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ABSTRACT. — We study the Hamilton—Jacobi equation
u;+H(x,Du)=0

in RV x 10, +o0[, whereH is a continuous positively homogeneous Hamiltonian with constant
sign and verifying suitable assumptions but no convexity properties. We look for discontinuous
(viscosity) solutions verifying certain initial conditions with discontinuous data. Our aim is to
give representation formulae as well as uniqueness and stability results.

We find that the condition

Wy=uy and (up)?=u"

where u” (uz) denotes the upper (lower) semicontinuous envelopa,ofan be used as a
uniqueness criterion and determines a class of solutions defined and continuous on certain der
subsets oR" x 10, +oo[ that we call almost continuous.

Such solutions can be represented by a formula which is a generalization of the Lax—Hopf oni
for the eikonal equation.
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RESUME. — Nous étudions I'équation de Hamilton—Jacobi
u; + H(x,Du)=0

enR”" x 10, +oo[, 00 H est un Hamiltomien continu et positivement homogéne qui ne change pas
de signe et qui ne vérifie aucune hypothése de convexité. On cherche des solutions de viscos
discontinues qui vérifient certaines conditions initiales avec des données discontinues. Le but e
de donner des formules de représentation aussi bien que des résultats d’unicité et de stabilité.
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Nous prouvons que la condition

Wu=us et (up=u"

ou u” (uy) est I'enveloppe s.c.s. (s.c.i.) de peut étre utilisée comme un critére d’unicité
et détermine une classe de solutions définies et continues sur des ensembles denses
R¥ x 10, +o0[ que nous appellons presque continues.

Nous représentons ces solutions a I'aide d’'une formule qui généralise celle de Lax—Hopf pou
I'équation eiconale.
© 2003 L'Association Publications de 'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

I ntroduction

We study the Hamilton—Jacobi time dependent equation
u, + H(x, Du) =0 0)

in R¥x 10, +oo[, where H has constant sign and is homogeneous in the second
argument but does not verify any convexity or uniform continuity assumptions with
respect to the state variable.

We are interested in discontinuous viscosity solutions verifying initial conditions with
discontinuous data. More precisely we look for locally bounded solutioresifying

limsup u*(x, 1) < uf(xo), liminf  ws(x, 1) > uou(xo) 0
(x,1)—>(x0,0) (x,1)—>(x0,0)

for any xo € R, whereuy is a locally bounded initial datum and’ (x4) denotes the
upper (lower) semicontinuous envelopexofOur aim is to give representation formulae

as well as uniqueness (in a sense that will be specified later) and stability results
It is clear that the usual comparison principles between u.s.c. subsolutions and I.s.c
supersolutions of (I) are useless for such a purpose.

In the case wheré/ is convex (concave) the definition of viscosity solution has been
adapted in [6], see also [11], for I.s.c. (u.s.c.) function; these solutions are now callec
bilateral, see [1]. Then a comparison principle for the equation (I) coupled with the initial
condition liminf, ;) (.0 u(x, 1) = uo(xo) (IMSUR, /), (1o.0) (X, 1) = uo(x0)) has been
established for I.s.c (u.s.c.) bilateral solutions and I.s.c. (u.s.c.) initial data . However the
application of this theory is strictly confined to the convex case and cannot be generalize
skipping such an assumption.

Several attempts have been made to give new definitions of solutions or to select somr
special (sub, super) viscosity solution in order to recover uniqueness and stability in @
more general setting. In this line of research there are notions as envelope and minime
solutions (see Bardi’'s survey in [2]), and more recentlyLe$olutions given applying
the level set method to the evolution of certain hypographs, see [12].

We follow the approach of [3] where suitable relations between l.s.c. and u.s.c.
envelopes of solutions are required in order to obtain uniqueness results.

In [4] it has been investigated how in the convex case the definition of bilateral solution
is related to the usual viscosity one for discontinuous functions clarifying that they are
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in a sense equivalent if a functionverifies
uhe=us and (up)” =u". (1)

If the convexity assumption is removed, however, it has been pointed out that essentie
nonuniqueness phenomena can appear in the sense that two solutions verifying the sal
initial condition and (lll) may have different lower and upper semicontinuous envelopes.

The main achievement of this paper is to show that under our assumptions, the
condition (lll) instead can be used as a uniqueness criterion.

Itis clear that this must be understood in a generalized sense since the very definitio
of viscosity solutions in the discontinuous case forces to identify functions with the same
lower and upper semicontinuous envelopes.

We introduce as in [17] the equivalence relation which express this identification and
consider the space of these equivalence classes. It turns out that for functions verifyin
(1M the structure of these classes is particularly simple and it is a consequence o
Baire’s theorem that two equivalent functions coincide on a residual set where they art
continuous, see also [3] for related results. We show that these classes of functions c:
be characterized knowing the values attained on this residual set.

This justifies the definition of almost continuous functions as those which are definec
and continuous on dense subsets and that cannot be extended continuously. We expl:
in Remark 4.1 the choice of this terminology.

The uniqueness results are based on some representation formulae of the maximr
u.s.c. subsolution of (I) and (the first inequality of) (lII) and the minimal l.s.c.
supersolution of (I) and (the second inequality of) (Il). They are obtained adapting
similar ones given in [19] for the continuous case and can be viewed as a generalizatio
of the Lax—Hopf formula for the eikonal equation. In the stability result we use a
convergence naturally related to the class of almost continuous functions.

The paper is organized as follows:

In the first section the problem we deal with is stated with all the assumptions. The
definition of viscosity solution is then rephrased, thanks to the geometric character o
the Hamiltonian, using the perpendiculars to some level sets. Finally it is introduced &
distance oR" on which the representation formulae are based.

In Section 2 the Hamiltonian is assumed convex (concave) end it is proved
the equivalence between bilateral solutions and solutions verifying (lll) with different
techniques with respect to [4]. The representation formulae are presented in Section .
Section 4 is devoted to illustrate the definition and the basic properties of almost
continuous functions. Finally the uniqueness and stability results are given in Section 5

1. Statement of the problem and preliminary results
We study the time dependent Hamilton—Jacobi equation
u, +H(x,Du)=0 (1.2)

in RY x 10, +o0[ coupled with initial conditions we will specify later and initial data
which will not be taken continuous but only locally bounded.
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We assume the following conditions @h:

H is continuous inx, p), 1.2)
H(x,Ap) =AH(x, p), (1.3)
forany (x, p) anda > 0.
H(x,p)>0 (<0 (1.4)
foranyx and forp #0
|H(x, p1) — H(x, p2)| < (alx| +b)|p1— p2l (1.5)

for anyx, p1, p2 and suitable positive constantsa.
By the assumption (1.3), (1.1) belongs to the class of the so-called geometric
equations, see [7].
We fix some notation and terminology. We recall that a general treatment of viscosity
solutions and all the basic definitions we will use in the paper can be found in [1,5].
Given an element, a subsetk of an Euclidean space and a positive numbger
we denote byB(z,r) the Euclidean ball with radius centered at and by K¢ the
complementary set df . We define the distance and the signed distance fothrough
the formulae:

d(z. K) =inf |z yl.
d*(z, K)=d(z, K) —d(z, K°).

