
The Dirichlet problem for harmonic maps
from the disk into the euclidean n-sphere

V. BENCI (*) and J. M. CORON (**)

Ann. Inst. Henri Poincaré,

Vol. 2, n° 2, 1985, p. 119-141. Analyse non linéaire

ABSTRACT. - Let

and let y E We study the following problem

Problem (*) is the « Dirichlet » problem for a harmonic function u which
takes its values in Sn. We prove that, if y is not constant, then (*) has at
least two distinct solutions.
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120 V. BENCI AND J. M. CORON

1. INTRODUCTION

Let

and

Let y be a map from aS~ into Sn. We seek functions u in C2(~; Sn) n C°(SZ; S~)
such that :

.. _ .,

We shall assume that

which means that y E and that the second derivative of y is Holder
continuous with exponent 6.
The existence of at least one solution is obvious. To see this let

where H 1 (S~ ; ~n + 1 ) is the usual Sobolev space. Using (1.3) it is easy to
see that 6 is non void. On  we consider the functional

Clearly there exists some u in  such that

u is a solution of (1) and (2) and thanks to a result of Morrey [M~] ]

Our main result is :

THEOREM 1.1. - If y is not constant then there exist at least two func-
tions in C2~a(~; S~‘) which are solutions of (1.1)-(1.2).

Remarks. - 1) If u E Sn) n H1(S2; 1) satisfies (1.1) ,u is har-

monic ; moreover it is well known (see [LU2], [HW], [Wi]) that (Q; S~)
and if u ~~~ e Ck~°‘(aS_~; S"), (with 0  a  1) u e C~~°‘(~; Sn). In particular, in
our case, if is a solution of (1.1)-(1. 2) then
u E .

2) In the case n = 2 theorem 1 has been proved before by H. Brezis-
J. M. Coron ] and J. Jost [J independently. _

In this case, it is possible to assume less regularity on y ; for example ~ ~ ~

Annales de l’Institut Henri Poincaré - Analyse non linéaire



121A DIRICHLET PROBLEM FOR HARMONIC MAPS

is sufficient to guarantee at least two solutions in we do not
know if this is the case for n  3. The difference between n = 2 and n > 3
is that 6 is not connected when n = 2 and connected when n > 3. (To see
that C is connected when n > 3, use the density result due to R. Schoen-
K. Uhlenbeck [SU z ].)

3) W_hen ~,~ is constant it has been proved by L. Lemaire [LM ] that, if
u E Sn) n Hi(O; 1 ) is a solution of ( 1.1 )-{ 1. 2), then u is identically
equal to the same constant.

In order to prove theorem 1.1 we introduce

(1. 5) Ep = ~ 6 ~ Sn)), 6 is not homotopic to a constant }
where p > 2,

. ~ , _ ,

and C°(Sn -1; Sn)) is the set of continuous functions from S’~ - 2
into Wy °p(~ ; Sn). Let

The main result of the paper is the following theorem:

THEOREM 1. 2. - Suppose that y E C2 ~~(aSZ ; 2) is not constant.
Then problem (1.1), (1. 2) has at least one solution u E C2~a(S2 ; S’~) such that
E(u) = c; moreover if c = m, problem (1.1), (1.2) has infinitely many
solutions when n > 3 (and at least two solutions when n = 2).

Clearly theorem 1.1 follows from theorem 1.2.
The main difficulty in proving theorem 1. 2 comes from a lack of compact-

ness. For this reason we are not able to prove directly that c, defined by ( 1. 7)
is a critical value of E (i. e. that there exists u solution of (1.1), (1.2) such
that E(u) = c). For this reason, following an idea of J. Sacks and K. Uhlen-
beck [SU 1 ] we study an approximate problem, i.e. the critical points of
the functional 

.

This functional satisfies the Palais-Smale condition. Let

We prove that ca is a critical value of E~ larger than c and that
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122 V. BENCI AND J. M. CORON

Just to explain the difficulty let us assume for the moment being that c > m.
There exists ua such that

and

Obviously ux is bounded in H ~ ~ 1 )_ and therefore we can extract a subsequence
uan which converges weakly in I~1 to some u; u satisfies (1.1)-(1. 2) (see [SU 1])
and the key point is to prove that u ~ u. In fact we shall prove that u~~
tends strongly to u and then = c > E(u). The proof of the strong
convergence relies on some ideas used in ]. We prove the crucial strict
inequality

then, using a theorem of E. Calabi [C ] and arguments involved in J. Sacks-
K. Uhlenbeck [SU 1 ] we prove the strong convergence.

