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Abstract

We study the dynamics of skew product endomorphisms acting on the cylnd@ex R, of the form
0.1) — (L0, 1t +1(0)),

wherel > 2 is an integer) € (0, 1) andt :R/Z — R is a continuous function. We are interestedapologicalproperties of
the global attractof?, . of this map. Giver? and a Lipschitz functiorn, we show that the attractor s& . is homeomorphic
to a closed topological annulus for allsufficiently close to 1. Moreover, we prove th@j, . is a Jordan curve for at most
finitely manya € (0, 1).

These results rely on a detailed study of iterated “cohomological” equations of the fer®y,, 1, u1 = Ly, u2, ..., where
Lyu=pomy —in andmy :R/Z — R/Z denotes the multiplication by map. We show the following finiteness result: each
Lipschitz functionz can be written in a canonical way as,

=Ly, 0---0Ly, 1,

wherem > 0, A1, ..., A € (0, 1] and the Lipschitz functiom satisfiesu # £, p for every continuous functiop and every
A€ (0,1].
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Résumé

On étudie la dynamique des produits croisés agissant sur le cylydex R, de la forme
0.1) > (€0, At +1(0)),

ou ¢ > 2 est un entierp € (0,1) et 7:R/Z — R est une fonction continue. On s’intéresse aux propri&pslogiquesde
I'attracteur globals2, . de cet endomorphisme. Etant donhét une fonction lipschitzienne, on démontre que l'attracteur
£2; r est homéomorphe a un anneau topologique pourtsutfisamment proche de 1. D’autre part, on démontre qu'il existe
au plus un nombre fini de € (0, 1) tels que l'attracteus2; , soit une courbe de Jordan.

Ces résultats s’appuient sur une analyse détaillée des équations “cohomologiques” €8s 1, n1 = Ly, 12, ...,
ouLyu=pomy— A etmy est I'application de multiplication pat sur le cercléR/Z. On démontre le résultat de finitude
suivant : toute fonction lipschitizenres’écrit de fagon canonique sous la forme

=Ly, 0 0L, 1,

oum >0,11,...,Am € (0, 1] et la fonction lispchitzienng satisfaitu # £, p pour toute fonction continug et toutx € (0, 1].
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In this paper we study the dynamics of skew product endomorphisms of the cyRridex R of the form

Ayt 'R/ZXxR—R/Z xR,
@,t) —~ (EG, A+ 1(9)),

where? > 2 is an integer) € (0, 1) andt : R/Z — R is a continuous function.

The non-wandering se®, . of A, ; is a global attractor of the dynamics 4f, ,: the forward orbit of every
pointinR/Z x R converges td2, , andA, ; is transitive on2, .. In factA, . is topologically semi-conjugate to
a solenoidal map o, . (Section 2).

These maps where initially studied in [10], fromreeasure theoreticgdoint of view. In that paper M. Tsujii
showed that, . has a unique physical measure and that the support of this measure is the a@actdrhe
main result of [10] is that, wheh > ¢~1, for generic functions of classC? the unique physical measure 4f
is absolutely continuous with respect to Lebesgue measure.

The purpose of this paper is to stuthpological properties of the attractor sef®, .. Our main result is the
following.

Theorem 1.Suppose that : R/Z — R is a non-constant Lipschitz function. Then the following hold

(1) The set7; = {1 €(0,1) | £2, ; is a Jordan curvgis finite.
(2) There exists.g € (0, 1) such that for allx € [Ag, 1) the attractor set2, . is homeomorphic to an annulus.

For a given. € (0, 1), we characterize those functiongor which £2, . is a Jordan curve in terms of the Fourier
coefficients ofc (Theorem 2). From this characterization it follows easily that the set of thdsewhich 2, . is
a Jordan curve has infinite codimension in the space of all Lipschitz functions.
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1.1. On the interior of the attractor

Whenx < ¢71, it is easy to see tha®, . has zero Lebesgue measure and hence empty interior. On the other
hand, wheri. = £~! we show the se®; . is not homeomorphic to an annulus (Proposition 4.4)A8m part (2)
of the theorem must be strictly larger thémnt.

When > ¢~1, Tsujii's result (mentioned above) implies that for mesif classC?, the attractor se®; , has
positive Lebesgue measure. Here we show examples of Aygapgor which the set2, ; has non-empty interior
but it is not homeomorphic to an annulus (Proposition 7.4). In these exarhplaa be taken arbitrarily close
to ¢~1. Moreover we show that these examplesratmistin the sense that any map: R/Z x R — R/Z x R that
is sufficiently (Lipschitz) close te\, . has the same properties. Hereis not necessarily a skew product map.

In a forthcoming paper we show that, whees- £-1, for mostr of classC? the setf2, , has non-empty interior.

1.2. On the iterated cohomological equation

Recall that a continuous function: R/Z — R is cohomologous t® if there is a continuous functiom such
that

T=Lu=pomMy—u,

wherem;, : R/Z — R/Z is the multiplication by map. Itis easy to see that in this cge, r = 0 and the function
1 is unique up to an additive constant. For this reason we will assume that all the functions considered in the rest
of the introduction have 0 mean.

Part (2) of the theorem is first proven in the case whda not cohomologous t® (Proposition 4.6). When
T = Lu is cohomologous to 0, a direct computation shows thatmapsA, . and A, , are conjugateddy the
homeomorphisni®, ) — (0, (t + u)/(1 — 1)). So, if u is not conomologous to 0 we reduce to the first case. By
induction, if for some positive integerthere is a continuous functign: R/Z — R that is not cohomologous to 0
and such that = £"u, then we reduce to the first case.

We complete the proof of part (2) of the theorem by showing #habn-constant Lipschitz function cannot be
infinitely cohomologous t0. More precisely, we show that if is Lipschitz, then the integer above is bounded
by a constant depending only on the Fourier coefficients @orollary 5.7).

Problem 1.Is there a non-constant continuous function that is infinitely cohomologous to 0?
1.3. Cohomological operators

For A € (0,1] it is interesting to consider the linear operatdrs defined by, u = A — o my, so that
L1 = L. Forig € (0,1) andr (Lipschitz) continuous we show tha,, . is a Jordan curve if and only if there
exists a (Lipschitz) continuous functignsuch thatr = £,,u (Proposition 3.1). In that case, for everye (0, 1)
different fromag, the mapsA;, . andA, , are conjugate (Lemma 5.8).

We show that each Lipschitz functiancan be written in a canonical way as

t=Ly,0--0Ly, [

where the function satisﬁesz/Z w=0andu # L, p for everyx € (0, 1] and every continuous functign(here
there might be repetitions among, ..., A,;). This implies part (1) of the theorem. Note that such a functiaa
such that for every. € (0,1) the sets2, , is not a Jordan curve and for everys (0, 1) different from thek;, the
mapsA, . andA, , are conjugate (Theorem 3).

Problem 2.For¢ = 2, let be a non-constant Lipschitz function such thag £, p for everyx € (0, 1) and every
continuous functiomp. Is thereig € (0, 1) such that2; ,, is homeomorphic to an annulus if and only.if> Ag?
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1.4. Are there periodic points in the boundary?

Theupper(resp.lower) boundary of the attractois by definition the graph of the function

p*©) =sup(t] 6, 1) € 2.
(resp.p~(0) =inf{r | (0.1) € 2, .
These functions are continuous and characterized by the functional equations
pT(©) =max{rpt @) + ()16 em;6)],
p~(6) =min{rp~ (@) +(0") |6’ e m; ()}

Moreover, wherr is Lipschitz the functiong™* andp~ are also Lipschitz.

Conjecture. For eachx € (0, 1) there is an open and dense set of functioref classC?, such that the following
properties hold.

1. The upper(resp. lowej boundary of2; , contains a finite number of periodic orbits 4f, ..
2. The upper(resp. lowej boundary ofs2, . is formed by a finite number of pieces of the unstable manifolds of
the periodic orbits that it contains.

In particular the upper and lower boundaries afé by parts.

For a giveni € (0,1) and a continuous function: R/Z — R consider the closed set
Dt ={0eR/Z | 1pT )+ () =pT (tO)}.
It follows from the functional equation gf ™ thatm, (D) = R/Z, so the maximal invariant set
Kt={0eD"|m}®)e D" forn>1}

is non-empty and compact. Part 1 of the conjecture implieskhatontains a finite number of periodic orbits and
part 2 implies thak T is finite.
The above conjecture is somewhat similar to the conjecture that, for generic expanding endomorphisms of the
circle f, there is a uniqgue measuygeminimizing the integrayR/Z In f" du and that this measure has finite support,
see [1,2] and references therein.

1.5. Notes and references

Our original motivation to study the dynamics of the skew product maps was the family of maps .
considered in Subsection 7.1.

