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For the past years there has been an increasing interest in de-
veloping mathematical and computational methods for digital
holography. Holographic techniques furnish noninvasive tools for
high-speed 3D live cell imaging. Holograms can be recorded in
the millisecond or microsecond range without damaging samples.
A hologram encodes the wave field scattered by an object as an
interference pattern. Digital holography aims to create numerical
images from digitally recorded holograms. We show here that
partial differential equation constrained optimization, topological
derivatives of shape functionals, iteratively regularized Gauss–
Newton methods, Bayesian inference, and Markov chain Monte
Carlo techniques provide effective mathematical tools to invert
holographic data with quantified uncertainty. Holography set-ups
are particularly challenging because a single incident wave is
employed. Similar tools could be useful in inverse scattering prob-
lems involving other types of waves and different emitter/receiver
configurations, such as microwave imaging or elastography, for
instance.

1 Introduction

Experimental sciences have traditionally been a source of chal-
lenging mathematical problems with a double edge: while mathe-
matical theories are created, technology moves fast and industry
develops. Imaging sciences provide a remarkable example. Typical
imaging systems, such as radar [28], magnetic resonance tomogra-
phy, ultrasound, echography [25], and seismic imaging [34], pose
inverse scattering problems with a similar mathematical structure.
In all of them, waves generated by a set of emitters interact with
a medium under study and the wave field resulting from the in-
teraction is recorded at a set of receivers [10]. Different imaging
systems resort to different types of waves and arrange emitters and
receivers according to varied geometries. The nature of the em-
ployed waves depends on factors such as the size of the specimens
under study, the contrast between components, and the damage
caused to the sample during the imaging procedure. Knowing the
emitted and recorded waves, we aim to infer the structure of the
medium.

Approximating the solutions of inverse scattering problems is
a challenging task because such problems are severely ill posed [10].
Given arbitrary data, the problem under study may not admit a so-
lution, the solution may not be unique, or it may not depend
continuously on the given data. This means that small errors may
lead to a solution different from the searched one. In view of
the relevant technological applications in a host of fields, such as
medicine, security, geophysics, or materials testing, to mention
a few, there is a need of even better mathematical techniques for
classical imaging problems, as well as a need of new ideas to tackle
new imaging set-ups.

We focus here on recent developments in digital holography,
summarizing work done during the past 10 years in collabora-
tion with experimentalists designing holographic microscopes. This
collaboration started in 2012 thanks to the interdisciplinary com-
munication environment created at the Harvard University’s Kavli
Institute seminars. Since then, we have developed analytical and
computational tools to handle inverse problems arising in digi-
tal holography, in collaboration with researchers from Harvard
University and Tesla, Universidad Complutense de Madrid, Univer-
sidad Politécnica de Madrid, Universidad de Oviedo, Université de
Technologie de Compiègne, and New York University.

Digital in-line holography is a noninvasive tool for accelerated
three-dimensional imaging of soft matter and live cells [16,23,26,
37] that achieves high spatial (nanometers) and temporal (microsec-
onds) resolution without the need of toxic fluorescent markers or
stains. In this context, a hologram is a two-dimensional light in-
terference pattern encoding information about the optical and
geometrical properties of a set of objects [35]. Shining a properly
chosen light beam back through the hologram we can recreate
the original three-dimensional image. Instead, digital holography
is designed to produce numerical reconstructions of the objects in
an automatic way, which amounts to solving computationally an
inverse scattering problem. We will show next that optimization
schemes with partial differential equation constraints, analysis of
the topological derivative of objective functions, regularized Gauss–
Newton iterations, and Bayesian inference are effective tools to
invert holographic data in the presence of noise while quantifying
uncertainty.
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Figure 1. Formation of an in-line hologram. A laser beam hits an object.
The scattered and undiffracted beams form an interference pattern on
a screen, which is recorded at a mesh of detectors. Laser lights have
wavelengths varying from about 405 nm (violet light) to about 660 nm
(red light). Typical object sizes are in the micron range (1 µm = 10−6m,
1 nm = 10−9m).

