
Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to Differential Equations.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.
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Let f ∶ [0,∞)→ℝ be a C 1-differentiable and convex function with
f(0) = 0.
(i) Prove that, for every x∈ [0,∞), the following inequality holds:

∫
x

0
f(t)dt ≤ x2

2
f ′(x).

(ii) Determine all functions f for which we have equality.

Dorin Andrica (“Babeş-Bolyai” University, Cluj-Napoca,
Romania) and Mihai Piticari (“Dragoş Vodă” National College,
Câmpulung Moldovenesc, Romania)
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Let y(x) be the unknown function of the following fractional-order
derivative Cauchy problem:

⎧
⎨
⎩

Dαy = f(x, y), 0 < α < 1,

y(0) = y∗.

Find the solution of this problem by solving an equivalent first-
order ordinary Cauchy problem, with a solution independent on
the kernel of the fractional operator.

Carlo Cattani (Engineering School, DEIM,
University “La Tuscia”, Viterbo, Italy)
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Let y(x) be the unknown function of the following Bernoulli frac-
tional-order Cauchy problem:

⎧
⎨
⎩

Dαy = g(x)yβ, 0 < α < 1, β ≠ 0, 1,

y(0) = y∗,

where g(x) is a continuous function in the interval I = [0,∞).
Find the solution of this problem by solving an equivalent first-

order ordinary Cauchy problem, with a solution independent on
the kernel of the fractional operator.

Carlo Cattani (Engineering School, DEIM,
University “La Tuscia”, Viterbo, Italy)
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Let g be a real-valued C 2-function defined on (0,∞), strictly increas-
ing, such that g(x) > 1 for all x ∈ (0,∞) and g(2) < 4. Consider
the boundary value problem

y″ = −g(x)y, y(0) = 1, y′(0) = 0.

Prove that the solution y has exactly one zero in (0,π/2), i.e., there
exists a unique point x0 ∈ (0,π/2) such that y(x0) = 0, and give
a positive lower bound for x0.

Luz Roncal (BCAM – Basque Center for Applied Mathematics,
Bilbao, Spain, Ikerbasque Basque Foundation for Science,
Bilbao, Spain and Universidad del País Vasco/Euskal Herriko
Unibertsitatea, Bilbao, Spain)
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We propose an interesting stochastic-source scattering problem
in acoustics. The stochastic nature for such problems forces us to
deal with stochastic partial differential equations (SPDEs), rather
than the partial differential equations (PDEs) which hold for the
corresponding deterministic counterparts. In particular, we provide
the appropriate variational formulation for the stochastic-source
Helmholtz equation.
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We consider the following boundary value problem (BVP) for
the Helmholtz equation with a stochastic source:

⎧
⎨
⎩

Δu+ k2u = f in D,

u = 0 on ∂D,
(1)

where f = ∑
a
faHa is a generalized stochastic source and

Ha(ω) =
∞

∏
i=1

hai(⟨ω, ξδ i⟩)

are stochastic Hermite polynomials with ω ∈ Ω, Ω being a probab-
ility space. The Hermite polynomials are denoted by hai, whereas
the tensor product is denoted by ξd j. We also define the Hermite
functions ξn(x) as follows:

ξn(x) = π− 1
4 ((n− 1)!)−

1
2 e− x2

2 hn−1(x), n = 1, 2, 3,…,

and we set d j ≔ (d j
1,d

j
2,…,d j

m), where d j
i ∈ ℕ is related to the

following tensor products:

ξd j ≔ ξd j
1 ⊗ ξd j

2
⊗⋯⊗ ξd j

m, j = 1, 2, 3,…,

with i < j ⇔ d i
1 + d i

2 +⋯+ d i
m ≤ d j

1 + d j
2 +⋯+ d j

m and |dj| =
d j
1 + d j

2 +⋯+ d j
m. In addition, we employ the countable index

I = {a = (a1,a2,…) ∣ ai ∈ ℕ∪ {0}}, and there only finitely many
ai ≠ 0.

For the stochastic problem (1), we use the expansions

u = ∑
a∈ I

uaHa and f = ∑
a∈ I

faHa

to get a hierarchy of deterministic BVPs

⎧
⎨
⎩

Δua + k2ua = fa in D,

ua = 0 on ∂D.
(2)

Assume that ua ∈ H1
0(D) solves problem (2). Then prove that, for

every v ∈ H1
0(D), the solution ua satisfies

−∫
D
∇ua ⋅ ∇v dx+∫

D
k2uav dx = ∫

D
fav dx.

George Kanakoudis, Konstantinos G. Lallas and Vassilios
Sevroglou (Department of Statistics and Insurance Science,
University of Piraeus, Piraeus 18534, Greece)

265
For a Newtonian incompressible fluid, the Navier–Stokes momen-
tum equation, in vector form, reads [3]

ρ(∂u
∂t

+ u ⋅ ∇u) = −∇p+ μ∇2u+ F,

u = u(x, t), u∶ Rn × (0,∞) → Rn.
(1)

Here, ρ is the fluid density, u is the velocity vector field, p is the
pressure, μ is the viscosity, and F is an external force field.