The expressiop is supertangent (subtangent) fat a certain pointg for ¢ continuous
and f u.s.c. (I.s.c.) will mean that, is a local maximizer (minimizer) of — .

Given a locally bounded functiory, f# (fx) will stand for its upper (lower)
semicontinuous envelope.

In the whole paper we will call (sub, super) solution of (1.1) a locally bounded
viscosity (sub, super) solution, see [13,1,7]. In the case wHegeconvex or concave in
p we will consider I.s.c. or u.s.c. viscosity solutions in the sense of Barron and Jensen
see [6,11,4] we will refer to it as bilateral solutions.

We emphasize that all the (sub, super) solution of (1.1) we will consider are defined
in RY x 10, +o0[, consequently the level sets of it are subset®b% 10, +oo[ and the
boundaries and the closures of such level sets are with respect to the relative topoloc
of R x 10, +oo[. Moreover all the arguments of the type, 1), (v, s) we will write in
the remainder of the paper are understood to have the time component positive unle:
otherwise specified.

Thanks to the geometric character of (1.1) the previous notions of solutions can be
restated using the notion of perpendicular (see [8]) to certain level sets.

DerFINITION 1.1.—-Given a closed sek of an Euclidean space ang € K, we say
that a nonvanishing vectags is perpendicular tak (p L K) provided there exists > 0
such that

Projx (zo +€p) > 2o
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where for any;
projx (2) = {y € K: |y —z| =d(z, K) }.
The following characterizations hold, see [19]:

PropPOSITION 1.1. —Let f be a locally bounded function B" x ]0, +oc[. The two
following assertions are equivalent
(i) f is asub(supe) solution of (1.1).

(i) Foranya € R, (xo,70) € {f* > o} (fe<a)), (p.s) L{f*>a} ({fe<a)) at
(x0, fo) one has

—s+ H(xo, —p) <0 (s+ H(xo, p) >20).

PrRoPOSITION 1.2. — AssumeH to be convexconcave in p and let f be a l.s.c.
(u.s.c) function defined iR" x ]0, 4+o0o[. The following two assertions are equivalent
() f is a bilateral solution.

(i) Foranya € R, (xo,70) € {f <a} ({f Za}), (p,s) L{f <o} {f Z2a}) at
(xo0, o) ONe has

s+ H(xo, p)=0 (—s+ H(xo,—p)=0).
The next result shows that a subsolutifitan be also tested using the perpendiculars
to the level sets ¢if > «}.
COROLLARY 1.1. —f is a subsolution of1.1)if and only if for anyx € R, (xo, fo) €
cl{f > a}, (po, so) L cl{f > a} at (xq, to) it results
—s0+ H (x0, —po) < 0. (1.6)
Proof. —Assume f to verify (1.6) and observe that by the very definition of u.s.c.
envelope
c{f>a}=cl{f*>a} foranya.

Fix a € R, (x0.%0) € {f* > a}, (po,s0) L {f* > «} at (xo,70) ande > 0 such that
(xo + €po, o + £s0) has(xo, fo) as unique projection off# > «}.
Put

B = f*(xo+ epo, to+ £50) <

and consider a sequeneg contained in|8, «[ and converging to.
Note that

(ff>a}Ccl{f >a,} foranyn (1.7)

and any limit point(x,t) of sequencesx,,t,) with (x,,%,) € cl{f > «,} for anyn
verifies by the upper semicontinuity ¢f*

(x,0) e{f*>al. (1.8)
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Select

(xnv tn) € projcl{f>an}(x0 + &po, Io + SSO)
and exploit (1.7), (1.8) to find

(x07 IO) = II[ln (xnv tn)- (19)

By (1.6)
Iy —lo—ESo-i—H()Cn,)Cn _-XO_EPO) go

then pass to the limit for going to infinity and take in account (1.9) and the continuity
of H to get

—so+ H (xg, —po) <0

which shows thayf is a subsolution of (1.1) by Proposition 1.1.
The converse implication can be obtained arguing similarly. Then the proof is
complete. O

We now give some estimates on the distance function from certain level sets of
a subsolution and a bilateral solution of (1.1) exploiting the assumption (1.3). For
simplicity we assume&? nonnegative in the first proposition and convex in the second.
Similar results hold with suitable modifications fr nonpositive or concave.

PROPOSITION 1.3. — AssumeH nonnegative.

Let f be a subsolution of1.1), « a constant with{ f > «} ## @ and K a bounded
subset ofRY x ]0, +o0].

If T > sup¢: (x,t) € K}thereisR > 0 verifying

d((xo,1),cl{f > B}) > (t —1o)

R
(R +1)1/2

foranyB < «, (xo,f0) € K Nint{ f < B}, 1 €[to, T].
Proof. —Let 8, (xo, tp), T be as in the statement.
Set
h(t) =d((x0, 1), cl{ f > B})
and consider, € domi’ Nz, T] with (xq, 11) € int{ f < B}.
Assume
h(ty) <11 =d((xo, 1), {t =0})

so that prod'|{f>ﬁ}(x0, t1) is nonempty and an elemey, sg) can be selected in it.
The function

2 2\1/2

o (1) = (Ixo — yol” + It — s0|°)

is supertangent th att, and consequently

1
W () =o'(ty) = m(ll — 50)- (1.10)
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Since((xg — yo), (t1 — s0)) L cl{ f > B} at (yo, so) it results by Corollary 1.1

H (yo, yo — x0) < (11 — 0), (1.112)
and so
t1—s0>0
and
h/(ll) >0

which shows that

(xo0,1) €int{f < B}

foranyr € [to, T].
Set

K1 ={x: (x,s) € K for somes} x 10, T],

r=sup{d((x,1),cl{f >a}): (x,1) € K1},

ro =supf{|x|: (x,s) € K for somes},

R=min{H(y, p): Iy|<r+ro, |pl=1},
and get from (1.11)

t—s
|yo — xo| < 1R °
Plug this inequality in (1.10) to discover
1 — So R
h(t) > = . 1.12
W2 D2 —s) R+ D12 (112
Fix ¢ € [fo, T] and put
I ={s €to. t]: h(s) >s},
;= {maxi if 1 #0,
R P otherwise.
Finally use (1.12) to obtain fare [#, T']
t
h(t) h(t)+/h’d >+ R t—1)> R (t —to) a
= s = “H0 T a~1/0 - N YD) - .
o PRzt TV T Rzt 0
1

PROPOSITION 1.4. — AssumeH convex.
Let f be a bilateral solution of1.1), « a constant witH f < «} # ¥ and K a bounded
subset oR" x 10, +o0[ verifying

d((x,0),{f <a}) <t forany(x,7) € K. (1.13)
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If T >sup¢: (x,t) € K}thereisR > 0 such that

d((xo, 1), {f <a}) < maX<d((xo, 1), {f <a}) — (t —10), 0)

R
(R+1)Y2
forany (xg, t0) € K, t € [tg, T].

