
Tensor networks in machine learning

Richik Sengupta, Soumik Adhikary, Ivan Oseledets and Jacob Biamonte

A tensor network is a type of decomposition used to express
and approximate large arrays of data. A given dataset, quantum
state, or higher-dimensional multilinear map is factored and ap-
proximated by a composition of smaller multilinear maps. This
is reminiscent to how a Boolean function might be decomposed
into a gate array: this represents a special case of tensor decom-
position, in which the tensor entries are replaced by 0, 1 and the
factorisation becomes exact. The associated techniques are called
tensor network methods: the subject developed independently in
several distinct fields of study, which have more recently become
interrelated through the language of tensor networks. The tan-
tamount questions in the field relate to expressability of tensor
networks and the reduction of computational overheads. A merger
of tensor networks with machine learning is natural. On the one
hand, machine learning can aid in determining a factorisation of
a tensor network approximating a data set. On the other hand,
a given tensor network structure can be viewed as a machine learn-
ing model. Herein the tensor network parameters are adjusted to
learn or classify a data-set. In this survey we review the basics of
tensor networks and explain the ongoing effort to develop the
theory of tensor networks in machine learning.

1 Introduction

Tensors networks are ubiquitous in most areas of modern science
including data science [11], condensed matter physics [19], string
theory [22] and quantum computer science. The manners in which
tensors are employed/treated exhibit significant overlap across
many of these areas. In data science, tensors are used to repres-
ent large datasets. In condensed matter physics and in quantum
computer science, tensors are used to represent states of quantum
systems.

Manipulating large tensors comes at a high computational
cost [28]. This observation has inspired techniques for tensor de-
compositions that would reduce computational complexity while
preserving the original data that they represents. Such techniques
are now known as tensor network methods.

Tensor networks have risen to prominence in the last fifteen
years, with several European schools playing leading roles in their
modern development, as a means to describe and approximate
quantum states (see the review [14]). The topic however dates
back much further, to work of Penrose [32] and in retrospect, even
arose as special cases in work of Cayley [10]. Tensor networks have
a rich modern history in mathematical physics [32], in category
theory [44], in computer science, algebraic logic and related dis-
ciplines [1]. Such techniques are now becoming more common in
data science and machine learning (see the reviews [12,13]).

1.1 Basic material about multilinear maps
It might be stated that the objective of linear algebra is to classify
linear operators up to isomorphism and study the simplest repres-
entative in each equivalence class. This motivates the prevalence
of decompositions such as SVD, LU and the Jordan normal form.
A special case of linear operators are linear maps from a vector
space V to an arbitrary field like ℂ or ℝ. These linear maps form the
dual space (vector space of covectors) V⋆ to our vector space V.

A natural generalisation of linear maps is provided by the mul-
tilinear maps, i.e., maps that are linear in each argument when
the values of other arguments are fixed. For a given pair of non-
negative integers p and q, a type-(p, q) tensor T is defined as
a multilinear map

T∶ V∗ ×⋯× V∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
p copies

×V×⋯× V⏟⏟⏟⏟⏟⏟⏟⏟⏟
q copies

→ 𝕂, (1)

where 𝕂 is an arbitrary field. The tensor T is said to be of order
(valence) p+ q. Note that some authors refer to this as rank p+ q,
but we will never do that.

It is often more convenient to view tensors as elements of
a vector space known as the tensor product space. Thus, the above
(p,q)-tensor T in this alternative interpretation can be defined as
an element

T ∈ V⊗⋯⊗ V⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
p copies

⊗V∗ ⊗⋯⊗ V∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
q copies

.

EMS MAGAZINE (2022) — DOI 10.4171/MAG/101 1

Moreover, the universality property of tensor products of vector
spaces states that any multilinear map can be replaced by a unique
linear map acting from the tensor product of vector spaces to the
base field.

If we assume the axiom of choice, every vector space admits
a Hamel basis. If ei is such a basis in V, then the components of
a tensor T are therefore the coefficients of T with respect to the
basis ei and its dual basis ε j (basis of the dual space V∗), that is

T = T
i1…ip
j1… jqei1 ⊗⋯⊗ eip ⊗ ε j1 ⊗⋯⊗ ε jq. (2)

Adopting Einstein’s summation convention, summation over re-
peated indices is implied in (2).

Returning to (1), given p covectors (c1,…, cp) and q vectors
(v1,…, vq), the value of the tensor is evaluated as

T
i1…ip
j1… jqc

1(ei1) ×⋯× cp(eip) × ε j1(v1) ×⋯× ε jq(vq) ∈ 𝕂, (3)

where ck(eik) and ε jl(vl) are numbers obtained by evaluating cov-
ectors (functionals) at the corresponding vectors. In quantum
computation, the basis vectors eik are denoted by |ik⟩ and the basis
covectors ε jl are denoted by ⟨jl|. Using Dirac’s notation, tensor
products are written in compact form as

eim ⊗ eil ∶= |imil⟩, ε jm ⊗ ε jl ∶= ⟨jmjl|, eim ⊗ ε jl ∶= |im⟩⟨jl|,

and the tensor T takes the form

T = T
i1…ip
j1… jq |i1…ip⟩⟨j1…jp|.

Similarly, given a tuple of p covectors (c1, …,cp) and q vectors
(v1,…, vq) we write them as ⟨c1…cp| and |v1…vq⟩, as elements
of the corresponding tensor product space(s).

In this notation the evaluation (3) takes the form

T
i1…ip
j1… jq⟨c1…cp|i1…ip⟩⟨j1…jp|v1…vq⟩.