Remark. Similar difficulties and methods also occur in [A ], 
[BN], [J], [LB], [LN], [ST ], [T] ] and [W2 ].

2. A TOPOLOGICAL RESULT

In this section we shall prove a topological result which will be used
in the proof of theorem 1.2.

Let S~ _ ~ x E (~~ ~ ~ x (  1 } and let M be a C2-manifold sitting in f~k.
Suppose that y E M) is homotopic to a constant. We set

For w e H) (Q ; M) we set

THEOREM 2.1. - For every w E H;(Q ; M) there exist 5, GO > 0 and a
continuous map

such that

(~) For simplicity we write H1 instead of H1(~; Rn+1).
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123A DIRICHLET PROBLEM FOR HARMONIC MAPS

is continuous for every p > 2.

First we shall prove theorem 2.1 in the case in which y is identically
equal to a constant c.

LEMMA 2.2. - If y = c (c is a constant) then the conclusion of theo-
rem 2.1 holds.

. Proof - We extend every map M) to (F~2 taking u(x) = c
for x E 1R2 - Q. We shall denote u and its extension by the same letter.

We have the following inequality which is due to R. Schoen and K. Uhlen-
beck [SU2 ] : there exists c3 > ’0 such that V5 > 0~~0 > 0 such that

For the convenience of the reader we recall the proof. In fact, since u( y) e M
for a. e. y E 1R2 we have ,

By the above formula, for x E 1R2 we get

Since Vw L~(~2), we can choose E so small that

Vol. 2, n° 2-1985.



124 V. BENCI AND J. M. CORON

So by (2.4) and the above inequalities we get

and s sufficiently small where C3 is a suitable constant which depends only
on the Poincare constant ci .
Now let d be a constant such that the projection map

is well defined. Here N~(M) _ ~ x E IRk dist (x, M)  b ~ .
Now fix 5  2c d 3 and eo small enough in order that ( 2. 3 ) holds for every

~ E (0, 8o ] (and every x E IRk, every u E Thus the map

is well defined and continuous.
Now consider the map

defined by

Clearly Re is continuous in u and e. Moreover, if u E P o (G ~ GO)
it is easy to see that (RGu) ~~~ = c. Therefore the map 

.

satisfies the requirements (i ), (ii ) and (iii ).
Moreover one can easily check that T is continuous and moreover

satisfy (iv ). 0 .

Now we shall consider the case in which y is not constant. Since we have
assumed that y is homotopic to a constant, there exists a homotopy
h E C°(I x M) such that

Since we have assumed y to be of class C1, we can suppose that also h is
of class C1.

LEMMA 2.3. - Under our assumptions there exist two continuous
functions -
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125A DIRICHLET PROBLEM FOR HARMONIC MAPS

and

such that

Moreover H and K are continuous also in the W ~ ~p(~ ; M) topology.
Proof. - For u E H;(Q; M) set

By virtue of (2 . 6) (a) M E M) where 03A91 = {x E R2 | | x|  2} and
of course it depends continuously on u E M).
For v E M) we set -

Clearly 
Finally for xeQ set

It is easy to check that H~, and K~, satisfy the required conditions.

Proof of theorem 2.1. Let H be the map defined in lemma 2. 3. Then

By lemma 2 . 2, there exists 5, io > 0 and a continuous map

which satisfies (i ), (ii ), (iii ) and (iv) of theorem 2.1.
Since Hi : H~(Q; M) -~ M) is continuous, there exists ~ ~ 0 such

that

Therefore it makes sense to define a map T : [0, 1 + GO] ] x A~(w) -~- H;(Q, M)
as follows

Such a map satisfies (i ), (ii ), (iii ) and (iv) of Theorem 2.1 with So = 1 + So. E
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LEMMA 2 . 3. - Let z ~ C~(Q; M) and set

Then if 11 is sufficiently small, N~(z) is a strong deformation retract of { z }
for every z E M).

Proof - Choose 11 small enough in order that n M is geodesically
convex in M for every yeM; (Br( y) _ ~ y ~  r ~ ). Then for

we define : -

where {3(t) is the (unique) geodesic on M parametrized with the arc length
such that

So if M is a smooth manifold h is smooth.
For u E we set

Clearly S : I x 1~T,~(z) ~ C;(Q: M) is continuous, So = = z

for every u ~ and St(z) = z for every t E [0, 1 ]. D 
-

By theorem 2.1 and lemma 2. 3 the following Corollary follows which
will be used in the proof of our main theorem.