Similar skew products of the cylinder where studied by M. Viana [12]. M. Tsuijii [11] extended the results
of [10] and [12] to general partially hyperbolic endomorphisms on surfaces. The structural stability of Axiom A
endomorphisms has been studied in [9]. Piecewise affine endomorphisms having an attractor set with non-empty
interior were studied in [3].

After this article was written we found out that the skew product maps considered here were studied in [6]
and [4], see also Appendix 3 of [8]. In [4] there are some examples of Mapswhose attractor se®@, ; has
non-empty interior.

Some results in this paper are closely related to “normal forms” in “ergodic optimization” (e.g. see [5] and
references therein). For example, given a functiolR/Z — R the study of the solutions™ of the equation

pT(6) =max{ipT @) +10) 16 em; )}
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asi — 1 leads to the existence of a normal formrolt is remarkable that in our context the functipft has the
clear geometrical interpretation as the upper boundary of an attractor set.

1.6. Outline

Let us now describe the structure of the paper.

Section 2 starts giving several equivalent characterizations of th@,set Then, in Subsection 2.1, we show
that the semiconjugacy between the dynamics induced by the multiplicatiémmap on the solenoid and the
dynamics ofA, . on £2, , can be written in a fairly explicit manner. Also, we end&with an adapted metric
dist, which makes this semiconjugacy a Lipschitz function, providedthatLipschitz. Then it naturally follows
that the upper and lower boundaries of the attragtpy are Lipschitz graphs whenis Lipschitz (Subsection 2.2).

Section 3 is devoted to study Jordan curve attractors. We characterize them and show, among other results,
that £2, ; is a Jordan curve if and only if the functional equatipro m, — A = t has a continuous solution
(Proposition 3.1). This allow us to show, in Subsection 3.2, that the set of continywith absolutely convergent
Fourier series) such th&2, , is a Jordan curve has infinite codimension (Theorem 2).

The main result in Section 4 is that, farsufficiently close to 1, the attractae, . is a closed topological
annulus provided that is Holder, not cohomologous to 0 and with 0 mean (Proposition 4.6). This section starts
with general results about annular attractors. In particular, we show that if the image of the upper boustjary of
is above in the cylindeR/Z x R than the image of the lower boundary, then ; is homeomorphic to a closed
annulus (Lemma 4.1). Also, we establish thatfeg 1/¢, the attractor?2, . cannot be an annulus (Proposition 4.4).
Then, in Subsection 4.1, under the above assumptions e find periodic orbitsD* in the circle so that the
corresponding orbits i2, ; € R/Z x R haveR coordinates tending tedcco asx — 1. From this we deduce
that the image of the upper boundary is higher uRjfZ x R than the image of the lower boundary, whets
sufficiently close to 1, and therefore th@j, , is an annulus.

Sections 3 and 4 lead us to study in more detail the operagus= u o my — A with A € (0,1]. For our
purpose the natural domain of the operatfids the space of Lipschitz functions. In Section 5 we start by proving
some general facts about these linear operators and relating them to conjugacy classes of maps ofAthe form
(Lemmas 5.2 and 5.8). As mentioned in Subsection 1.2 this forces us to study iterated equations of the form
Lo pm1=1,Lo,u2=pu1,.... Animportant feature of the operatofs is that they do not increase the best Lipschitz
constant foru (Lemma 5.4) which implies that solutions, of the iterated equations are uniformly Lipschitz.
Then we show that the above equations have the effect of increasing the Fourier coefficigntsafincreases
and establish our Main Lemma which states that, given a Lipschitz functitirere exists a finite collection
0 < Aq, ..., A < 1 (maybe with repetitions) and a (Lipschitz) continuous functi®uch thatly, o---o L, u=rt
and £, p # p for all continuousp (see Lemma 5.6 and the Main Lemma). Theorem 1 and its stronger version
Theorem 3 follow immediately from our Main Lemma.

In Section 6 we start by appropriately defining the attractor set and the upper and lower boundaries for arbitrary
maps (not necessarily skew products) which are closé;tp and state that the upper and lower boundaries of
£2;. . vary continuously in the© topology under Lipschitz perturbations @f, . (Proposition 6.2). To prove this
we pass to the universal covi@f of R/Z x R and, in Subsection 6.1, examine the action of Lipschitz maps from
R? into R? on the graphs of Lipschitz functions. In Subsection 6.2, motivated by the fact that the upper and lower
boundaries of2; . are the graphs of functions® : R/Z — R which satisfy certain functional equations we show
that, under certain conditions, the upper and lower boundaries of the attractor ofhudjtlse cylinder are fixed
points of operatorg'ﬁE which act on Lipschitz functions. The definition and propertieg'ﬁf rely on the work of
Subsection 6.1. At the end of Section 6 we prove the above mentioned continuity of the upper and lower boundaries
of the attractor.

The last section, Section 7, contains two examples. The first example consists of an application of our results to
the study of a familyf, . of endomorphisms of* = C \ {0} wherei € (0,1) andc € C*. Here f, . = fio+ ¢
where f; o acts as angle doubling on the arguments ef C* and as an affine contraction of factbrin the
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radial direction. Thusf;_.. is closely related to the extensively studied quadratic familyz) = z2 + ¢ where the

lz] — |z|% action of Qg in the radial direction has been substituted by an affine contraction. We show that for
sufficiently close to 1 and foe| sufficiently small, the attractor of, . is an annulus. The second example shows
that givenx > 1/¢ there exist skew product endomorphiseis, such that the attractor®, . have non-empty
interior and are not an annulus. This example is robust under Lipschitz perturbations.

2. Preliminaries

Throughout this section, unless otherwise stated®/Z — R is a continuous function ande (0, 1). We start
by showing that?2, - is a global attractor for the dynamics 4f,_, and giving several equivalent characterizations
of this set. As usud|t||. = sup{z(0)| 6 € R/Z}.

Lemma 2.1.Let 2, , be the non-wandering setdf, ; :R/Z x R - R/Z x R.

Q) If Up=R/Z x (—Ty, To) for someTy such that(1 — 1) Tp > ||7|lco, then

Arr(o)CUo and £, .= (") A} (Vo).
n=>0

(2) £2, ; is the set of all(®, 1) € R/Z x R with a bounded infinite backward orbfte., there exist€ > 0 and
{(61, t2)}n>1 such tharA’;’r(@,,, t,) =(0,t)and|t,| < C forall n > 1).
(3) £, isthe closure of the set formed by the periodic pointd pf.

Proof. Denote by Per the set of periodic points 4f ; and by B the set of points ilR/Z x R which have a
bounded infinite backward orbit. We will show that:

Perc 2, . c (] A}, (Uo) C B C Per
n>0

The inclusiondPerc £2; ; and(, >0 A} . (Uo) C B are clear.
Let Tp be such thatl — 1) Tp > || 7|00 Since

At +7(0)| <ATo+ Tl < ATo+ (A —2)To=To

for all |t] < Ty, it follows thatA;_; (Up) C Up.
Note that if(6,, #,) = Aﬁ’t(e, t), thend, = ¢£"0 and

by = 2"t 2L (0) + A" 2T (U0) + -+ T(€"10).

Therefore,

n

1—x
|tn|<ﬁ||f||oo+)\n|f|‘ 1)

Hence, for all(@, r) € R/Z x R there exists such tham’;’t(e, t) € Up.
Now we show that2, - C (),>q A% . (Vo). Infact, suppose that for some> 0 we have thatt, 1) ¢ Aj\’fr(l_]o)
and considen such that®, r) belongs to the open s&t= A;)Z(Uo) \ Aj{"T(Uo). Then, for everyM > m we have

thatV is disjoint fromAﬁM(V). It follows that (6, r) does not belong to the non-wandering gt of A, -.

To finish the proof of the lemma we consider a neighborh@auf a point(6, ¢) with bounded infinite backward
orbit and proceed to show th&tcontains a periodic point. L§td,, ,)},>1 andC > 0 be such thaA’;)r(G,,, ty) =
(0, 1) and|t,| < C for alln > 1. There exisk > 1 and an open intervdl C R/Z arounds, such that the rectangle
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R =1 x [—To, To]l maps intoU underAj . Since there existd’ € I periodic under multiplication by, say of
periodm, we have thaﬂTJ restricted to{0’} x [—Tp, To] is a contraction. It follows thad, ; has a periodic point
in {6’} x [—To, To] C R and therefore i/. O

2.1. The solenoid and the semiconjugacy
Throughout the paper multiplication I8yin the circle will be denoted by, : R/Z — R/Z. For each. € (0, 1)
we endow the solenoid:
S:=1{0 =6 € ®R/Z)"Y | my(By41) = 6 for all k > 0}
with the adapted metric
dist, (), (6,)) = Y A* diste (0%, 65),
k>0

where disk,z denotes the projection of the standard metri®asntoR/Z. The dynamics of multiplication by
induces:

Me:S = S,
Or)k=0 = (€60, 060,01, ...).