Since in quantum computation the vector spaces under con-
sideration as well as their duals are Hilbert spaces, Riesz’s repres-
entation theorem for linear functionals implies that the evaluation
⟨∗|∗⟩ above can be seen as an inner product.

Finally, a tensor can be identified with the array of coeffi-
cients T

i1…ip
j1… jq in a specific basis decomposition. This approach is

not basis independent, but is useful in applications. Henceforth in
this review we will fix the standard basis, which will establish a ca-
nonical isomorphism between the vector space and its dual. In the
simplest case p = q = 1, for example, this gives us the following
equivalences:

Ti j ≅ Tj i ≅ T i j ≅ T j i ≅ T i
j ≅ T j

i .

In the more general case this leads to the equivalence between the
components T

i1…ip
j1… jq and Tj1… jqi1…ip. Given a valence-m tensor T, the

total number of tensors in the equivalence class formed by raising,
lowering and exchanging indices has cardinality (1+m)! (see [4]).
Recognising this arbitrariness, Penrose considered a graphical de-
piction of tensors [32], stating that “it now ceases to be important

to maintain a distinction between upper and lower indices.” This
convention is widely adopted in the contemporary literature.

1.2 Tensor trains aka matrix product states
Consider a tensor T with components Tj1j2… jn with jk = 1, 2,…,d.
Hence, T has dn components, a number that can exceed the total
number of electrons in the universe when d is as small as 2 and
n ≈ 300. Clearly, storing the components of such a large tensor in
a computer memory and subsequently manipulating it can become
impossible. The good news is that for most practical purposes,
a tensor typically contains a large amount of redundant information.
This enables factoring of T into a sequence of “smaller” tensors.

Tensor trains (see [31]) and matrix product states (MPS) [30,33]
arose in data science and in condensed matter physics, where
it was shown that any tensor T with components Tj1j2⋯jn admits
a decomposition of the form

Tj1j2… jn = α†A(1)
j1 A(2)

j2 ⋯A(n)
jn ,β (4)

where A(k)
jk is an (rk−1 × rk)-dimensional matrix, and α and β as r0-

and rn-dimensional vectors, respectively.
Likewise, an n-qubit state |ψ⟩ ∈ (ℂℙ2)⊗n, written in the com-

putational basis as |ψ⟩ = ∑j1j2⋯jn Tj1j2… jn|j1j2… jn⟩, jk ∈ {0, 1}, can
equivalently be expressed as

|ψ⟩ = ∑
j1… jn

⟨α|A(1)
j1 A(2)

j2 ⋯A(n)
jn |β⟩|j1j2… jn⟩. (5)

Here A(k)
jk is a rk−1 × rk dimensional matrix and |α⟩, |β⟩ are r0 and rn

dimensional vectors, respectively. Note that here we are adhering
to the braket notation, as is customary in quantum mechanics.
The representation of |ψ⟩ in (5) is called the matrix product state
representation with an open boundary condition (OBC-MPS). See
Figure 1 for a graphical representation.

Yet another useful MPS decomposition that a state might admit
is the MPS with periodic boundary condition (PBC-MPS) [30]. The
PBC-MPS representation of an n-qubit state

|ψ⟩ = ∑
j1j2… jn

Tj1j2… jn|j1j2… jn⟩, jk = 0, 1,

Figure 1. Graphical representation of tensor trains (open boundary
condition—matrix product state representation). See (4), (5). Each index
in the tensor Tj1… jn is represented in the diagram by an open wire
pointing downwards. We call these wires physical bonds. The horizontal
wires represent extra indices which are summed over. Such internal wires
are known as virtual bonds.

2 EMS MAGAZINE (2022)

Figure 2. Graphical representation of the matrix product state in (6).

is given by

|ψ⟩ = ∑
j1j2… jn

Tr(A(1)
j1 A(2)

j2 ⋯A(n)
jn)|j1j2… jn⟩, (6)

where A(k)
jk is an r× r matrix. The graphical representation of a PBC-

MPS is shown in Figure 2.
An n-qubit state |ψ⟩ = ∑j1… jn Tj1… jn|j1… jn⟩ has 2n independ-

ent coefficients Tj1… jn . The MPS representation of |ψ⟩, on the other
hand, is less data intensive. If A(k)

jk is an r× rmatrix for all k, the size
of the representation becomes 2nr2, which is linear in n for a con-
stant r. The point of the method is to choose r such that a good and
compact approximation of |ψ⟩ is obtained. The number r is often
also referred to as the virtual bond dimension. Data compression
becomes even more effective if the MPS is site independent, that
is, if A(k)

jk = Ajk for all k. It has been shown that a site-independent
representation of a PBC-MPS always exists if the state is translation
invariant [33]. Note that MPS is invariant under the transformation
Aj → PAjP−1 for any invertible P; this follows from the cyclicity
of the trace operator. Therefore, it is often customary to impose
an additional constraint here, viz. ∑j AjA

†
j = 1, in order to fix the

gauge freedom [14] (see also the connections to algebraic invariant
theory [5]).

