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ABSTRACT. – We study the Hamilton–Jacobi equation

ut +H(x,Du)= 0

in RN×]0,+∞[, whereH is a continuous positively homogeneous Hamiltonian with constant
sign and verifying suitable assumptions but no convexity properties. We look for discontinuous
(viscosity) solutions verifying certain initial conditions with discontinuous data. Our aim is to
give representation formulae as well as uniqueness and stability results.

We find that the condition

(u#)#= u# and (u#)
#= u#

where u# (u#) denotes the upper (lower) semicontinuous envelope ofu, can be used as a
uniqueness criterion and determines a class of solutions defined and continuous on certain dense
subsets ofRN×]0,+∞[ that we call almost continuous.

Such solutions can be represented by a formula which is a generalization of the Lax–Hopf one
for the eikonal equation.
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RÉSUMÉ. – Nous étudions l’équation de Hamilton–Jacobi

ut +H(x,Du)= 0

enRN×]0,+∞[, oùH est un Hamiltomien continu et positivement homogène qui ne change pas
de signe et qui ne vérifie aucune hypothèse de convexité. On cherche des solutions de viscosité
discontinues qui vérifient certaines conditions initiales avec des données discontinues. Le but est
de donner des formules de représentation aussi bien que des résultats d’unicité et de stabilité.
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Nous prouvons que la condition

(u#)#= u# et (u#)
#= u#

oú u# (u#) est l’enveloppe s.c.s. (s.c.i.) deu, peut être utilisée comme un critère d’unicité
et détermine une classe de solutions définies et continues sur des ensembles denses de
RN×]0,+∞[ que nous appellons presque continues.

Nous représentons ces solutions à l’aide d’une formule qui généralise celle de Lax–Hopf pour
l’équation eiconale.

Introduction

We study the Hamilton–Jacobi time dependent equation

ut +H(x,Du)= 0 (I)

in RN×]0,+∞[, where H has constant sign and is homogeneous in the second
argument but does not verify any convexity or uniform continuity assumptions with
respect to the state variable.

We are interested in discontinuous viscosity solutions verifying initial conditions with
discontinuous data. More precisely we look for locally bounded solutionsu verifying

lim sup
(x,t)→(x0,0)

u#(x, t) � u#
0(x0), lim inf

(x,t)→(x0,0)
u#(x, t) � u0#(x0) (II)

for any x0 ∈ RN , whereu0 is a locally bounded initial datum andu# (u#) denotes the
upper (lower) semicontinuous envelope ofu. Our aim is to give representation formulae
as well as uniqueness (in a sense that will be specified later) and stability results.
It is clear that the usual comparison principles between u.s.c. subsolutions and l.s.c.
supersolutions of (I) are useless for such a purpose.

In the case whereH is convex (concave) the definition of viscosity solution has been
adapted in [6], see also [11], for l.s.c. (u.s.c.) function; these solutions are now called
bilateral, see [1]. Then a comparison principle for the equation (I) coupled with the initial
condition lim inf(x,t)→(x0,0) u(x, t)= u0(x0) (lim sup(x,t)→(x0,0) u(x, t)= u0(x0)) has been
established for l.s.c (u.s.c.) bilateral solutions and l.s.c. (u.s.c.) initial data . However the
application of this theory is strictly confined to the convex case and cannot be generalized
skipping such an assumption.

Several attempts have been made to give new definitions of solutions or to select some
special (sub, super) viscosity solution in order to recover uniqueness and stability in a
more general setting. In this line of research there are notions as envelope and minimax
solutions (see Bardi’s survey in [2]), and more recently ofL-solutions given applying
the level set method to the evolution of certain hypographs, see [12].

We follow the approach of [3] where suitable relations between l.s.c. and u.s.c.
envelopes of solutions are required in order to obtain uniqueness results.

In [4] it has been investigated how in the convex case the definition of bilateral solution
is related to the usual viscosity one for discontinuous functions clarifying that they are
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in a sense equivalent if a functionu verifies

(u#)#= u# and (u#)
#= u#. (III)

If the convexity assumption is removed, however, it has been pointed out that essential
nonuniqueness phenomena can appear in the sense that two solutions verifying the same
initial condition and (III) may have different lower and upper semicontinuous envelopes.

The main achievement of this paper is to show that under our assumptions, the
condition (III) instead can be used as a uniqueness criterion.

It is clear that this must be understood in a generalized sense since the very definition
of viscosity solutions in the discontinuous case forces to identify functions with the same
lower and upper semicontinuous envelopes.

We introduce as in [17] the equivalence relation which express this identification and
consider the space of these equivalence classes. It turns out that for functions verifying
(III) the structure of these classes is particularly simple and it is a consequence of
Baire’s theorem that two equivalent functions coincide on a residual set where they are
continuous, see also [3] for related results. We show that these classes of functions can
be characterized knowing the values attained on this residual set.

This justifies the definition of almost continuous functions as those which are defined
and continuous on dense subsets and that cannot be extended continuously. We explain
in Remark 4.1 the choice of this terminology.

The uniqueness results are based on some representation formulae of the maximal
u.s.c. subsolution of (I) and (the first inequality of) (II) and the minimal l.s.c.
supersolution of (I) and (the second inequality of) (II). They are obtained adapting
similar ones given in [19] for the continuous case and can be viewed as a generalization
of the Lax–Hopf formula for the eikonal equation. In the stability result we use a
convergence naturally related to the class of almost continuous functions.

The paper is organized as follows:
In the first section the problem we deal with is stated with all the assumptions. The

definition of viscosity solution is then rephrased, thanks to the geometric character of
the Hamiltonian, using the perpendiculars to some level sets. Finally it is introduced a
distance onRN on which the representation formulae are based.

In Section 2 the Hamiltonian is assumed convex (concave) inp and it is proved
the equivalence between bilateral solutions and solutions verifying (III) with different
techniques with respect to [4]. The representation formulae are presented in Section 3.
Section 4 is devoted to illustrate the definition and the basic properties of almost
continuous functions. Finally the uniqueness and stability results are given in Section 5.

1. Statement of the problem and preliminary results

We study the time dependent Hamilton–Jacobi equation

ut +H(x,Du)= 0 (1.1)

in RN×]0,+∞[ coupled with initial conditions we will specify later and initial data
which will not be taken continuous but only locally bounded.



240 A. SICONOLFI / Ann. I. H. Poincaré – AN 20 (2003) 237–269

We assume the following conditions onH :

H is continuous in(x,p), (1.2)

H(x,λp)= λH(x,p), (1.3)

for any(x,p) andλ� 0.

H(x,p) > 0 (< 0) (1.4)

for anyx and forp 	= 0∣∣H(x,p1)−H(x,p2)
∣∣� (a|x| + b

)|p1− p2| (1.5)

for anyx,p1,p2 and suitable positive constantsa, b.
By the assumption (1.3), (1.1) belongs to the class of the so-called geometric

equations, see [7].
We fix some notation and terminology. We recall that a general treatment of viscosity

solutions and all the basic definitions we will use in the paper can be found in [1,5].
Given an elementz, a subsetK of an Euclidean space and a positive numberr ,

we denote byB(z, r) the Euclidean ball with radiusr centered atz and byKc the
complementary set ofK . We define the distance and the signed distance fromK through
the formulae:

d(z,K)= inf
K
|z− y|,

d#(z,K)= d(z,K)− d
(
z,Kc

)
.

The expressionϕ is supertangent (subtangent) tof at a certain pointz0 for ϕ continuous
andf u.s.c. (l.s.c.) will mean thatz0 is a local maximizer (minimizer) off − ϕ.