2 The forward problem

The forward problem is a mathematical model of how a holo-
gram is generated. Figure 1 illustrates how an in-line hologram
is formed, though more complicated set-ups are possible. First,
a laser light beam interacts with a sample. Then, interference of
the scattered light field with the undiffracted beam generates the
hologram on a detector screen past the object [23]. The light wave
field obeys the Maxwell equations. Typically, the emitted laser
beams are time harmonic, that is, 𝓔inc(x, t) = Re[e−ıωtEinc(x)].
The resulting wave field is also time harmonic, namely,𝓔Ω,κ(x, t) =
Re[e−ıωtEΩ,κ(x)], with complex amplitude EΩ,κ(x) governed by
the stationary Maxwell equations. The resulting forward prob-
lem is

curl( 1
μe

curl E)− κ2e
μe

E = 0 in ℝ3 ⧵Ω,

curl( 1
μi

curl E)− κ2i
μi
E = 0 in Ω,

̂n× E− = n̂× E+ on ∂Ω,

1
μi
n̂× curl E− = 1

μe
n̂× curl E+ on ∂Ω,

lim
|x|→∞

|x||curl(E− Einc) ×
x
|x| − ıκe(E− Einc)| = 0,

(1)

where μi, εi and κi = ω2
i εiμi are the permeabilities, permittivities

and wavenumbers of the imaged objects Ω, while μe, εe and κe
correspond to the ambient medium [3] and are known. In biomed-
ical applications, μi ∼ μe ∼ μ0, μ0 being the vacuum permeability.
The upper signs − and + represent limit values from inside and
outside Ω, respectively, and n̂ denotes the outer unit normal vector.
Incident waves are polarized in a direction p̂ orthogonal to the

direction of propagation ̂d, that is, Einc(x) = E0p̂ e ıκed̂⋅x, where E0
stands for the magnitude of the incident field.

For any smooth region Ω′ ⊂ ℝ3 ⧵ Ω and any real κe > 0, sys-
tem (1) has a unique solution [31] in the Sobolev space H2,0(Ω′) =
{E ∈ H2(Ω′), div E = 0} that is continuous in Ω′ (see [19]). For
collections of spheres and piecewise-constant κi, one can calcu-
late Mie series solutions [3]. Starshaped object parametrizations
with piecewise-constant μi allow for fast spectral solvers [20,24].
Coupled BEM/FEM formulations [29,31] are convenient for more
general parametrizations, while discrete dipole approximations
[36,38] solve the problem avoiding the use of parametrizations.

In principle, the hologram is obtained evaluating the solution of
the forward problem (1) at detectors placed on the screen: IΩ,κi =
|Einc + Esc,Ω,κi|2 = |EΩ,κi|2. In practice, the measured holograms
Imeas are corrupted by noise.

3 Deterministic inverse problem

Given a hologram Imeas measured at screen points xj, j = 1,…,N,
the inverse holography problem seeks objects Ω = ⋃L

ℓ=1Ωℓ and
functions κi ∶ Ω → ℝ+ such that

Imeas(xj) = |EΩ,κi(xj)|2, j = 1,…,N,

where EΩ,κi = Einc + Esc,Ω,κi is the solution of the forward problem
(1) with an object Ω and the wavenumber κi (see [5]). Since the
measured data are not exact, in practice one seeks shapes Ω and
functions κi for which the error between the recorded hologram
and the synthetic hologram that would be generated solving (1)
for the proposed objects and wavenumbers is as small as possible.

3.1 Constrained optimization
We recast the inverse problem as an optimization problem with
a partial differential equation constraint: find Ω and κi minimizing
the cost functional

J(Ω, κi) =
1
2

N

∑
j=1

|IΩ,κi(xj) − Imeas(xj)|2, (2)

where IΩ,κi = |EΩ,κi|2 and EΩ,κi is the solution of (1). Here Ω and κi
are the design variables and the stationary Maxwell system (1) is
the constraint. For exact data, the true objects would be a global
minimum at which the functional (2) vanishes. In general, spurious
local minima may arise.