Proof. —Given (xq, tp) € K define
h(t) =d((x0,1), {f < })

and consider; € domh’ N (g, T] with k(z;) > 0. By (1.13)A(#1) < t; and so an element
(y0, o) can be selected in pﬁ?ka}(m t1), hence

1
h'(ty) = ——(t1 — 50).
(t1) D (t1 — s0)
Since((xg — yo), (t1 — s0)) L {f < a} at(yo, so) it results by Proposition 1.2

H(yo,xo— yo) =s0o— 11

and soi/(11) < 0.
Therefore arguing as in Proposition 1.3 a positive conskadepending only ord
andK can be determined so that

So— I R
and h'(t) < ——-rs.
(t2) (R1 D2

|xo — Yol <

The proof can be thus completed arguing as in Proposition I2.

We proceed to define a distance between a point and a closedR&trefated to the
equation

|H(x, Du)| =1 (1.14)

see [18,19]. It will be used in the representation formulae of Section 3.

We start by introducing some terminology and a definition, see [9,10].

For anyT > 0 we shall denote by’ the space of measurable essentially bounded
functions defined 0, T'[ with values inR”".

DEFINITION 1.2. -GivenT > 0 and two subseB;, B, of BT we call a nonanticipa-
tive strategy a mapping

Y. Bl — Bz
such that ift €10, T[, n1, n, € By with
n1(s) =n2(s) a.e.s €10, ¢[
then
yInl(s) = y[n21(s) a.e.s €]0, 7[.
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Given a closed sek of RV andx € R" we set for anyl" > 0

T
B,Qx:{;eBT: (x—/{dt) EK}
0

and denote by'", I'}  the nonanticipative strategies froR7 to B” and fromB’ to
Bj ., respectively.

If ne BT,y eT'T, x ¢ RN we write& (7, v, x, -) for the integral curve of [] defined
in [0, T] which equalst atT'.

Forne BT,y eT'T, x e RV, K closed subset dk" we define

T
' (n.y) = / yInln — lyDnlld® (n. ZEm. v, x, ) dr
0

and

S(K,x) = inf supZ. (n, y). (1.15)
Fll(,x Bl

PROPOSITION 1.5. —S(K, -) is a Lipschitz continuous solution ¢1.14)in K¢.
The following comparison principle holds for Eq. (1.14), see [19].

PROPOSITION 1.6. —Let 2 be an open set & andg, f an u.s.c. subsolution and
al.s.c. supersolution ofl.14)in 2, respectively.
Assume

liminf f(x) > limsupg(x) for anyxo € 9.
e ey
If Q is unbounded assume in addition

A )= s

thenf > gin Q.

2. Bilateral solutions

Here we assumé/ convex, and so nonnegative, or concave and consequently non-

positive.

The aim of this section is to characterize the bilateral solutions of (1.1) as solutions
whose u.s.c. and l.s.c. envelopes verify a certain relation. This result is already in [4]

here we prove it in our setting without using any uniform continuity conditiofomith

respect to the state variable or Rademacher’s theorem. Our proof is instead based or

reflection principle for normal cones (in the Clarke sense) to certain closed sets.
This is the statement of the main result of the section:
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THEOREM 2.1. —AssumeH convex(concave in p and f l.s.c. (u.s.c) then the
following two assertion are equivalent

(i) f is a bilateral solution of(1.1).

(i) fis asolution of(1.1)with (fHx= f ((f* = f).

We will show it for H convex (and so nonnegative). The case where the Hamiltonian
is concave can be treated similarly.

The proof will be divided in steps.

We recall that for a given closed subsgt of an Euclidean space ande K the
(Clarke) normal con&Vk (z) to K at z is given by the formula

co{p: p=Iim p; with p; L. K atz; andz; — z},

where co indicates the convex hull.
The tangent con&y (z) is the polar set oiVg (z), i.e.

Tx(z) = {p: pqg <Oforany ge Nk (2)}.

The following reflection principle for normal cones holds, see [16] for related results:

LEMMA 2.1.— Let K be a closed set ank = (intK)<. Assumezg € 0K and
int T (z0) # ¥ thenN(z0) € — Nk (20)-

Proof. —The proof is based on the following characterization, seej[&]int 7 (zo) if

and only if there exists > 0 such that, + rq € K for anyz € B(zo, §) N K, g € B(7, ¢),
t €]0, g[.
Take

qo € (intT(z0))"

then there are sequencesin K, g, t, > 0 converging to g, go, O respectively, which
satisfy

Zn+tugn ¢ K for anyn.
Observe thak = clint K, then it is possible to select a positive sequesceonverging
to 0 and a sequence of unit vectagssuch that

Zn + &nay + hgn =:Yn € K

and
Yn = tnqn =Zn + Enay € K.
This implies
—qo € (int Tk (z0)).
Therefore

iNtTz(z0) 2 —intTk(z0) #4 and T (z0) 2 —Tk (z0)
which gives the thesis. O
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Remark?2.1. — The previous assertion does not hold if we skip the assumption
int Tx (z0) # @. To see this through an example, defin@®the functions

Filx1, x2) = x5+ (x2 + 12, falxt, x2) = X2 4 (x2 — 1)?

and the closed set
K={x20U{fi<U{fe<1}
One has
Nk(0,0) = {x1 =0}, Nz(0,0) = {x1 = 0}.
ThenTg (0, 0) = {x, = 0} has empty interior and obviously

Nz(0,0) ¢ —Nk(0,0).

PROPOSITION 2.1. —If f is a bilateral solution of(1.1)then( f#)x = f.

Proof. —Fix « and(xg, t9) € {f < a}.
Letgg > 0 be so small that

d((x,0),{f <a}) <t forany(x,t) € B((xo. %), €0)
then by Proposition 1.4 for ard/> 0 there isc €0, gg[ such that

((x,t+8) e{f<a}) forany(x,r) e B((xo, 1), ¢),

hence

(x0, 0+ 68) eint{ f < «a}.
Therefore

clint{f <a}={f <a}. (2.1)
Recall that

int{ f <o} S {f* <) (2.2)

and

cif* <a) S {(fMHs<a} (2.3)

for any«, and get from (2.1), (2.2) and (2.3)
(f <y c{(fMu<a} foranyaeR,

and sof > (f*)x which gives the thesis being the converse inequality obvious.
PROPOSITION 2.2. —Any bilateral solutionf of (1.1)is also a solution.