Given a locally bounded functionf , f # (f#) will stand for its upper (lower)
semicontinuous envelope.

In the whole paper we will call (sub, super) solution of (1.1) a locally bounded
viscosity (sub, super) solution, see [13,1,7]. In the case whereH is convex or concave in
p we will consider l.s.c. or u.s.c. viscosity solutions in the sense of Barron and Jensen,
see [6,11,4] we will refer to it as bilateral solutions.

We emphasize that all the (sub, super) solution of (1.1) we will consider are defined
in RN×]0,+∞[, consequently the level sets of it are subsets ofRN×]0,+∞[ and the
boundaries and the closures of such level sets are with respect to the relative topology
of RN×]0,+∞[. Moreover all the arguments of the type(x, t), (y, s) we will write in
the remainder of the paper are understood to have the time component positive unless
otherwise specified.

Thanks to the geometric character of (1.1) the previous notions of solutions can be
restated using the notion of perpendicular (see [8]) to certain level sets.

DEFINITION 1.1. –Given a closed setK of an Euclidean space andz0 ∈K , we say
that a nonvanishing vectorp is perpendicular toK (p⊥K) provided there existsε > 0
such that

projK(z0+ εp)  z0
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where for anyz

projK(z)=
{
y ∈K: |y − z| = d(z,K)

}
.

The following characterizations hold, see [19]:

PROPOSITION 1.1. –Let f be a locally bounded function isRN×]0,+∞[. The two
following assertions are equivalent:

(i) f is a sub(super) solution of (1.1).
(ii) For anyα ∈ R, (x0, t0) ∈ {f # � α} ({f# � α}), (p, s)⊥ {f # � α} ({f# � α}) at

(x0, t0) one has

−s +H(x0,−p)� 0
(
s +H(x0,p)� 0

)
.

PROPOSITION 1.2. – AssumeH to be convex(concave) in p and letf be a l.s.c.
(u.s.c.) function defined inRN×]0,+∞[. The following two assertions are equivalent:

(i) f is a bilateral solution.
(ii) For any α ∈ R, (x0, t0) ∈ {f � α} ({f � α}), (p, s) ⊥ {f � α} ({f � α}) at

(x0, t0) one has

s +H(x0,p)= 0
(−s +H(x0,−p)= 0

)
.

The next result shows that a subsolutionf can be also tested using the perpendiculars
to the level sets cl{f > α}.

COROLLARY 1.1. –f is a subsolution of(1.1) if and only if for anyα ∈R, (x0, t0) ∈
cl{f > α}, (p0, s0)⊥ cl{f > α} at (x0, t0) it results

−s0+H(x0,−p0)� 0. (1.6)

Proof. –Assumef to verify (1.6) and observe that by the very definition of u.s.c.
envelope

cl{f > α} = cl{f # > α} for anyα.

Fix α ∈ R, (x0, t0) ∈ {f # � α}, (p0, s0) ⊥ {f # � α} at (x0, t0) and ε > 0 such that
(x0+ εp0, t0+ εs0) has(x0, t0) as unique projection on{f # � α}.

Put

β = f #(x0+ εp0, t0+ εs0) < α

and consider a sequenceαn contained in]β,α[ and converging toα.
Note that

{f # � α} ⊆ cl{f > αn} for anyn (1.7)

and any limit point(x, t) of sequences(xn, tn) with (xn, tn) ∈ cl{f > αn} for any n
verifies by the upper semicontinuity off #

(x, t) ∈ {f # � α}. (1.8)
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Select

(xn, tn) ∈ projcl{f>αn}(x0+ εp0, t0+ εs0)

and exploit (1.7), (1.8) to find

(x0, t0)= lim
n
(xn, tn). (1.9)

By (1.6)

tn − t0− εs0+H(xn, xn − x0− εp0)� 0

then pass to the limit forn going to infinity and take in account (1.9) and the continuity
of H to get

−s0+H(x0,−p0)� 0

which shows thatf is a subsolution of (1.1) by Proposition 1.1.
The converse implication can be obtained arguing similarly. Then the proof is

complete. ✷
We now give some estimates on the distance function from certain level sets of

a subsolution and a bilateral solution of (1.1) exploiting the assumption (1.3). For
simplicity we assumeH nonnegative in the first proposition and convex in the second.
Similar results hold with suitable modifications forH nonpositive or concave.

PROPOSITION 1.3. – AssumeH nonnegative.
Let f be a subsolution of(1.1), α a constant with{f > α} 	= ∅ andK a bounded

subset ofRN×]0,+∞[.
If T > sup{t : (x, t) ∈K} there isR > 0 verifying

d
(
(x0, t),cl{f > β})� R

(R+ 1)1/2
(t − t0)

for anyβ � α, (x0, t0) ∈K ∩ int{f � β}, t ∈ [t0, T ].
Proof. –Let β, (x0, t0), T be as in the statement.
Set

h(t)= d
(
(x0, t),cl{f > β})

and considert1 ∈ domh′ ∩ ]t0, T ] with (x0, t1) ∈ int{f � β}.
Assume

h(t1) < t1= d
(
(x0, t1), {t = 0})

so that projcl{f>β}(x0, t1) is nonempty and an element(y0, s0) can be selected in it.
The function

σ (t)= (|x0− y0|2+ |t − s0|2)1/2
is supertangent toh at t1 and consequently

h′(t1)= σ ′(t1)= 1

h(t1)
(t1− s0). (1.10)
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Since((x0− y0), (t1− s0))⊥ cl{f > β} at (y0, s0) it results by Corollary 1.1

H(y0, y0− x0)� (t1− s0), (1.11)

and so

t1− s0 > 0

and

h′(t1) > 0

which shows that

(x0, t) ∈ int{f � β}
for any t ∈ [t0, T ].

Set

K1= {x: (x, s) ∈K for somes
}×]0, T ],

r = sup
{
d
(
(x, t),cl{f > α}): (x, t) ∈K1

}
,

r0= sup
{|x|: (x, s) ∈K for somes

}
,

R =min
{
H(y,p): |y|� r + r0, |p| = 1

}
,

and get from (1.11)

|y0− x0|� t1− s0

R
.

Plug this inequality in (1.10) to discover

h′(t1)� t1− s0

(1+ 1
R2 )

1/2(t1− s0)
= R

(R2+ 1)1/2
. (1.12)

Fix t ∈ [t0, T ] and put

I = {s ∈ [t0, t]: h(s)� s
}
,

t1=
{

maxI if I 	= ∅,
t0 otherwise.

Finally use (1.12) to obtain fort ∈ [t0, T ]

h(t)= h(t1)+
t∫

t1

h′ds � t1+ R

(R2+ 1)1/2
(t − t1)� R

(R2+ 1)1/2
(t − t0). ✷

PROPOSITION 1.4. – AssumeH convex.
Letf be a bilateral solution of(1.1), α a constant with{f � α} 	= ∅ andK a bounded

subset ofRN×]0,+∞[ verifying

d
(
(x, t), {f � α})< t for any(x, t) ∈K. (1.13)
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If T > sup{t : (x, t) ∈K} there isR > 0 such that

d
(
(x0, t), {f � α})� max

(
d
(
(x0, t0), {f � α})− R

(R+ 1)1/2
(t − t0),0

)
for any(x0, t0) ∈K , t ∈ [t0, T ].

Proof. –Given(x0, t0) ∈K define

h(t)= d
(
(x0, t), {f � α})

and considert1 ∈ domh′ ∩ [t0, T ] with h(t1) > 0. By (1.13)h(t1) < t1 and so an element
(y0, s0) can be selected in proj{f�α}(x0, t1), hence

h′(t1)= 1

h(t1)
(t1− s0).