3.2 Topological derivative based approximations
A topological study of the shape functional (2) for κi fixed provides
first guesses of the imaged objects without a priori information
on them. The topological derivative of a shape functional [32]
quantifies its sensitivity to removing and including points in an
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object. Given a point x in a region ℛ, we have the expansion

J(ℛ ⧵ Bε(x)) = J(ℛ) + 4
3
πε3DT(x,ℛ) + o(ε3), ε → 0, (3)

for any ball Bε(x) = B(x, ε) centered at x with radius ε. The factor
DT(x,ℛ) is the topological derivative of the functional at x (see [32]).
If DT(x,ℛ) is negative, J(ℛ ⧵ Bε(x)) < J(ℛ) for ε > 0 small. We
expect the cost functional to decrease by forming objects Ωap with
points below a large enough negative threshold [9,14,27]:

Ωap ≔ {x ∈ ℛ ∣ DT(x,ℛ) < −C0}, C0 > 0. (4)

When μe = μi,ℛ=ℝ3 and Einc(x)= ̂pe ıκez, asymptotic expansions
yield the formula [27]

DT(x,ℝ3) = 3Re[κ
2
e (κ2e − κ2i )
(κ2i + 2κ2e )

E(x) ⋅ P(x)], x ∈ ℝ3, (5)

where E = Einc and

P(x)=
N

∑
j=1

curlcurl( 2
κ2e

Gκe(x− xj)(Imeas(xj)− |Einc(xj)|2)Einc(xj))

with Gκe(x) = 1
4π|x|e

ıκe|x| denoting the outgoing Green function
of the Helmholtz equation [31]. Once Ωap is constructed, we fit a
parametrized contour qap to its boundary. Starshaped parametriza-
tions are typical choices. Figure 2 exemplifies the procedure. The
method is robust to noise, in the sense that perturbations of the
data with random 10% or 20% noise, for instance, produce similar
results. Notice that the value of κi enters through a factor that we
may scale out in (5) and it is not really needed to localize the object.
Similar results are obtained using the topological energy [6]

ET(x,ℝ3) = |E(x)|2|P(x)|2,

which does not involve κi at all. No knowledge of κi is needed to
construct a first guess of the objects.

Figure 2. Slice y = 0 of the topological derivative computed using
expression (5) for holographic data Imeas corresponding to a sphere of
radius 0.45 µm illuminated by polarized light of wavelength 520 nm and
placed at a distance 28 µm of a CMOS screen. Axis units are microns. The
red contour marks the location of the true object, while the cyan contour
represents the approximation. Redrawn from [5].

3.3 Regularized Gauss–Newton iterations
Fast methods to improve our knowledge of the objects starting
from an initial guess are based on the following result. Let us con-
sider two Hilbert spaces X, Y and a Fréchet differentiable operator
ℱ∶ D(ℱ) ⊂ X→ Y. Assuming that the exact data y∈ Y are attain-
able (that is, there is x∈ X such thatℱ(x) = y), but only noisy data
yδ verifying ‖yδ − y‖Y ≤ δ are accessible, the iteratively regularized
Gauss–Newton (IRGN) method [1] constructs a sequence xδk+1 as
follows. We linearize the equation at xδk at each step, approximate
the solution of ℱ(xδk ) +ℱ′(xδk )ξ = yδ through the minimization
problem

ξk+1 = Argmin
ξ∈X

‖ℱ(xδk ) +ℱ′(xδk )ξ− yδ‖2Y
+ αk‖xδk + ξ− x0‖2X

and set xδk+1 = xδk + ξk+1. The Tikhonov term αk‖xδk + ξ − x0‖2X
has regularizing properties and promotes convergence for spe-
cific choices x0 and αk (see [21]). The theory of linear Tikhonov
regularization guarantees that

ξk+1 = −(ℱ′(xδk )∗ℱ′(xδk ) + αkI)−1[ℱ′(xδk )∗(ℱ(xδk ) − yδ)
+ αk(xδk − x0)],

whereℱ′(xδk )∗ denotes the adjoint of the Fréchet derivativeℱ′(xδk ).
The noise level δ affects the stopping criterion, the so-called dis-
crepancy principle.