COROLLARY 2 . 3. - For every M) there is a constant 0 > 0
such that Ae(w) n W1,P(Q; M) is contractible to a point in M), p > 2.

Proof - By theorem 2.1 there exists a continuous map 
A~(w) -~ Cy (~ ; M). So given r~ as in lemma 2 . 3, there exists 8 E [0, b]
such that C 

By lemma 2 . 3, is contractible, then also n M)
is contractible to a point in M). D

3. A CONVERGENCE THEOREM

In order to approximate the solutions of problem (1.1), (1.2) by the
critical points of the functional (1. 8) we need the following theorem which
has been inspired by J. Sacks and K. Uhlenbeck [SU 1].

THEOREM 3.1. - For every a > 1 let ~a be a solution of

and suppose that
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Then ua has a subsequence uak -~ u in C1(Q; S’~ ) and u is a solution of ( 1.1 ).
In order to prove theorem 3.1 we need the following proposition due

to J. Sacks and K. Uhlenbeck [SU 1 ].

PROPOSITION 3.1. - There exist ao > 1 such that if with 

and = 0 then u E ~2 ~~(S~).

Proof - See the proof of proposition 2. 3 in ]. In fact in ] only
the interior regularity is proved. But the theorem 1.11. 1’ of Morrey [M~] ]
which is used in [SU1 ] is still valid up to the boundary if z is assumed to
be in Ho (see p. 38 in [M2 ]). Therefore we may apply this theorem to z = M 2014 ~

with § = y on We conclude that The
conclusion of the proof is an easy adaptation of the proof in [SU 1 ]. D

Proof of theorem 3.1. In what follows we will always assume that
1  a  ao. Since ua is bounded in L~ and is bounded, ua is bounded
in HI. Therefore there exist a sequence such that uak tends weakly
in H~ to some u. For simplicity we shall write uk instead of Using (3.1)
(and Proposition (3.1)) we have

where

and

Let

First let us assume that 8k is bounded. 
_

We are going to prove that in this case u~ tends to u in and that :

Using (3 . 3) we have :

with
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Since 8k is bounded we have :

It follows from (3.4), (3. 5), (3 . 6) and a theorem of Morrey [M 1] (see
also [N ]) that :

(Actually in [M1] and [N] the theorems are stated for one equation and
not for a system. But the proofs can be easily adapted to the system (3.4).)
It follows from (3.7) that uk tends to u in C~(Q). Moreover (3.3) may be

- written in the following divergence form:

Using the convergence of uk to u in C~(Q) we have

Now we want to show that

is not possible. We argue indirectly and suppose that (3.9) holds. Let
ak E Q such that

After extracting a subsequence we may assume that either

where d(ab is the distance from ak to ao.
First let us assume that (3.10) holds. Then, like in [SU 1 j, we define

vk is defined on Qk where

Using (3.10) it is easy to see that

where B(o, R) _ ~ x E f1~2 ~ ~ x ~  R ~ . Moreover it follows from (3 . 3) that,
in 

Annales de l’Institut Henri Poincaré - Analyse non linéaire



129A DIRICHLET PROBLEM FOR HARMONIC MAPS

We have

As before it follows from (3.12), (3.13), (3.14) and ] (or [N]) that
there exists y > 0 such that VR > 0 C(R) such that

Therefore (after extracting a subsequence) we have

and in particular

We write (3.13) in a divergence form:

From (3.16) and (3.18) we get

Moreover

thus

From (3 .19), (3 . 20) and [SU 1] ] (theorem 3 . 6) it follows that v can be extended
to a regular harmonic map from 1R2 ~ } = S2 into Sn.
The following theorem is due to E. Calabi [C (theorem 5 . 5) :

THEOREM. - Let v be a harmonic map from S2 into Sm whose image
does not lie in any equatorial hyperplane of S’~ then

i ) the area A(v) of v(S2) is an integer multiple of 27r

Remark. In [~ ] v is assumed to be an immersion but the proof given
in [C ] works also if v is not an immersion (note that the points where v
is not an immersion are isolated and branch points, see e. g. [GOR ]).

