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Abstract

In this article, we address the Cauchy problem for the KP-I equation

∂tu + ∂3
xu − ∂−1

x ∂2
yu + u∂xu = 0

for functions periodic in y. We prove global well-posedness of this problem for any data in the energy space E =
{
u ∈ L2 (R×T) ,

∂xu ∈ L2 (R×T) , ∂−1
x ∂yu ∈ L2 (R×T)

}
. We then prove that the KdV line soliton, seen as a special solution of KP-I equation, 

is orbitally stable under this flow, as long as its speed is small enough.
© 2018 
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1. Introduction

1.1. Motivations

The Kadomtsev–Petviashvili equations

∂tu + ∂3
xu + ε∂−1

x ∂2
yu + u∂xu = 0 (1.1)

were first introduced in [12] as two-dimensional generalizations of the Korteweig–de Vries equation

∂tu + ∂3
xu + u∂xu = 0 (1.2)

They model long, weakly nonlinear waves propagating essentially along the x direction with a small dependence in 
the y variable. The coefficient ε ∈ {−1; 1} takes into account the surface tension. When this latter is strong (ε = −1), 
(1.1) is then called KP-I equation, whereas KP-II equation refers to a small surface tension (ε = +1).
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The KdV equation (1.2) admits a particular family of traveling waves solutions, the so-called solitons Qc(x − ct)

with speed c > 0:

Qc(x) := 3c · cosh

(√
c

2
x

)−2

From the work of Benjamin [2], we know that these solutions are orbitally stable in H 1(R) under the flow generated 
by the KdV equation (1.2), meaning that every solution of (1.2) with initial data close to Qc in H 1(R) remains close 
in H 1(R) to the Qc-orbit (under the action of translations) at any time t > 0.

Looking at (1.1), we see that every solution of the KdV equation (1.2) is a solution of the KP equations (1.1), seen 
as a function independent of y. It is then a natural question to ask whether Qc is orbitally stable or unstable under the 
flow generated by (1.1). In order to do so, we first need a global well-posedness theory for (1.1) in a space containing 
Qc. In particular, this rules out any well-posedness result in an anisotropic Sobolev space Hs1,s2(R2). A more suited 
space to look for is the energy space for functions periodic in y:

E(R×T) :=
{
u0(x, y) ∈ L2(R×T), ∂xu0 ∈ L2(R×T), ∂−1

x ∂yu0 ∈ L2(R×T)
}

(1.3)

where T =R/2πZ. Indeed, due to the Hamiltonian structure of (1.1), the mass

M(u)(t) :=
∫

R×T

u2(t, x, y)dxdy (1.4)

and the energy

E(u)(t) :=
∫

R×T

{
(∂xu)2(t, x, y) + (∂−1

x ∂yu)2(t, x, y) − 1

3
u3(t, x, y)

}
dxdy (1.5)

are (at least formally) conserved by the flow, i.e. M(u)(t) =M(u)(0) and E(u)(t) = E(u)(0), for any time t and any 
solution u of the KP-I equation defined on [0, t]. The conservation of the energy allows one to extend local solutions 
in C([−T , T ], E) into solutions globally defined. In this article, we thus focus on the following Cauchy problem for 
the KP-I equation set on R ×T:{

∂tu + ∂3
xu − ∂−1

x ∂2
yu + u∂xu = 0, (t, x, y) ∈ R2 ×T

u(t = 0) = u0 ∈ E(R×T)
(1.6)

1.2. Well-posedness results

The KP equations (1.1) have been extensively studied in the past few decades. Using a standard energy method, 
Iório and Nunes [11] proved existence and uniqueness of zero mean value solutions in Hs , s > 2, for both KP equa-
tions on R2 and T2. From the point of view of well-posedness, the KP-II equation is much better understood. Indeed, 
since the pioneering work of Bourgain [3], we know that the KP-II equation is globally well-posed on both L2(R2) and 
L2(T2). On R2, Takaoka and Tzvetkov [23] and Isaza and Mejia [10] pushed the low regularity local well-posedness 
theory down to the anistropic Sobolev space Hs1,s2(R2) with s1 > −1/3, s2 � 0. Later, Hadac [6] and then Hadac, 
Herr and Koch [7] reached the threshold s1 � −1/2, s2 � 0 which is the scaling critical regularity for the KP-II equa-
tion. As for the initial value problem on R ×T, in order to study the stability of the KdV soliton under the flow of the 
KP-II equation, Molinet, Saut and Tzvetkov [19] proved global well-posedness on L2(R ×T).