(i) Assuming that both the pressure drop ∇p and the external
field F are negligible, it is easy to show that equation (1) reduces to

∂u
∂t

+ u ⋅ ∇u = ν∇2u,

and finally to equation (2), where ν = μ
ρ is the so-called kinematic

viscosity [4].
(ii) Regarding the one-dimensional viscous Burgers equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

, u = u(x, t), (2)

prove that an analytical solution can be obtained by means of the
Tanh Method [1,2,4] as

u(x, t) = λ[1− tanh( λ
2ν

(x− λt))], λ > 0.

M.A. Xenos and A. C. Felias (Department of Mathematics,
University of Ioannina, Greece)
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II Open problems

(A) Uniqueness of positive steady states for KPP equations
in general domains

by Henri Berestycki (Centre d’analyse et de mathématique
sociales, EHESS-CNRS, Paris, France; Institute for Advanced Study,
Hong Kong University of Science and Technology)

Reaction-diffusion equations
These arise ubiquitously in the modelling of population dynamics,
and more generally in biology and ecology. Remarkably, various
fields converge on these equations. In addition to modelling in the
life sciences and, of course, nonlinear partial differential equations,
they arise in probability theory (via branching particle systems)
and statistical physics. These equations have witnessed remarkable
progress in recent years. Yet, many basic problems remain open.
The object of this note is to present a couple of such questions
that are simple to formulate.
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Reaction-diffusion equations of homogeneous type read in
general as ∂tu− Δu = f(u) in ℝN. The nonlinear term f is called
the reaction term and the Laplacian operator is associated with
diffusion. This equation is termed homogeneous because it does
not involve explicitly the location x (or time t) and also because it is
set in all of space. The Fisher–KPP case (or strong KPP case) refers
to the class of nonlinear terms f of class C1 that satisfy

f(0) = f(1) = 0, and the function s ↦ f(s)
s

is decreasing on (0, 1].
(1)

The archetypal example is f(u) = u(1− u). These reactions terms
were introduced and first studied by Fisher [9] and Kolmogorov,
Petrovsky and Piskunov (KPP) [10]. I will discuss some questions
related to the uniqueness of bounded positive stationary solutions,
that is, bounded positive solutions of the semilinear elliptic equation
−Δu = f(u) with boundary conditions.

Heterogeneous equations
In recent years, many works have addressed heterogeneous ver-
sions of the equations introduced above. These arise in various
guises. First, the reaction term f is allowed to vary in space and time:
f = f(t, x,u). Likewise, in various models, one wishes to consider
more general second-order elliptic operators than the Laplacian:

∑
i j

ai j(x)
∂2u
∂xi∂xj

+∑
i

bi(x)
∂u
∂xi

.

My works with Hamel and Rossi [6] and Hamel and Nadin [4] are
devoted precisely to this type of question. The interested reader
will find in or infer from these papers open problems analogous to
several that I describe here.

Another natural heterogeneity arises from the geometry of the
domain of propagation when it is not the whole space. Given an
open subset Ω ⊂ ℝN subject to Dirichlet boundary conditions, we
are led to study the problem

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

−Δu = f(u) in Ω,

0 < u ≤ 1 in Ω,

u = 0 on ∂Ω.

(2)

Indeed, in many cases of interest, f(s) < 0 for all s > 1, and then
one can show that any non-negative bounded solution (besides 0)
satisfies 0 < u < 1.

Existence
To discuss the existence of a positive solution of (2), we use the gen-
eralized principal Dirichlet eigenvalue in the domain Ω, defined as

λ(Ω) ≔ inf
𝜙∈H1

0(Ω)⧵{0}

∫Ω|∇𝜙|2

∫Ω𝜙2 .

This definition coincides in the present case with the notion of
generalized principal eigenvalue introduced in [7] and applied to
unbounded domains in [8]. We can then state the existence result
in a more general framework of weak KPP class:

f(0) = f(1) = 0, 0 < f(s) < f ′(0)s for all s ∈ (0, 1). (3)

Existence in (2) is conditioned by this eigenvalue.

Theorem 1. Let f satisfy the weak KPP condition (3). Then (2)
admits a positive bounded solution if λ(Ω) < f ′(0). Conversely, if
λ(Ω) > f ′(0), (2) has no positive bounded solution.

This result from [2] is analogous to the one for variable-coef-
ficient operators in ℝd in [6] and is obtained with the same argu-
ments.

Uniqueness. When the domain Ω is bounded and f satisfies the
strong KPP assumption (1), the solution of (2) is unique when it
exists [1]. This raises a natural question: is the same true in unboun-
ded domains? Cole Graham and myself [2] have been working on
this problem and our progress leads us to formulate the following.

Conjecture 2. Consider an unbounded uniformly smooth (say
C2,α) domain Ω. Under the strong KPP condition (1), the solution
of problem (2) is unique when it exists.

Here, “uniformly smooth” means that there is a fixed r > 0
such that for any boundary point p ∈ ∂Ω, its boundary neighbour-
hood ∂Ω∩ Br(p) can be represented as the graph of some C2,α

function 𝜙p ∶ D→ℝ, where D is the unit ball in ℝN−1 and ‖𝜙p‖C2,α
is bounded independently of the point p (see [5, Section 1.3]).
One may be even more demanding and lift this uniform regularity
condition.

266*
Open problem. In a locally smooth domain Ω with f of strong
KPP-type, is the solution of problem (2) unique when it exists?