2 Machine learning: classical to quantum

2.1 Classical machine learning
At the core of machine learning is the task of data classification.
In this task, we are typically provided with a labelled dataset
𝒮={(xj,yj)}Mj=1, where the vectors xj ∈ℝN are the input data (e.g.,
animal images) and the vectors yj ∈ ℝd are the corresponding la-
bels (e.g., animal types). The objective is to find a suitable machine
learning model F with tunable parameters θ ∈ ℝk that generates
the correct label for a given input x∈ℝN. Note that our model can
be looked upon as a family of functions parameterised by θ: F takes
a data vector as an input and outputs a predicted label; for an input
datum xj, the predicted label is F(xj,θ). To ensure that our model
generates the correct labels, it needs to be trained; in order to ac-
complish this, a training set𝒯⊂ 𝒮 is chosen, the elements of which
serve as input data to train F. Training requires a cost function,

ℒ(θ) = ∑
(xj,yj)∈𝒯

D(F(xj,θ), yj), (7)

where D(⋅ , ⋅) measures the mismatch between the real label and
the estimated label. Typical choices for D include, e.g., the negat-
ive log-likelihood function, mean squared errors (MSE), etc. [37].
By minimising (7) with respect to θ, one obtains the value θ⋆ ∈
argminθℒ(θ), which completes the training. After the model F has
been trained, we can evaluate its performance by feeding it inputs
from 𝒮 ⧵𝒯 (often referred to as the validation set) and checking
for classification accuracy.

For a more formal description, let us assume that the dataset
𝒮 is sampled from a joint probability distribution with a density
function p(x,y). The role of a classifier model is to approximate the
conditional distribution p(y|x). The knowledge of p(x, y) allows
us, in principle, to establish theoretical bounds on the performance
of the classifier. Consider the generalisation error (also called risk),
defined as 𝒢(θ) = 𝔼p(x,y)(D(F(x,θ), y)). A learning algorithm is
said to generalise if limM′ →∞(ℒ(θ)/M′) = 𝒢(θ); here M ′ is the
cardinality of the training set. However, since in general we do not
have access to p(x, y) we can only attempt to provide necessary
conditions to bound the difference of the generalisation error and
the empirical error by checking certain stability conditions to ensure
that our learning model is not too sensitive to noise in the data [8].
For example, we can try to ensure that our learning model is not
affected if one of the data points is left out during training. The
technique of regularisation prevents overfitting.

Several different types of machine learning models F exist,
which range from fairly elementary models, such as perceptrons, to
highly involved ones, such as deep neural networks (DNNs) [24,38].
The choice of F is heavily dependent on the classification task, the
type of the dataset, and the desired training properties. Consider
a dataset 𝒮 with two classes (a binary dataset) that is linearly separ-
able. That is, (i) yj ∈{−1,1} and (ii) one can construct a hyperplane
that separates the input data belonging to the different classes.
Finding this hyperplane, aka the decision boundary, is therefore
sufficient for data classification in 𝒮. This task can be accomplished
with a simplistic machine learning model—the perceptron—which
is in fact a single McCulloch–Pitts neuron [26]. The algorithm starts
with the candidate solution for the hyperplane w⊤ ⋅ x+ b = 0,
where w, b are tunable parameters and play the role of θ. It is
known from the perceptron convergence algorithm that one can
always find a set of parameters w = w⋆, b = b⋆, such that for
every xj, if yj = −1, then w⋆⊤ ⋅ xj + b⋆ ≤ 0, while if yj = 1, then
w⋆⊤ ⋅ xj + b⋆ > 0.

Most datasets of practical importance, however, are not linearly
separable and consequently cannot be classified by the perceptron
model alone. Assuming that 𝒮 is a binary dataset which is not
linearly separable, we consider a map Λ ∶ ℝN → Γ, dim(Γ) > N,
with the proviso that Λ is nonlinear in the components of its in-
puts [6]. In machine learning Λ is called a feature map and the
vector space Γ is known as a feature space. Thus Λ nonlinearly
maps each input datum xj to a vector Λ(xj) in the feature space.
The significance of this step follows from Cover’s theorem on separ-

EMS MAGAZINE (2022) 3

ability of patterns [16], which suggest that the transformed dataset
𝒮′ = {(Λ(xj), yj)}Mj=1 is more likely to be linearly separable. For
a good choice of Λ, the data classification step now becomes
straightforward, as it is sufficient to fit a hyperplane to separate the
two classes in the feature space. Indeed, the sought-for hyperplane
can be constructed, using the perceptron model, provided the fea-
ture map Λ is explicitly known. Actually, a hyperplane can still be
constructed even when Λ is not explicitly known. A particularly
elegant way to accomplish this is via the support vector machine
(SVM) [15], by employing the so-called kernel trick [45].

Consider again the binary dataset 𝒮′ ={(Λ(xj),yj)}Mj=1. The aim
is to construct a hyperplane that separates the samples belonging
to the two classes. In addition, we would like to maximise the
margin of separation. Formally, we search for a set of parameters
w = w⋆, b = b⋆ such that for every xj, if yj = −1, then w⋆⊤ ⋅
Λ(xj)+ b⋆ ≤−1, while if yj = 1, thenw⋆⊤ ⋅ Λ(xj)+ b⋆ ≥ 1. As in
the perceptron model, the SVM algorithm starts with the candidate
solution w⊤ ⋅ x+ b and the parameters w,b are tuned based on
the training data. An interesting aspect of the SVM approach,
however, is the dependence of the algorithm on a special subset
of the training data called support vectors, namely, the ones that
satisfy the relation w⋆⊤ ⋅ Λ(xj) + b⋆ = ±1. We assume that there
are S such vectors Λ(x(s)j), j = 1,…, S. With some algebra, which
we omit here, it can be shown that the decision boundary is given
by the hyperplane

S

∑
j=1

α⋆
j yj[Λ(x

(s)
j)⊤Λ(x)] + b⋆ = 0, (8)

where

b⋆ = 1
S

S

∑
j=1

(yj −
S

∑
k=1

α⋆
j yj[Λ(x

(s)
j)⊤Λ(x(s)k)]), (9)

α⋆ = argmax
α

(∑
j

αj −
1
2 ∑

j
∑
k

αjαkyjykΛ(xj)⊤Λ(xk)) (10)

with the additional conditions ∑j αjyj = 0 and αj ≥ 0. All sum-
mations in (10) are over the entire training set. We make a key
observation here: from (8), (9) and (10) we see that the expres-
sion of the decision boundary has no explicit dependence on the
feature vectors Λ(xj). Instead, the dependence is solely on the
inner products of the form Λ(xj)⊤Λ(xk). This allows us to use the
kernel trick.