Proof of Theorem 3.1 continued. Any harmonic map w from S2 into S2
which is not constant satisfies (see, for example [L ] theorem (8 . 4))
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Therefore if w is a harmonic map from S2 into Sn which is not constant,
using the Calabi theorem and an easy induction argument we have

(we recall that E(w) ~ 2A(w)).
Our map v is a harmonic map from S2 into Sn and (see (3.17)) v is not

constant. Therefore

We are going to prove (as in that

Since by definition of m (see (1.4))

using (3.21), (3.22), (3.23) and (3.2) we obtain a contradiction.
We may assume that ak tends to some a in Q. Let 8 > 0 and r > 0 such that

where

We have

where

Using (3.10) we have

Therefore

From (3.24), (3.25) and (3.26) we have

which proves (3.22).
Now it remains to exclude (3.11). We assume that (3.11) holds. Now (3.12)

is false.
We may assume that ak tends to some a. Using (3.5) and (3.9) we see

that a E without loss of generality we may assume that
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T is a conformal diSeomorphism between Q 2014 {(1,0) } + oo x [R
and . J~ 

Let U = , + coC x R and let~-~

Clearly

and a straightforward computation yields

where x = Tx.
In particular :

and

where ak = 

Using (3 . 3) we find (1 ~ p  n) :

where

and
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We have

with

If (Xk, yk) and ak = (xk, yk), using (3 . 28) we obtain :

Then, by (3.11), we have :

Let

We have k = k on aS2 with

and thus

Using (3.29) we have

Using (3 . 31) and (3 . 32) we have (for 1  p c n) ;

with
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Let R > 0 and UR = U n ~ x E (~2 ~  R ~. Using (3 . 34), (3 . 35), (3 . 36),
(3 . 37) and the Morrey-Nirenberg estimate [M 1 ], [N] we obtain :

Remark. Actually in [M 1 ] there is no estimate up to the boundary
but such an estimate can be deduced from the interior estimate, see [GT ]
(p. 248-249). One can find estimate up to the boundary in (p. 455-
456) and [N]. In all these references the theorems are stated for only one
equation but the proofs can be easily adapted to our system (3. 36).

Proof of Theorem 3 .1 concluded. I We may assume that for some ic
in 

Moreover, using (3 . 36), (3 . 37), (3 . 35) it is easy to see that if c~ is a bounded
regular open set of U such that w c U then

Therefore, using (3.36) we have :

With (3. 34) we get

Moreover

therefore:

We recall that ~ E C°(U) (and even E Then using (3.40), (3 .41),
(3.42) and a very slight modification of a theorem of L. Lemaire (see the
appendix we have

But, using (3. 30) :

and using (3 . 33) :

and then using (3 . 39), (3.43), (3.44), (3.45) we get a contradiction. 0
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4. PROOF OF THEOREM 1.2

The proof of theorem 1.2 relies on several lemmas.

LEMMA 4.1. - Let m and c be the constants defined by (1.4) and (1.7)
respectively. Then

Proof We shall construct a map E E3 such that

Then the conclusion follows from the definition of c. The construction of
such a map is an adaptation of the proof of lemma 2 in [BC~ ].

Let u e 6 such that E(u) = m. Thanks to Morrey’s regularity result

u E COO(Q; L~’~+ 1) n (~n+ 1). Since y is not constant u is not constant
and therefore Vu(xo, yo) ~ 0 for some (xo, yo) in Q; rotating coordinates
in 1R2 we may always assume that

Let be an orthonormal basis in such that:

with a a 0, b a 0, a + b > 0.
We shall identify Sn - 2 with S? m ( v e v , ei = o, v , e2 = 0 ). Let r and 8

be such that x - xo = r cos 0, y - yo =r sin 0. Let c > 0 be small enough.

Let £ = - c Max (a, b) > 0.
2 .

We define a map 03C3~ e W1,303B3(03A9; Sn)) in the following way (where
s e S~ ~ ~) :
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where Ai and Bi depend only on 8 and 8 and are such that is continuous
at r == 8 and r = 2~ for each s. More precisely

Since M E ~V1~3(SZ ; W;,3(Q; S~)). Moreover

and a straightforward computation leads to

where v > 0 (see [BC2 ]).
Therefore we can fix 8 small enough in order that

where a = a~ . / ~B
It remains to prove that a e 03A303B1(1  a  3 2) i. e. that a is an essential map.