Since((x0− y0), (t1− s0))⊥ {f � α} at (y0, s0) it results by Proposition 1.2

H(y0, x0− y0)= s0− t1

and soh′(t1) < 0.
Therefore arguing as in Proposition 1.3 a positive constantR depending only onH

andK can be determined so that

|x0− y0|� s0− t1

R
and h′(t2)�− R

(R+ 1)1/2
.

The proof can be thus completed arguing as in Proposition 1.2.✷
We proceed to define a distance between a point and a closed set ofRN related to the

equation ∣∣H(x,Du)
∣∣= 1 (1.14)

see [18,19]. It will be used in the representation formulae of Section 3.
We start by introducing some terminology and a definition, see [9,10].
For anyT > 0 we shall denote byBT the space of measurable essentially bounded

functions defined in]0, T [ with values inRN .

DEFINITION 1.2. –GivenT > 0 and two subsetB1, B2 of BT we call a nonanticipa-
tive strategy a mapping

γ :B1→ B2

such that ift ∈]0, T [, η1, η2 ∈ B1 with

η1(s)= η2(s) a.e.s ∈]0, t[
then

γ [η1](s)= γ [η2](s) a.e.s ∈]0, t[.
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Given a closed setK of RN andx ∈RN we set for anyT > 0

BT
K,x =

{
ζ ∈ BT :

(
x −

T∫
0

ζ dt

)
∈K

}

and denote by)T , )T
K,x the nonanticipative strategies fromBT to BT and fromBT to

BT
K,x, respectively.
If η ∈ BT , γ ∈ )T , x ∈RN we writeξ(η, γ, x, ·) for the integral curve ofγ [η] defined

in [0, T ] which equalsx atT .
Forη ∈ BT , γ ∈ )T , x ∈RN , K closed subset ofRN we define

IT

x (η, γ )=
T∫

0

γ [η]η− |γ [η]|d#(η,Z(ξ(η, γ, x, ·)))dt

and

S(K,x)= inf
)1
K,x

sup
B1

I1
x(η, γ ). (1.15)

PROPOSITION 1.5. –S(K, ·) is a Lipschitz continuous solution of(1.14)in Kc.

The following comparison principle holds for Eq. (1.14), see [19].

PROPOSITION 1.6. –Let- be an open set ofRN andg, f an u.s.c. subsolution and
a l.s.c. supersolution of(1.14) in -, respectively.

Assume

lim inf
x→x0
x∈-

f (x)� lim sup
x→x0
x∈-

g(x) for anyx0 ∈ ∂-.

If - is unbounded assume in addition

lim|x|→+∞f (x)=+∞

thenf � g in -.

2. Bilateral solutions

Here we assumeH convex, and so nonnegative, or concave and consequently non-
positive.

The aim of this section is to characterize the bilateral solutions of (1.1) as solutions
whose u.s.c. and l.s.c. envelopes verify a certain relation. This result is already in [4],
here we prove it in our setting without using any uniform continuity condition onH with
respect to the state variable or Rademacher’s theorem. Our proof is instead based on a
reflection principle for normal cones (in the Clarke sense) to certain closed sets.

This is the statement of the main result of the section:
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THEOREM 2.1. –AssumeH convex(concave) in p and f l.s.c. (u.s.c.) then the
following two assertion are equivalent:

(i) f is a bilateral solution of(1.1).
(ii) f is a solution of(1.1)with (f #)#= f ((f#)

#= f ).

We will show it forH convex (and so nonnegative). The case where the Hamiltonian
is concave can be treated similarly.

The proof will be divided in steps.
We recall that for a given closed subsetK of an Euclidean space andz ∈ K the

(Clarke) normal coneNK(z) toK at z is given by the formula

co{p: p = lim pi with pi ⊥K at zi andzi → z},
where co indicates the convex hull.

The tangent coneTK(z) is the polar set ofNK(z), i.e.

TK(z)= {p: pq � 0 for any q∈NK(z)
}
.

The following reflection principle for normal cones holds, see [16] for related results:

LEMMA 2.1. – Let K be a closed set and̂K = (intK)c. Assumez0 ∈ ∂K and
intTK(z0) 	= ∅ thenN

K̂
(z0)⊆−NK(z0).

Proof. –The proof is based on the following characterization, see [8]:q ∈ intT
K̂
(z0) if

and only if there existsε > 0 such thatz+ tq ∈ K̂ for anyz ∈ B(z0, ε)∩ K̂, q ∈ B(q, ε),
t ∈]0, ε[.

Take

q0 ∈ (intT
K̂
(z0)

)c
then there are sequenceszn in K̂ , qn, tn > 0 converging to z0, q0, 0 respectively, which
satisfy

zn + tnqn /∈ K̂ for anyn.

Observe that̂K = cl int K̂ , then it is possible to select a positive sequenceεn converging
to 0 and a sequence of unit vectorsan such that

zn + εnan + tnqn =: yn ∈K
and

yn − tnqn = zn + εnan /∈K.

This implies

−q0 ∈ (intTK(z0)
)c
.

Therefore

intT
K̂
(z0)⊇− intTK(z0) 	= ∅ and T

K̂
(z0)⊇−TK(z0)

which gives the thesis. ✷
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Remark2.1. – The previous assertion does not hold if we skip the assumption
intTK(z0) 	= ∅. To see this through an example, define inR2 the functions

f1(x1, x2)= x2
1 + (x2+ 1)2, f2(x1, x2)= x2

1 + (x2− 1)2

and the closed set

K = {x1 � 0} ∪ {f1 � 1} ∪ {f2 � 1}.
One has

NK(0,0)= {x1= 0}, N
K̂
(0,0)= {x1 � 0}.

ThenTK(0,0)= {x2= 0} has empty interior and obviously

N
K̂
(0,0) �−NK(0,0).

PROPOSITION 2.1. –If f is a bilateral solution of(1.1) then(f #)#= f .

Proof. –Fix α and(x0, t0) ∈ ∂{f � α}.
Let ε0 > 0 be so small that

d
(
(x, t), {f � α})< t for any(x, t) ∈ B((x0, t0), ε0

)
then by Proposition 1.4 for anyδ > 0 there isε ∈]0, ε0[ such that(

(x, t + δ) ∈ {f � α}) for any(x, t) ∈ B((x0, t0), ε
)
,

hence

(x0, t0+ δ) ∈ int{f � α}.
Therefore

cl int{f � α} = {f � α}. (2.1)

Recall that

int{f � α} ⊆ {f # � α} (2.2)

and

cl{f # � α} ⊆ {(f #)# � α
}

(2.3)

for anyα, and get from (2.1), (2.2) and (2.3)

{f � α} ⊆ {(f #)# � α
}

for anyα ∈ R,

and sof � (f #)# which gives the thesis being the converse inequality obvious.✷
PROPOSITION 2.2. –Any bilateral solutionf of (1.1) is also a solution.

Proof. –Fix α ∈ R. Exploit the convex character ofH and the definition of normal
cone to see that

s +H(x,p)� 0 (2.4)
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for any(x, t) ∈ ∂{f � α}, (p, s) ∈N{f�α}(x, t).
Consequently sinceH is nonnegative,N{f�α}(x, t) cannot contain any vector

subspace and then

intT{f�α}(x, t) 	= ∅ for any(x, t) ∈ ∂{f � α}. (2.5)

Lemma 2.1 can thus be applied to

K = {f � α}, K̂ = (int{f � α})c = cl{f > α}

yielding the relation

Ncl{f>α}(x, t)⊆−N{f�α}(x, t) for any(x, t) ∈ ∂{f � α}. (2.6)

Use (2.4) and (2.6) to discover

−s +H(x,−p)� 0 (2.7)

for any(x, t) ∈ cl{f > α}, (p, s)⊥ cl{f > α} at (x, t).
This implies in the light of Corollary 1.1 thatf is a subsolution of (1.1) and so the

thesis. ✷
PROPOSITION 2.3. –Assumef to be a l.s.c. solution of(1.1) verifying (f #)# = f

thenf is a bilateral solution of(1.1).