The conjecture in its full generality is open. In my work with
Cole Graham [2], we prove uniqueness under a non-degeneracy
condition. This result covers a large variety of cases and can be
viewed as generic. Its statement requires the use of eigenvalues
on various limits of Ω. We say that Ω∗ is the connected limit of Ω
along a sequence (xn)n∈ℕ ⊂ Ω if the following holds. There exists
a uniformly C2,α domain Ω̃ ⊃ Ω∗ such that Ω− xn → Ω̃ locally
uniformly in C2,α as n → ∞, and Ω∗ is the connected component
of Ω̃ whose closure contains 0. We then define the principal limit
spectrum as

Σ(Ω) ≔ {λ(Ω∗) ∣ Ω∗ is a connected limit of Ω},
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and we let Σ(Ω) denote its closure. We refer to the elements of Σ
as (principal) limit eigenvalues. One of our main results in [2] is the
following.

Theorem 3. Suppose Ω is uniformly smooth, f satisfies (1), and
f ′(0) ∉ Σ(Ω). Then the solution of (2) is unique when it exists.

An example. To illustrate Conjecture 2 and Theorem 3, consider
the following domain in ℝ2 that we call the “infinite light bulb”.

We assume that the round portion is sufficiently large that
λ1(Ω) < f ′(0). Then, by Theorem 1, we know that (2) admits
at least one solution. We can show that Σ(Ω) = {λ(Ω), π2/L2}.
Thus Theorem 3 applies when L ≠ π/√f ′(0). The critical case
L = π/√f ′(0) is not covered by our result. Nonetheless, in [2], we
exploit the explicit structure of Ω to prove that the solution of (2)
is still unique in this case. This supports Conjecture 2.

Robin type conditions
Other types of boundary conditions are of interest as well. We can
consider the Robin problem

⎧⎪⎪
⎨⎪⎪⎩

−Δu = f(u) in Ω, 0 < u ≤ 1,

−∂u
∂ν

= γu on ∂Ω,
(4)

where ν is the unit outward normal vector field on the boundary
∂Ω and γ ≥ 0 is a constant. More generally, one might consider
a function γ(x) ≥ 0 that varies on ∂Ω.

Conjecture 4. In a uniformly smooth domain Ω with f of strong
KPP-type, the solution of problem (4) is unique when it exists.

In our forthcoming work [2], we establish an analogue of The-
orem 3 in the Robin case. This requires a suitable notion of the
generalized principal Robin eigenvalue.

General positive and other reaction terms
In [2], we also consider the more general class of positive nonlinear
terms f. This class is defined by the conditions

f(0) = f(1) = 0, f ′(0) > 0, f(s) > 0 for all s ∈ (0, 1). (5)

In all of space ℝN, uniqueness holds in the more general positive
case. Indeed, under conditions (5), u≡1 is the unique solution of (2)
when Ω = ℝN. For a proof, I refer the reader to the forthcoming
book [3]. The presence of boundary changes matters significantly.
In fact, in a proper subset Ω⊂ℝN with Dirichlet or Robin boundary,
solutions of (2) (or (4)) need not be unique. However, uniqueness
holds under Neumann boundary conditions.

Theorem 5. In a uniformly smooth domain Ω with f of positive
type (5), the unique solution of the Neumann problem (4) with
γ = 0 is u ≡ 1.

This result is a generalization of one in my earlier work with
Hamel and Nadirashvili [5]. This form is due to Rossi [11]. It naturally
calls for the following.

267*
Problem. Can the result of Theorem 5 be extended to locally
smooth domains?
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(B) A problem in geometric analysis
by Michael Struwe (Departement Mathematik, ETH Zürich,
Switzerland)

The last 40 years have seen enormous progress in the application
of variational methods to problems in geometric analysis, which
in general are characterized by the possibility of “bubbling” and
topological degeneration of sequences of approximate solutions
obtained either by regularization of the problem, or as “Palais–
Smale sequences” for the energy functional involved. In critical
point theory therefore it is vital to understand the possible inter-
action of the problem at hand with its “cousins” that characterize
the “bubbling”, in particular, when the sought-after critical points
are of “mountain-pass” type.

As an example consider the (by now classical) “Nirenberg prob-
lem” of finding conformal metrics of prescribed Gauss curvature
on the standard 2-sphere, which has given rise to sophisticated
analytic approaches and deep insights into the interplay of analysis
and geometry, but which still poses a challenge, even though many
partial answers have been obtained.

Nirenberg’s problem
After the work of Berger [1] and Kazdan–Warner [4] on conformal
metrics of prescribed Gauss curvature on closed Riemann surfaces,
the particular case, proposed by Nirenberg, of finding conformal
metrics g = e2ug0 on the sphere S2 with its standard round metric
g0 having a given function f as Gauss curvature Kg = f has attracted
the attention of geometric analysts.

In view of the equation

Kg = e−2u(−Δ0u+ 1)

relating Kg and u, where Δ0 is the Laplace–Beltrami operator in
the metric g0, for given f ∶ S2 → ℝ, we need to solve the nonlinear
partial differential equation

−Δ0u+ 1 = f e2u on S2. (1)

The problem is variational. Indeed, introducing the Liouville
energy

S(u) = ⨍
S2
(|∇u|2 + 2u)dμ0,

where dμ0 is the area element in the metric g0 and ⨍S2 =
1
4π ∫S2

denotes the average, and setting

E(u) = S(u) − log(⨍
S2
f e2u dμ0) (2)

for u ∈ H1(S2), the standard Sobolev space of L2-functions on S2

with square-integrable weak derivatives, solutions of (1) may be
characterized as critical points of E.