The situation is radically different regarding the Cauchy theory for the KP-I equation. From the work of Molinet, 
Saut and Tzvetkov [18], we know that this equation badly behaves with respect to perturbation methods. In particular, 
it is not possible to get well-posedness of (1.6) using the standard Fourier restriction norm method of Bourgain, nor 
any method using a fixed point argument on the Duhamel formula associated with (1.6) since Koch and Tzvetkov [15]
proved that on R2, the flow map even fails to be uniformly continuous on bounded sets of C([−T , T ], E). It is thus 
expected to have the same ill-posedness result on R ×T. Using the refined energy method introduced in [16], Kenig 
[13], and then Ionescu and Kenig [8] proved global well-posedness in the “second energy space”

Z2 =:
{
u ∈ L2, ∂2

xu ∈ L2, ∂−2
x ∂2

yu ∈ L2
}
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for functions on R2, and both R × T and T2, respectively. Lately, Ionescu, Kenig and Tataru [9] introduced the so-
called short time Fourier restriction norm method and were able to prove global well-posedness of the KP-I equation 
in the energy space E(R2). Zhang [25] adapted this method in the periodic setting and got local well-posedness in the 
Besov space B1

2,1(T
2), which is almost the energy space but still strictly embedded in it. Overcoming the logarithmic 

divergence that appears in [25] to reach the energy space E(T2) is still an important open problem. In our case, we 
prove the following theorem, which answers the global well-posedness issue in the partially periodic setting:

Theorem 1.1.

(a) Global well-posedness for smooth data
Take u0 ∈ E∞(R ×T). Then, (1.6) admits a unique global solution

u = �∞(u0) ∈ C
(
R,E∞(R×T)

)
which defines a flow map

�∞ : E∞(R×T) → C
(
R,E∞(R×T)

)
In addition, for any T > 0 and α ∈N∗,∣∣∣∣�∞(u0)

∣∣∣∣
L∞

T Eα � C(T ,α, ||u0||Eα ) (1.7)

(b) Global well-posedness in the energy space
For any u0 ∈ E(R ×T) and T > 0, there exists a unique solution u to (1.6) in the class

C([−T ;T ],E) ∩ F(T ) ∩ B(T ) (1.8)

Moreover, the corresponding global flow

�1 : E → C(R,E)

is continuous and leaves M and E invariants.

The function spaces Eα
λ , E∞

λ , F and B are defined in section 3 below.

1.3. Stability results

As far as stability issues are concerned, Mizumachi and Tzvetkov [17] proved that the KdV line soliton is stable 
under the flow generated by the KP-II equation on L2(R × T) for any speed c > 0. Regarding the KP-I equation, 
Rousset and Tzvetkov [21] proved that Qc is orbitally unstable in E1(R × T) under the KP-I flow constructed on 
Z2(R × T) in [8], whenever c > c∗ = 4/

√
3, and that it is orbitally stable if c < c∗. Thus, as a byproduct of [21] and 

of our Theorem 1.1, we can extend the range of admissible perturbations in [21, Theorem 1.4] to get

Corollary 1.2. Assume c < 4/
√

3, then Qc is orbitally stable in E.
More precisely, for every ε > 0, there exists δ > 0 such that for every u0 ∈ E(R ×T) satisfying

||u0 − Qc||E(R×T) < δ

we have

sup
t∈R

inf
a∈R

∣∣∣∣∣∣�1(u0)(t, x − a, y) − Qc(x − ct)

∣∣∣∣∣∣
E(R×T)

< ε

The proof of Corollary 1.2 is a straightforward adaptation of the argument in [21]. Indeed, the proof of [21, Theo-
rem 1.4] only uses the extra conditions ∂2

xu ∈ L2, ∂−2
x ∂2

yu ∈ L2 to have the global solutions from [8]. For the sake of 
completeness, we present the outlines of the proof in section 9.