We will show that the dynamics aM,:S — S semi-conjugates to that of; ;:$2, . — £, .. Thus, the
attractors2, . is in this sense a solenoidal attractor. To write an explicit formula for the semiconjugacysSfrom
onto £2, . we need the following definition.

Definition 2.2. Given a continuous function: R/Z — R andA € (0, 1) we definer; : S — R by
6.0) = 1(01) + AT(62) + 22T (B3) + - - .

Note thatz, is continuous. Under the assumption thais a Lipschitz function we will show thag, is also
Lipschitz. In order to make the statements precise we introduce some notation.

Notation 2.3.Consider two metric spacé¥, px), (¥, py). Given a Lipschitz mag : X — Y the best Lipschitz
constant forf

Sup)OY(f(a), f (b))
a#b  px(a,b)

is denoted byj| /|| and if C > || f]|., we say thatf is aC-Lipschitz map.

Lemma 2.4.1f » € (0,1) andt :R/Z — R is a Lipschitz function, then, is a (x~1||z || )-Lipschitz function from
(S, dist)) toR.

Proof. For anyd = (6;) andd’ = (¢;) in S we have

|6.6) — 60| < DM@ — T @) < Tl - Y A distrz(6k, 6;)
k>1 k>1
=27t (dist.(8,8") — diste/z (60, 65)) < A HI7 |l dist.(8, ). )

Thatis,t, is A7z | . -Lipschitz. O
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Proposition 2.5.Givena € (0, 1) and a continuous function: R/Z — R, let
h),:S - R/Z x R,
0 =) > (00, 12(0)).
Thenh, is a continuous semiconjugacy frafronto$2, .. Thatis,h, : S — 2, ; isonto andA, ; oh; = hjy o M.
Moreoverh, : (S, dist,) — 2, . is Lipschitz whenever:R/Z — R is Lipschitz.

Proof. That Ay ¢ o hy = hy o M, is a straightforward computation. We must show thatS) = 2, .. Since
h,.(S) is bounded and forward invariant (i.el; - (. (S)) = h,(S)), by Lemma 2.1, we have tha{(S) C 2, -.
Now if (0o, t0) € 2,7, then there exists a bounded backward oftt, t,)},>0. Therefored = (6,) € S and
to=1,(0). Hence,(o, to) = h1.(9) € h,(S). By the previous lemmak,, is Lipschitz, ifr : R/Z — R is a Lipschitz
function. O

2.2. Upper and lower boundaries of the attractor

The attractorn2, . lies in between the graph of two functions which we call the upper and lower boundaries
of £2, .. More precisely:

Definition 2.6. Let

pTO) =sup(t| 6.1) € 2.}
p~(0)=inf{r [ (0,1) € 25}

We say thab1 2, . = {0, p+(0)) | 6 € R/Z} are theupper and lower boundaries &2, ., respectively.

SinceA, ;(2,.) = £2, r and A, ; is locally orientation preserving, it follows that
pT(0) = max{rpT (@) + ()16 em;©B)},
p~ () = min{ap~ () +1©®") |6 em;1(©®)).

For t Lipschitz, the upper and lower boundaries are Lipschitz graphs. In generalpfalassC> or even real
analytic, the upper and lower boundaries are@ht

®3)

Lemma 2.7.1f  :R/Z — R is Lipschitz, them® :R/Z — R are (||z||. /(¢ — 1))-Lipschitz maps.

Proof. Considemp, 6} € R/Z. Letd = (6k) € S be such that, (0) = p ™ (6o). There exist®’ = (§;) € S such that
distr,z (6], 6x) = £~ distr,z (0}, 60) and therefore,
dist.(0,0") = % distz (60, 60).
Then, by (2):
p*(60) = 1.(0") =1,(8") — 1,.0) +1,(8) > —C(dist.(6, 6") — distgz (60, 6))) + 1,.(0)
= —C(é — 1) dist, (9,60") + 1,(0) = pT (Bo) — c% dist, (9, 6")

whereC = 1~1||7| 1 is a Lipschitz constant fa, (see Lemma 2.4). It follows thatt : R/Z — R is Lipschitz with
the appropriate constant. For :R/Z — R a similar argument can be appliedo
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3. Jordan curve attractors

Observe that the equat{®} x R/Z of the cylinder is the attractor of the mai o.
3.1. Characterization

The next proposition characterizes Jordan curve attractors.

Proposition 3.1.Lett: R/Z — R be a function of clas§ whereC is either the Lipschitz class, or th& class for
somer € [0, 0] U {w}.
Then the following are equivalent

(1) A, - istopologically conjugate tat; o.

(1) A, . isC-conjugate toA; o.

(2) 2, CcR/Z x R is the graph of a continuous function: R/Z — R.

(2) 2, CR/Z x R is the graph of a functiom : R/Z — R of classC.

(3) The functional equatiopr o my — A = T has a continuous solution: R/Z — R.
(3) The functional equatiop o my — A = 7 has a solutionu : R/Z — R of classC.
(@) pt©®)=p () forall 6 e R/Z.

(5) pT(O) = p~(9) for somed e R/Z.

(6) £2, ; is aJordan curve.

Proof. (6) = (5). If £2, ; is a Jordan curve, them™ (6) = p~ (6) for somed € R/Z. Otherwise,o*(0) > p~(9)
for all # and the two Jordan curvé&d, p*(8))} and{(8, p~(6))} would be disjoint and contained in the Jordan
curve$2, . which is impossible.

(5)= (4). If pT(0) = p~ () for somed € R/Z, then the seS = {9 e R/Z | pT(6) = p~(0)} is not empty,
closed andn,*(S) = S, henceS = R/Z.

(4)= (2). If p* andp~ agree orR/Z, thens2;, . isthe graphofu = p™ =p~.

(2)= (3) (resp. (9 = (3). If 2;.. C R/Z x R is the graph of aC° (resp.C) function u:R/Z — R, then
L0, 1 (0) + t(0)) = Ax (0, 1(8)) belongs to the graph q@f. Thereforeu(¢6) = A (9) + () for all 6.

(3)= (3). Let us denote byr : R — R/Z quotient map. lfu o m; — A = t has aC? solutiony :R/Z — R,
thenu o :R — R is a solution ofit(£s) — Afi(s) = T(s) where? =7 o 7. It is not difficult to check that this latter
equation has a unigue continuous solution given by

A(s) =7 (s/0) + AT (s/€%) + M25 (s /63 + - -,

which is of the same class asThereforeu o m = 1 andu are of clas€.

(3)= (1) and (2). If u:R/Z — R is aC function such thajt o m; — Au =1, thenho A, o= A, ;o h
whereh(9,1) = (0,t + n(0)). HenceA, ; is C-conjugate tad; o and$2, . = h(R/Z x {0} = £2; o) is the graph
of u:R/Z — R.

Since () trivially implies (1) and (1) implies (6), the proof of the proposition is complete.

3.2. Infinite codimension

Throughout this subsection we fixe (0,1). In Proposition 3.1 we showed that the global attrastgr, of
A, ; is aJordan curve if and only if the functional equation

T=poMy —Au (4)
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has a continuous solution:R/Z — R. The aim of this subsection is to characterize the continuous functions
7:R/Z — R for which the functional equation (4) has a solution. With this purpose in mind, forlead, we
introduce the linear functional

Dy LYR/Z,R) — R,
(g / v (0)vi(0) do
R/Z
where
Vi (9) — Z )\l’l (eZHi@”kQ + e—ZniZ”ke).
n=>0
Lemma 3.2.Considerr € LY(R/Z, R) and suppose that there exigtss L*(R/Z, R) such that
T=poMmy;—Au.
Then,Di(r) =0for all k € N such that’ t k.

Recall that for eachh € L1(R/Z, R) thek-th Fourier coefficient o is defined by

p(k) = / ¢(©)e > do.
R/Z
For general background on Fourier series see [7].