Proof. —Fix o € R. Exploit the convex character df and the definition of normal
cone to see that

s+ H(x,p)<0 (2.4)
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forany (x,1) e 0{f <a}, (p,s) € Njp<ay(x,1).
Consequently sinced is nonnegative,Nis<,}(x,t) cannot contain any vector
subspace and then
INtT{r<ay(x,t) #0 forany(x,r) e d{f <a}. (2.5)
Lemma 2.1 can thus be applied to
K={f<e}, K=(nt{f<a) =cl{f>a)
yielding the relation
Neif>a} (X, 1) € —=Nir<oy(x,t) forany(x,t) € 0{ f <o} (2.6)
Use (2.4) and (2.6) to discover
—s+ H(x,—p) <0 (2.7)
forany(x,t) ecl{f > o}, (p,s) Lcl{f > a} at(x, ).

This implies in the light of Corollary 1.1 thaf is a subsolution of (1.1) and so the
thesis. O

PROPOSITION 2.3. —Assumef to be a l.s.c. solution of1.1) verifying (f#)s = f
then f is a bilateral solution of(1.1).

Proof. —Fix « € R. Use Corollary 1.1 and the convex characterffto find the
relation

—s+ H(x,—p) <0 (2.8)

forany(x,t) e dcl{f > a}, (p,s) € No(r=q«)(x,t). This implies sinced is nonnegative
INt Teypy=a)y(x, 1) #9Y  forany(x,r) e dcl{f > a}. (2.9)

Now consider an elementy, so) € d{f < «}. Since(f*)4 = f, there is a sequence
(yn, $,) CONverging ta(yo, sg) such that

im (v, su) = f (vo, 50) < .

Fix § > 5o and By > o with { f > Bo} # @.
There is no loss of generality in assuming

s, <§ foranyn
moreover for anys € la, Bol there is an index 4 such that

(s sa) € (fF < By Sint{f < B} forn>ng.
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Proposition 1.3 can be applied with = By, K = {(y.,s,): n € N} yielding the
inequality

d((yn. 5), cl{f > B}) > WG — Su)
for B €la, Bol, n > ng and a suitable positive constaRt
Passing to the limit one gets
d((yo,5),cl{f > B}) > (s —s0)

(R2 + 1)1/2

for B € o, Bol.
Hence

(yo. 5) €int{ f <}
and so taking in account that> so has been arbitrarily chosen

(yo, so) € clint{ f < a}.

Therefore

{f <a}=clint{f <o}
or equivalently

{f >a}=intcl{f > a}.
Thanks to (2.9) Lemma 2.1 can be applied to

K=cl{f>a}, K=(intc{f>a)) ={f<a)
Then for(xg, o) € { f < o}, (po, s0) L {f < a}, it results

—(po, $0) € Neif f>a) (X0, f0)

and by (2.8)
so + H (xo, po) < 0.

The converse inequality comes from the fact tfias a supersolution of (1.1) and so the
proof is complete in view of Proposition 1.20

3. Representation formulae

In this section we remove the convexity assumptionsisoand define a solutiorf
and a subsolutiog of (1.1) starting from a locally bounded initial datuyy. This will
be done adapting a formula given in [19] for continuous initial data.

The relevant fact is that verifies the same conditior{ (*)s = f and (f»)* = f) we
have introduced in the previous section to characterize bilateral solutions.
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Such a condition will be used in the sequel as a criterion for uniqueness.

H will be taken nonnegative. At the end of the section it will be outlined the
modifications needed to formulae and statements to fit the case where the Hamiltonia
is nonpositive.

We first consider a locally bounded functigip defined inR" and verifying

fo is constant outside a certain compact set (3.1)
or
| lim  fo(x)| = +oo. (3.2)
|x]—+o00

We will get rid of these restrictions later. We adopt the convention
S(K,)=4o00 ifK=0

and set
fx, 0y =min{a: S{ for < a},x) <t}, (3.3)
g(x,t) =inf{a: S ff <a},x) <t} (3.4)

PrRoPOSITION 3.1. —
() The minimum in formulé3.3)is achieved and is |.s.c.
(i) gisu.s.c.

Proof. —The first assertion can be proved arguing as in [19], Lemmata 3.1, 3.2 where
the assumptions (3.1), (3.2) are essentially exploited.
To show (i) consideKx,, #,) converging to a poinfxg, o) and put

(e :g(xnytn)y a:g(an tO)-
Assume by contradictioa < limsup, «, and fix € Jo, limsup, «, [, then
S(ClfF<BYxa) 21y

up to a subsequence and so
S(cl{f3 < BY, xo0) = to.
This contradicts the equality
o = g(xo, 1)

taking into account the definition @f. O

PROPOSITION 3.2. —(f#)4 = f.

Proof. —If the inequality f (xo, 7o) < « holds for a certain(xg, tg) anda € R, then by
the definition of f and the continuity of ({ fox < @}, )

(x0,to+¢) eint{f <«} foranye > 0.
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This implies
clin{f <a}={f <a} foranyaeR (3.5)
and one can conclude as in the proof of Proposition 211.
THEOREM 3.1. —f is a solution of(1.1) verifying

liminf 0)f(x, 1) = fou(xo) foranyxgeRY. (3.6)

(x,1)— (xo,

Proof. —The first step is to show the relation
graphS({fos<a},-)N{r >0} C{f <a}ndcl{f >a} (3.7)

foranya € R.
Let (xo, o) be an element of grapf({ fox < «}, -) then by the definition off

f(xo,t0) <.

One has
(x0,f0+¢) eint{f < a}, (3.8)
f(x()v tO - 8) >, (39)

for anye > 0.
(3.8), (3.9) show

(xo0,10) € dCI{ f > a).

At this point the arguments of Theorem 3.1 of [19] can be adapted to gelftimt
solution of (1.1). We sketch it for reader’s convenience.
Assume the relation

(po,so) L{f <a} at(xo, ) (3.10)
for certain(po, so), (xo, o) anda, denote by a positive constant verifying

Proj; <, (xo + €po, fo + £50) = {(x0, 70) }.

The notationz(-) = S({ fox < a}, -) will be adopted for simplicity in the remainder of
the proof.
By the definition of f

h(xo) <1to

and if the previous inequality was strict théx, t9) € int{ f < «} which cannot be. So it
results

h(xg) =1t (311)
then (3.7) and (3.11) yield the inequality

Ix — X0 — £pol? + (h(x) — h(x0) — £50)° = £2(| pol® + 52) (3.12)
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for x close toxg.

To show thatsg is nonvanishing, write (3.12) witky = 0, x = xo + repo for r small
and exploit the Lipschitz character bfto obtain a contradiction.

Thereforesy is negative.

Set

9(x) = —|x — xo — epol® + £*(| pol® + 55)
and deduce from (3.12) that/? is subtangent té at x.