Via the Möbius group M of conformal diffeomorphisms of the
sphere, for any point p ∈ S2 the functional E may be compared

with the functional

Ep(u) = S(u) − log(⨍
S2
f(p)e2u dμ0),

where f is replaced by the constant f(p). Indeed, given any p ∈ S2,
any t ≥ 1, letting Φp ∶ S2 ⧵ {−p} → ℝ2 be the stereographic pro-
jection from the point −p ∈ S2 and letting δt ∶ ℝ2 ∋ z → tz ∈ ℝ2

be the standard dilation, we obtain the Möbius map

Φp,t = Φ−1
p ∘ δt ∘Φp ∈ M.

Letting up,t = u∘Φp,t + log|Φ′
p,t|, where wewrite |Φ′|=√detdΦ

for brevity, we then have

S(up,t) = S(u)

(see for instance [2, Proposition 2.1]) and thus

E(up,t) = S(up,t) − log(⨍
S2
f e2up,t dμ0)

= S(u) − log(⨍
S2
(f ∘Φ−1

p,t )e2u dμ0) → Ep(u) as t → ∞.

For large t > 1, it was shown by Chang–Yang [2] that the
first and second variation of E at up,t may be related to ∇f(p)
and ∇2f(p), respectively. From this observation, they deduce the
following existence result.

Theorem 6 (Chang–Yang [2], Theorem II′). Suppose that f > 0 is
a smooth function satisfying the non-degeneracy condition

Δ0f(p) ≠ 0 at any p ∈ S2 with ∇f(p) = 0 (3)

and the index count condition

∑
∇f(p)=0,Δ0f(p)<0

(−1)ind(p) ≠ 1. (4)

Then there is a smooth solution u to (1).

Interpretation
Condition (4) in Theorem 6 may be interpreted in terms of the “last
Morse inequality” related to the variational integral (2), that is, in
terms of an equation identifying the “topological degree” d = 1
of the (contractible) set of admissible functions H1(S2) with the
sum of the topological degrees of all critical points of E, including
the contributions of the degenerate variational problems related
to the functionals Ep, p ∈ S2. With what we remarked above, the
latter contribution is given by the left-hand side of (4). Thus, if that
term is different from 1, there has to be a further contribution to
the total topological degree of all critical points, then necessarily
coming from a solution u to (1).

Open problem
In [8] an example was given showing that condition (4) in The-
orem 6 in general cannot be removed; thus, with the non-degen-
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eracy condition (3), condition (4) is not only sufficient but also in
general necessary for the existence of a solution to (1).

However, we are still lacking a precise characterization of all
solutions of (1). In particular, we should be able to obtain the
existence of multiple solutions in certain cases. A simple instance
of such a case, where – hopefully – the problem is feasible, would
be when the given function f is symmetric with respect to reflection
in a plane and is a Morse function similar to the example studied
in [8] but satisfying the Chang–Yang condition (4).

268*
Problem. Let F be the set of functions 0 < f ∈ C∞(S2) with

f(x1, x2, x3) = f(−x1, x2, x3) for x = (x1, x2, x3) ∈ S2,

having a saddle point at the north pole x3 = 1, a minimum at
the south pole x3 = −1, and precisely two maxima as critical
points, all of which are non-degenerate and satisfy (3), and such
that condition (4) holds. Find conditions for f ∈ F such that there
is more than one solution of (1), and characterize the set of all
solutions of (1) in the sense of Morse theory.

Of course, the question may easily be widened to a larger class
F of functions.

Related challenges
Note that Chang–Yang [2] showed that when f ≢ 1 solutions of
(1) never are relative minima of the energy E.

The Nirenberg problem thus can be seen in the larger context of
finding critical points of “mountain-pass” type for variational prob-
lems characterized by conformal invariance and “bubbling”. A clas-
sic instance of such problems is in 4-dimensional gauge theory, in
particular, in the question concerning the existence of 1-equivariant,
non-minimal Yang–Mills connections in the trivial SU(2)-bundle
over S4, which remained open after Sibner–Sibner–Uhlenbeck [6]
obtained m-equivariant, non-minimal Yang–Mills connections for
any m ≥ 2; see also Donaldson [3, pp. 309–310] for further de-
tails. Moreover, conformal invariance is responsible for many of
the difficulties encountered by Rivière [5] in his recent work on
“min-max” critical points for the Willmore energy related to sphere
eversion.

Recall that Smale [7] famously showed that it is possible to “turn
a sphere inside out” via a continuous path of C 2-immersions of S2

into ℝ3. Moreover, Bryant characterized all immersed Willmore
spheres in ℝ3 as being given by the images by inversions of simply
connected, complete, non-compact minimal surfaces with planar
ends, with Willmore energy given by 4πk, where k is the number
of ends, and index equal to k − 3. Finally, a topological result
of Banchoff–Max shows that any path everting the sphere has
to contain at least one immersion with a quadruple point and
therefore, by a result of Li–Yau, with Willmore energy β ≥ 16π.
Combining these pieces of information, Rivière conjectured that

the inversion of a simply connected, complete minimal surface
with k = 4 planar ends, thus having index m = 1 and Willmore
energy 16π, should give a “min-max Willmore sphere”, achieving
the least maximal Willmore energy along paths of immersions of S2

into ℝ3 that “turn the sphere inside out”. But in the variational
ansatz “bubbling” may occur, and many questions remain to be
solved. See [5] for further details and references.