Proof. From Eq. (4) it follows that
WTO) + AT (U0) 4 -+ T(€"0) = (€)= 2T u(0)

for all n > 1. For allk such that¢  k, computing the" k-th Fourier coefficient of the functions involved in the
previous equation we obtain that:

)Ln‘f(ﬁnk) + )Ln—lfn—l(en—lk) T ‘f(k) — _)Ln-i-l'a(gnk)‘ (5)

In view of the fact that the Fourier coefficient of € L*(R/Z,R) are bounded, ag — oo we have that
A" HLa0k) — 0 and, therefore,

> a2k =0. (6)
n>0

Now recall that the Fourier coefficients of a real valued function are even. In partié@ar= 7(—k) and
Eq. (6) is equivalent to:

Di(t) =Y W"(2(L"k) + 2(—£"k)) =0.
n=>0

Thus we have completed the proof of the lemma
Theorem 2.Lett :R/Z — R be a continuous function with absolutely convergent Fourier series. If

Di(r) =0 (7)
for all k € N such that’ 1 k, then there exists a continuous functjgnR/Z — R satisfying the functional equation

T=pomy—Au.
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Proof. We will obtainu as a Fourier series with coefficierité) where:

20

b(0) =10
TSI L o WY IOM P S < S PO 8
b === Y MW = =5 Y Wb ®)

j=0 j=n+1

for n > 0 andk # 0 such that does not dividé. (Compare with Eq. (5).)
We claim that the Fourier series

S b)) =)+ 3 b(enk) I

qeZ k n=0
is absolutely convergent (i.erqEZ |b(q)| < o0). In fact, from Eq. (8):
1

@] =[p©]+ 32> [pe| <[p©@)|+3 2> =g 3 M[Ewnl.

q€eZ Uk n=0 Uk n=0 j=>n+1

)

Since

1 oA n ] 1_)Ln+1
Yo 2 MEER=3 ) VRt =) )

n=>0 j=>n+1l n>0 ;=0 n=>0 n=>0

it follows that

X 1 1 o 1 )
> o) < |r(0)|m + 15 DO lrertho| = T > |2 @) < oo

qeL Uk n=0 qeL

Thus the serie_ ., b(¢) e?i4? yniformly converges to a continuous functipnR/Z — R. which is a solu-
tion of T = w omy — A since an easy computation shows that the Fourier coefficientanflu o m; — A agree
(cf. Lemma 3.2). O

Definition 3.3. Let t:R/Z — R be a continuous function with absolutely convergent Fourier series. Define
the canonical representative af by the continuous function. :R/Z — R given by the Fourier serieg.(6) =
Zé{k Dk (.L.)ekaG_

An immediate consequence of the theorem above is the following corollary:
Corollary 3.4. Let t:R/Z — R be a continuous function with absolutely convergent Fourier series. i the
canonical representative @f thent is cohomologous te.. That s, there exists a continuous functjonR /Z — R
suchthatt =t. +pwomy — Aput.
Proof. Note that for every which is not divided by it holds thatD; (z — z.) = 0. Therefore we may apply the
previous theorem te — t. and obtain the corollary. O
4. Annular attractors

Our next result contains the sufficient condition {2, to be a closed topological annulus which will be used

in the proof of Theorem 1. More precisely, below we prove that if the image of the upper bound@yy,dfes
higher inR/Z x R than the image of the lower boundary, th@p ; is an annulus:
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Lemma 4.1.If £2, ; is not a Jordan curve and
min{ip @) + 1016 em; @)} > max{rp~ (@) — (016 em; 1 (9)} (9)

for all 9 € R/Z, then2, . is a closed topological annulus. Moreoverfi 2 and £2, , is a closed topological
annulus, then inequalit{9) holds.

Remark 4.2.For all ¢ > 2 and provided thaf2, . is not a Jordan curve, a necessary and sufficient condition for
£2, . to be homeomorphic to a closed annulus is that fof &lR/Z:

1= |J A (10"

o'em;(6)

wherel (6) = {8} x [p~(8), p* (O)].

Proof. Let A= {(®,t) | p~(0) <t < pT(6)} and note thatd; ,(A) C A. We claim that from (9) it follows
A;. - (A) = A and therefore2; . = A. Otherwise there would exisg € (0~ (6o), o™ (60)) such that(6o, to) ¢

A, (A). Considerd), m;l(eo) such thatp™(6g) = Ap™=(0,) + t(0.). Since(6o, 10) ¢ A (A), the image of
AN ({0} x R) should be above) and the image a#l N ({6”} x R) should be belowg. Hence, we would have:

AT OL) +T(0L) <10 <10”(0) +T(6))

which contradicts (9). Thereford = £2; ;. By Proposition 3.1, if2; , is not a Jordan curve, thes™ > p~ on
R/Z. Hences2, . = A is a closed topological annulus.

For ¢ = 2, if (9) does not hold for someéy, then the two intervalsd, (A N ({6p/2} x R)) and A; (AN
({fo/2 + 1/2} x R)) are disjoint and their union id; . (A) N ({6p} x R). Therefore 2, . C A; . (A) is not an
annulus. O

To show that if§2, . is a topological annulus then> 1/¢, we will need the following result.

Lemma 4.3.Assume that < 1/¢. Lett:R/Z — R be a continuous function. §+ — p~ is a constant function,
theng2, . is not an annulus.

Proof. Suppose that < 1/¢andp™ — p~ is the constant functio@ for someC > 0. We proceed by contradiction.
If £2; . is an annulus, then

[o~®.0t®]= |J 70"
o'em; 1 0)

where J(8") = [Ap—(0") + t(8"), AT (8") + t(8")]. Since the length ofp~(8), pT(0)] is C and the length of
each of thel intervalsJ (9) is AC, it follows that¢AC > C and therefore. = 1/¢. Moreover, the interior of the
intervalsJ (9”) must be pairwise disjoint, which is impossible since the image uaggrof the loop{(9, (o™ (0) +
0 (0))/2)| 6 € R/Z} must have self-intersectionsO

Proposition 4.4.1f £2, . is a closed topological annulus, thén> 1/¢.

Proof. Suppose that < 1/¢. Let C be the maximum op* — p~ and letE C R/Z be the set formed by the
arguments® such thatC = (o™ — p7)(9). From the previous lemma we may assume #hat R/Z. Hence, there
existstp ¢ E such that = £0g € E. It follows that the length of

S = U [0~ ©) 410", Aot (0) + (0]

0'em;6)
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is strictly less tharC. Therefore[p~(9), p™(6)] # S and by Remark 4.2 we conclude th@j, ; is not an annu-
lus. O

4.1. Annular attractors when is not cohomologous t0
The aim of this subsection is to prove (2) of Theorem 1 under some extra assumptions on

Definition 4.5. We say thatr : R/Z — R is cohomologous t® or a coboundary it = 4 o my; — u for some
continuousu : R/Z — R.

We will show that Theorem 1 (2) holdsifis not cohomologous to 0 ar;@/Z 7(60)d6 = 0. Under these stronger
assumptions we can weaken the Lipschitz class hypothesis for

Proposition 4.6. Let t:R/Z — R be a Holder function which is not cohomologous @Qoand such that
fR/Z 7(0)d6 = 0. Then there existsg < 1 such thats2, ; is a closed topological annulus for alle [, 1).

The proof relies on finding appropriate periodic orbits under the multiplicatiohrogpm; :R/Z — R/Z.
To simplify notation we letf t = fR/Z 7(6) dd = 0 since we will only consider integrals with respect to the
Lebesgue measure @yZ.

Lemma4.7.1f t :R/Z — R is a Holder function which is not cohomologousitand such thaf = 0, then there
exist periodic point#.. of period p+ such that

7(04) + -+ T(P+04) > 0,

() +---+1(lP-6_) <O.

We employ the ideas contained in the proof of Theorem 9 in [2].

Proof. By considering—t instead ofr it is sufficient to findd,.. Ford = (0o, 61, 62, ...) € S we let
Sné =101+ -+ 16h).

We proceed by contradiction and suppose that for all peripdintsé we have thas, 6 < 0.
We claim that

{S,016 €S, neN}
is bounded above. In fact, for afye S there exists a period pointd’ = (65, 6;. ...) € S such that
distr7(6,, 0n) < T
Therefore,
o
-1

$2(0) < Sy (@) = S (@) < C- (14 +£7 ") <C-
whereC > 0 is an eHo6lder constant fot.
Now i :R/Z — R defined by
w(bo) = Sup{SnG_ |6 = (60, B1, B2, ...) € S}

is ana-Holder function. In fact, for anyo, 6} € R/Z ande > 0 letd = (6o, 61, ...) be such thaf(6p) < S0 + ¢.
Then there exist8’ = (8}, ...) € S such that dist/z 6k, 0;) = ek distz 7 (0o, 6)- Therefore,



222 R. Bamon et al. / Ann. . H. Poincaré — AN 23 (2006) 209—-236

. _ - - = 1 e
1(0g) = Su(0') = $u(8") — Su () + Su(0) = S, (0) — Co—1 distz,z (6o, 0p)

1 . I
2 (o) — e — CZ"‘——l distr,z (6o, 6p)* .

It follows that u is a-Holder, in particular continuous.
From the definition of+ we conclude that

n (o) = @) + 7 (0).

Thereforeu omy — u — t is a non-negative function whose integral oRe¥Z is zero. It follows that = pom; —
which contradicts our assumption thais not cohomologous to 0.0

Proof of Proposition 4.6. We will show thato™ — +o0 (resp.p~ — —o0) asi — 1. In particular fora suffi-
ciently close to 1 we have that" > 271||7]ls (resp.p~ < —A"1|7]ls), Which in view of Lemma 4.1 implies
that$2, . is an annulus.