Support functions in optimisation
If C ⊂ ℝn is a nonempty closed convex set, the support function
hC ∶ ℝn → ℝ of C is given by hC(x) = sup{⟨x|c⟩ ∶ c ∈ C, x ∈ ℝn}.
The hyperplaneH(x)={y∈ℝn ∶ ⟨y|x⟩= hC(x)} is called a support-
ing hyperplane of C with outer unit normal vector x. The function
hC(x) outputs the signed distance of H(x) from the origin. The data
points that lie on H(x) are called support vectors in the machine
learning literature.

Graphical representation of the support function and supporting
hyperplane.

Kernel functions
The concept of the kernel function originates in the theory of
Reproducing Kernel Hilbert Spaces (RKHS). Consider a Hilbert space
H consisting of real-valued functions defined on an arbitrary set X.
We can define an evaluation functional Ex(f) = f(x) that maps each
function to a real number. If for every x ∈ X the linear functional
Ex is bounded on H, we call H an RKHS. Applying Riesz’s theorem
mentioned in the introduction, we have the representation Ex(f) =
⟨f |Kx⟩, where Kx ∈ H. It follows that Ey(Kx) = ⟨Kx|Ky⟩ = Kx(y) =
K(x, y).

The function K(x, y)∶ X× X → ℝ is called the reproducing ker-
nel of the space H. Briefly, in an RKHS the evaluation of a function at
a point can be replaced by taking an inner product with a function
determined by the kernel in the associated function space.

Now given a feature map Φ ∶ X → Γ, where Γ is a Hilbert
space, we define a normed space HΦ = {f ∶ X → ℂ ∶ ∃g ∈ Γ,
f(x) = ⟨g|Φ(x)⟩∀x∈ X} with the norm ‖f‖Φ = inf{‖g‖Γ ∶ g∈ G,
f(x) = ⟨g|Φ(x)⟩∀x ∈ X}. One can show that HΦ is a RKHS with
the kernel K(x, y) = ⟨Φ(x)|Φ(y)⟩.

Formally, a kernel k(xj, xk) is defined as a function that com-
putes the inner product of the images of xj, xk in the feature space,
i.e., k(xj, xk) = Λ(xj)⊤Λ(xk). Accordingly, all the inner products in
(8), (9) and (10) can be replaced by the corresponding kernels. We
can then use the kernel trick, that is, assign an analytic expression
for the kernel in (8), (9) and (10), provided that the expression
satisfies all the required conditions for it to be an actual kernel [39].
Indeed, every choice of a kernel can be implicitly associated to
a feature map Λ. However, in the current approach we do not need
to know the explicit form of the feature map. In fact, this is the
advantage of the kernel trick, as calculating Λ(x) is less efficient
than using the kernels directly.

4 EMS MAGAZINE (2022)

Most modern applications in machine learning, however, in-
volve deep neural networks (DNNs) [43]. A DNN can also be re-
garded as a collection of perceptrons arranged in a definite fashion.
The architecture of a DNN is best understood and visualised in the
form of a graph. Specifically, a DNN is composed of an input layer,
an output layer, and several intermediate hidden layers. Each layer
consists of several nodes. Each of these nodes represents a neuron.
Edges are allowed to exist between nodes belonging to adjacent
layers only: nodes in layer j share edges with nodes in layer j+ 1
and nodes in layer j− 1. For the sake of simplicity, we consider the
case where all the nodes in the j-th layer are connected to all the
nodes in the (j± 1)-th layers—a fully connected neural network.

A DNN takes a data vector x as an input (at the input layer). This
input is subsequently manipulated by the neurons in the next layer
(the first hidden layer) to output a transformed vector x(1), and
this process is repeated till the last layer (output layer) is reached.
Consider the k-th neuron in the j-th layer; for convenience, we
denote this neuron by (k, j). It receives an input vector x(j−1) whose
components are the outputs of the neurons in the (j− 1)-th layer,
and then transforms x(j−1) by the rule

x(j−1) → Ψ((w(j−1)
k)⊤ ⋅ x(j−1) + b(j)

k) = x(j)k , (11)

where w(j−1)
k are weights associated with the edges that connect

the neuron (k, j) to the neurons in the previous layer, b(j)
k is the

bias corresponding to the neuron (k, j), and Ψ(⋅) is a differenti-
able nonlinear function known as the activation function. This is
the fundamental mathematical operation that propagates data in
a DNN, layer by layer, in the forward direction (input layer to output
layer), through a series of complex transformations. The training
component of the algorithm is however accomplished through the
back-propagation step [35]: a cost function is calculated by com-
paring the signal at the output layer (the model predicted label for
the data x) and the desired signal (the actual label for the data x),
based on which the weights and the biases are adjusted so that the
cost function is minimised. Apart from supervised learning, DNNs
are routinely used for unsupervised learning, including generative
learning. In generative learning, given access to a training dataset,
a machine learning model learns its underlying probability distribu-
tion for future sample generation. To formulate this mathematically,
consider a dataset 𝒮={xj}, whose entries xj ∈ℝN are independent
and identically distributed vectors and are sampled according to
a distribution q(x). The purpose of a generative model is to approx-
imate q(x), given the access to training data from the dataset 𝒮.
To achieve this, a machine learning model (with tunable paramet-
ers θ) is trained so that the model generated distribution, p(x,θ),
mimics the true distribution. The standard practice in generative
learning is to minimise the negative log-likelihood with respect
to the model parameters, which is tantamount to minimising the
Kullback–Leibler divergence DKL(q(x)||p(x,θ)) between the two
distributions.

