vectors h̄1, h̄2 such that

h̄1, h̄2 ∈ D, |hi − h̄i | � δ, i = 1,2. (4.61)

Since D ∈ D(f ) it follows from (4.61) and Lemma 3.3 that there exist

vi : R1 → D, i = 1,2, (4.62)

such that

vi(0) = h̄i , i = 1,2, Γ f (−τ, τ, vi) = 0 for all τ > 0 and i = 1,2. (4.63)

By (4.62) and the choice of q (see (4.56)) there exists an a.c. function u : [0, q − 2] → R
n such that

u(0) = v1(1), u(q − 2) = v2(q − 1 − T ), Γ f (0, q − 2, u) � ε/4. (4.64)

It follows from Proposition 2.5 and (4.64) that there exists an a.c. function v : [0, T ] → R
n such that

v(0) = h1, v(t) = u(t − 1), t ∈ [1, q − 1], I f (0,1, v) = Uf
(
0,1, h1, u(0)

)
,

v(t) = v2(t − T ), t ∈ [q − 1, T − 1], v(T ) = h2, I f (T − 1, T , v) = Uf
(
0,1, v2(−1), h2

)
.

(4.65)

Relations (4.65), (2.4), (4.64) and (4.63) imply that

Γ f (0, T , v) = Γ f (0,1, v) + Γ f (1, q − 1, v) + Γ f (q − 1, T − 1, v) + Γ f (T − 1, T , v)

= Γ f (0,1, v) + Γ f (0, q − 2, u) + Γ f (q − 1 − T ,−1, v2) + Γ f (T − 1, T , v)

� Γ f (0,1, v) + ε/4 + Γ f (T − 1, T , v). (4.66)

In view of (2.4), (4.65) and (4.64)

Γ f (0,1, v) = If (0,1, v) − μ(f ) + πf
(
v(0)

) + πf
(
v(1)

)
= Uf

(
0,1, h1, u(0)

) − μ(f ) − πf (h1) + πf
(
v1(1)

)
= Uf

(
0,1, h1, v1(1)

) − μ(f ) − πf (h1) + πf
(
v1(1)

)
, (4.67)

Γ f (T − 1, T , v) = If (T − 1, T , v) − μ(f ) − πf
(
v(T − 1)

) + πf
(
v(T )

)
= Uf

(
0,1, v2(−1), h2

) − μ(f ) − π
(
v2(−1)

) + πf (h2). (4.68)

By the choice of δ (see (4.57)–(4.59)), (4.62), (4.60), (4.63) and (4.61)∣∣Uf
(
0,1, h1, v1(1)

) − Uf
(
0,1, v1(0), v1(1)

)∣∣ � ε/16,∣∣πf (h1) − πf
(
v1(0)

)∣∣ � ε/16,
(4.69)

∣∣Uf
(
0,1, v2(−1), h2

) − Uf
(
0,1, v2(−1), v2(0)

)∣∣ � ε/16,∣∣πf (h2) − πf
(
v2(0)

)∣∣ � ε/16.
(4.70)

Relations (4.67), (4.69) and (4.63) imply that

Γ f (0,1, v) � Uf
(
0,1, v1(0), v1(1)

) − μ(f ) − πf
(
v1(0)

) + πf
(
v1(1)

) + ε/8

� Γ f (0,1, v1) + ε/8 = ε/8. (4.71)

Relations (4.68), (4.70) and (4.63) imply that
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Γ f (T − 1, T , v) � Uf
(
0,1, v2(−1), v2(0)

) − μ(f ) − πf
(
v2(−1)

) + πf
(
v2(0)

) + ε/8

� Γ f (−1,0, v2) + ε/8 = ε/8.

Combined with (4.71) and (4.66) this inequality implies that

Γ f (0, T , v) � ε/8 + ε/4 + ε/8 = ε/2.

This completes the proof of Lemma 4.2. �
5. Proofs of Theorems 1.1 and 1.2

Let f ∈M⊂A. Clearly f satisfies assumption A(iv).
We use the following result established in [18, Proposition 7.1].

Proposition 5.1. Let x, y ∈ R
n, T1 � 0, T2 > T1 and let w : [T1, T2] → R

n be an a.c. function such that

w(T1) = x, w(T2) = y, If (T1, T2,w) = Uf (T1, T2, x, y).

Then w ∈ C2([T1, T2];R
n) and for each i ∈ {1, . . . , n} and each t ∈ [T1, T2]

(∂f/∂xi)
(
w(t),w′(t)

) = (d/dt)(∂f/∂ui)
(
w(t),w′(t)

)
=

n∑
j=1

(
∂2f/∂ui∂xj

)(
w(t),w′(t)

)
w′

j (t) +
n∑

j=1

(
∂2f/∂ui∂uj

)(
w(t),w′(t)

)
w′′

j (t). (5.1)

(Here w(t) = (w1(t), . . . ,wn(t)), t ∈ [T1, T2].)
For each x,u ∈ R

n set

A(x,u) = ((
∂2f/∂ui∂uj

)
(x,u)

)n

i,j=1, B(x,u) = ((
∂2f/∂ui∂xj

)
(x,u)

)n

i,j=1

and by C(x,u) ∈ R
n denote the vector ((∂f/∂xi)(x,u))ni=1. Then the system of the differentiable equations (5.1) has

the following equivalent form:

A
(
w(t),w′(t)

)
w′′(t) + B

(
w(t),w′(t)

)
w′(t) = C

(
w(t),w′(t)

)
, t ∈ [T1, T2]. (5.2)

Since the matrix A(x,u) is positive definite for all x,u ∈ R
n (see the definition of M) there exists A−1(x,u) for all

(x,u) ∈ R
n and Eqs. (5.1) and (5.2) have the following equivalent form:

w′′(t) = −(
A

(
w(t),w′(t)

))−1
B

(
w(t),w′(t)

)
w′(t) + (

A
(
w(t),w′(t)

))−1
C

(
w(t),w′(t)

)
, t ∈ [T1, T2]. (5.3)

It follows from Proposition 5.1, the inclusions A,B,C ∈ C1 (see the definition of M) and our discussion above that
the following lemma holds.