Let 6, be a periodp = p.. periodic point as in the previous lemma anddet () + - -- + t(¢£?~10;) > 0.
Considen; < 1 and a neighborhootd c R/Z of O = {6, ..., £P~16,} such that:

(a) There exists a neighborho®dc U of O such thaim,: V — U is a bijection.

(b) For allx > A, if {0, 46, ...,¢P~19} C U, then

T(0) + AT(0) + - -+ AP~ Lr (0P~ 10) > %

Letng be such thamZO(U) =1R/Z. Then for alldy € R/Z there exist® = (Ao, ...) € S such tha#, € U for all
n > ng. Hence for all. > A1,

no—1
pt00) = Y Mo =) A @0+ Y e
k>1 k>1 k>=ng

> (Lt WO Tlloo + AOTELA AP 2 )T

Ckno—l
> —nollt _—. m]
olitle + 5557

Remark 4.8.Provided that :R/Z — R is Holder, [ = 0 andr is not cohomologous to zero, it follows from the
previous proof that fok € [Ao, 1) the inequality (9) holds strictly, that is:
min{ap™(0") +1©") 16’ em; (@)} > max{rp~ (@) + @) |6 em; 1 (©)).

5. Cohomological operators

In this section we will study the linear operators
Lop=pomg—Ap

acting on Lipschitz functiong. : R/Z — R wherei € (0,1]. On one hand these linear operators are related to
conjugacy classes of affine maps . (see Lemma 5.8). On the other hand, in view of Propositions 3.1 and 4.6,
these operators are also related to topological properties of the attfactorAt the end of this section we will
apply the properties of, to prove a stronger version of Theorem 1 announced in Subsection 1.3.
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5.1. Basic properties

Definition 5.1. Consider a continuous functian R/Z — R. Givenx € (0, 1] we define the multiplicity mult(x)
as follows:

mult; (A) = sup{n > 0| there is a continuous functign: R/Z — R such that} . = t}.

We will show that7! = {% € (0,1] | mult; (1) > 0} is finite (counting multiplicities) provided that is a non-
constant Lipschitz function (cf. Main Lemma). In particular, mgl) is finite for eachr € (0, 1].

Although our main interest is on mags . wherer :R/Z — R is Lipschitz, the basic properties of the operators
L, acting on any class are summarized in the following lemma.

Lemma5.2.For A € (0,1], let £, : C — C be the linear operator defined above acting on the ctas$ maps from
R/Z to R whereC is the class of Lipschitz af” maps for some € [0, co] U {w}. Then:

(1) E)\l (¢} £)~2 = L)LZ o ‘C)\l forall 0 < A, A2 < L.

(2) If Ly 1 = 7, thenmult,, (1) = mult; (1) for all A # A1 andmult,; (A1) = mult; (A1) — 1.

(3) kerL; = {constant mapsandker., = {0} for all A € (0,1).

(4) If Lyu =7 and [t =0forsomex € (0,1), then . =0.

(5) If t:R/Z — Ris of classC and . :R/Z — R is a continuous function such thato m; — Au = t, thenu is
of classC.

(6) If T €Ilmage’y, then[ 7 =0.

(7) L, ({constant maps = {constant mapsfor all 1 € (0, 1).

Proof. Statement (1) is a straightforward computation and statements (4) and (6) are an immediate consequence
of the fact that the Lebesgue measure in the circlenjsinvariant (i.e., /7 o my = [t for all continuous
7:R/Z — R).

For (2), suppose that,, 1 =  and just note that if, for some# 11, there existg: such thatl, u = z, then
L (1 — p1)/( — A1) = pa.

(3) If w(£6) —rp(0) =0, thenu(£"0) = 1" u(0) for all @ € R/Z and alln > 0. Letdy be such thatt"6p},>0
is dense iR /Z. Hence, for alb € R/Z, 1(6) = 0 wheni < 1 andu(6) = w(6p) wheni = 1.

(5) As in the proof of Proposition 3.1 we pass to the universal cové® — R/Z. Thatis, ifuomy —apu=r1
thenju(¢s) — Aji(s) = 7(s) wherefi = o 7 and? =t o 7. It follows thatji(s) = T(¢~1s) + AT (£ 2s) +---is a
classC map fromR to R and therefore.: R/Z — R is also of clas€.

Since the image undef; of the constant function equal to 1 is the constant functign equal to 1— A,
statement (7) follows. O

Remark 5.3.From (1) and (2) it follows that there exists a continupusuch thatC, , o --- o £, u = v if and only

if A1,..., A, is @ collection of elements gf;, maybe with repetitions, but such that the number of occurrences of
A € J! is not greater than its multiplicity. Moreover, (7) implies thais uniquely determined by andii, ..., Ay

up to an additive constant.

Lemma 5.4.If u:R/Z — R is Lipschitz, then

ILamliL = (€= M)liuliL
forall A € (O, 1].

Proof. Let u be Lipschitz and let = £, ;. Conside = (6;) € S and observe that
11(B0) = T(01) + AT(02) + ... + A" T(Ont1) + AT (Bnr1).
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Foroy € R/Z let§’ = (6;) be such that

. distr 7 (0. 6p)
distr,z 6k, 6;) = #-
It follows that for alln > O:

n

, _ , 1 A X a1 ,
|1B0) = (O] < distez (60, 6) 1T\ 5+ 7+ + g | + 2" {1 Enr2) = 10y 10)]

< distr,z(60, ) 7|1 + A 1 Gng1) — 1040

L— A
Therefore,
1

o) — n(6p)| <
|10 = @] < Tl 7=

distr,z (6o, 6p)

and the lemma follows. O

Lemma5.5.Lett :R/Z — R be a Lipschitz map such thgtr = 0. The set
J! ={r € (0,1] | mult; (1) > 0}

is closed in(0, 1].

Note that from Proposition 3.1 it follows that
JIN0,1)=7T, ={1€(0,1)| 2, is aJordan cunje

Proof. Suppose that there exists — 1 € (0,1] andu, :R/Z — R such thatu, o my; — A, u = 7. It follows that

[ n=0and|ullz < |7l for all n. Therefore{u,} is an equicontinuous and uniformly bounded family. Hence,
by passing to a subsequence, we may assuméithatonverges to some continuous functjomvhich necessarily
satisfies the equatignom; — Ap =7, thatis,x € J,. O

5.2. Finiteness results

We now show that a Lipschitz functianwhich is not constant is not “infinitely” cohomologous to 0 or equiva-
lently thatA = 1 has finite multiplicity (see Definition 5.1).

Lemma5.6.Lett :R/Z — R be a non-constant Lipschitz function such tliat= 0. Then there exista > 0 and
a Lipschitz functionu : R/Z — R such thatC}'u = v and [ u = 0 but L1p # u for all Lipschitz functiong.

Proof. Suppose that for & n < m there existu, : R/Z — R such that
'C,i//vn =Ho=T.

By Lemma 5.2, maybe after adding a constantip, we may assume that forQn < m we havef wn =0. 1t
follows thatLqu, = u,—1. Under the assumption that= w is not identically O we will exhibit an upper bound
for m in terms of the Fourier coefficients of

The Fourier coefficientf,, (k) are uniformly bounded. In fact, by Lemma 5|4, || < ||zl and therefore

. T
|Mn(k)| < ”4|]|<L (10)

forall0#£k € Z and O< n < m.
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Sincepg is not identically 0, there exisise Z such that 1 k and p > 0 such that:
fio(¢/k) =0 for0< j < p,
flo(€¥k) # 0.
Taking the¢/ k-th Fourier coefficient tqt,, o My — p, = wy—1:
(€70 = i (€7k) = fin-1(7k) for j > 1, (11)
—fin(k) = fiy-1(k), 12)
forl<n<m. ‘
By induction inp > 0, itis easy to deduce from (11) and (12) thakif(¢/k) =0 for 0< j < p, then:
fin(t'k) =0 for0<j <p,
—[n (P k) = fin—1(7k),
for 0 < n < m. Therefore, from (11), it follows that
m(=1)" " o7 k) — fum (€710 = (—=1)" o (e ).
Hence,
< 1 (€PTH0)| + Ao P )|

|Lo(€rk)|
and by (10) we obtain an upper bound fer

Tl + dker+L|z (er+i))|
Akep+1|2 (0Pk)] '

(13)

~

Below we record the explicit bound obtained in the previous proof.

Corollary 5.7. Lett : R/Z — R be a Lipschitz function such that
t(k)y=0 for0<j < p,
T(LPk) #£0

for some integerg € Z and p > 0 with ¢ 1 k. If there existsn > 0 and a continuous functiop : R/Z — R such
that

Tu=r.
Then

Tl + 4ke iz ertih)|
= Aker+1|7(Pk)| '

Main Lemma. Lett :R/Z — R be a non-constant Lipschitz function. Then the/eis finite, counting multiplic-
ities.