Proof. –Fix α ∈ R. Use Corollary 1.1 and the convex character ofH to find the
relation

−s +H(x,−p)� 0 (2.8)

for any(x, t) ∈ ∂ cl{f > α}, (p, s) ∈Ncl{f>α}(x, t). This implies sinceH is nonnegative

intTcl{u>α}(x, t) 	= ∅ for any(x, t) ∈ ∂ cl{f > α}. (2.9)

Now consider an element(y0, s0) ∈ ∂{f � α}. Since(f #)# = f , there is a sequence
(yn, sn) converging to(y0, s0) such that

lim
n
f #(yn, sn)= f (y0, s0)� α.

Fix s̄ > s0 andβ0 > α with {f > β0} 	= ∅.
There is no loss of generality in assuming

sn < s̄ for anyn

moreover for anyβ ∈]α,β0[ there is an indexnβ such that

(yn, sn) ∈ {f # < β} ⊆ int{f � β} for n > nβ.
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Proposition 1.3 can be applied withα = β0, K = {(yn, sn): n ∈ N} yielding the
inequality

d
(
(yn, s̄),cl{f > β})� R

(R2+ 1)1/2
(s̄ − sn)

for β ∈]α,β0[, n > nβ and a suitable positive constantR.
Passing to the limit one gets

d
(
(y0, s̄),cl{f > β})� R

(R2+ 1)1/2
(s̄ − s0)

for β ∈]α,β0[.
Hence

(y0, s̄) ∈ int{f � α}
and so taking in account thats̄ > s0 has been arbitrarily chosen

(y0, s0) ∈ cl int{f � α}.
Therefore

{f � α} = cl int{f � α}
or equivalently

{f > α} = int cl{f > α}.
Thanks to (2.9) Lemma 2.1 can be applied to

K = cl{f > α}, K̂ = (int cl{f > α})c = {f � α}
Then for(x0, t0) ∈ {f � α}, (p0, s0)⊥ {f � α}, it results

−(p0, s0) ∈Ncl{f>α}(x0, t0)

and by (2.8)

s0+H(x0,p0)� 0.

The converse inequality comes from the fact thatf is a supersolution of (1.1) and so the
proof is complete in view of Proposition 1.2.✷

3. Representation formulae

In this section we remove the convexity assumptions onH and define a solutionf
and a subsolutiong of (1.1) starting from a locally bounded initial datumf0. This will
be done adapting a formula given in [19] for continuous initial data.

The relevant fact is thatf verifies the same condition ((f #)#= f and(f#)
#= f ) we

have introduced in the previous section to characterize bilateral solutions.
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Such a condition will be used in the sequel as a criterion for uniqueness.
H will be taken nonnegative. At the end of the section it will be outlined the

modifications needed to formulae and statements to fit the case where the Hamiltonian
is nonpositive.

We first consider a locally bounded functionf0 defined inRN and verifying

f0 is constant outside a certain compact set (3.1)

or ∣∣ lim|x|→+∞f0(x)
∣∣=+∞. (3.2)

We will get rid of these restrictions later. We adopt the convention

S(K, ·)≡+∞ if K = ∅
and set

f (x, t)=min
{
α: S({f0# � α}, x)� t

}
, (3.3)

g(x, t)= inf
{
α: S(cl{f #

0 � α}, x) < t
}
. (3.4)

PROPOSITION 3.1. –
(i) The minimum in formula(3.3) is achieved andf is l.s.c.
(ii) g is u.s.c.

Proof. –The first assertion can be proved arguing as in [19], Lemmata 3.1, 3.2 where
the assumptions (3.1), (3.2) are essentially exploited.

To show (ii) consider(xn, tn) converging to a point(x0, t0) and put

αn = g(xn, tn), α = g(x0, t0).

Assume by contradictionα < lim supn αn and fixβ ∈]α, lim supn αn[, then

S
(
cl{f #

0 � β}, xn)� tn

up to a subsequence and so

S
(
cl{f #

0 � β}, x0
)
� t0.

This contradicts the equality

α = g(x0, t0)

taking into account the definition ofg. ✷
PROPOSITION 3.2. –(f #)#= f .

Proof. –If the inequalityf (x0, t0) � α holds for a certain(x0, t0) andα ∈ R, then by
the definition off and the continuity ofS({f0# � α}, ·)

(x0, t0+ ε) ∈ int{f � α} for anyε > 0.
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This implies

cl int{f � α} = {f � α} for anyα ∈R (3.5)

and one can conclude as in the proof of Proposition 2.1.✷
THEOREM 3.1. –f is a solution of(1.1)verifying

lim inf
(x,t)→(x0,0)

f (x, t)= f0#(x0) for anyx0 ∈RN. (3.6)

Proof. –The first step is to show the relation

graphS
({f0# � α}, ·)∩ {t > 0} ⊂ {f � α} ∩ ∂ cl{f > α} (3.7)

for anyα ∈R.
Let (x0, t0) be an element of graphS({f0# � α}, ·) then by the definition off

f (x0, t0)� α.

One has

(x0, t0+ ε) ∈ int{f � α}, (3.8)

f (x0, t0− ε) > α, (3.9)

for anyε > 0.
(3.8), (3.9) show

(x0, t0) ∈ ∂ cl{f > α}.
At this point the arguments of Theorem 3.1 of [19] can be adapted to get thatf is a
solution of (1.1). We sketch it for reader’s convenience.

Assume the relation

(p0, s0)⊥ {f � α} at (x0, t0) (3.10)

for certain(p0, s0), (x0, t0) andα, denote byε a positive constant verifying

proj{f�α}(x0+ εp0, t0+ εs0)= {(x0, t0)
}
.

The notationh(·) = S({f0# � α}, ·) will be adopted for simplicity in the remainder of
the proof.

By the definition off

h(x0)� t0

and if the previous inequality was strict then(x0, t0) ∈ int{f � α} which cannot be. So it
results

h(x0)= t0 (3.11)

then (3.7) and (3.11) yield the inequality

|x − x0− εp0|2+ (h(x)− h(x0)− εs0
)2 � ε2(|p0|2+ s2

0

)
(3.12)
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for x close tox0.
To show thats0 is nonvanishing, write (3.12) withs0 = 0, x = x0+ rεp0 for r small

and exploit the Lipschitz character ofh to obtain a contradiction.
Therefores0 is negative.
Set

ϕ(x)=−|x − x0− εp0|2+ ε2(|p0|2+ s2
0

)
and deduce from (3.12) thatϕ1/2 is subtangent toh atx0.

Therefore

H
(
x0,Dϕ1/2(x0)

)
� 1

where

Dϕ1/2(x0)= 1

2

1

ϕ1/2(x0)
Dϕ(x0)=−p0

s0
,

and so

H(x0,p0)�−s0H

(
x0,

p0

−s0

)
=−s0

which shows thatf is a supersolution of (1.1).
To prove that it is also a subsolution assume that

(p0, s0)⊥ cl{f > α} at (x0, t0) (3.13)

and show the relations (3.11), (3.12) and thats0 	= 0 as in the first part.
Therefores0 is positive and−ϕ1/2 is supertangent toh at x0. This implies the

inequality

H
(
x0,−Dϕ1/2(x0)

)
� 1

and

H(x0,−p0)� s0

which completes the proof in view of Corollary 1.1.
To prove (3.6) consider an elementx0 of RN and (xn, tn) a sequence converging to

(x0,0).
Put

Kn = {f0# � f (xn, tn)
}

and select for anyn

yn ∈ projKn
(xn).