1776 T. Robert / Ann. I. H. Poincaré – AN 35 (2018) 1773–1826
1.4. Strategy of the proof

Let us now briefly discuss the main ingredients in the proof of Theorem 1.1.
As pointed out above, it is irrelevant to look for functions spaces F(T ) ↪→ C([−T , T ], E) and N(T ) such that any 

solution to (1.6) satisfies

1. a linear estimate

||u||F(T ) � ||u0||E +
∣∣∣∣∣∣∂x(u

2)

∣∣∣∣∣∣
N(T )

(1.9)

2. a bilinear estimate

||∂x(uv)||N(T ) � ||u||F(T ) ||v||F(T ) (1.10)

In order to construct solutions in E, we will thus use the functions spaces F(T ), N(T ) and B(T ) introduced in [9]. 
Those spaces are built to combine the idea introduced in [16] of a priori estimates on short times (depending on the 
frequency) for frequency localized solutions, with the standard Bourgain spaces Xs,b of [3]. Thus, we will replace 
(1.9)–(1.10) with

1. a linear estimate

||u||F(T ) � ||u||B(T ) +
∣∣∣∣∣∣∂x(u

2)

∣∣∣∣∣∣
N(T )

(1.11)

2. a bilinear estimate

||∂x(uv)||N(T ) � ||u||F(T ) ||v||F(T ) (1.12)

3. an energy estimate

||u||2B(T ) � ||u0||2E + ||u||3F(T ) (1.13)

With (1.11)–(1.12)–(1.13) at hand, we will get the existence part of Theorem 1.1 from a standard continuity argument.
To get uniqueness, we will prove the analogous of (1.11)–(1.12)–(1.13) for the difference equation, at the L2 level:

||u − v||F(T ) � ||u − v||B(T ) + ||∂x{(u − v)(u + v)}||N(T ) (1.14)

||∂x{(u − v)(u + v)}||N(T ) � ||u − v||F(T ) ||u + v||F(T ) (1.15)

||u − v||2
B(T )

� ||u0 − v0||2L2 + ||u + v||F(T ) ||u − v||2
F(T )

(1.16)

The main technical difficulties, compared to the case of R2, are the lack of a scale-invariant Strichartz estimate, and 
the impossibility to make the change of variables as in the proof of [9, Lemma 5.1 (a)] to estimate the volume of 
the resonant set. The first one is handled with frequency localized Strichartz estimates in the spirit of [3,19]. For the 
second one, we follow Zhang [25, Lemma 3.1], but looking closely on the computations we are able to take advantage 
of the smallness of the intervals in which the frequency for the x variable varies (note that this is not possible in [25]
since this frequency lives in Z) and to recover the same estimate as in [9] in this case. We also use a weighted Bourgain 
type space to deal with the logarithmic divergence in the energy estimate.

1.5. Organization of the paper

Sections 2 and 3 introduce general notations as well as functions spaces. We begin the proof of Theorem 1.1 in 
section 4 by proving estimate (1.11). After establishing some general dyadic estimates in section 5, sections 6 and 7
deal with (1.12) and (1.13) respectively. The proof of Theorem 1.1 is then completed in section 8. Finally, in the last 
section 9 we recall the arguments to obtain Corollary 1.2.
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2. Notations

• We use the notations of [20] to deal with Fourier transform of periodic functions with a large period 2πλ > 0. Let 
λ � 1 be fixed. We define (dq)λ to be the renormalized counting measure on λ−1Z:∫

u(q)(dq)λ := 1

λ

∑
q∈λ−1Z

u(q)