In a holography set-up, the mapℱ is the operator that to each
parametrization of objects q assigns the synthetic hologram I(q)
generated by solving the forward problem for those objects. Star-
shaped parametrizations are a standard choice for simple objects.
They describe each object by a few parameters: its center and
a radius function represented by a finite combination of spheri-
cal harmonics [5,20]. Given a starshaped parametrization qk and
a recorded hologram Imeas with a level of noise δ, the IRGN method
first solves the linearized equation

I(qk) + I′(qk)ξ = Imeas

by addressing the nonlinear least squares problem

ξk+1 = Argminξ{‖Imeas − I(qk) − I′(qk)ξ‖22
+ αk‖qk + ξ− qap‖2Hs(𝕊2)},

where H s(𝕊2), s > 0, is an adequate Sobolev space [5], and then
sets qk+1 = qk + ξk+1. The initial parametrization q0 = qap rep-
resents the first guess of the objects constructed by topological
methods. The updated objects Ωk correspond to the parametriza-
tions qk. The stopping criterion for the noise level δ is as follows.
If the synthetic hologram calculated numerically for the current
approximation of the objects I(qk) satisfies

‖I(qk) − Imeas‖2 ≤ τδ,

we stop the algorithm, τ > 0 being a parameter adjusted to guar-
antee a reasonable approximation while preventing early stops.
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Figure 3. For the hologram in Figure 4 (redrawn from [5]): (a) True geometry. (b) Slice x = 5 of the topological derivative (5). Red contours are true objects.
(c) Initial guess defined by (4). (d) Approximation after 4 steps of the IRGN method. (e) Slice of the topological derivative (6) at step 4. Cyan regions are
approximate objects. (f) Approximation after creating an object at step 4 and applying once the IRGNM. (g) Slice of the topological derivative (6) at step 5.
(h) Approximation after creating an object at step 5 and applying once the IRGNM. (i) Final approximation. Axis units are µm. (j) Decrease in the cost.

Figure 4. Hologram generated by the three objects represented in
Figure 3(a), obtained with violet light having a wavelength of 405 nm
emitted at z = 0 and recorded at z = 10. Axis units are microns. Redrawn
from [5].

Figures 3 and 4 illustrate the process. Figure 4 depicts the
hologram generated by the configuration with three objects shown
in Figure 3 (a). We use the topological derivative (5) to spot a first
dominant object at the top and locate an object there, see panel (b).
Then we apply the IRGN method, see panels (c) and (d). At step 4
the cost functional, depicted in panel (j), stagnates without fulfilling
the stopping criteria. This suggests that more objects should be
created. This can be done by hybrid methods, as we explain next.

3.4 Topologically informed IRGN methods
Approaches that use initial object parametrization as reference
have a drawback: the initial guess of the number of objects may be
wrong. To overcome it, we have developed hybrid algorithms [5]
combining topological derivatives and regularized Gauss–Newton
iterations [5]. We fit an initial parametrization qap to the first guess
of the objects constructed by topological methods. Then, we apply
the IRGN method and check that the cost (2) decreases. When the
cost stagnates without fulfilling the stopping criteria, we reset Ωap

equal to the current guess of the objectsΩk for the last parametriza-
tion obtained qk and calculate the topological derivative of the
cost for ℛ = ℝ3 ⧵Ωap. This is given by (3) if x ∈ ℛ = ℝ3 ⧵Ω and
its equivalent

J(ℝ3 ⧵ (Ω ⧵ Bε(x)))

= J((ℝ3 ∪ Bε(x)) ⧵Ω)

= J(ℝ3 ⧵Ω) − 4
3
πε3DT(x,ℝ3 ⧵Ω) + o(ε3)

if x ∈ Ω. Asymptotic calculations yield the formula [5,9]

DT(x,ℝ3 ⧵Ω)

=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

3Re[κ
2
e (κ2e − κ2i )
(κ2i + 2κ2e )

E(x) ⋅ P(x)], x ∈ ℝ3 ⧵Ω,

3Re[κ
2
i (κ2e − κ2i )
(κ2e + 2κ2i )