Therefore
H (xo0, Dp**(x0)) > 1
where
1 1 Po
DoY?(xg) == ———D =-=
@™ *(x0) 2 072(x0) ¢ (xo) %
and so

Po
H (xo, po) = —soH (xo, ——So) =—50

which shows thayf is a supersolution of (1.1).
To prove that it is also a subsolution assume that

(po, so) L Cl{f >a} at(xp, o) (313)

and show the relations (3.11), (3.12) and tia# 0 as in the first part.
Therefores, is positive and—¢'/? is supertangent tég at xo. This implies the
inequality

H (x0, —Dgp*?(x0)) < 1
and
H (x0, —po) < So

which completes the proof in view of Corollary 1.1.

To prove (3.6) consider an element of RV and (x,,t,) a sequence converging to
(x0, 0).

Put

Ky ={for< f(xu 1)}
and select for any
Y € Projg, (x,).
Since the relation
d(xn, Ky) < rS(Ky, xn) <11y
holds for a certainr > 0, see [18], it results

lim y, = xo.
n
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Therefore
Ilrnnlnf f(xnv tn) 2 Ilrnnlnf fO#(yn) > fO#(x0)~ (314)

On the other side setting, = xq for anyn it comes

S Xy ta) = f (x0, 1) < fou(xo) (3.15)

and so (3.6) is proved. O

THEOREM 3.2. —g is a subsolution of1.1) verifying

limsup g(x,1) < ff(xo) foranyxoeR". (3.16)

(x,t)—(x0,0)
Proof. —Take (%, 7) € graphS(cl{ ff < «}, ) then by the very definition of
gx, 1) >
which shows
graphS({fg <a},-)N{t >0} C{g > a}. (3.17)
Now assume the relation
(po, s0) L {g = a} at(xg, to)

for certain(po, so), (xo, o) anda, denote by > 0 a constant verifying

Proj, >4, (X0 + &po, fo + £50) = { (x0, f0) } -

By the definition ofg

S{fF <a},x0) =t

and if the previous inequality was strict thém, #) € int{g > «} which cannot be. So it
results

‘S‘({f(;;iL < (X}, xO) = lo.

From this point one can continue as in the Theorem 3.1 to showgtissubsolution
of (1.1).
It results

gx,1) < fy(x) forany(x, o).
Thenif (x,, t,) converges tdxg, 0)

lim supg (x,, ;) < limsup f' (x,) < fg/(x)

which completes the proof.0

We proceed to prove an extremality property for the functigng:
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THEOREM 3.3. —Assumefy to satisfy(3.1) or (3.2) then g is the maximal u.s.c.
subsolution of(1.1), (3.16)

THEOREM 3.4. —Assumefy to satisfy(3.1) or (3.2) then f is the minimal |.s.c.
supersolution of(1.1) verifying

liminf  f(x,1) > fos(xo) foranyxgeRY. (3.18)

(x,1)—(x0,0)

To prove Theorems 3.3 and 3.4 we follow the same ideas of [19], Section 4.

We just recall the main steps of the construction given there. We emphasize tha
assumptions (3.1), (3.2) are needed because some compactness of the levelisets of
is required.

Let g be an u.s.c. subsolution of (1.1) verifying (3.16). We set

A= {a: {g <a}is anonempty proper subsetRf’ x ]0, +-o0[ }

and
Q. = {x: there exists with (x,1) €int{g > «}} (3.19)
foranya € A.

PROPOSITION 3.3. —Letwx € A.
() If xo € cl{fF < o} then g(xo, %) < « for any 7o > 0 and consequently2, C
int{ £ > a).

(ii) If (xq, 19) € cl{g < a} theng(xg, t) < « for anyr > .

Proof. —We prove (i). The other assertion can be obtained similarly.

Take xo € cl{ f§ < &} and fix 7. By (3.16) g(x,,1,) < o for a suitable sequence
converging to(xg, 0) with 7, < 7o for anyn.

It can be assumed

(g <a} SRV %10, 4+o0].

Then arguing as in Proposition 1.3 and Lemma 4.1 of [19] it can be proved the existence
of R > 0 such that

d((x,, 10),0{g <a}) = (t, —t) foranyn.

(R2 + 1)1/2

Thereforeg(xg, t0) <. O

PrROPOSITION 3.4. —Leta be an element oft. For any x € €, there exists one and
only oner such that

(x,1) € 3z < a).

As a consequence of the previous proposition a functiprtan be defined iR"Y
putting

ho(x) ={1: (x,1) €3{g <a}} foranyx e Q,. (3.20)
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PrRoOPOSITION 3.5. —For any« € A h, is continuous ire,, verifies

x"_rﬂo he(x) =0 foranyxg e 0€2,

XEQqy

and it is a subsolution of1.14)in €2,.

Taking in account Propositions 3.3, 3.5 and using Proposition 1.6 WithQ,,, we
can prove:

PROPOSITION 3.6. —Foranya € A, ¢ > 0, x € Q,
ho(x) < S(C fF <a— e}, x).

We now consider a |.s.c. supersolutigrof (1.1) verifying (3.18).
We set

A’ = {a: {f > a} is a nonempty proper subset®f’ x ]0, +-oo[}

and define

lo(x) =inf{t: (x,1) € 3{f > a}}
fora € A, x € { fox > a}. Note that, takes values ifi0, +oo[.

PrRoPOSITION 3.7. —For anya € A’ I, is |.s.c. and positive irf fox > «}. Moreover
it is a supersolution of1.14)in { fox > «} and if this set is unbounded then it verifies

lim 1, (x) = +oo.
—+00

Ix|

Using Propositions 3.7 and 1.6 wifh = { fox > o} we finally get
PROPOSITION 3.8. —Assumex € A". Then

ly(x) = S({for<a},x) foranyx € {fox> a}.

Proof of Theorem 3.3. Assume

a =: g(xo, fo) < g(xo, o) := P (3.21)

for a certain(xg, tp).
Observe that

Jee, B C A.
In fact if this is not the case there existg < Jo, 8[ such that
{g <ao}=0

then by (3.16)
{ff<ao) =0
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and by the definition og
{g <o} =1

which contradicts (3.21).
Note that ifag € e, B[ then by Proposition 3.3 € ©,, and so thanks to (3.21),
Proposition 3.6 and the definition 6§,

t0 < hgg(x0) < S(Cl{ fff <o — €}, x0)

for anye > O.
Then the definition of gives

g(xo, o) Zap—¢
which contradicts (3.21) far sufficiently small. O

Proof of Theorem 3.4. Assume by contradiction that there(is), 75) such that

a =: f(xo,t0) < f(xo. to) := B.