Lemma 5.1. Let v1, v2 : [0,∞) → R
n be c-optimal functions with respect to f , 0 � T1 < T2 and let v1(t) = v2(t) for

all t ∈ [T1, T2]. Then v1(t) = v2(t) for all t ∈ [0,∞).

Proof of Theorem 1.1. Assume that 0 � T1 < T2 and

v(T1) = v(T2). (5.4)

We show that v(t + T2 − T1) = v(t) for all t � 0. First we show that

Γ f (T1, T2, v) = 0. (5.5)

Let us assume the converse. Then

Γ f (T1, T2, v) > 0. (5.6)

Put

λ = Γ f (T1, T2, v). (5.7)
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By Lemma 3.2 and Proposition 2.4 there exists a minimal element D of D(f ) such that

D ⊂ Ω(v). (5.8)

By Lemma 4.2 there exist q, δ > 0 such that the following property holds:

(P1) For each h1, h2 ∈ R
n satisfying d(hi,D) � δ, i = 1,2, and each T � q there exists an a.c. function u : [0, T ] →

R
n such that

u(0) = h1, u(T ) = h2, Γ f (0, T ,u) � λ/4.

In view of (5.8) there exist t1, t2 � 0 such that

t1 > T2 + 8, t2 > t1 + q + (T2 − T1) + 8, d
(
v(ti),D

)
� δ, i = 1,2. (5.9)

It follows from (5.9) and property (P1) that there exists an a.c. function u : [0, t2 − t1 + T2 − T1] → R
n such that

u(0) = v(t1), u(t2 − t1 + T2 − T1) = v(t2), Γ f (0, t2 − t1 + T2 − T1, u) � λ/4. (5.10)

Relations (5.4), (5.9) and (5.10) imply that there exists an a.c. function ṽ : [0,∞) → R
n such that

ṽ(t) = v(t), t ∈ [0, T1], ṽ(t) = v(t + T2 − T1), t ∈ [T1, t1 + T1 − T2],
ṽ(t) = u

(
t − (t1 + T1 − T2)

)
, t ∈ [t1 + T1 − T2, t2], ṽ(t) = v(t), t ∈ [t2,∞).

(5.11)

In view of (5.11)

ṽ(0) = v(0), ṽ(t2) = v(t2). (5.12)

Since v is c-optimal with respect to f (5.12) implies that

If (0, t2, ṽ) � If (0, t2, v). (5.13)

On the other hand it follows from (5.12), (2.4), (5.11), (5.9), (5.10), (5.7) and (5.6) that

If (0, t2, ṽ) − If (0, t2, v) = Γ f (0, t2, ṽ) − Γ f (0, t2, v)

= Γ f (0, T1, v) + Γ f (T2, t1, v) + Γ f (0, t2 − t1 + T2 − T1, u) − Γ f (0, t2, v)

� Γ f (0, t2 − t1 + T2 − T1, u) − Γ f (T1, T2, v) − Γ f (t1, t2, v)

� λ/4 − Γ f (T1, T2, v) � −(3/4)λ < 0.

This contradicts (5.13). The contradiction we have reached proves (5.5). By (5.4) there exists an a.c. function
w : [0,∞) → R

n such that

w(t) = v(t), t ∈ [T1, T2], w(t + T2 − T1) = w(t), t ∈ [0,∞). (5.14)

In view of (5.14), (5.4), (2.4) and (2.5)

Γ f (s1, s2,w) = 0 for each s1 � 0, s2 > s1.

Thus w is an c-optimal with respect to f . Together with (5.14) and Lemma 5.1 this implies that w(t) = v(t) for all
t ∈ [0,∞). Theorem 1.1 is proved. �

In order to prove Theorem 1.2 we need the following result.

Proposition 5.2. Assume that an a.c. function v : [0,∞) → R
n is c-optimal with respect to f . Then for each T ,S > 0

Uf
(
0, T , v(0), v(T )

) − T μ(f ) � Uf
(
0, S, v(0), v(T )

) − Sμ(f ). (5.15)

Proof. Let us assume the converse. Then there exist T0, S0 > 0 such that

Uf
(
0, T0, v(0), v(T0)

) − T0μ(f ) − (
Uf

(
0, S0, v(0), v(T0)

) − S0μ(f )
) := λ > 0.
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By Lemma 3.2 there exists a minimal element D of D(f ) such that D ⊂ Ω(v). By Lemma 4.2 there exist q, δ > 0
such that the following property holds:

For each h1, h2 ∈ R
n satisfying d(hi,D) � δ, i = 1,2, and each τ � q there exists an a.c. function u : [0, τ ] → R

n

such that

u(0) = h1, u(τ ) = h2, Γ f (0, τ, u) � λ/4.

The inclusion D ⊂ Ω(v) implies that there exist numbers τ1, τ2 such that

τ1 > T0, τ2 > τ1 + S0 + q,

d
(
v(τi),D

)
< δ, i = 1,2.

Now we can complete the proof of Proposition 5.2 arguing as in the proof of Proposition 4.2 of [10]. �
We can prove Theorem 1.2 arguing as in the proof of part (b) of Theorem 1.1 of [10] and using Proposition 5.2

instead of Proposition 4.2 of [10].
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