2.2 Variational algorithms and quantum machine learning
(QML)

Variational quantum computing has emerged as the preeminent
model for quantum computation. The model merges ideas from
machine learning to better utilise modern quantum hardware.

Mathematically, the problem in variational quantum computing
can be formulated as follows: given (i) a variational quantum circuit
(aka ansatz) U(θ) ∈ Uℂ(2n) which produces an n-qubit variational
state |ψ(θ)⟩ = U(θ)|0⟩⊗n; θ∈ [0,2π)×p, (ii) an objective function
ℋ ∈ hermℂ(2n), and (iii) the expectation ⟨ψ(θ)|ℋ|ψ(θ)⟩, find

θ⋆ ∈ argmin
θ∈[0,2π)×p

⟨ψ(θ)|ℋ|ψ(θ)⟩.

Then |ψ(θ⋆)⟩ will approximate the ground state (eigenvector cor-
responding to the lowest eigenvalue) of the Hamiltonian ℋ. The
operator ℋ, often called the problem Hamiltonian, can suitably
treat several classes of problems so that the solution to a problem
is encoded in the ground state of ℋ. The variational model of
quantum computation was shown to be universal in [3].

Quantum machine learning, both discriminative and generative,
emerged as an important application of variational algorithms with
suitable modifications to the aforementioned scheme. Indeed, by
their very design, variational algorithms are well suited to imple-
ment machine learning tasks on a quantum device. The earlier
developments in QML came mainly in the form of classification
tasks [18,27].

Classification of a classical dataset 𝒮 = {(xj, yj))}Mj=1 on quan-
tum hardware typically involves four steps. First, the input vector
xj is embedded into an n-qubit state |ψ(xj)⟩. The effect of data
encoding schemes on the expressive power of a quantum machine
learning model was studied in [42]. What is the most effective
data embedding scheme? Although there are several interesting
candidates [25,34], this question remains largely unanswered. In
the second step, a parameterised ansatz U(θ) is applied to |ψ(xj)⟩
to output |ψ(xj, θ)⟩. A number of different ansatzes are in use
today, including the hardware efficient ansatz, the checkerboard
ansatz, the tree tensor network ansatz, etc., which are chosen ac-
cording to the application and implementation specifications under
consideration. The third step in the process is where data is read
out of |ψ(xj,θ)⟩: expectation values of certain chosen observables
(Hermitian operators) are calculated with respect to |ψ(xj,θ)⟩ to
generate a predicted label F(xj, θ). The measured operators are
typically the Pauli strings, which form a basis in hermℂ(2n). In the
final step, a cost function is constructed as in (7) and minimised
by tuning θ. This approach was used in several studies to produce
successful classifications in practical datasets (see, e.g., [40]).

An interesting variation of the approach described above was
shown in [21, 41] to implement data classification based on the
kernel trick. In this method the Hilbert space is treated as a feature
space and the data embedding step, xj → |ψ(xj)⟩, as a feature
map. A quantum circuit is used directly to compute the inner

EMS MAGAZINE (2022) 5

product ⟨ψ(xj)|ψ(xk)⟩, using, e.g., the swap test, which is then
employed for data classification by means of classical algorithms
such as SVMs.

Quantum machine learning has also been used to classify genu-
ine quantum data. Some prominent examples of such applications
include: classifying phases of matter [47], quantum channel discrim-
ination [23], and entanglement classification [20]. Other machine
learning problems with quantummechanical origins that have been
solved by variational algorithms include quantum data compression
[36] and denoising of quantum data [7]. Both of these applications
use a quantum autoencoder. A quantum autoencoder, much like
its classical counterparts, consists of two parts: an encoder and
a decoder. The encoder removes the redundant information from
the input data to produce a minimal low-dimensional represent-
ation. This process is known as feature extraction. To ensure that
the minimal representation produced by the encoder is efficient,
a decoder is used which takes the output of the encoder and
tries to reconstruct the original data. Thus, in an autoencoder,
both the encoder and the decoder are trained in tandem to en-
sure that the input at the encoder and the output at the decoder
closely match each other. While in the classical case the encoders
and the decoders are chosen to be neural networks, in the quan-
tum version of an autoencoder neural networks are replaced by
variational circuits.

Considerable advances were made on the front of quantum
generative learning as well. In [2] it was shown that generative
modelling can be used to prepare quantum states by training shal-
low quantum circuits. The central idea is to obtain the model
generated probability distribution p(θ) by performing repeated
measurements on a variational state |ψ(θ)⟩. The state |ψ(θ)⟩ is
prepared on a short-depth circuit with a fixed ansatz and paramet-
erised with the vector θ. The target distribution q is also constructed
in much the same manner, by performing repeated measurements
on the target state. The measurement basis (preferably information-
ally complete positive operator-valued measures), as expected, is
kept to be the same in both cases. The training objective therefore
is to ensure that p(θ) mimics q so that the variational circuit learns
to prepare the target state. The same task in an alternate version
can be looked upon as a machine-learning assisted quantum state
tomography [9].