It results
Ja, BlC A’
in fact if this relation was false there should dage ]o, B[ with
{f > a} =9,
then by (3.18)
{for> o} =0
and consequently
{f > a0} =0

which is impossible.
By Proposition 3.8 and the definition f it comes

10 = Loy (x0) = S ({ for < a0}, o)

for ag € ], BI.
Consequentlyf (xo, t) < ag Which cannot be. O

To remove the restrictions on the initial datum, we first establish two propositions
exploiting the finite propagation speed property for Eq. (1.1) due to the assumption (1.5)
We define a distance onR" setting for anyx, y

1

. 1 .
L(x,y):lnf{ 0/a|§|+b|5|dt' §€Bx,y}
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whereB, , the set of Lipschitz continuous curves joiningndy, anda, b the constants
appearing in (1.5).

PROPOSITION 3.9. —Assumefp and fy to be Lipschitz-continuous functions verifying
(3.1), denote byf, f the solutions of1.1)equaling fy and f, respectively, at = 0, and
fix (x0, t0).

If fo= foin acompact subsek with

L(y,xg) >ty forye (intkK), (3.22)

then f = 7 in a neighborhood ofxo, o).
Proof. — f and f are locally Lipschitz-continuous (see [19]) and so verify for a.e.
(x, 1) the relation

O=fi+Hx,Df)— fi—Hx,Df)> (fi — f;) — (alx| +b)|IDf — Df]

where the last inequality has been obtained using (1.5).
Consequently the representation formula and the comparison results for the equatic
u; — (alx| + b)|Du| = 0 (see [19]) give

fee, 0 = fee.n <max{ fo(y) — foy): L(y,x) <t} forany(x,1).
Then thanks to (3.22)
f < fin a suitable neighborhood @y, 7).

The thesis is obtained exchanging the roleg@ind /. O
We generalize the previous proposition to more general initial data:

PROPOSITION 3.10. —Assumef, and f, to be bounded initial data verifyin¢g.1),
denote byf, f the functions given by the formu(8.3) ((3.4))with f, replaced byf,
and fo, respectively and fikx, o).

If fo= foin a compact subsek verifying (3.22)then f = f in a neighborhood of
(xo0, 7o)

Proof. —The proof will be given forf and 7 defined by (3.3).
Consider for any, ¢ > 0 the inf-convolutions

o . ~ 1

Soe(x) = mf{fo(y) + —]x — ylz},
y 2¢

- . _ 1 2

Foolr) = mf{fo(y> + x| }
y 2¢

and denote by, f. the solutions of (1.1) equaling., fo. atz = 0, respectively.
The equality

an = an
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holds in
K.:={yeK:d(y,dK) >2VeR}, whereR=max{supfo, supfo}
RN RN
and

L(y,xo) >ty foryeK;

if & is sufficiently small.
Then by Proposition 3.9

f. = f. in a neighborhood ofxo, 7o) (3.23)
for ¢ small.
Claim. —
Fo=liminfufi= 7, Fi=liminfaf. = f. (3.24)
Since

liminf £ (y,1) > fou(x) > fo.(x) foranye, x
(y,t)—(x,0)

it comes by the comparison results of [19]
f>f foranye
and so
f=7
Conversely set
fo(x) = (ylyitr)n%igfyo) f(y, t) foranyx

and assume for purposes of contradiction

f:o(yo)< fos(yo) for a certainy. (3.25)

Exploiting the convergence ofy. to fo+ and (3.25) one can selectand  positive, a
sequencex,, t,) converging to(yg, 0) andeg > 0 verifying
Joe(¥) > fou(yo) = n/2, (3.26)
fa(xav ta) < fO#(yO) -n (327)

forx € B(yo,r), <0< e < gp. }
Thanks to (3.26) and to the local equiboundednesg, pfwo positive constants/,
andkq can be fixed so that the function

Y (x, 1) := fou(yo) — Mt — kolx — yol?
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verifies for O< ¢ < g9, M > My

an_l/fM(’o)>_77/2 in CIB(YOJ’)7 (328)

fe—vYu >0 inclB(yyr)x {1} UadclB(yy,r) x [0,1]. (3.29)

ForanyM > M, it can be found O< ¢, < g for which
Mt,,, + kolxe,, — yol* < n/4

and

(Xeyss ley) € B(yo, r)x 10, 1,
therefore by (3.27)

- 3
f&‘M(-x&‘M7 t&‘M) - WM(-X&‘A/N t&‘M) < _Zn (330)

By (3.28), (3.29), (3.30)y4 is subtangent tg‘;M for any M > Mg at a certain point of
B(xg, )% ]0, 1 (depending orM).

This is impossible taking in account the definitionyaf; and thatf;,, is supersolution
of (1.1).Then any verifying (3.25) cannot exist, consequently

J?OEJZO# and J?EJ;

by the minimality of f/, see Theorem 3.4.
The proof of the claim is thus complete.
It results by (3.24) that for any fixed, ¢)

Fon=1lim f, (x,.1,,)

with x,, , ., sequences suitably chosen.
Then in force of (3.23), (3.24)

Fon=1lim f, (e, 1) > f(x,0)

for (x, t) in a suitable neighborhood @y, 7). } )
The thesis is finally obtained exchanging the roleg @ind 1.
O

From now on fy will denote a general locally bounded initial datum afidg) the
function given by (3.3) ((3.4)).

THEOREM 3.5. —f is a |.s.c. solution of(1.1) verifying (3.6) and (f¥)s = f, g an
u.s.c. subsolution ofl1.1) verifying (3.16)

Proof. —The proof will be given forf.
Fix (xo, 7o) and a compact set satisfying (3.22).
Define two |.s.c. functiongy, fo onR" through the formulae
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fo=fox InK, (3.31)

fo= fox inintk, (3.32)

fo=(supfo)+1 inkK°", (3.33)
K

fo=(nf fo) =1 in(intk)". (3.34)

By (3.22), (3.33), (3.34) and Proposition 3.10
f=f inaneighborhood ofxo, 7o) (3.35)

where f, 7 are given by (3.3) withfy, fo at the place off, respectively.
By (3.31), (3.32), (3.33), (3.34) it results

fex,ty=minf{a ecl fo(K): S({fo<a},x) <t}
< inf{a ecl fQ(K): S({fo#éoz},x) < l}
<min{a ecl fo(K): S({fo<a},x) <t} = f(x,1)

for (x, 1) close to(xg, to).
Then using (3.35) one obtains

f=r=7
in a neighborhood ofxg, #) and so the thesis. O

Remark3.1. — Taking in account the proof of the previous theorem, we see that
Proposition 3.10 holds true for general locally bounded initial datdo.

Consequently, givelxg, fp), any locally bounded datuny, can be perturbed outside
a certain compact set so that the modified functigwerifies (3.1) or (3.2) and

fo< fo(fo>fo) InRY,
flx, )= f(x,1) (g(x,1)=g(x,1)) inaneighborhood ofxo, o),
where f () is given by (3.3) ((3.4)) withf, replacing fo.
From the previous remark we immediately derive:

THEOREM 3.6. —For any locally bounded initial datunyy, f is the minimal l.s.c.
supersolution of(1.1) verifying (3.18) and g the maximal u.s.c. subsolution (f.1)
verifying (3.16)

Note that the previous theorem says thad anL-solution of (1.1), (3.16) in the sense
of Giga and Sato, see [12].