Similarly, in gauge theory the desired 1-equivariant, non-min-
imal Yang–Mills connections in the trivial SU(2)-bundle over S4

should achieve the least maximal Yang–Mills energy along paths
of connections beginning at a 1-equivariant Yang–Mills instanton
and ending at a 1-equivariant anti-instanton. But again “bubbling”
comes in the way.
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III Solutions

252
Prove that the space of unordered couples of distinct points of
a circle is the (open) Möbius band. More formally, consider

(S1 × S1) ⧵ {(x, x) ∣ x ∈ S1}

and the equivalence relation on this space (x, y) ≡ (y, x); prove
that the quotient topological space is the (open) Möbius band.

Costante Bellettini (Department of Mathematics,
University College London, UK)

Solution by the proposer
The space of ordered pairs of points of a circle is the cartesian
product S1 × S1, hence a torus. This is the same as the unit square
[0, 1] × [0, 1] with the following identifications: [0, 1] × {0} is
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identified with [0,1]× {1}, both with orientation from left to right;
{0} × [0, 1] is identified with {1} × [0, 1], both with orientation
from bottom to top. Note that the four vertices of the square are
the same point. We now need to remove couples of the type (x, x)
(same point of the circle), which implicitly removes (1,0) and (0,1)
as well. Hence, we are now looking at the square with the diagonal
from (0, 0) to (1, 1) removed, and with (1, 0) and (0, 1) removed,
keeping the identification we had earlier. Next, we need to identify
couples (x,y) and (y,x) (since wewant to study unordered couples).
This amounts to removing one of the two triangles that have been
obtained after removing the diagonal of the square; without loss of
generality we assume that we remove the top-left triangle. What is
left is the triangle with vertices (0,0), (1,0), (1,1), with the longer
side removed (the one that was the diagonal of the square), with
the point (1, 0) removed, and with the following identification:
any point (x, 0) was identified (in the original torus) with the point
(x, 1), which has then been identified with the point (1, x). Hence,
the triangle has the horizontal side oriented left-to-right identified
with the vertical side oriented bottom-to-top. We can check that
this is the (open) Möbius band as follows: the point (1, 0) is not in
the triangle (nor is the longer side of the triangle), so we can stretch
the point (1, 0) until the triangle becomes a rectangle, with the
stretched point that has become the side opposite to the side that
was the diagonal of the square. The identification of the remaining
two sides gives the (open) Möbius band.

253
In the Euclidean plane, let γ1 and γ2 be two concentric circles of
radius respectively r1 and r2, with r1 < r2. Show that the locus γ of
points P such that the polar line of P with respect to γ2 is tangent
to γ1 is a circle of radius r22/r1.

Acknowledgement. I want to thank the professors who guided
me in the first part of my career for giving me the ideas for these
problems.

Paola Bonacini (Mathematics and Computer Science
Department, University of Catania, Italy)

Solution by the proposer
Let P be any point such that the polar line r of P with respect to γ2
is tangent to γ1. Then clearly P is external to γ2. Let C be the centre
of the two circles, {Q} = γ1 ∩ r and {T1, T2} = γ2 ∩ r. Since r is
tangent to γ1 in Q, we can assert that the line CQ is orthogonal
to r and, since r is the polar of P with respect to γ2, the line CP is
orthogonal to the line r. So, the points P, Q and C are collinear and
the angles T̂1QP, T̂2QP, T̂1QC and T̂2QC are right. We also know
that T̂1CQ = T̂2CQ = α, where 0 < α < π

2 . So we can assert that

QT1 = QT2 = √r22 − r21 ,

and by looking at the triangle CQT1, we see that

r1 = r2 cosα ⟹ cosα = r1
r2
.

Clearly, T̂1PQ = π
2 − α, and consequently,

QP = QT1 cot(
π
2
− α) = r22 − r21

r1
.

This implies that

PC = QP+ QC = r22
r1
,

which clearly shows that γ is a circle of centre C and radius r22/r1.

254
Let A ⊆ ℝ3 be a connected open subset of Euclidean space, and
suppose that the following conditions hold:
(1) Every smooth irrotational vector field on A admits a potential

(i.e., it is the gradient of a smooth function).
(2) The closure A of A is a smooth compact submanifold of ℝ3 (of

course, with non-empty boundary).
Show that A is simply connected. Does this conclusion hold even
if we drop condition (2) on A?

Roberto Frigerio (Dipartimento di Matematica,
Università di Pisa, Italy)

Solution by the proposer
The usual scalar product on ℝ3 induces an identification between
smooth vector fields and differential 1-forms, which identifies ir-
rotational vector fields with closed forms, and fields admitting
a potential with exact forms. Therefore, condition (1) may be re-
stated as follows: every smooth 1-form on A is exact, i.e., the
first de Rham cohomology group of A vanishes. By the de Rham
Theorem, this is in turn equivalent to the fact that the singular
homology module H1(A,ℝ) vanishes.