We argue indirectly. Suppose that’a is not essential. Then there exists a
continuous map 6

such that

for every s E where u e Wy ’2°‘(S~ ; 
Now we define r~ : I x Q x S’~ - 2 -~ Sn as follows :

Clearly 11 is continuous in all its variables and we have:

,

Our next step is to extend 11 to a map
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as follows

By (4 . 2) (c) it follows that ( is continuous. Since x Bn -1 ) is topologi-
cally equivalent to S~‘ the topological degree of ((t, . ) is well defined for

every t E I. We shall compute it for t = 0 and t = 1. To this end we extend

~(t, . ) to a map

since

for every w ~ int 1). For t = 1 we set

Then by (4.3) it follows that

since 8(1, x, y, z) is independent of z. For t = 0 we set

where r = [(x - + ( y - yo)2 ] 1 ~2 and we shall compute

First notice that w )  1. so the degree is well defined and it is equal
to the algebraic sum of the nondegenerate solutions of the equa-
tion 

__

Since I w [  1 and [ 8(0, x, y, z) = 1 for I (x, y) [ > ~, the solutions of (4. 5)
are the same that the solutions of the following equation

By inspection we see that the only solution of (4. 6) is x = xo, y = yo, z = 0,
and that it is not degenerate. Therefore deg (~(o, . )) = + 1 and this contra-
dicts (4.4). D
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We now set

where ~2« is defined by (1. 5). -

LEMMA 4.2. - For every a > 1, the ca’s defined by (4.7) are critical
values of E~. Moreover c~ ~ c force -~ 1 and c.

Proof It is straightforward to check that E~ satisfies the assumption (c)
of Palais-Smale on Then by well known facts about the critical point
theory the ca’s are critical values of Ea.
Now we shall prove the second statement. Since Ea(u) > E(u) for every

u E ~a, we have that

Thus c for every a > 1.

Now let us prove that ca ~ c. Choose 8 > 0. Then there exists p > 2
and 0’ such that

For ci Sa with a  ~/2 we have

~ 
d

In particular, if we fix 03B10  p/2 we have that the function (03B1, s)
da

is bounded by a constant M in [1, ao ] x S"* ~ Thus, for M e we have

~ 

We now choose a such that E(u) + s Va  (X. Then

by (4. 8), Va  E ,

We can now conclude with the proof of theorem 1. 2.

Proof of theorem 1. 2. - We consider two cases : c > m and c = m.
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1. CASE c > m. For a > 1, let u~ be a solution of = 0 which exists

by lemma 4. 7. Also by lemma 4. 2 and 4.1, it follows that

and since m  E(u03B1)  Ea(ua) we have that

Then the conclusion follows from theorem 3.1. 0

II. CASE c = m. Choose B > 0, then there exists Ts e E such that

Let _u~ be such that = min E o 6(s).
- - 

SEsn-2

We consider a subsequence 0) (which for simplicity will be
denoted uk) which converges weakly to some u. Since lim = m,

- - 

k o0 
-

and since E is weakly lower semicontinuous it follows that

The above equality and the weak convergence uk  u imply that u

strongly in H1. By Corollary 2.3 we can choose 5o > 0 such that 
is contractible in Wy ’2°‘(SZ ; M).
We claim that for every 6  5o and Ek small enough there is 

such that

In fact, if the above equality does not hold, then

and this is absurd since is an essential map. Therefore, by (4.9) with
B = ~k, we get _ _ , _,

and since E is weakly lower semicontinuous we get that

where u~ it the weak limit of uk (may be after having taken a subsequence).
By the weak convergence of u03B4k and (4.11), it follows that u03B4k ~ ua strongly
in H 1. So taking the limit in (4.10) we get

Thus, for any 03B4 E [0, 5o ] we get at least one solution u03B4 of our problem. D
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APPENDIX

Let cc~ = (0, + oo) x R and u E S") be such that

Remarks. - 1. When cca is a bounded contractible open set of (~2 (A. 4) is also true ; this
theorem is due to L. Lemaire [LM (Theoreme (3 . 2)). However, we cannot obtain (A. 4)
from the result of L. Lemaire and a conformal change of the variable. In fact consider a con-
formal diffeomorphism I between cc~ and Q (the open unit disk of (~~) such that (for example).

Let

Clearly we have :

But we cannot apply directly the theorem of Lemaire since we do not know if v E S").

2. Thanks to a classical theorem (see, for example [HH], [LU2 ], p. 485-493) using (A .1),
(A . 2) and u E S") we know that u is analytic in Q,

3. Our proof of (A. 4) is inspired from H. Wente ].

Proof of (A. 4). - We may assume that P = en + 1. Let w be the following function from I1~2
into S":

Since u ~ )~ = 1 and u(0, y) = P Vy we have:

Then, using (A. 2), (A. 3) and (A. 5), it is easy to see that

Moreover we n H o (!R2). Thus (see [LU2], [Wi ] or [HW ]) w is analytic.
be defined by:

Vol. 2, n° 2-1985.
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Using (A. 6) and ) w) = 1 it is easy to see that § is holomorphic. Moreover, by (A .1), we
E L~(!R~) and, therefore § = 0. Hence

which implies
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