E(x) ⋅ P(x)], x ∈ Ω,
(6)
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when μe = μi, with forward and conjugate adjoint fields satisfying
transmission Maxwell problems with object Ω = Ωap:

curl(curl E) − κ2eE = 0 in ℝ3 ⧵Ω,

curl(curl E) − κ2i E = 0 in Ω,

n̂× E− = n̂× E+ on ∂Ω,

̂n× curl E− = n̂× curl E+ on ∂Ω,

lim
|x|→∞

|x||curl(E− Einc) × x̂− ıκe(E− Einc)| = 0,

curl(curl P) − κ2eP = 2
N

∑
j=1

(Imeas − |E|2)Eδxj in ℝ3 ⧵Ω,

curl(curl P) − κ2i P = 0 in Ω,

̂n× P− = n̂× P+ on ∂Ω,

̂n× curl P− = n̂× curl P+ on ∂Ω,

lim
|x|→∞

|x||curl P× x̂− ıκeP| = 0,

where n̂ is the unit outer normal, x̂= x/|x| and δxj are Dirac masses
concentrated at the detectors xj, j = 1, ...,N.

We create a new approximationΩnew fromΩap by removing the
points in Ωap at which the topological derivate surpasses a positive
threshold cnew and adding the points outside Ωap at which the
topological derivate falls below a negative threshold −Cnew, see
[6,9]:

Ωnew ≔ {x ∈ Ωap ∣ DT(x,ℝ3 ⧵Ωap) < cnew}

∪ {x ∈ ℝ3 ⧵Ωap ∣ DT(x,ℝ3 ⧵Ωap) < −Cnew}.

The constants Cnew, cnew are selected to ensure a decrease in the
cost functional (2) keeping κi fixed. Once Ωnew is constructed, we
fit a parametrization qnew to its contour and restart the IRGN pro-
cedure for qap = qnew. The procedure stops when the changes in
the cost and the parametrizations fall below selected thresholds.

Let us revisit the example studied in Figures 3 and 4. At step 4
of the IRGN method the cost stagnates without fulfilling the stop-
ping criteria. We calculate the topological derivative (6) of the
cost for the current approximation of the objects, illustrated in
Figure 3 (e). A new region where the topological derivative attains
large negative values appears. We create a new object there and
update the parametrization, see panel (f). Then we apply the IRGN
method again. Since the cost functional still stagnates without
fulfilling the stopping criteria, we recalculate the topological deriva-
tive (6) for the available object approximation. Panel (g) suggests
the creation of a third object. We update the IRGN method using
this new configuration, and evolve the resulting object configura-
tion, represented in panel (h), until the stopping criterion is met at
panel (i) after 24 steps. Panel (j) illustrates stagnation and decrease
of the cost as new objects are added to the parametrization using
topological information and the updated IRGN method evolves,
in a logarithmic scale. These simulations assume κi known and
fixed. Once first guesses for κi are available, we can implement

this procedure considering constant values for κi at each compo-
nent of the parametrization. Obtaining first guesses for κi that are
reliable enough is a hard task [7] and the optimization procedure
can encounter difficulties. Bayesian approaches provide alterna-
tive procedures that can handle these difficulties while quantifying
uncertainty associated to noise and missing information.

4 Bayesian inverse problem

Bayesian formulations consider all unknowns in the inverse prob-
lem as random variables. Given a recorded hologram Imeas, we
seek a finite-dimensional vector of parameters ν characterizing the
imaged objects. When we assume the presence of L objects, ν is
formed by L blocks, one per object. Using Bayes’ formula [22,33]

ppt(ν) ≔ p(ν|Imeas) =
p(Imeas|ν)
p(Imeas)

ppr(ν), (7)

where ppr(ν) represents the prior probability of the variables, which
incorporates our previous knowledge on them, while p(Imeas|ν) is
the conditional probability or likelihood of observing Imeas given ν.
The solution of the Bayesian inverse problem is the posterior prob-
ability ppt(ν|Imeas) of the parameters given the data. Sampling the
posterior distribution, we obtain statistical information on the most
likely values of the object parameters with quantified uncertainty.

4.1 Likelihood choice
Assuming additive Gaussian measurement noise, the measured
hologram and the synthetic hologram obtained for the true object
parameters are related by Imeas = I(νtrue) + ε, where the measure-
ment noise ε is distributed as a multivariate Gaussian 𝒩(0, Γn)
with zero mean and covariance matrix Γn. A possible choice for the
likelihood p(Imeas|ν) is [8]

p(Imeas|ν) =
1

(2π)N/2√|Γn|
exp(−1

2
‖I(ν) − Imeas‖2Γ−1

n ) (8)

with ‖v‖2Γ−1
n

= vtΓ−1
n v. Here, I(ν) represents the synthetic hologram

obtained solving the forward problem (1) for objects characterized
by parameters ν, see Section 2.