Since any compact manifold with boundary is homotopy equi-
valent to its interior, we may thus assume that H1(A,ℝ) = 0.
A well-known consequence of the Poincaré Duality Theorem is
that, for any compact orientable 3-manifold with boundary M, the
dimension of H1(∂M,ℝ) is twice the dimension of H1(M,ℝ). Since
every codimension-0 submanifold of ℝ3 is obviously orientable, we
thus have H1(∂A,ℝ) = 0. Let S1,…, Sk be the components of the
boundary ∂A. Since

H1(∂A,ℝ) =
k

⨁
i=1

H1(Si,ℝ)

and the 2-sphere is the only compact orientable 2-manifold without
boundary with vanishing first cohomology group, we can conclude
that Si is diffeomorphic to the 2-sphere for every i = 1,…, k.
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It is well known that every smooth sphere in ℝ3 bounds a
smooth closed disc (this is no longer true for non-smooth spheres;
see below); hence, for every i = 1,…, k, we have Si = ∂Bi, where
Bi ⊆ ℝ3 is a smooth disc. Since A is connected, it readily follows
that there exists one of these closed discs, say B1, such that

A = B1 ⧵ (int(B2) ∪⋯∪ int(Bk)).

In other words, A is a closed disc with some open discs removed,
and in particular it is simply connected.

In order to prove that A is simply connected, the condition that
A be the interior of a compact smooth manifold with boundary is
essential. Indeed, let S ⊆ ℝ3 ⊆ S3 be the well-known Alexander
horned sphere. Then S separates S3 into two connected compon-
ents: one of them, say A1, is homeomorphic to an open ball; the
other one, say A2, is not simply connected. However, Alexander
duality implies that

H1(A1,ℝ)⊕ H1(A2,ℝ) = H1(S3 ⧵ S) ≅ H1(S,ℝ) = 0.

We thus haveH1(A2,ℝ)= 0while π1(A2)≠{1}. By setting A=A2,
we thus get a non-simply connected open connected subset A of
ℝ3 such that every smooth irrotational vector field on A admits
a potential.

255
A regulus is a surface in ℝ3 that is formed as follows: We consider
pairwise skew lines ℓ1, ℓ2, ℓ3 ⊂ ℝ3 and take the union of all lines
that intersect each of ℓ1, ℓ2, and ℓ3. Prove that, for every regulus U,
there exists an irreducible polynomial f ∈ ℝ[x, y, z] of degree two
that vanishes on U.

Adam Sheffer (Department of Mathematics, Baruch College,
City University of New York, NY, USA)

Proof
Let 𝒫 be a set of 9 points that is obtained by arbitrarily choosing
three points from each of ℓ1, ℓ2, and ℓ3. We write

f(x, y, z) = a1x2 + a2y2 + a3z2 + a4xy+ a5xz

+ a6yz+ a7x+ a8y+ a9z+ a10.

Asking f to vanish at a specific point is equivalent to a linear equa-
tion in the variables a1,…,a10. Thus, asking f to vanish at all points
of 𝒫 yields a system of 9 linear equations with 10 variables. Since
the number of variables is larger, this system admits a nontrivial
solution. Thus, there exists a nonzero polynomial f ∈ ℝ[x, y, z] of
degree at most two that vanishes on 𝒫. Let W ⊂ ℝ3 be the set of
points at which f vanishes.

Let f1 ∈ ℝ[s] be the restriction of f to the line ℓ1. Since f
vanishes on at least three points of ℓ1, the polynomial f1 has at
least three roots. Since deg f1 ≤ 2 but this polynomial has more
than two roots, we have that f1(s) = 0. In other words, ℓ1 ⊂ W.

By repeating the above argument, we get that ℓ1, ℓ2, ℓ3 ⊂ W. By
definition, no plane contains a pair of skew lines, so W cannot
contain a plane. This implies that f is irreducible of degree two.

Consider a line ℓ ′ that intersects ℓ1, ℓ2 and ℓ3. Since these
three lines are pairwise skew, the three intersection points are
distinct, so |ℓ ′ ∩ U| ≥ 3. By restricting f to ℓ ′ as above, we get
that ℓ ′ ⊂ W. Since U is the union of all such lines ℓ ′, we get that
U ⊆ W. This proof is by Larry Guth, although it may have also
existed earlier.

256
(Enumerative Geometry). How many lines pass through 4 generic
lines in a 3-dimensional complex projective space ℂℙ3?

Mohammad F. Tehrani (Department of Mathematics,
University of Iowa, USA)

Introductory remarks
This is a problem in an over a century-old area of mathematics
called enumerative geometry. Enumerative geometry is concerned
with finding or counting geometric objects (mainly curves, i.e.,
1-dimensional objects over the ground field) satisfying certain geo-
metric conditions (e.g., passing through a specified set of objects
or having a particular degree, genus, and types of singularities).
Enumerative geometry was revolutionized in the mid-1990s by
the novel predictions of mirror symmetry that led to the creation
of Gromov–Witten theory and extensive study of such questions
in complex algebraic geometry, symplectic geometry, and string-
theoretic physics.