Since the relation

d(xn,Kn)� rS(Kn, xn)� rtn

holds for a certainr > 0, see [18], it results

lim
n
yn = x0.
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Therefore

lim inf
n

f (xn, tn)� lim inf
n

f0#(yn)� f0#(x0). (3.14)

On the other side settingxn = x0 for anyn it comes

f (xn, tn)= f (x0, tn)� f0#(x0) (3.15)

and so (3.6) is proved.✷
THEOREM 3.2. –g is a subsolution of(1.1)verifying

lim sup
(x,t)→(x0,0)

g(x, t) � f #
0 (x0) for anyx0 ∈RN. (3.16)

Proof. –Take(x̄, t̄ ) ∈ graphS(cl{f #
0 � α}, ·) then by the very definition ofg

g(x̄, t̄ )� α

which shows

graphS
({f #

0 � α}, ·)∩ {t > 0} ⊂ {g � α}. (3.17)

Now assume the relation

(p0, s0)⊥ {g � α} at (x0, t0)

for certain(p0, s0), (x0, t0) andα, denote byε > 0 a constant verifying

proj{g�α}(x0+ εp0, t0+ εs0)= {(x0, t0)
}
.

By the definition ofg

S
({f #

0 � α}, x0
)
� t0

and if the previous inequality was strict then(x0, t0) ∈ int{g � α} which cannot be. So it
results

S
({f #

0 � α}, x0
)= t0.

From this point one can continue as in the Theorem 3.1 to show thatg is subsolution
of (1.1).

It results

g(x, t) � f #
0 (x) for any(x, t).

Then if (xn, tn) converges to(x0,0)

lim sup
n

g(xn, tn)� lim sup
n

f #
0 (xn)� f #

0 (x)

which completes the proof.✷
We proceed to prove an extremality property for the functionsf , g:
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THEOREM 3.3. –Assumef0 to satisfy (3.1) or (3.2) then g is the maximal u.s.c.
subsolution of(1.1), (3.16).

THEOREM 3.4. –Assumef0 to satisfy (3.1) or (3.2) then f is the minimal l.s.c.
supersolution of(1.1)verifying

lim inf
(x,t)→(x0,0)

f (x, t)� f0#(x0) for anyx0 ∈RN. (3.18)

To prove Theorems 3.3 and 3.4 we follow the same ideas of [19], Section 4.
We just recall the main steps of the construction given there. We emphasize that

assumptions (3.1), (3.2) are needed because some compactness of the level sets off0

is required.
Let ḡ be an u.s.c. subsolution of (1.1) verifying (3.16). We set

A= {α: {ḡ < α} is a nonempty proper subset ofRN×]0,+∞[}
and

-α = {x: there existst with (x, t) ∈ int{ḡ � α}} (3.19)

for anyα ∈A.

PROPOSITION 3.3. –Letα ∈A.
(i) If x0 ∈ cl{f #

0 < α} then ḡ(x0, t0) < α for any t0 > 0 and consequently-α ⊂
int{f #

0 � α}.
(ii) If (x0, t0) ∈ cl{ḡ < α} thenḡ(x0, t) < α for any t > t0.

Proof. –We prove (i). The other assertion can be obtained similarly.
Take x0 ∈ cl{f #

0 < α} and fix t0. By (3.16) ḡ(xn, tn) < α for a suitable sequence
converging to(x0,0) with tn < t0 for anyn.

It can be assumed

{ḡ < α}� RN×]0,+∞[.
Then arguing as in Proposition 1.3 and Lemma 4.1 of [19] it can be proved the existence
of R > 0 such that

d
(
(xn, t0), ∂{ḡ < α})� R

(R2+ 1)1/2
(tn − t) for anyn.

Thereforeḡ(x0, t0) < α. ✷
PROPOSITION 3.4. –Letα be an element ofA. For anyx ∈-α there exists one and

only onet such that

(x, t) ∈ ∂{ḡ < α}.
As a consequence of the previous proposition a functionhα can be defined inRN

putting

hα(x)= {t : (x, t) ∈ ∂{ḡ < α}} for anyx ∈-α. (3.20)
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PROPOSITION 3.5. –For anyα ∈A hα is continuous in-α, verifies

lim
x→x0
x∈-α

hα(x)= 0 for anyx0 ∈ ∂-α

and it is a subsolution of(1.14) in -α.

Taking in account Propositions 3.3, 3.5 and using Proposition 1.6 with- = -α, we
can prove:

PROPOSITION 3.6. –For anyα ∈A, ε > 0, x ∈-α

hα(x)� S
(
cl{f #

0 � α− ε}, x).
We now consider a l.s.c. supersolution̄f of (1.1) verifying (3.18).
We set

A′ = {α: {f̄ > α} is a nonempty proper subset ofRN×]0,+∞[}
and define

lα(x)= inf
{
t : (x, t) ∈ ∂{f̄ > α}}

for α ∈A′, x ∈ {f0#> α}. Note thatlα takes values in[0,+∞[.
PROPOSITION 3.7. –For anyα ∈A′ lα is l.s.c. and positive in{f0# > α}. Moreover

it is a supersolution of(1.14)in {f0#> α} and if this set is unbounded then it verifies

lim|x|→+∞ lα(x)=+∞.

Using Propositions 3.7 and 1.6 with-= {f0#> α} we finally get

PROPOSITION 3.8. –Assumeα ∈A′. Then

lα(x) � S
({f0# � α}, x) for anyx ∈ {f0#> α}.

Proof of Theorem 3.3. –Assume

α =: g(x0, t0) < ḡ(x0, t0) := β (3.21)

for a certain(x0, t0).
Observe that

]α,β[⊂A.

In fact if this is not the case there existsα0 ∈]α,β[ such that

{ḡ < α0} = ∅
then by (3.16)

{f #
0 <α0} = ∅
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and by the definition ofg

{g < α0} = ∅
which contradicts (3.21).

Note that ifα0 ∈]α,β[ then by Proposition 3.3x0 ∈ -α0 and so thanks to (3.21),
Proposition 3.6 and the definition ofhα

t0 � hα0(x0)� S
(
cl{f #

0 � α0− ε}, x0
)

for anyε > 0.
Then the definition ofg gives

g(x0, t0)� α0− ε

which contradicts (3.21) forε sufficiently small. ✷
Proof of Theorem 3.4. –Assume by contradiction that there is(x0, t0) such that

α =: f̄ (x0, t0) < f (x0, t0) := β.

It results

]α,β[⊂A′

in fact if this relation was false there should beα0 ∈]α,β[ with

{f̄ > α0} = ∅,
then by (3.18)

{f0#> α0} = ∅
and consequently

{f > α0} = ∅
which is impossible.

By Proposition 3.8 and the definition oflα0 it comes

t0 � lα0(x0)� S
({f0# � α0}, x0

)
for α0 ∈]α,β[.

Consequentlyf (x0, t0)� α0 which cannot be. ✷
To remove the restrictions on the initial datum, we first establish two propositions

exploiting the finite propagation speed property for Eq. (1.1) due to the assumption (1.5).
We define a distanceL on RN setting for anyx, y

L(x, y)= inf

{ 1∫
0

1

a|ξ | + b
|ξ̇ |dt : ξ ∈ Bx,y

}
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whereBx,y the set of Lipschitz continuous curves joiningx andy, anda, b the constants
appearing in (1.5).