4.2 Topological priors
A typical choice for the prior distribution is a multivariate Gaussian

ppr(ν) =
1

(2π)n/2
1

√|Γpr|
exp(−1

2
(ν− ν0)tΓ−1

pr (ν− ν0)) (9)

if ν is “admissible”, and ppr(ν) = 0 when ν is “not admissible”,
that is, it does not satisfy known constraints on the parameter set,
see [8] for details. Here, Γpr is the covariance matrix and n is the to-
tal number of parameters characterizing the objects. The mean ν0
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is typically a set of parameter values characterizing an initial guess
of the objects. Sharp priors are obtained fitting parametrizations
to first guesses of the objects obtained from the study of topologi-
cal fields associated to deterministic shape costs, as explained in
Section 3.2.

4.3 Markov chain Monte Carlo sampling
Combining (7), (8) and (9), the posterior probability becomes (ne-
glecting normalization constants)

ppt(ν) ∝ exp(−1
2
‖I(ν) − Imeas‖2Γ−1

n − 1
2
‖ν− ν0‖2Γ−1

pr )

when ν is admissible, and ppt(ν) = 0 otherwise. Markov chain
Monte Carlo (MCMC) methods provide tools to sample unnormal-
ized posteriors. Classical MCMC methods, such as Hamiltonian
Monte Carlo or Metropolis–Hastings [30] construct a chain of n-
dimensional states ν(0) → ν(1) → ⋯ → ν(k) → ⋯ which evolve to
be distributed in accordance with the target distribution ppt(ν).
After sampling an initial state ν(0) from the prior distribution (9),
the chain advances from one state ν(k) to the next ν(k+1) by means
of a transition operator that varies with the method employed [30].
More recent ensemble MCMC samplers [13, 18] draw W initial
states from the prior distribution (the “walkers” or “particles”) and
transition to new states while mixing the previous ones to generate
several chains. This approach allows for parallelization and can
handle multimodal posteriors [8].

Figure 5 illustrates the results in a two-dimensional geome-
try, to reduce the computational cost in the tests. A few million
samples were generated, which requires solving an identical num-
ber of forward problems. In two-dimensional set-ups we replace
the stationary transmission problem for the Maxwell equations
by a transmission problem posed for the Helmholtz equation [8].
Assuming κi is piecewise constant, we resort to fast boundary
elements to solve the Hemholtz transmission problems in two
dimensions [12]. Once a large enough collection of samples is
generated [17], we extract statistical information describing the
imaged object: the most likely shapes, sizes, locations, as well as
uncertainty in the predictions. While starshaped two-dimensional
objects can be reasonably characterized with 10–20 parameters,
three-dimensional objects require 80–90. Full characterization of
the posterior probability by MCMC sampling becomes more expen-
sive as the number of parameters and the time required to solve
forward problems increase.

4.4 Laplace approximation
The full characterization of the posterior probability is a challenging
and costly probability problem for moderate- and high-dimensional
parameters ν. Low-cost approximations of the posterior distribution
often rely on finding the maximum a posteriori (MAP) point, that
is, the set of parameters that maximize the posterior probability.

Figure 5. For the two-dimensional object depicted in red, with violet light
having a wavelength of 405 nm emitted at y = −5 and recorded at y = 5,
we present statistical information obtained from the samples generated
by MCMC sampling. A contour projection of a two-dimensional histogram
represents the probability of belonging to the object, compared to the
contours of the true object, the prior mean and the MAP (maximum
a posteriori) approximation. The probability is multimodal, as evidenced
by additional two-dimensional histograms representing the probability of
being the center of mass of the object, the most likely values for the
largest/smallest object radii and their orientation, the most likely areas,
and the deviation from a spherical shape. Two main peaks are identified.
The main mode corresponds to a majority of samples wrapping around
the object, while the second mode represents the contribution of
additional large samples elongated in the direction of incidence of the
incoming wave and represents an aberration of this imaging system,
which uses only one incident wave. This effect may not be observed for
other shapes, sizes, or light wavelengths – it depends on the geometry.
Axis units are microns. Redrawn from [8].
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Upon taking logarithms, maximizing the posterior probability of
the parameter set ν given the data Imeas is equivalent to minimizing
the regularized cost functional [2]