Moreover, consider the finite collectidh< 11, ..., A,, < 1 consisting of elements gf/ where the number of
repetitions of each element gf coincides with its multiplicity. Then there exists a Lipschitz functio® /Z — R
such that

t=Ly,0---0Ly,

and such thage # £, o for all » € (0,1] and all Lipschitz functiong : R/Z — R. Furthermore, the functiop is
uniquely determined by this property, up to an additive constaiftz &= 0, thenu may be chosen so th#tu = 0.
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Proof. By Lemma 5.2 and Remark 5.3 it is sufficient to show tt is finite, counting multiplicities. If
mult; (1) > 0, then there exists a Lipschitz functipn: R/Z — R such thatﬁrln”'t’(l)u =1 (Lemma 5.6). By
Lemma 5.2 it follows that mult(1) = 0 and that for every. € (0, 1) we have mulf (1) = mult. (1). So, replacing
7 by u if necessary, we reduce to the case when piljt= 0. Then Lemma 5.5 implies that there exisgs= (0, 1)
such that7, is contained in0, Ag].

We proceed by contradiction and suppggeis infinite or that it contains an element with infinite multiplicity.
In both cases, for alt > 1 there exish,, € (0, Ag] and a Lipschitz functiom,, : R/Z — R such that

Lijo--oLly,up=r1. (14)
Lemma 5.4 implies that for every> 1 we have,

Izl =2 € —A1)--- (£ — A ltnllLs
so that||u, |l < |IzllL. Therefore, for alk > 1 andk € Z different from 0 we have,
|ﬁn(k)| <ltles
wherefi, (k) denotes thé&-th Fourier coefficient ofs,, .
Settinguo = t, Lemma 5.2(3) implies that for all > 1 we have,
AC)»,,/JLn = MUn-1.
Hence,u, (£0) — Appy (0) = py—1(0) and for allk € Z such that 1 k we have,
fn (€7 7) = M fln (T K) = fun—1(E7k)  for j > 1, (15)
_)\n,&n (k) = /:Ln—l(k)~ (16)
Fix k # 0 such that does not divideék. We show by induction ori > 0 that/i, (¢/k) =0 for all n > 0.
For j =0, by Eq. (16),i0(k) = (—1)"A1--- A, 1, (k). Since thei,, (k) are uniformly bounded, it follows that
o(k) = 0 and thereforéi, (k) =0 foralln. _ ‘
Letj>1 and suppose thét,,(efflk)_ =0foralln > 0. It follows f_rom Eq. (15) that-A, i, (¢ k) = 1, 1(£7 k).
Henqe,ﬁo(zlk) = (=1)"A1--- Anty, (8/ k). Again using thati, (¢/k) are uniformly bounded, it follows that
A, (¢/ k) =0 for all n.
We conclude that = g is constant which is a contradictionO

5.3. Theorems 1 and 3

We now state and prove Theorem 3 which is a stronger version of Theorem 1. Recdll thextotes the set of
A € (0,1) such thatA,  is a Jordan curve.

Theorem 3.Suppose that : R/Z — R is a non-constant Lipschitz. Then there exists a Lipschitzmap/Z — R
satisfying the following properties

(1) Ju,=9andforallx € (0,1)\ J; the maps, . and A, , are topologically conjugate.
(2) [ w=0andy is not cohomologous t0.

Lemma 5.8.Let t:R/Z — R be a map of clas€ where(C is the class of Lipschitz o€” maps for some ¢
(0, 0] U {w}. Then:

(1) Forall ce Rand0 < A < 1, the mapsA; ; and A, ;1. are conjugate via an affine map.
(2) If womg — xou =t for some continuous map:R/Z — R and Ag € (0,1], then A, ; and A, , are
C-conjugate for allx # Ao.
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Proof. For (1) note thatd), ; oh =ho A) 1+ Whereh(0,t) = (0,1t —c/(1— 1)).
For (2), if u o my — Ao = 7 for some continuous map, thenu is automatically of clas§ andi(6,t) =
@, (A=At +p(@) issuchthabo A, , = As cohforall A #2x0. O

Proof of Theorem 3. By Lemma 5.8(1), after replacing by  — [ =, we may assume thgtz = 0. In view of
Proposition 3.1 and Lemma 5.8(2), statements (1) and (2) hold for the functi®yZ — R given by the Main
Lemma. O

Proof of Theorem 1. For (1) just note that the Main Lemma implies tlgat is finite. For (2) letw : R/Z — R be
as in Theorem 3 and apply Proposition 4.61

6. Continuity of the upper and lower boundaries

In this section we show that for every map that is sufficiently (Lipschitz) clogg tphas an attractor with well
defined upper and lower boundaries. Haraeed not be a skew product map.

The aim of this section is to show that the upper and lower boundari@g pivary continuously under Lipschitz
perturbations of4; ;.

Given an open sdl/ ¢ R/Z x R with compact closure we denote by I, R/Z x R) the set formed by all
the Lipschitz mapg : U — R/Z x R endowed with the Lipschitz metric djstMore precisely,

dist, (Fo, F1) = [|Fo — F1llo + I fo— fallL + llgo — g1l

whereF;(0,t) = (f;(6,1), gi(0,1)) fori =0, 1.
Note that the set Lig{, U) of all F € Lip(U, R/Z x R) such thatF (U) c U is open in LigU, R/Z x R).

Definition 6.1. Suppose that/ C R/Z x R is an open set with compact closure. For any Lip(U, U) we let
QF = ﬂ@O F™(U) be the attractor of". Theupper and lower boundaries @25 are the graphs of

pE R/Z — R U {£o0}

where
pg©) =suplt €R|(0,1) € 2r},
pr0)=inf{reR | (6,1) € 2r}

if 27N ({0} x R) @ andp® () = Foo otherwise.
We may now state the main result of this section.

Proposition 6.2.Consideri € (0, 1) and a Lipschitz function : R/Z — R. LetTp €R be such that;, . (Uo) C Uo
whereUg =R/Z x (—To, To). Givene > 0 there exists a neighborhoadd C Lip(Up, Ug) of A, ; such that for all
F € U the following hold

D) ijE :R/Z — R are well defined Lipschitz functions.
) o — P, lloo <.
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6.1. Lipschitz maps ift?

In this subsection we consid&f = R x [—To, To] C R? and study the action of Lipschitz mags: V — R?
on the graphs of Lipschitz functions: R — [—Tp, To]. The results obtained here will be applied in the proof of
Proposition 6.2 to the lift of mapB which are Lipschitz close td;, ;.
Throughout this subsection we consider a map:
F:V - RZ,
(s.1) = (f(s.0).8(s.0))
and suppose that there exist positive constégtsg, C1,2 andCz 1 such that:

F(s0.6) = f(s1.1) > Lolso — s1). (17)
|§(s0, 1) — §(s1,1)| < C2.1ls0 — s1l, (18)
| f(s,10) = f(s, )| < Ca2lto — 1al, (19)
|2(s, 10) — §(s. 12)| < Aolto — 1, (20)

for all sg > s1 andt, tg, 11 € [—To, Tol. ~
The above conditions are satisfied by the Mit . (s, #) = (€s, At + t o 7 (s)) of A, ; wheret:R/Z — R is
Lipschitz andi € (0, 1). Observe that in this case we may choége- ¢, C2.1 = |7/, C1.2 =0, andig = A.

Lemma 6.3.If 7 C V is the graph of a Lipschitz functioh: R — [—To, To] such that| 5|, < eocl—;, thenF (7)
is the graph of aC-Lipschitz functioriZz(p) : R — R, where

_ Cai+ ol
lo—C12llpllL

Proof. Suppose thafp > s1. Fori =0,1, let; = 6(s;) and(s;, t)) = f(s,-, t;). Then we have that:

56— s1= f(s0.10) — f(s1.12) = (f (50, t0) — f (50, 1)) + (f (50, 11) — f(s51.11))

> —C12|to — 11| + £o(so — s1) > —Lolso — s1| + Lo(so — s1) = 0.

In particular,F (7) is the graph of some function. Also,

ltg — t1] = |§(s0, t0) — &(s1, 12)| = |§(s0. t0) — &(s0, 11) + &(s0, 1) — & (51, 11)| < Aolto — ta| + C2,1|s0 — s1l.
Hence,

Ity — 11 o Jolo—tl+Coalso—s1| _ Ca1+tollplle

lso— syl —Cu2lto — ta] + Lolso — s1| ~ €o— C12015llL
and the lemma follows. O

Definition 6.4. We say that a Lipschitz maE: V — R? preserve<-Lipschitz graphswith constantd, A9, C1.2
andCy 1 if (17)—(20) hold and

C21+20C <C< bo

lo—C12C C12

In particular, if 7 : V — V c R? preserve<-Lipschitz graphs, theff; acts on the set af -Lipschitz functions
o R — [Ty, To] (see Lemma 6.3).
Now we compute a Lipschitz constant f6g with respect to the%-norm.
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Lemma 6.5.Let C > 0 be such thatC < EoCl_é- Suppose thai; : R — [Ty, Tp] are C-Lipschitz functions where
i=0,1. Then

. . rolo+C21C12 . .
T (po) — Tx S———~—~ lpo— .
” 7(00) 7(p1) ”oo lo— C12C o0 — p1lloo

Proof. Considers’ e R. Fori =0,1, letp] = Tz(5;), t/ = p;(s'). Also we let(s;, 7;) be the points in the graph of
pi such thatF (s;, ;) = (s', t/). We may assume that > so.