The most straightforward example in this area is the number
of lines passing through two points, where the answer is 1. Here,
one can interpret the word “line” as a real line in the real Euclidean
space ℝn, a complex line in the complex Euclidean space ℂn, or
a complex projective line (i.e., ℂℙ1 ≅ S2) in the complex projective
space ℂℙn. The answer is the same regardless of the context. The
same is not true in most other questions. Gromov–Witten theory
is mostly about counting complex curves in complex projective
varieties or closed symplectic manifolds. The benefits of studying
complex curves in compact complex/almost complex manifolds is
two-fold. First, the compactness of the spaces involved results in
finite counts. Second, working over complex numbers ensures that
count of such objects does not depend on the choices involved.
Recall that a degree-d polynomial over ℂ has always d roots (when
counted with multiplicities), but a degree-d polynomial over ℝ has
at most d roots.

Solution by the proposer
Before finding the answer, let us indeed argue that the expected
answer is a finite number. As in linear algebra, this is done by com-
puting degrees of freedom and the number of equations imposed
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by the constraints. As we mentioned above, there is exactly one
line passing through two distinct points in ℂℙ3; the dimension of
the space of pairs of such points is 3+ 3 = 6. However, for each
line, there is a (1+ 1 = 2)-dimensional family of pairs of points
that yield that particular line. Therefore, assuming that the set of
lines in ℂℙ3 is a nice geometric space, its dimension should be
6− 2 = 4. The reduction in the dimension caused by the condi-
tion of intersecting any of the given lines is 1. It follows that the
reduction in the dimension caused by the condition of intersecting
all given four lines is 4. Since 4− 4 = 0, the solution set should be
discrete. Since we are working with compact spaces, it will indeed
be finite. Bellow, using Schubert calculus on Grassmannians, we
will compute this number. We challenge the reader to think about
the following real affine version of the question using elementary
techniques: How many lines pass through 4 generic lines in ℝ3?

The n-dimensional complex projective space ℂℙn is the pro-
jectivization of ℂn+1 in the sense that each point in the former
corresponds to a line in the latter. In one dimension higher, every
projective line in ℂℙn is the projectivization of a plane in ℂn+1.
Therefore, the space of lines in ℂℙ3 is the same as the space of
planes in ℂ4, which is known as the (complex) Grassmannian man-
ifold Gr(2, 4). More generally, the Grassmannian Gr(r,n) is a com-
pact complex (r×(n− r))-dimensional manifold that parametrizes
the r-dimensional subspaces of ℂn. Let ℓ⊂ℂℙ3 be a line that is the
projectivization of a two-dimensional subspace V ⊂ ℂ4. The sub-
space of lines in ℂℙ3 that intersect ℓ is a submanifold Xℓ of Gr(2,4)
with dimℂ Xℓ = 4− 1 = 3. The points of Xℓ correspond to two-
dimensional subspaces V ′ ⊂ ℂ4 such that dimℂ(V∩ V ′) ≥ 1. Even
though Xℓ depends on ℓ, the homology class A∈H6(Gr(2,4),ℤ)≅
ℤ of Xℓ does not depend on ℓ. The homology groups of the Grass-
mannian are generated by a specific class of complex submanifolds
known as Schubert cycles. All the odd degree homology groups
are trivial.

Digression on Schubert calculus
Let λ≝(λ1 ≥ λ2 ≥⋯≥ λr) be a sequence of non-negative integers
between 0 and n− r, and define |λ| = ∑ λi. Given a sequence
of vector spaces W ≝ (0 ⊈ W1 ⊈ ⋯ ⊈ Wn = ℂn), the Schubert
cycle σλ = σλ(W), with Poincaré dual PD(σλ) ∈ H2|λ|(Gr(r,n),ℤ),
is defined to be

σλ(W) = {V ∈ Gr(r,n) ∶ dim(V∩Wn− r+ i−λi) ≥ i}. (1)

The homology class of σλ(W) does not depend on W. There is
a geometric way of describing a non-decreasing sequence λ which
helps with understanding the computations involving Schubert
cycles. A Young diagram is a finite collection of boxes, or cells,
arranged in left-justified rows, with the row lengths weakly decreas-
ing (each row has the same or shorter length than its predecessor).
Listing the number of boxes in each row gives a sequence λ of
non-negative integers, such that |λ| is the total number of boxes
of the diagram. Figure 1 shows the Young diagram of λ = (5,4, 1).

Figure 1. Young diagram of λ = (5, 4, 1)

A special case of the so-called Pieri formula states that

σ(1,0,…,0) ⋅ σλ = ∑σν,

where the left-hand side is the intersection of two cycles and the
sum on the right-hand side is over all partitions ν which can be
obtained by adding one box to the Young diagram of λ.

Going back to the counting of the proposed problem, it follows
from (1) that A = σ(1,0). Therefore,

[Xℓ1] ⋅ [Xℓ2] ⋅ [Xℓ3] ⋅ [Xℓ4] = σ4
(1,0) ∈ H0(Gr(2, 4),ℤ) ≅ ℤ.

By Pieri’s formula, we have

σ(1,0) ⋅ σ(1,0) = σ(2,0) + σ(1,1) ⟹ σ3
(1,0) = σ(2,1) + σ(2,1)

⟹ σ4
(1,0) = 2σ(2,2) = 2.