J(ν) ≔ 1
2
‖I(ν) − Imeas‖2Γ−1

n + 1
2
‖ν− ν0‖2Γ−1

pr . (10)

This is a nonlinear least-squares problem of the form previously
considered in deterministic inversion, including regularization terms
provided by the prior knowledge. We can solve it efficiently by using
an adapted Levenberg–Marquardt–Fletcher iterative scheme [15].
Starting from ν0 = ν0, we set νk+1 = νk + ξk+1, where ξk+1 is the
solution of

(HGN
λk (ν

k) +ωk diag(HGN
λk (ν

k)))ξk+1 = −gλk(νk). (11)

Here, HGN is the Gauss–Newton approximation to the Hessian of
the functional (10) and g is its gradient, while λk is a scaling factor
for Γ−1

pr that balances the different orders of magnitude of the two
terms defining the cost in the first iterations, and becomes equal
to 1 at a certain point. At each step, the adjustable parameter
ωk > 0 increases until the cost J(νk) decreases, and decreases oth-
erwise, making the iteration closer to Gauss–Newton or gradient
schemes as required.

Linearization about the resulting MAP point νMAP (the so-called
Laplace approximation) provides an approximation of the posterior
distribution by a Gaussian with mean νMAP and posterior covariance
Γpo = HGN(νMAP)−1. Sampling this Gaussian, we extract statistical
information representing the dominant mode at a much lower com-
putational cost, see Figure 6. Reaching νMAP takes about 20 steps
of scheme (11). The whole process, sampling included, is finished
in a few minutes, instead of a few days.

We have considered κi fixed and known in these tests. In case
it is constant and unknown, it becomes an additional parameter
included in ν. In the end, we obtain additional histograms reflecting
uncertainty about the value with highest probability [8].

5 Perspectives

Digital holography poses challenging inverse problems which pro-
vide an opportunity to develop and test a variety of analytical and
computational tools. First guesses of imaged objects are obtained
by calculating the topological derivative of misfit functionals com-
paring the true hologram and the synthetic holograms that would
be generated for different object configurations according to the se-
lected forward model. Such guesses are robust to noise in the data.
To reduce dimensionality, one can characterize the imaged objects
by means of starshaped parametrizations. In a deterministic frame-
work, we have shown that hybrid schemes combining iteratively
regularized Gauss–Newton methods with topological derivative
initializations and updates lead to good reconstructions of simple
object configurations in a few steps, using stopping criteria that

Figure 6. Counterpart of Figure 5 using the Laplace approximation
of the posterior density. The main mode corresponding to the true object
is captured. Axis units are microns. Redrawn from [8].

take into account the expected level of noise in the data. We are
able to quantify uncertainty in such predictions by resorting to
Bayesian formulations with topological priors. In two dimensions,
Markov chain Monte Carlo methods provide a complete characteri-
zation of the posterior probability of the observed hologram being
that is generated by a few starshaped objects. Three-dimensional
tests are affordable for very simple shapes, such as a sphere or
a cylinder [11]. Handling high-dimensional parametrizations, in
three dimensions or just irregular shapes, requires the introduction
of strategies to reduce the computational cost. Laplace approxima-
tions based on optimizing to find the highest probability parameter
set and then linearizing the posterior probability about it to obtain
a multivariate Gaussian distribution are useful tools for uncertainty
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quantification when there is a single dominant mode. Developing
fast sampling methods which are robust as dimension grows would
be an important step forward to handle more general situations.

Holography set-ups are particularly challenging due to the fact
that a single incident wave is used. We have focused here on light
imaging, though acoustic waves can also be used to resolve at
different scales. We expect similar techniques to be useful in inverse
scattering problems involving other types of waves and different
emitter/receiver configurations, such as microwave imaging or
elastography, for instance.
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