We must find an upper bound f(f — #(| in terms of|f1 — to| wheref; = p1(so).

Since

0= f(s0,10) = f(s1,11) = f(s0, t0) — f(s1,10) + F(51,10) = f(s1, 10),
we have that

Fls1.10) = f(s0.10) = | F(s1.11) = F (51, 10)]-
Therefore,

Lo(s1 — s0) < C12|lt1 — to). (21)

Also,
11— 19l = |&(s0, 10) — &(s1, 11)| <& (50, 10) — &(s0, 11)| + |& (s0, 12) — (51, 12) |
< rolto — 11| + C2.1ls0 — 51/ (22)
Since

|t1 — tol < |71 — 10l + |71 — 11| < |i1 — 10| + Clso — s,
it follows from (21) that

11 — 10l < |1 — tol + CC1,265 |11 — tol.
Hence,

11—l < (L= CCr265H) Hir —10l. (23)
Combining (21) and (22) we obtain

|11 — 15l < (ho+ C2,1C1265 M)t — to). (24)
The lemma now follows directly from (23) and (24)0
Lemma6.6.Fori =0,1, let fl-(s, 1) = (f,-(s, 1), 8i(s, 1)) be maps irLip(V, R?) such thatPN“i preserveC-Lipschitz
graphs with constantég, 1o, C12 andCz 1. If || Fo — F1lec < €, then

17,8 — T, (D) |, < A+ C)e
for all C-Lipschitz functiong : R — [—Tp, To].

Proof. Considerso € R and letrp = 5(so). Also let(s;, /) = F;(so, to) wherei =0, 1. It follows that
|p1(s1) — po(sp)| < |B1(s) — Bo(s)| + | Bo(sp) — Po(s)| < € + Clso— s3] < €+ Ce

whereTr, (p) =p;. O
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6.2. The upper and lower boundaries as fixed points

Throughout this subsection we [ > 0 andUy = R/Z x (—To, To). Here we consider a map € Lip(Uo, Up)
and show that under certain conditions the upper and lower boundaries of the atf?acioe Lipschitz graphs.

Lemma 6.7.Let F € Lip(Ug, Up) be locally an orientation preserving homeomorphism which acts as multiplica-
tion by ¢ > 1 on the first homology dR/Z x (—To, To). Denote byf:]R x [=To, To] = R/Z x (—To, Tp) a lift of
F to the universal cover and suppose tlﬂ%preservef—Lipschitz maps with constantg, 1g, C1.2, C2,1. Assume
that
rolo+ C21C12
Lo —C12C

<1.

Let

T (D) (s) =max{ Tz (5)(5), T (B) (s + 1), ..., Tp(B)(s + £ — 1)}
and

T (B)(s) = min{ Tz(5)(s), T (A)(s + 1), .., T(P)(s + £ — 1},

ThenTi are contractions in the space 6fLipschitz functiong : R — [—Tp, To] endowed witH| - || . The fixed
pomts,oF of Ti are 1-periodic and the graphs of

pF R/Z — R,
0 =m(s) — fpr(s)
are the upper and lower boundaries of the attracfor.

Proof. Since the maximum and minimum d@f-Lipschitz functions are als@-Lipschitz, from Lemma 6.3 it
follows thatTFi(ﬁ) areC-Lipschitz whenevep is C-Lipschitz. By Lemma 6.5, the operatofgt act as contraction
maps. Our hypothesis thatacts as multiplication by on the first homology group translates to the universal cover
asF(s +1,1)= F(s 1)+ (¢, O) It follows thatTi preserve the cIosed subset of 1-periodit.ipschitz function.
Therefore, the fixed pornt/sF are 1-periodic and we IetF ((s)) = pp £(5).

We now show thatof,r is the upper boundary of2r. Note that the graph/F of p E is invariant underr .
That is F(y;“) D VF ThereforeyF C 2r. It is sufficient to show that2r is belowy, . For this letpg be the
constant functiorfp onR and letg, = T (po). From our previous discussion and the fact thats 1-periodic,
we conclude thag, projectsto a functiop,, :R/Z — R with graphy,,. SinceF is locally an orientation preserving
homeomorphismF” (Up) has as upper boundary the cupye Taking into consideration tha, converges to, it
follows thatNF” (Up) is below;x;f. A similar argument shows that; is the lower boundary af2r. O

The analogue of Lemma 4.1 also holds in this context. More precisely:
Lemma 6.8.Assume thaf e Lip(Up, Up) is locally an orientation preserving homeomorphism such that the upper
and lower boundaries a2 are the graphsy,ﬁE of functions,o,j,E ‘R/Z — R.Ifforall 6 e R/Z
min{z | (0,1) € F(y/)} >max{t | 0,1) € F(y;)},
then2y is a closed topological annulus. Moreoverfif= 2 and for someé € R/Z
min{t | (0,1) € F(y/)} <max{t | 0,1) € F(y;)},
then2 is not a closed topological annulus.

We omit the proof of this lemma since it is very similar to that of Lemma 4.1.
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6.3. Proof of Proposition 6.2

Since Lipschitz perturbations of bilipschitz maps are bilipschitzFaih a sufficiently small neighborhodd
of A; . in Lip(Uo, Up) are locally orientation preserving homeomorphisms. Consider a small real ndnsber
and shrlnku if necessary, so that for all € U there exists a unique lifF : R x [—To, To] — R? of F such that
||F AMHOO <4, whereAm(s, t) = (Ls, At + T o m(s)). After further shrinking oft/, if necessary, we may
assume that there exist positive constafgsslightly smaller thar?, Ao close toi, C2 1 close to||z|., andC1 2
sufficiently small such that for alF € &/ the corresponding liftF preservesC-Lipschitz graphs with constants
Lo, Mo, C2.1, C1.2 and the following inequalities also hold:

C>—-n" el = ek, e,
~  Mlo+ C21C
- oto+C21C12 -1
Lo —C12C
Let 5T be the lift of p; . By Lemma 6.6,

n—1
[T -5 ZH(T*)"“ — (T GH| o (Z/\")(lJrc)a

k=0

1+C

6.

Choosings > 0 so that(1+ C)/(1— 1) = ¢ it follows that 5 F = Ilm(T+)”(p+) is e-close tog™. Similarly, we
obtain thatp, ise-close top~. O

7. Examples
7.1. Perturbation of affine maps with annular attractors

In the previous section we showed that the upper and lower boundaries of the at2agtaf an affine map
A, move continuously under Lipschitz perturbations. In view of Lemma 4.1, Remark 4.8 and Theorem 3 we
obtain the following result.

Proposition 7.1.Let 7 :R/Z — R be a Lipschitz function. Then thEre exigtse (1/¢,1) such that for any €
[*0, 1) and for all ¥ in an appropriate neighborhodd of A, . in Lip(U, U) we have that2r is an annulus where
U =R/Z x (—Ty, Tp) is such thatd, , € Lip(U, U).

We will apply the above proposition to exhibit annular attractors in an explicit family of endomorphisms of
C* = C\ {0}. More precisely, we consider the family
fk,c : (C* - (C’
-2
2> (Mzl+1-— A)| |2+
wherec € C andx € (0,1). Observe thaff; o(C*) ={z € C | |z] > 1 — A} C C* and f, o acts as multiplication
by 2 on the arguments and as the affine contraciih+ 1 — A on radial lines. Also,f; o(S1) = S* where
St = {|z| = 1}. The mapf;_ may be written as the postcompositionfaf by the translation — z +c. Therefore,
r,e(C)={zeCllz| >1-A}+c.
This family f; . is closely related to the well known and extensively studied quadratic fagily) = z2 + c.
The action ofQg as|z|? on radial lines has been replaced by an affine contraction.
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Our main interest here will be on mags . for |c| small. For|c| < 1 — X, by the above considerations we have
that f.(C*) c C*. Moreover, it is easy to check that

|| |c]

is a trapping region forf; . when|c| is sufficiently small. Thatisf; (V) C V. We say that

2e={) £ (V)

n=>0

V:{ZG(C*

is the attractor for the dynamics ¢f ..

Proposition 7.2. There exists.g € (0, 1) such that if € [1g, 1), then the attractor off; . is homeomorphic to a
closed topological annulus for allin a punctured neighborhood of the origiwhich depends oh).