Note that the Schubert cycle σ(2,2)(W) is the point W2 ∈ Gr(2, 4)
(i.e., it generates H0(Gr(2, 4),ℤ)). It is straightforward (but crucial)
to show that for generic 4 lines ℓ1, ℓ2, ℓ3, ℓ4, the intersection
Xℓ1 ∩ Xℓ2 ∩ Xℓ3 ∩ Xℓ4 is transverse. We conclude that the answer
to the proposed problem is 2.

257
I learned about the following problem from Shmuel Weinberger. It
can be viewed as a topological analogue of Arrow’s Impossibility
Theorem.

(a) A group of n friends have decided to spend their summer
cottaging together on an undeveloped island, which happens to be
a perfect copy of the closed 2-disk D2. Their first task is to decide
where on this island to build their cabin. Being democratically-
minded, the friends decide to vote on the question. Each friend
chooses his or her favourite point on D2. The friends want a func-
tion that will take as input their n votes, and give as output
a suitable point on D2 to build. They believe, to be reasonable and
fair, their “choice” function should have the following properties:
• (Continuity) It should be continuous as a function (D2)n → D2.
This means, if one friend changes their vote by a small amount,
the output will change only a small amount.

• (Symmetry) The n friends should be indistinguishable from each
other. If two friends swap votes, the final choice should be
unaffected.

• (Unanimity) If all n friends chose the same point x, then x should
be the final choice.

For which values of n does such a choice function exist?
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(b) The friends’ second task is to decide where along the
shoreline of the island they will build their dock. The shoreline
happens to be a perfect copy of the circle S1. Again, they decide
to take the problem to a vote. For which values of n does a con-
tinuous, symmetric, and unanimous choice function (S1)n → S1

exist?
These are special cases of the following general problem in

topological social choice theory: given a topological space X, for
what values of n does X admit a social choice function that is
continuous, symmetric, and unanimous? In other words, when is
there a function A ∶ Xn → X satisfying
• A is continuous,
• A(x1,…, xn) is independent of the ordering of x1,…, xn, and
• A(x, x, x,…, x) = x for all x ∈ X?

Jenny Wilson (Department of Mathematics,
University of Michigan, USA)

Solution by the proposer
Consider the general problem described in the last paragraph. The
statement that A(x1,…, xn) is independent of the ordering of
x1,…, xn is the statement that the function A factors through the
symmetric product, the quotient of Xn by the action of the sym-
metric group Σn, endowed with the quotient topology. Elements
of Xn/Σn are multisets of n (not necessarily distinct) points in X.
The statement that A(x, x,…, x) = x is the statement that the
composition

X
Δ
→ Xn → Xn/Σn → X,

x ↦ (x, x,…, x) ↦ {x, x,…, x} ↦ A(x, x,…, x) = x

is the identity function. Thus the problem is equivalent to the
following: does there exist a retraction from the symmetric product
Xn/Σn onto the image of the diagonal?

(a) An appropriate choice function exists for any n. Identify
the island (up to homeomorphism) with the closed unit disk in ℝ2.
Since the disk is convex, we can (for example) let

A(x1, x2,…, xn) =
x1 + x2 +⋯+ xn

n

be the average value of the n points.
(b) Such a choice function only exists for n= 1. We first consider

the case n = 2, since this case reduces to a problem that will be
familiar to many algebraic topology students.

The symmetric product (S1 × S1)/Σ2 is the Möbius band and
the image of the diagonal is its boundary, as pictured.

Σ2

However, the boundary is not a retract of the Möbius band: the
inclusion of the boundary induces the map 2ℤ↪ℤ on fundamental
groups, which does not have a left inverse.

This argument generalizes for any n ≥ 2. We can realize the
n-torus (S1)n as the unit cube in ℝn with opposite faces identified.
The 2n corners are identified to a single point x, which we choose
as basepoint.

Let γ be a path from the origin to the point (1, 1,…, 1) ∈ ℝn

along n mutually orthogonal edges of the cube, pictured here for
n= 3. Construct (say, by straight-line homotopy) a based homotopy
from the diagonal to γ.

γ

The n orthogonal edges are identified in the symmetric product
to a single loop. Thus, in π1((S1)n/Σn, Σn ⋅ x) the image of the
diagonal (which equals the image of γ) has an nth root. The image
of the diagonal in (S1)n/Σn cannot be a retract.

For the general problem, Eckmann–Ganea–Hilton and later
(independently) Weinberger proved the following results; see Eck-
mann’s survey [1].

Theorem. Suppose that X is homotopy equivalent to a finite sim-
plicial complex. If X is contractible, the function A exists for any n.
If X is not contractible, it exists only for n = 1.

Theorem. Suppose that X is homotopy equivalent to a connected
CW complex. Then the map A exists for all n if and only if X is
a product of rational Eilenberg–MacLane spaces.

Weinberger [2] notes that there exist other infinite CW com-
plexes for which a choice function exists for (some) arbitrarily large
values of n. For example, the infinite-dimensional real projective
space ℝP∞ admits a social choice function A for any odd value of
n, but not for any even value.
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We wait to receive your solutions to the proposed problems and
ideas on the open problems. Send your solutions to Michael
Th. Rassias by email to mthrassias@yahoo.com.

We also solicit your new problems with their solutions for
the next “Solved and unsolved problems” column, which will be
devoted to Number Theory.
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