Remark3.2. — If H is nonpositive we define
fe,t)y=max{a: S({fy>a},x) <t}
g(x, 1) =sup{a: S(cl{ fo >}, x) <1}.
It results thatf is an u.s.c. solution of (1.1) verifying

limsup f(x,t) = fF(xo) foranyxoeR".
(x,1)—(x0,0)
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Moreover it is the maximal u.s.c. subsolution verifying

limsup f(x,1) < fi(xo) foranyxoeR".
(.= (x0,0)

g is minimal I.s.c. supersolution verifying

lim info)g(x, 1) > fox(xo) foranyxoeRM.

(x,1)—(xo,

4. Almost continuous functions

We introduce on the space of locally bounded functions defined on the Euclidear
spaceR¥, the following equivalence relation, see [3,17]:

f~g if ff=g"andfy= g 4.1)

This is motivated by the very definition of solution. In fact it comes directly from (4.1)
that if a functionf is a solution of a certain equation then every function equivalent to
f has the same property. Moreover it is easy to check that the weak limits of sequence
of locally bounded functions depend only on the equivalence classes of such functions
More precisely:

LEMMA 4.1. —Assumef, to be a sequence of locally equibounded functions defined
onR™ andg, ~ f, for anyn.
Theng, is locally equibounded and

limsup® f, = limsup®g,,,
liminf 4 f, = liminf »4g,,.

We will denote byLB(RY) the set of equivalence classes with respect to the relation
(4.2).

If u e LB(RY) u*, uy will denote the u.s.c. an the L.s.c. envelope of any of its
representatives.

Similarly thanks to Lemma 4.1 we can talk of locally equibounded sequences
LB(RM) and use without ambiguity the expressions

lim sup”u,, liminf u,.

We want to distinguish the equivalence classes having an u.s.c. representative or a |.s
representative, we will indicate such subsetsBfR) by ALCT(RY) andALC™ (RY),
respectively.

We define

ALC(RY) = ALC"(RM) nALC™ (RY).

We will call almost continuous the elements AL C(RY), this terminology will be
justified below.

The next lemma summarizes some simple characterization of sets of (equivalenc
class of) functions that we have introduced:
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LEMMA 4.2, —
(i) ueALCH(RM) if and only if (u*)4 = us.
(i) ueALC (RM) if and only if (uy)* = u.
(i) u € ALC(RM) if and only if (u*)4 = uys and (ug)* = u”.
(iv) u € ALC(RM) if and only ifu® ~ uy.

For any continuous function defined d&" the equivalence class of (4.1) is a
singleton, ifC (R™) denotes the space of such functions we have the inclusion
C(RM) c ALC(RY).
For any couplef, g of locally bounded functions defined & with

f(z) <g(z) foranyzeRM (4.2)

we set

[f,gl={h: f(2) <h(z) <g(z) foranyz e R"}.

LEMMA 4.3.-Let u be in ALQRY), f is a representative of: if and only if
f € lug, u™].

Proof. —Sinceu is almost continuous then* anduy are representatives af and
u*(uy) is the unique u.s.c. (I.s.c.) function fim, u*].
From this the thesis follows. O

The next proposition is based on Baire's theorem. The proof goes as in [1],
Corollary V.4.30.

PROPOSITION 4.1. —Assumeu to be an element of ALGRM) U ALCT(Q2) then
{u* = uy} is residual in R¥ and it results f(z) = g(z) for any couple f, g of
representatives of and anyz € {u* = uy}. Moreover f l(u#=us) = &liu#=uy) 1S CONtINUOUS.

Proof. —The proof will be given for: € ALC™ (RY). The first step is to show that the
set

(¥ — us < 1/n}

is dense ilR¥ for anyn € N.
In fact if this is not the case there existse R, r > 0, ng such that

B(zo,r) N {u* —ug < 1/ng} = 0.
This implies

(un)*(z0) < u*(z0) — 1/no

which contradicts the characterization of the elementsld (R™) given in Lemma 4.2.
Consequently by Baire’s theorem the set

K :={us=u"} = ﬂ{u#— uy < 1/n}
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being the intersection of a countable family of open dense sets, is residRdl. in
Since any representative ofbelongs tduy, u”] the equality

f(2)=g[)

holds for any couplef, g of representatives of andz € K.
If a sequence,, of elements oK converges tq € K then

(@) = fa(z) <liminf f(z,) <limsupf(z,) < ff(2) = f(2)

which proves thaff | x = g|x is continuous. O

If in addition u is almost continuous the previous result can be strengthened in
the sense that the whole equivalence class can be recovered from the values of a
representative ofu” = uy}.

PROPOSITION 4.2. —Letu be almost continuous anfl one of its representative. Set

Ku = {u# = u#}-
Then
w¥(zo) =limsupf(z),  us(zo) =liminf £(z)
=20 =20
zekKy, z€Ky

for any zo € RM, and consequently |, cannot be extended outsidé, keeping its
continuity.

Proof. —Set
#(z0) = limsupf(z), (4.3)
I
u(zo) = liminf f(z) (4.4)
zeKy,

for anyzo € RM.
Fix zo and consider,, converging to it. By (4.3), (4.4) for any there arer/, 7/ € K,
such that

|Zn_Z;z|<1/n7 |Zn_Z,/1/|<1/n7
(z0) — f(z))] < 1/n, lu(z,) — f(z))| <1/n.
Consequently
lim supi(z,) = limsupf(z,) <u(z),
liminf u(z,) =liminf £(z) > u(z).

These relations show thatandu are u.s.c. and |.s.c., respectively.
Moreover by (4.3), (4.4)

7, u e [uy, u]
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and this implies the equalities

g
|
S
S
I
<
H*

sinceu is almost continuous.
Finally if zo ¢ K, then

u”(z0) = limsupf (z) > liminf f (z) = ux(zo0)

z€Ky zeKy,

and this strict inequality proves the last part of the assertian.

Conversely it is easily seen:

PROPOSITION 4.3. —Let f be a function defined and continuous in a dense sukiset

of R™ which does not admit any proper continuous extension.
Set

[0 =limsupf (). fu(z)=limsupf ().

zeK zek

Thenu = [ fx, f¥] € ALCRM) and K = { fz = f*}.

Propositions 4.2 and 4.3 justify that from now on we identify the equivalence classes
belonging toALC(RY) and the functions defined and continuous on a dense subset of

R which do not admit any proper continuous extension.
For a functionu of this type,K, will denote the sefu® = uy}.