3 Tensor networks in machine learning

3.1 Tensor networks in classical machine learning
Recently tensor network methods have found several applications
in machine learning. Here we discuss some of these applications
with a focus on supervised learning models. We return to our
labelled dataset 𝒮 = {(xj, yj)}Mj=1, where xj ∈ ℝN. As mentioned
earlier, there are several machine learning models F to choose from
to perform a classification on the dataset 𝒮.

However, in more abstract terms, a classifier F can be expressed
as a function of the form

FW(x) = ∑
j1, j2,…, jN∈{0,1}

Wj1j2… jNx
j1
1 x

j2
2 ⋯x jN

N , (12)

in the polynomial basis [29]. Here x∈ℝN is an input datum and xk∈
ℝ is the k-th component of x. The tensor Wj1j2… jN is what we call
as the weight tensor, which encodes the tunable parameters in F.
Going back to the case of binary classification, that is, yj ∈ {1,−1},
F(x) can be regarded as a surface in ℝN+1 that can be tuned
(trained) so that it acts as a decision boundary between the two
classes of input data. Indeed, the training can be accomplished by
the minimisation

min
W

(
M

∑
j=1

|sgn(FW(xj)) − yj|2),

where sgn(FW(xj)) is the predicted label. However, in practice we
run into a bottleneck when we compute (12), since this involves
2N components of the weight tensor. One way to circumvent this
bottleneck is to express the weight tensor as a MPS. Following
the observation in Section 1.2, for a suitable choice of the virtual
bond dimension r, the MPS representation of the weight tensor W
would involve only O(polyN) components, thus making the com-
putation of (12) less resource intensive [46]. Here it is worth noting
that we could alternatively have opted for any other basis in the
decomposition of the function F, depending on the optimisation
problem at hand.

Yet another application of tensor networks in machine learning
can be seen in DNNs. Consider the transformation in (11). For most
practically relevant DNNs, this transformation is highly resource
intensive. This is due to the fact that the vectors x(j−1) are typically
very large and hence computing the inner products (w(j−1)

k)⊤ ⋅
x(j−1) is difficult. This computation can be made efficient by using
MPS. In order to do this, the vectorsw(j−1)

k ,x(j−1) are first reshaped,
converting them into tensors and then expressing them as an MPS.
When we express a vector as a MPS we need to keep track of much
fewer components compared to the original representation. This
makes the computation of (11) tractable.

3.2 The parent Hamiltonian problem
Consider the quantum state preparation problem using a variational
algorithm. Given a variational circuit U(θ) and an n-qubit target
state |t⟩, tune θ → θ⋆ such that U(θ⋆)|0⟩⊗n approximates |t⟩.
To accomplish this task one needs to construct a Hamiltonian
ℋ ∈ hermℂ(2n) with |t⟩ as its unique ground state, which will
serve as the objective function of the algorithm. Constructing such
a Hamiltonian for a given target state is known as the parent
Hamiltonian problem. The simplest recipe is to set ℋ = 1− |t⟩⟨t|.
This construction is however not always useful, because expressing
ℋ in the basis of Pauli strings—the basis of measurement—may

6 EMS MAGAZINE (2022)

require an exponential number of terms. Thus estimating the
expectation of ℋ in polynomial time becomes unfeasible.

Ideally, we want the sought-for Hamiltonian to enjoy the fol-
lowing properties:
1. The Hamiltonian is non-negative.
2. The Hamiltonian has a non-degenerate (unique) ground state |t⟩.
3. The Hamiltonian is gapped. An n-qubit Hamiltonian ℋ(n) ≥ 0

is said to be gapped if

lim
n→∞

[dimkerℋ(n)] = 1. (13)

Validity of (13) ensures that ℋ(n) is gapped for all finite n.
4. The Hamiltonian is local. An n-qubit Hamiltonian ℋ(n) is said

to be local if it can be expressed as

ℋ(n) = ∑
j∈2V

h(j),

where V is the set of n symbols (qubits) and h(j) = ⨂k∈ j Pk ∈
hermℂ(2n), where P ∈ hermℂ(2). The Hamiltonian ℋ(n) is
said to be k-local if none of the h(j)’s operates on more than k
symbols (qubits) nontrivially; here a trivial operation refers to
the case when Pk is the identity for some index k.

5. The Hamiltonian must have O(polyn) terms when expressed
in the Pauli basis. The number of terms in a Hamiltonian when
expressed in the Pauli basis is also known as the cardinality of
the Hamiltonian, ‖ℋ‖card (see [3]).

Hamitonians with such properties can indeed be constructed if
|t⟩ admits a matrix product state, albeit with the additional re-
quirement that |t⟩ must satisfy the injectivity condition. For the
parent Hamiltonian construction consider the following setting.
Let |t⟩ be an n-qubit state written as a translation-invariant and
site-independent MPS with periodic boundary conditions:

|t⟩ = ∑
j1… jn

Tr(Aj1⋯Ajn)|j1… jn⟩,

where Ajk ∈ Matℂ(r). For the sake of brevity we will call these
matrices Kraus operators.1 Consider the map

ΓL ∶ X → |ψ(L)⟩X = ∑
j1… jL

Tr(XAj1⋯AjL)|j1… jL⟩,

where X ∈ Matℂ(r). We say that the state |t⟩ is injective with
injectivity length L if the map ΓL is injective. Several corollaries
follow from this definition. A particularly useful one connects the
notion of injectivity to the rank of reduced density matrices. It
asserts that for an L-qubit reduced density matrix, ρ(L), of |t⟩, we
have rank(ρL) = r2 if injectivity holds. It has been shown that in