PROPOSITION 3.9. –Assumef̃0 andf̄0 to be Lipschitz-continuous functions verifying
(3.1), denote byf̃ , f̄ the solutions of(1.1)equalingf̃0 andf̄0 respectively, att = 0, and
fix (x0, t0).

If f̃0= f̄0 in a compact subsetK with

L(y, x0) > t0 for y ∈ (intK)c, (3.22)

thenf̃ = f̄ in a neighborhood of(x0, t0).

Proof. –f̃ and f̄ are locally Lipschitz-continuous (see [19]) and so verify for a.e.
(x, t) the relation

0= f̃t +H(x,Df̃ )− f̄t −H(x,Df̄ )� (f̃t − f̄t )− (a|x| + b
)|Df̃ −Df̄ |

where the last inequality has been obtained using (1.5).
Consequently the representation formula and the comparison results for the equation

ut − (a|x| + b)|Du| = 0 (see [19]) give

f̃ (x, t)− f̄ (x, t) � max
{
f̃0(y)− f̄0(y): L(y, x) � t

}
for any(x, t).

Then thanks to (3.22)

f̃ � f̄ in a suitable neighborhood of(x0, t0).

The thesis is obtained exchanging the roles off̃ andf̄ . ✷
We generalize the previous proposition to more general initial data:

PROPOSITION 3.10. –Assumef̃0 and f̄0 to be bounded initial data verifying(3.1),
denote byf̃ , f̄ the functions given by the formula(3.3) ((3.4))with f0 replaced byf̃0

and f̄0, respectively and fix(x0, t0).
If f̃0 = f̄0 in a compact subsetK verifying (3.22) then f̃ = f̄ in a neighborhood of

(x0, t0).

Proof. –The proof will be given forf̃ andf̄ defined by (3.3).
Consider for anyx, ε > 0 the inf-convolutions

f̃0ε(x)= inf
y

{
f̃0(y)+ 1

2ε
|x − y|2

}
,

f̄0ε(x)= inf
y

{
f̄0(y)+ 1

2ε
|x − y|2

}
,

and denote byf̃ε, f̄ε the solutions of (1.1) equaling̃f0ε, f̄0ε at t = 0, respectively.
The equality

f̃0ε = f̄0ε



258 A. SICONOLFI / Ann. I. H. Poincaré – AN 20 (2003) 237–269

holds in

Kε := {y ∈K: d(y, ∂K) � 2
√
εR
}
, whereR =max

{
sup
RN

f̃0,sup
RN

f̄0
}

and

L(y, x0) > t0 for y ∈Kc
ε

if ε is sufficiently small.
Then by Proposition 3.9

f̃ε = f̄ε in a neighborhood of(x0, t0) (3.23)

for ε small.

Claim. –

˜̃
f := lim inf #f̃ε = f̃ , ¯̄f := lim inf #f̄ε = f̄ . (3.24)

Since

lim inf
(y,t)→(x,0)

f̃ (y, t)� f̃0#(x) � f̃0ε(x) for anyε, x

it comes by the comparison results of [19]

f̃ � f̃ε for anyε

and so

f̃ � ˜̃
f .

Conversely set

˜̃
f 0(x)= lim inf

(y,t)→(x,0)

˜̃
f (y, t) for anyx

and assume for purposes of contradiction

˜̃
f 0(y0) < f̃0#(y0) for a certainy0. (3.25)

Exploiting the convergence of̃f0ε to f̃0# and (3.25) one can selectr andη positive, a
sequence(xε, tε) converging to(y0,0) andε0 > 0 verifying

f̃0ε(x) > f̃0#(y0)− η/2, (3.26)

f̃ε(xε, tε) < f̃0#(y0)− η, (3.27)

for x ∈ B(y0, r), < 0< ε < ε0.
Thanks to (3.26) and to the local equiboundedness off̃ε, two positive constantsM0

andk0 can be fixed so that the function

ψM(x, t) := f̃0#(y0)−Mt − k0|x − y0|2
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verifies for 0< ε < ε0, M �M0

f̃0ε −ψM(·,0) >−η/2 in clB(y0, r), (3.28)

f̃ε −ψM > 0 in clB(y0, r)× {1} ∪ ∂ clB(y0, r)× [0,1]. (3.29)

For anyM �M0 it can be found 0< εM < ε0 for which

MtεM + k0|xεM − y0|2 < η/4

and

(xεM , tεM ) ∈ B(y0, r)×]0,1[,
therefore by (3.27)

f̃εM (xεM , tεM )−ψM(xεM , tεM ) <−
3

4
η. (3.30)

By (3.28), (3.29), (3.30),ψM is subtangent tof̃εM for anyM >M0 at a certain point of
B(x0, r)×]0,1[ (depending onM).

This is impossible taking in account the definition ofψM and thatf̃εM is supersolution
of (1.1).Then any0 verifying (3.25) cannot exist, consequently

˜̃
f 0 � f̃0# and ˜̃

f � f̃

by the minimality off̃ , see Theorem 3.4.
The proof of the claim is thus complete.
It results by (3.24) that for any fixed(x, t)

f̃ (x, t)= lim
n
f̃εn(xεn, tεn)

with xεn, tεn sequences suitably chosen.
Then in force of (3.23), (3.24)

f̃ (x, t)= lim
n
f̄εn(xεn, tεn)� f̄ (x, t)

for (x, t) in a suitable neighborhood of(x0, t0).
The thesis is finally obtained exchanging the roles off̃ andf̄ .✷
From now onf0 will denote a general locally bounded initial datum andf (g) the

function given by (3.3) ((3.4)).

THEOREM 3.5. –f is a l.s.c. solution of(1.1) verifying (3.6) and (f #)# = f , g an
u.s.c. subsolution of(1.1)verifying (3.16).

Proof. –The proof will be given forf .
Fix (x0, t0) and a compact setK satisfying (3.22).
Define two l.s.c. functionsf̃0, f̄0 on RN through the formulae
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f̃0= f0# in K, (3.31)

f̄0= f0# in intK, (3.32)

f̃0= (sup
K

f0)+ 1 inKc, (3.33)

f̄0= (inf
K
f0)− 1 in (intK)c. (3.34)

By (3.22), (3.33), (3.34) and Proposition 3.10

f̃ = f̄ in a neighborhood of(x0, t0) (3.35)

wheref̃ , f̄ are given by (3.3) withf̃0, f̄0 at the place off , respectively.
By (3.31), (3.32), (3.33), (3.34) it results

f̄ (x, t)=min
{
α ∈ clf0(K): S

({f̄0 � α}, x)� t
}

� inf
{
α ∈ clf0(K): S

({f0# � α}, x)� t
}

� min
{
α ∈ clf0(K): S

({f̃0 � α}, x)� t
}= f̃ (x, t)

for (x, t) close to(x0, t0).
Then using (3.35) one obtains

f̄ = f = f̃

in a neighborhood of(x0, t0) and so the thesis.✷
Remark3.1. – Taking in account the proof of the previous theorem, we see that

Proposition 3.10 holds true for general locally bounded initial dataf̃0, f̄0.
Consequently, given(x0, t0), any locally bounded datumf0 can be perturbed outside

a certain compact set so that the modified functionf̃0 verifies (3.1) or (3.2) and

f̃0 � f0 (f̃0 � f0) in RN,

f (x, t)= f̃ (x, t)
(
g(x, t)= g̃(x, t)

)
in a neighborhood of(x0, t0),

wheref̃ (g̃) is given by (3.3) ((3.4)) withf̃0 replacingf0.