The proof of this fact relies on considering an appropriate rescaling efsc goes to 0. Namely, consider
t:R/Z xR — C*, (25)
0,1) > exp(2r(t +i6)) (26)

and for|c|] <1— A, let

fA,c = L_l o fk,c ol.
Lemma 7.3.For n > 0 let h, (9, ) = (8, nt). Then, for alle € R/Z,

h;1 o finexpria) © iy

converges, ag — 0, in theC? topology to:

1
Fra(0.1)= (29, M + 508 27 (e~ 29)).
T

Proof. Fix 1 € (0,1). Letc(n) = nexp2ria) and
(@40, 1), Wy (0.1)) = ficny 0 hy(6.1).
Therefore,

-15 £ 2
h, i, Srnexpria) © hy = (q)n, 7”)

We must show tha®,, (6, t) — 26 and that

LI LVN A+ (27) Lcosa — 26)

in the C! topology, as) — 0. Fromf; .ot o hy =10 (Py, ¥,/n) we obtain:
(A exp2rnt)+1— A) exp(2ri20) + nexp(2ria) = eXp(ZJT(lI/n(G, 1) +1d,(6, t))). 27)

It follows that

exp(2- 27i (P, (0, 1) — 20)) = rexp2rnt) +1— 1+ nexpri(e — 26))

— . (28)
rexprnt) +1— A+ nexp(—2ri(a — 20))
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converges to the constant function 1 in thttopology for maps fronR/Z x R into R. Therefore,
@,(0,1)—20—0
in the C* topology for maps fronR/Z x R into R/Z. From (27),

exp<2nm> = |1+ n(2m s + exp(2mi(e — 20) + O()) Y7
n

which, asn — 0, converges to
exp(2 At + €os 27 (a— 26))

in the C?* topology. It follows that
Y, 1
— > At + — c0s 27 (a— 26)
n 2

which establishes the lemmano

From Proposition 7.1, there existg such that for allh € [1o, 1) there exists a neighborhoddof {F; o | « €
R/Z} C Lip(U, U) so that the attracta® is an annulus for alF € ¢/ whereU =R/Z x (—(1—1)"1, (1—-») ™).
Since forp sufficiently small, say & n < no, and for alle € R/Z,

h;l ° fA,neX[XZnia) © hn eu,

it follows that the attractor set of,\ynexp(z,,ia) e Lip(W, W) is an annulus, wher® = R/Z x (—(1 —1)~"1p,
(L—x)~"1p). Therefore, the attractor o,y experie) iS an annulus for all 6= n < no and alle € R/Z which proves
the claim of Proposition 7.2.

7.2. With interior and not an annulus

Proposition 7.4.For all » > 1/2 there exists aC® functiont :R/Z — R such that the attractor se, , of
A, £ (0,1) = (20, At + T(0)) has non-empty interior and it is not a topological annulus. Moreover, this property is
robust. Thatis, leV = R/Z x (—To, To) C R/Z x R be such thati;_ . (U) c U. Then there exists a neighborhood
U of Ay, in Lip(U, U) such that for allF € U the attractor set2r has non-empty interior and it is not a
topological annulus.

A similar example can be constructed for alk- 1/¢ and¢ > 2. Here we specialize in the cage= 2 for the
sake of simplicity of the exposition.

Construction of the example.We endowR /Z with its standard orientation and use interval notation accord-
ingly. Let p > 1 be such that 4 --- + A?~1 > 1 and considen < 1 such that:

(A’+...+)\’p71)n > 1. (29)

Consider the periodic cycl@y = 2P~1/(27 — 1), 61 = m2(60), .. ., Op—1= mg‘l(eo)} of period p > 2 with
subindices mog. Observe that the subindices respect cyclic order and that the infgrealfp, 61) has length
|Io| > 1/2.

Consider positive constant®, 71, 8, €o, . .., €,—1, A’ and a natural numbe¥ > 2 such that

1
Tt _ 30
0> 17— (30)

To A=AV AV1y
> +
A 1—x  1—2»

=Ty, (31)
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§=|Io|—1/2, (32)
O<e<$- 2_N+l, (33)
2¢j <e€jpq forj=1,...,p—-1, (34)
Ap <A <A (35)

Lett:R/Z — R be aC* function such that:

(@) =0 forallg eI°, (36)

t@@)=2" foralloel’ andj=1,..,p-1 (37)
whereI;j =0 +¢€j,0j11—¢€;),

1(;)=Tp for;j=0,1,...,p—1, (38)

0<t(®)<To for6eR/Z\ Io. (39)

The next three lemmas are devoted to prove that the properties stated in Proposition 7.4 hold for a function
7:R/Z — R as above. It follows that there is a Lipschitz clase function for which the statement of the propo-
sition holds.

Lemma 7.5.Letp* = p} onR/Z. Then

(1) p~(@)=0forall 6 e R/Z.
) ptO)=1-n"1pforall j=0,...,p—1.
(3) pto+ 3 <2 1o,

Proof. (1) Since
|16°] = 1ol — 2¢0 > [Io| — 28 - 27N+ > | Io| — &,

it follows thatmz(lgo) =R/Z. Therefore, giver € R/Z andn > 1 there exist¥), 150 such that 2) =6, ;.
Hence,p~(6)) < 1.((6,)) = 0 (see Proposition 2.5). AlsoQ p~ () sincer > 0.

(2) Sincer < Ty, itfollows thatp™ < (1—21)"17p. Now p*(8;) = (1— 1) 17T, because each one of the periodic
pointst; has as an infinite backward orbit along the periodic aiait. ., 6,,_1.

(3) Letdy =6p+1/2 and(#,) € S be a backward orbit. Let

No=min{n |6, ¢ I°U---U 1"},
Then

distr/z (0. (0,}5 1) < maxiej} =0 < 8- 27V,
Hence,

5 = diste/7 (64, 16,)5 ") < 8- 27N+ 2N,
We conclude thag > N and

No

ANoT, ANoT,
PO <TO) +ATO) + -+ AN02T (O )+ T/\O SA+AZ 4o g ANy r}\o

rA—aNo Moy A=AV ANT
= <

< A~ 1. O
15 "1 S1_x t1 =
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Lemma 7.6.There exists an open neighborhddaf A, . in Lip(U, U) such that for allF € i/ the attractor2
is not a closed topological annulus.

Proof. If we denote byy* the graphs ofofi o then

min{t | (61,1) € Ay - (v D)} = minf{ap* 0o+ 1/2)+ 700+ 1/2), ™ (60) + (60)}
=min{ap™ (6o +1/2), (1— 1) 'Tp)}
<To
= max0, To}
=maxX{rp~ (Oo+1/2)+ t(6g+ 1/2), Ao (6o) + 7(60)}
=max{r | (61,1) € Ay (¥ ) }.
By Lemma 6.8, it follows that for alF close toA, ; the attractos2r is not an annulus. O

Lemma 7.7.There exists an open neighborhddcf A; . in Lip(U, U) such that for allF € I the attractor2r
has non-empty interior.

Proof. Letn’ be such that
A+ +27"DHy >y > 1.

By Proposition 6.2 we may assume that for Alsufficiently close toA; . the lower boundary, :R/Z — R is
well defined and

Pp < (A/)Z.
Consider the subsefsf andR; of R/Z x R defined by:
R{ ={0.01p5®) <1 <A},
p—1

Ra=15" x [ 10 | J (I x [h -+ 4)n)).
j=2

Let RF = RI U R,. We will show that theF(RF) > RF for all F in a sufficiently small neighborhood of;, - .
To simplify notation, letR = R4%+. We start by showing that, . (intR) D R». In fact, since forj =1, ...,
p—1
ij x (0, (k+---+A))n) CintR

andr(lje.’) = {1}, it follows that

ma(15') x (A + 204+ 1)n) C A (intR).

By (34),m2(/7) > ijf and, by (35)(X +A(A+--- A7) D [A, An+A(A+---+A))n]. ThereforeA; . (intR) D
R>. Hence, for allF sufficiently close to4, ; we also have that

F(intR") > Ry (40)

since the boundaries & move continuously withF .
For F sufficiently close ta4, ; the circleR/Z x {A} has image contained in> A’A. Therefore,

F{©0.0 1 pp®) <t <2} 2 {0.0)] 5 (0) <1 <1} (41)
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SinceAj - (Ig° x (An, 7)) DR/Z x (A\'n, An") DR/Z x [A)/, ], for all F sufficiently close tod;, ; we also
have that

F(R")DR/Z x [AX, A]. (42)

From (41) and (42) we conclude thBtR") > RY". By (40), we obtain thaF (RT) > RF".

Since for allF sufficiently close ta4; ; we have tha# (RT) > RF, it follows thatR" c 2 and therefore2
has non-empty interior. O
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