1 There is indeed there a connection between the matrices Ajk and
completely positive trace-preserving (CPTP) maps from which the Ajk
derive their name. For the purpose of this paper, however, we will
skip the detailed explanation.

the large-n limit, ρ(L) is given by

ρ(L) = Trn−L(|t⟩⟨t|) =
r

∑
α,β=1

Λα|ψ(L)
αβ ⟩⟨ψ

(L)
αβ |, (14)

with |ψ(L)
αβ ⟩ =∑j1… jL⟨α|Aj1⋯AjL|β⟩|j1… jL⟩, |α⟩, |β⟩ ∈ℂr and Λα ∈

ℝ+. Alternatively, this would mean that {|ψ(L)
αβ ⟩}αβ is a linearly

independent set.
The form of the reduced density matrix in (14) is particularly

telling and allows us to construct the parent Hamiltonian of |t⟩:
ℋ ≥ 0. We formally write our parent Hamiltonian as

ℋ =
n

∑
j=1

h(L)
j , (15)

where h(L)
j operates nontrivially over L-qubits from j to L+ j and

obeys the condition kerh(L)
j = span{|ψ(L)

αβ ⟩}αβ. The latter condition
combined with (14) ensures that Tr(h(L)

j ρ(L)
j) = 0 for all j, which in

turn implies that |t⟩ ∈ kerℋ. In fact, |t⟩ = kerℋ, provided |t⟩ is
injective, and so condition 1 for ℋ is satisfied. Conditions 3 and 4
are satisfied naturally due to the form of ℋ in (15). In addition,
ℋ can also seen to be frustration free, that is, ⟨t|ℋ|t⟩ = 0 ⇒
⟨t|h(L)

j |t⟩ = 0 for all j. Finally, it was shown in [17] that if |t⟩ is
injective, then ℋ is gapped.

4 Conclusion

The importance of matrix product states in physics is due to the
ease with which one could calculate and verify important quantities
or properties, such as two-point functions, thermal properties,
and more. This is also true in machine learning applications. For
example, images of size 256× 256 can be viewed as rank-one
tensor networks onℝ256. Departing from this linear (train) structure
results in tensors with potentially much greater expressability at
the cost of many desirable properties being lost.

References

[1] J. Baez and M. Stay, Physics, topology, logic and computation:
A Rosetta Stone. In New Structures for Physics, Lecture Notes in
Phys. 813, Springer, Heidelberg, 95–172 (2011)

[2] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega,
Y. Nam and A. Perdomo-Ortiz, A generative modeling approach for
benchmarking and training shallow quantum circuits. npj Quantum
Inf. 5, 1–9 (2019)

[3] J. Biamonte, Universal variational quantum computation. Phys.
Rev. A 103, L030401 (2021)

[4] J. Biamonte and V. Bergholm, Tensor networks in a nutshell,
preprint, arXiv:1708.00006 (2017)

[5] J. Biamonte, V. Bergholm and M. Lanzagorta, Tensor network
methods for invariant theory. J. Phys. A 46, 475301 (2013)

EMS MAGAZINE (2022) 7

https://arxiv.org/abs/1708.00006

[6] C. M. Bishop, Pattern recognition and machine learning.
Information Science and Statistics, Springer, New York (2006)

[7] D. Bondarenko and P. Feldmann, Quantum autoencoders to denoise
quantum data. Phys. Rev. Lett. 124, 130502 (2020)

[8] O. Bousquet and A. Elisseeff, Stability and generalization. J. Mach.
Learn. Res. 2, 499–526 (2002)

[9] J. Carrasquilla, G. Torlai, R. G. Melko and L. Aolita, Reconstructing
quantum states with generative models. Nat. Mach. Intell. 1,
155–161 (2019)

[10] A. Cayley, On the theory of groups as depending on the symbolic
equation θn = 1. Philos. Mag. 7, 40–47 (1854)

[11] A. Cichocki, Tensor networks for big data analytics and large-scale
optimization problems, preprint, arXiv:1407.3124 (2014)

[12] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao and
D. P. Mandic, Tensor networks for dimensionality reduction and
large-scale optimization. I: Low-rank tensor decompositions. Found.
Trends Mach. Learn. 9, 249–429 (2016)

[13] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama
and D. P. Mandic, Tensor networks for dimensionality reduction and
large-scale optimization. II: Applications and future perspectives.
Found. Trends Mach. Learn. 9, 431–673 (2017)

[14] J. I. Cirac, D. Pérez-García, N. Schuch and F. Verstraete, Matrix
product states and projected entangled pair states: Concepts,
symmetries, theorems. Rev. Modern Phys. 93, 045003 (2021)

[15] C. Cortes and V. Vapnik, Support-vector networks. Mach. Learn. 20,
273–297 (1995)

[16] T. M. Cover, Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition. IEEE
Trans. Electron. Comput. 14, 326–334 (1965)

[17] M. Fannes, B. Nachtergaele and R. F. Werner, Finitely correlated
states on quantum spin chains. Comm. Math. Phys. 144, 443–490
(1992)

[18] E. Farhi and H. Neven, Classification with quantum neural networks
on near term processors, preprint, arXiv:1802.06002 (2018)