From the previous remark we immediately derive:

THEOREM 3.6. –For any locally bounded initial datumf0, f is the minimal l.s.c.
supersolution of(1.1) verifying (3.18) and g the maximal u.s.c. subsolution of(1.1)
verifying (3.16).

Note that the previous theorem says thatg is anL-solution of (1.1), (3.16) in the sense
of Giga and Sato, see [12].

Remark3.2. – IfH is nonpositive we define

f (x, t)=max
{
α: S

({f #
0 � α}, x)� t

}
,

g(x, t)= sup
{
α: S

(
cl{f0# � α}, x)< t

}
.

It results thatf is an u.s.c. solution of (1.1) verifying

lim sup
(x,t)→(x0,0)

f (x, t)= f #
0 (x0) for anyx0 ∈RN.
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Moreover it is the maximal u.s.c. subsolution verifying

lim sup
(x,t)→(x0,0)

f (x, t) � f #
0 (x0) for anyx0 ∈RN.

g is minimal l.s.c. supersolution verifying

lim inf
(x,t)→(x0,0)

g(x, t)� f0#(x0) for anyx0 ∈ RN.

4. Almost continuous functions

We introduce on the space of locally bounded functions defined on the Euclidean
spaceRM , the following equivalence relation, see [3,17]:

f ∼ g if f #= g# andf#= g#. (4.1)

This is motivated by the very definition of solution. In fact it comes directly from (4.1)
that if a functionf is a solution of a certain equation then every function equivalent to
f has the same property. Moreover it is easy to check that the weak limits of sequences
of locally bounded functions depend only on the equivalence classes of such functions.
More precisely:

LEMMA 4.1. –Assumefn to be a sequence of locally equibounded functions defined
on RM andgn ∼ fn for anyn.

Thengn is locally equibounded and

lim sup#fn = lim sup#gn,

lim inf #fn = lim inf #gn.

We will denote byLB(RM) the set of equivalence classes with respect to the relation
(4.1).

If u ∈ LB(RM) u#, u# will denote the u.s.c. an the l.s.c. envelope of any of its
representatives.

Similarly thanks to Lemma 4.1 we can talk of locally equibounded sequencesun in
LB(RM) and use without ambiguity the expressions

lim sup#un, lim inf #un.

We want to distinguish the equivalence classes having an u.s.c. representative or a l.s.c.
representative, we will indicate such subsets ofLB(RM) by ALC+(RM) andALC−(RM),
respectively.

We define

ALC
(
RM

)= ALC+
(
RM

)∩ALC−
(
RM

)
.

We will call almost continuous the elements ofALC(RM), this terminology will be
justified below.

The next lemma summarizes some simple characterization of sets of (equivalence
class of) functions that we have introduced:
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LEMMA 4.2. –
(i) u ∈ ALC+(RM) if and only if(u#)#= u#.
(ii) u ∈ ALC−(RM) if and only if(u#)

#= u#.
(iii) u ∈ ALC(RM) if and only if(u#)#= u# and(u#)

#= u#.
(iv) u ∈ ALC(RM) if and only ifu#∼ u#.

For any continuous function defined onRM the equivalence class of (4.1) is a
singleton, ifC(RM) denotes the space of such functions we have the inclusion

C
(
RM

)⊂ ALC
(
RM

)
.

For any couplef,g of locally bounded functions defined inRM with

f (z)� g(z) for anyz ∈RM (4.2)

we set

[f,g] = {h: f (z)� h(z)� g(z) for anyz ∈RM
}
.

LEMMA 4.3. –Let u be in ALC(RM), f is a representative ofu if and only if
f ∈ [u#, u

#].
Proof. –Sinceu is almost continuous thenu# and u# are representatives ofu and

u#(u#) is the unique u.s.c. (l.s.c.) function in[u#, u
#].

From this the thesis follows. ✷
The next proposition is based on Baire’s theorem. The proof goes as in [1],

Corollary V.4.30.

PROPOSITION 4.1. –Assumeu to be an element of ALC−(RM) ∪ ALC+(-) then
{u# = u#} is residual in RM and it results f (z) = g(z) for any couplef,g of
representatives ofu and anyz ∈ {u#= u#}. Moreoverf |{u#=u#} = g|{u#=u#} is continuous.

Proof. –The proof will be given foru ∈ ALC−(RM). The first step is to show that the
set

{u#− u# < 1/n}
is dense inRM for anyn ∈N.

In fact if this is not the case there existsz0 ∈RM , r > 0, n0 such that

B(z0, r)∩ {u#− u# < 1/n0} = ∅.
This implies

(u#)
#(z0)� u#(z0)− 1/n0

which contradicts the characterization of the elements ofALC−(RM) given in Lemma 4.2.
Consequently by Baire’s theorem the set

K := {u#= u#} =⋂
n

{u#− u# < 1/n}
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being the intersection of a countable family of open dense sets, is residual inRM .
Since any representative ofu belongs to[u#, u

#] the equality

f (z)= g(z)

holds for any couplef,g of representatives ofu andz ∈K .
If a sequencezn of elements ofK converges toz ∈K then

f (z)= f#(z)� lim inf f (zn)� lim supf (zn)� f #(z)= f (z)

which proves thatf |K = g|K is continuous. ✷
If in addition u is almost continuous the previous result can be strengthened in

the sense that the whole equivalence class can be recovered from the values of any
representative on{u#= u#}.

PROPOSITION 4.2. –Letu be almost continuous andf one of its representative. Set
Ku = {u#= u#}.

Then

u#(z0)= lim sup
z→z0
z∈Ku

f (z), u#(z0)= lim inf
z→z0
z∈Ku

f (z)

for any z0 ∈ RM , and consequentlyf |Ku
cannot be extended outsideKu keeping its

continuity.

Proof. –Set

u(z0)= lim sup
z→z0
z∈Ku

f (z), (4.3)

u(z0)= lim inf
z→z0
z∈Ku

f (z) (4.4)

for anyz0 ∈RM .
Fix z0 and considerzn converging to it. By (4.3), (4.4) for anyn there arez′n, z′′n ∈Ku

such that

|zn − z′n|< 1/n, |zn − z′′n|< 1/n,∣∣u(zn)− f (z′n)
∣∣< 1/n,

∣∣u(zn)− f (z′′n)
∣∣< 1/n.

Consequently

lim sup
n

u(zn)= lim sup
n

f (z′n)� u(z),

lim inf
n

u(zn)= lim inf
n

f (z′′n)� u(z).

These relations show thatu andu are u.s.c. and l.s.c., respectively.
Moreover by (4.3), (4.4)

u,u ∈ [u#, u
#]
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and this implies the equalities

u= u#, u= u#

sinceu is almost continuous.
Finally if z0 /∈Ku then

u#(z0)= lim sup
z→z0
z∈Ku

f (z) > lim inf
z→z0
z∈Ku

f (z)= u#(z0)

and this strict inequality proves the last part of the assertion.✷
Conversely it is easily seen:

PROPOSITION 4.3. –Letf be a function defined and continuous in a dense subsetK

of RM which does not admit any proper continuous extension.
Set

f #(z0)= lim sup
z→z0
z∈K

f (z), f#(z)= lim sup
z→z0
z∈K

f (z).

Thenu= [f#, f
#] ∈ ALC(RM) andK = {f#= f #}.