Remark4.1. — The domain of an almost continuous function is not only dense but
residual. This is clear from Proposition 4.1 and conversely it is a consequence of the fac
that the set of point of discontinuity of any function defined on the whole space is the

countable union of closed sets.

The term almost continuous comes from the property that for the functions of this
class the inverse image of any open set is almost open, i.e. the symmetric difference «

an open and a meager set, see [15,14].
Given a sequence, andu € LB(RY), we write

u =lim*u,

to mean
# T # T .
u” =limsup®u,, uyz = liminf zu,,.

If u andu, are almost continuous then (4.5) implies
lim u, (z4) = u(zo)

for anyzo € K,, andz, converging tazo with z,, € K,,, .

(4.5)



A. SICONOLFI/ Ann. I. H. Poincaré — AN 20 (2003) 237-269 265

5. Almost continuous solutions

Here we use the terminology introduced in the previous section to give uniquenes:
and stability results for almost continuous solutiansf (1.1) verifying
limsup u(x,?) < uo(xo) (5.1)

(x,6)—>(x0,0)
(x,1)eKy

liminf .2
@Oémmuut) > uon(xo), (5-2)
(x,1)eKy
or
liminf  u(x, ) = ugu(xo), (5.3)

(x,1)—(x0,0)
(x,1)eKy

limsup u(x, ) = up(xo), (5.4)
(x,1)=>(x0,0)
(x,1)ek,
for any xo € RY, where the initial valueg is taken inLB(R").
We treat the cas& > 0, the modifications folHH honnegative can be easily derived.
We consider the functiong and g defined as in (3.3), (3.4) withos, u} replacing
fox and f§, respectively and denote hy the almost continuous function havingas
representative.
We observe that in generdl~ g as it can be seen taking for initial datum the function
of LB(R") with XrM\(0} @S representative and settiiyx, p) = |p|.
In this casa:j = 1 and so g= 1 while

0 if x| <t,

fux):{l if x| > 1

This fact will have some consequences in the formulation of the uniqueness result
we are going to present.
One condition forf ~ g is indicated in the next result.

PROPOSITION 5.1. —Assumerg € ALCH(RN) then f ~ g.

Proof. —The argument of Theorem 3.3 will be adapted for the proof.
Let g an u.s.c. subsolution of (1.1) verifying (3.16) such that

a =: f*(x0, 10) < g(x0, t0) :=

for a certain(xg, tp).

In view of Remark 3.1u( (any representative ofy) can be assumed without loss of
generality to verify (3.1) or (3.2).

Takeag € Jo, B[ and assume that

{§ <o} =1
then by (3.16)

{u’éE <ag} =0
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and sincaig € ALCT(RY)
{uos < ag} = 0.

This implies by the definition of

{f <ao}=0

and
{ff<ao)=0

which cannot be.
Thereforelo, B[ C A, and ifag € J, B[ thenxg € Q,,, See (3.19), by Proposition 3.3
and so

to < gg(x0) < S(cl{uf < ag — €}, x0)

for anye > 0, see (3.20) for the definition af,,.
Sinceug € ALCT(RY) it results

cluf < ap— e} D {ugs <ap—2¢} foranye >0

then
10 < hgy(x0) < S({uos < ap — 2¢}, xo)

and the definition off gives
f(x0,t0—38) >ap—2¢ foranyé >0

and
F#(x0, t0) > g — 2¢

which is impossible foe sufficiently small.
Consequentlyf* is the maximal u.s.c. subsolution of (1.1) verifying (3.16) wijth
replaced by} which gives the thesis in view of Theorem 3.30

The first uniqueness result is the following:

THEOREM 5.1. —Letug € LB(R"). Thenw is the unique solution of1.1), (5.3)in
ALC(RN x 10, +o0]).

Proof. —Letu € ALC(R" x 10, +oc|) be a solution of (1.1), (5.3). The crucial point is
to prove the inequality
u’ <w”. (5.5)

As in the previous proposition in view of Remark 3:d.can be assumed to verify (3.1)
or (3.2).
Define A, Q, andh, as in (3.19), (3.20) replacing by u*.
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Takea € A, x € cl{ugs < a} and fixt. By (5.3) u(x,, t,) < « for a sequenceéx,, ,)
of elements ofK,, converging tax, r) with ¢, < ¢ for anyn, thereforeu”(x,, t,) < « and
arguing as in Proposition 3.3 it comes

wix, 1) <a

this shows the relation
Q. C int{uo# > ol

and so using Propositions 3.5, 1.6 the inequality
ho(x) < S({uos <o — €}, x)

can be obtained for any € A, ¢ andx € Q,.
From this arguing as in Proposition 5.1 and exploiting (5.3) and the almost continuity
of u it can be derived (5.5) and so

Uy S Wy
which completes the proof in view of Theorem 3.40

Strengthening the assumptions on the initial datum we obtain that the solutisn
complete in the terminology of [1], Definition V.4.28.

THEOREM 5.2. —Assumery € ALCT(R"). Thenw is the unique solution in LER" x
10, +oo[) of (1.1), (5.1), (5.2).

Proof. —Let u € LB(R" x 10, +o0[) a solution of (1.1), (5.1), (5.2) then by Theo-
rem 3.6 and Proposition 5.1

wy <ug <u” <w”

which gives the thesis in view of the almost continuityuof 0O
Note that ifug is almost continuous the conditions (5.1), (5.2) are equivalent to (5.3),
(5.4) and it results

lim  wx, 1) =ug(xg) foranyxge K
(x.0)—>(x0.0)
(x,1)eKy

ug*

This relation implies that the function which equadsin K,, andug in K,, x {0} is
almost continuous iR" x [0, +o0].

Finally we give a stability result which will be proved without using explicitly the
representation formulae.

We consider a sequence of almost continuous initial dgtavith lim 14, = u and
denote byw, the solutions of (1.1), (5.1), (5.2) witky replaced by, .

THEOREM 5.3. — lim*w, = w.

Proof. —Recall thatw, is almost continuous for anyin the light of Theorem 5.2.
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By assumption (1.5, is a l.s.c. supersolution of
+ (alx| + b)|Du| =

verifying

liminf wn#(x 1) = uguu(xo)
(x,)— (x0,0,

for anyn, xg e RV andw,‘f is an u.s.c. subsolution of
— (alx| +b)|Du| =

verifying

H # #
limsup wy, (x, 1) = ug, (xo).
(x,1)—>(x0,0)

Consequently the sequenag is locally equibounded sinag,, is so.
Set
g = limsup*w,,
f =liminf w,,
and argue as in the proof of claim (3.24) in the Proposition 3.10 to show

limsup g(y,1) <uj(x) foranyxeR",
()= (x.0)

liminf £ (y,1) > ugs(x) foranyx eR".
(y.)=(x,0)

Then Theorem 3.6 yields

VAN
5
/N
Q1
VAN
S
It

Wy

and so the thesis.O
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