[19] C. Fernández-González, N. Schuch, M. M. Wolf, J. I. Cirac and
D. Pérez-García, Frustration free gapless Hamiltonians for matrix
product states. Comm. Math. Phys. 333, 299–333 (2015)

[20] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic,
A. G. Green and S. Severini, Hierarchical quantum classifiers. npj
Quantum Inf. 4, 1–8 (2018)

[21] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow and J. M. Gambetta, Supervised learning with quantum-
enhanced feature spaces. Nature 567, 209–212 (2019)

[22] A. Jahn and J. Eisert, Holographic tensor network models and
quantum error correction: A topical review. Quantum Sci. Technol.
6, 033002 (2021)

[23] A. Kardashin, A. Pervishko, D. Yudin, J. Biamonte et al., Quan-
tum machine learning channel discrimination, preprint, arXiv:
2206.09933 (2022)

[24] Y. LeCun, Y. Bengio and G. Hinton, Deep learning. Nature 521,
436–444 (2015)

[25] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac and N. Killoran, Quantum
embeddings for machine learning, preprint, arXiv:2001.03622
(2020)

[26] W. S. McCulloch and W. Pitts, A logical calculus of the ideas
immanent in nervous activity. Bull. Math. Biophys. 5, 115–133
(1943)

[27] K. Mitarai, M. Negoro, M. Kitagawa and K. Fujii, Quantum circuit
learning. Phys. Rev. A 98, 032309 (2018)

[28] A. Novikov, D. Podoprikhin, A. Osokin and D. P. Vetrov, Tensorizing
neural networks. Adv. Neural Inf. Process. Syst. 28 (2015)

[29] A. Novikov, M. Trofimov and I. Oseledets, Exponential machines,
preprint, arXiv:1605.03795 (2016)

[30] R. Orús, Advances on tensor network theory: Symmetries, fermions,
entanglement, and holography. Eur. Phys. J. B 87, 280 (2014)

[31] I. V. Oseledets, Tensor-train decomposition. SIAM J. Sci. Comput. 33,
2295–2317 (2011)

[32] R. Penrose, Applications of negative dimensional tensors. In
Combinatorial Mathematics and its Applications (Proc. Conf.,
Oxford, 1969), Academic Press, London, 221–244 (1971)

[33] D. Perez-Garcia, F. Verstraete, M. M. Wolf and J. I. Cirac, Matrix
product state representations. Quantum Inf. Comput. 7, 401–430
(2007)

[34] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster and J. I. Latorre,
Data re-uploading for a universal quantum classifier. Quantum 4,
226 (2020)

[35] R. Rojas, The backpropagation algorithm. In Neural Networks,
Springer, 149–182 (1996)

[36] J. Romero, J. P. Olson and A. Aspuru-Guzik, Quantum autoencoders
for efficient compression of quantum data. Quantum Sci. Technol. 2,
045001 (2017)

[37] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana and A. Verri, Are
loss functions all the same? Neural Comput. 16, 1063–1076 (2004)

[38] F. Rosenblatt, The perceptron: A probabilistic model for information
storage and organization in the brain. Psychol. Rev. 65, 386 (1958)

[39] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels:
Support vector machines, regularization, optimization, and beyond.
MIT Press (2002)

[40] M. Schuld, A. Bocharov, K. M. Svore and N. Wiebe, Circuit-centric
quantum classifiers. Phys. Rev. A 101, 032308 (2020)

[41] M. Schuld and N. Killoran, Quantum machine learning in feature
Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019)

[42] M. Schuld, R. Sweke and J. J. Meyer, Effect of data encoding on the
expressive power of variational quantum-machine-learning models.
Phys. Rev. A 103, 032430 (2021)

[43] H. Schulz and S. Behnke, Deep learning. KI-Künstliche Intelligenz 26,
357–363 (2012)

[44] P. Selinger, A survey of graphical languages for monoidal categories.
In New Structures for Physics, Lecture Notes in Phys. 813, Springer,
Heidelberg, 289–355 (2011)

[45] J. Shawe-Taylor, N. Cristianini et al., Kernel methods for pattern
analysis. Cambridge University Press, Cambridge (2004)

[46] E. Stoudenmire and D. J. Schwab, Supervised learning with tensor
networks. Adv. Neural Inf. Process. Syst. 29 (2016)

[47] A. V. Uvarov, A. S. Kardashin and J. D. Biamonte, Machine learning
phase transitions with a quantum processor. Phys. Rev. A 102,
012415 (2020)

8 EMS MAGAZINE (2022)

https://arxiv.org/abs/1407.3124
https://arxiv.org/abs/1802.06002
https://arxiv.org/abs/2206.09933
https://arxiv.org/abs/2001.03622
https://arxiv.org/abs/1605.03795

Richik Sengupta is a research scientist at Skolkovo Institute of Science
and Technology.

r.sengupta@skoltech.ru

Soumik Adhikary is a research scientist at Skolkovo Institute of Science
and Technology.

s.adhikari@skoltech.ru

Ivan Oseledets is full professor, director of the Center for Artificial
Intelligence Technology, head of the Laboratory of Computational
Intelligence at Skolkovo Institute of Science and Technology.

i.oseledets@skoltech.ru

Jacob Biamonte is full professor, head of the Laboratory of Quantum
Algorithms for Machine Learning and Optimisation at Skolkovo Institute
of Science and Technology.

j.biamonte@skoltech.ru

EMS MAGAZINE (2022) 9

mailto:r.sengupta@skoltech.ru
mailto:s.adhikari@skoltech.ru
mailto:i.oseledets@skoltech.ru
mailto:j.biamonte@skoltech.ru