Propositions 4.2 and 4.3 justify that from now on we identify the equivalence classes
belonging toALC(RM) and the functions defined and continuous on a dense subset of
RM which do not admit any proper continuous extension.

For a functionu of this type,Ku will denote the set{u#= u#}.
Remark4.1. – The domain of an almost continuous function is not only dense but

residual. This is clear from Proposition 4.1 and conversely it is a consequence of the fact
that the set of point of discontinuity of any function defined on the whole space is the
countable union of closed sets.

The term almost continuous comes from the property that for the functions of this
class the inverse image of any open set is almost open, i.e. the symmetric difference of
an open and a meager set, see [15,14].

Given a sequenceun andu ∈ LB(RM), we write

u= lim #un (4.5)

to mean

u#= lim sup#un, u#= lim inf #un.

If u andun are almost continuous then (4.5) implies

lim
n
un(zn)= u(z0)

for anyz0 ∈Ku andzn converging toz0 with zn ∈Kun .
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5. Almost continuous solutions

Here we use the terminology introduced in the previous section to give uniqueness
and stability results for almost continuous solutionsu of (1.1) verifying

lim sup
(x,t)→(x0,0)
(x,t)∈Ku

u(x, t) � u#
0(x0), (5.1)

lim inf
(x,t)→(x0,0)
(x,t)∈Ku

u(x, t) � u0#(x0), (5.2)

or

lim inf
(x,t)→(x0,0)
(x,t)∈Ku

u(x, t)= u0#(x0), (5.3)

lim sup
(x,t)→(x0,0)
(x,t)∈Ku

u(x, t)= u#
0(x0), (5.4)

for anyx0 ∈RN , where the initial valueu0 is taken inLB(RN).
We treat the caseH � 0, the modifications forH nonnegative can be easily derived.
We consider the functionsf andg defined as in (3.3), (3.4) withu0#, u#

0 replacing
f0# andf #

0 , respectively and denote byw the almost continuous function havingf as
representative.

We observe that in generalf � g as it can be seen taking for initial datum the function
of LB(RN) with χRN \{0} as representative and settingH(x,p)= |p|.

In this caseu#
0≡ 1 and so g≡ 1 while

f (x, t)=
{

0 if |x|< t ,

1 if |x|� t .

This fact will have some consequences in the formulation of the uniqueness results
we are going to present.

One condition forf ∼ g is indicated in the next result.

PROPOSITION 5.1. –Assumeu0 ∈ ALC+(RN) thenf ∼ g.

Proof. –The argument of Theorem 3.3 will be adapted for the proof.
Let ḡ an u.s.c. subsolution of (1.1) verifying (3.16) such that

α =: f #(x0, t0) < ḡ(x0, t0) := β

for a certain(x0, t0).
In view of Remark 3.1u0 (any representative ofu0) can be assumed without loss of

generality to verify (3.1) or (3.2).
Takeα0 ∈]α,β[ and assume that

{ḡ < α0} = ∅
then by (3.16)

{u#
0 < α0} = ∅
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and sinceu0 ∈ ALC+(RN)

{u0#< α0} = ∅.
This implies by the definition off

{f < α0} = ∅

and

{f # <α0} = ∅
which cannot be.

Therefore]α,β[⊂A, and ifα0 ∈]α,β[ thenx0 ∈-α0, see (3.19), by Proposition 3.3
and so

t0 � hα0(x0)� S
(
cl{u#

0 � α0− ε}, x0
)

for anyε > 0, see (3.20) for the definition ofhα0.
Sinceu0 ∈ ALC+(RN) it results

cl{u#
0 � α0− ε} ⊃ {u0# � α0− 2ε} for anyε > 0

then

t0 � hα0(x0)� S
({u0# � α0− 2ε}, x0

)
and the definition off gives

f (x0, t0− δ) > α0− 2ε for anyδ > 0

and

f #(x0, t0)� α0− 2ε

which is impossible forε sufficiently small.
Consequentlyf # is the maximal u.s.c. subsolution of (1.1) verifying (3.16) withf #

0
replaced byu#

0 which gives the thesis in view of Theorem 3.3.✷
The first uniqueness result is the following:

THEOREM 5.1. –Let u0 ∈ LB(RN). Thenw is the unique solution of(1.1), (5.3) in
ALC(RN×]0,+∞[).

Proof. –Let u ∈ ALC(RN×]0,+∞[) be a solution of (1.1), (5.3). The crucial point is
to prove the inequality

u# �w#. (5.5)

As in the previous proposition in view of Remark 3.1u0 can be assumed to verify (3.1)
or (3.2).

DefineA, -α andhα as in (3.19), (3.20) replacinḡg by u#.
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Takeα ∈A, x ∈ cl{u0# < α} and fix t . By (5.3)u(xn, tn) < α for a sequence(xn, tn)
of elements ofKu converging to(x, t) with tn < t for anyn, thereforeu#(xn, tn) < α and
arguing as in Proposition 3.3 it comes

u#(x, t) < α

this shows the relation

-α ⊂ int{u0# � α}
and so using Propositions 3.5, 1.6 the inequality

hα(x) � S
({u0# � α − ε}, x)

can be obtained for anyα ∈A, ε andx ∈-α.
From this arguing as in Proposition 5.1 and exploiting (5.3) and the almost continuity

of u it can be derived (5.5) and so

u# �w#

which completes the proof in view of Theorem 3.4.✷
Strengthening the assumptions on the initial datum we obtain that the solutionw is

complete in the terminology of [1], Definition V.4.28.

THEOREM 5.2. –Assumeu0 ∈ ALC+(RN). Thenw is the unique solution in LB(RN×
]0,+∞[) of (1.1), (5.1), (5.2).

Proof. –Let u ∈ LB(RN×]0,+∞[) a solution of (1.1), (5.1), (5.2) then by Theo-
rem 3.6 and Proposition 5.1

w# � u# � u# �w#

which gives the thesis in view of the almost continuity ofw. ✷
Note that ifu0 is almost continuous the conditions (5.1), (5.2) are equivalent to (5.3),

(5.4) and it results

lim
(x,t)→(x0,0)
(x,t)∈Kw

w(x, t)= u0(x0) for anyx0 ∈Ku0.

This relation implies that the function which equalsw in Kw andu0 in Ku0 × {0} is
almost continuous inRN × [0,+∞].

Finally we give a stability result which will be proved without using explicitly the
representation formulae.

We consider a sequence of almost continuous initial datau0n with lim #u0n = u0 and
denote bywn the solutions of (1.1), (5.1), (5.2) withu0 replaced byu0n.

THEOREM 5.3. – lim#wn =w.

Proof. –Recall thatwn is almost continuous for anyn in the light of Theorem 5.2.
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By assumption (1.5)wn# is a l.s.c. supersolution of

ut + (a|x| + b
)|Du| = 0

verifying

lim inf
(x,t)→(x0,0)

wn#(x, t)= u0n#(x0)

for anyn, x0 ∈RN andw#
n is an u.s.c. subsolution of

ut − (a|x| + b
)|Du| = 0

verifying

lim sup
(x,t)→(x0,0)

w#
n(x, t)= u#

0n(x0).

Consequently the sequencewn is locally equibounded sinceu0n is so.
Set

ḡ = lim sup#wn,

f̄ = lim inf #wn,

and argue as in the proof of claim (3.24) in the Proposition 3.10 to show

lim sup
(y,t)→(x,0)

ḡ(y, t) � u#
0(x) for anyx ∈RN,

lim inf
(y,t)→(x,0)

f̄ (y, t)� u0#(x) for anyx ∈RN.

Then Theorem 3.6 yields

w# � f̄ � ḡ �w#

and so the thesis.✷
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