In the sequel, all the Lebesgue norms in q will be with respect to (dq)λ. Moreover, the space-time Lebesgue 
norms are defined as

||f ||Lp
ξ,qLr

τ
:=

⎧⎪⎨⎪⎩
∫

R×λ−1Z

⎛⎝∫
R

|f |rdτ

⎞⎠p/r

dξ(dq)λ

⎫⎪⎬⎪⎭
1/p

For a 2πλ-periodic function f , we define its Fourier transform as

f̂ (q) :=
2πλ∫
0

e−iqxf (y)dy, q ∈ λ−1Z

and we have the inversion formula

f (y) =
∫

eiqy f̂ (q)(dq)λ

We write Tλ := R/2πλZ. Whenever λ = 1 we drop the lambda.
• The Fourier transform of a function u0(x, y) on R ×Tλ or u(t, x, y) on R2 ×Tλ is denoted ̂u or Fu:

û0(ξ, q) :=
∫

R×Tλ

e−i(ξx+qy)u0(x, y)dxdy, (ξ, q) ∈R× λ−1Z

and

û(τ, ξ, q) :=
∫

R2×Tλ

e−i(τ t+ξx+qy)u(t, x, y)dtdxdy, (τ, ξ, q) ∈ R2 × λ−1Z

Ft u stands for the partial Fourier transform of u(t, x, y) with respect to t , whereas Fxyu means the partial Fourier 
transform of u with respect to space variables x, y, and similarly for Fx , Fy .
We always note (τ, ξ, q) ∈R2 × λ−1Z the Fourier variables associated with (t, x, y) ∈R2 ×Tλ.
We note eventually ζ = (ξ, q) ∈ R × λ−1Z.

• We denote � the convolution product for functions on R or λ−1Z: to specify the variables,

f (x′) �x g(x′) means (f � g)(x) =
∫

R or λ−1Z

f (x − x′)g(x′)dx′

• We use the “bracket” notation 〈·〉 for the weight in the definition of inhomogeneous Sobolev spaces, i.e.

〈ξ 〉s :=
(

1 + ξ2
)s/2

• U(t) is the unitary group defined by the linear evolution equation associated with (1.6):

∀u0 ∈ L2(R×Tλ), Û (t)u0(ξ, q) = eitω(ξ,q)û0(ξ, q)

where

ω(ξ, q) := ξ3 + q2/ξ

We also note
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σ(τ, ξ, q) := τ − ω(ξ, q) = τ − ξ3 − q2

ξ

the modulation associated with (1.6).
• For positive reals a and b, a � b means that there exists a positive constant c > 0 (independent of the various 

parameters, including λ) such that a � c · b.
The notation a ∼ b stands for a � b and b � a.

• We note M ∈ R∗+ (respectively K � 1) the dyadic frequency decomposition of |ξ | (respectively of 〈σ 〉), i.e. 
M ∈ 2Z and K ∈ 2N.
We define then

Dλ,M,K :=
{
(τ, ξ, q) ∈ R2 × λ−1Z, |ξ | ∼ M, 〈σ(τ, ξ, q)〉 ∼ K

}
and

Dλ,M,�K :=
{
(τ, ξ, q) ∈R2 × λ−1Z, |ξ | ∼ M, 〈σ(τ, ξ, q)〉� K

}
=
⋃

K ′�K

Dλ,M,K ′

We note also

IM := {M/2 � |ξ | � 3M/2}
and

I�M := {|ξ |� 3M/2} =
⋃

M ′�M

IM ′

• We use the notations M1 ∧ M2 := min(M1, M2) and M1 ∨ M2 := max(M1, M2).
For M1, M2, M3 ∈R∗+, Mmin � Mmed � Mmax denotes the increasing rearrangement of M1, M2, M3, i.e.

Mmin := M1 ∧ M2 ∧ M3, Mmax = M1 ∨ M2 ∨ M3 and Mmed = M1 + M2 + M3 − Mmax − Mmin

• We use two different Littlewood–Paley decompositions: the first one is homogeneous (on 2Z) for |ξ |, the last one 
is inhomogeneous for 〈σ 〉 ∈ 2N.
Let χ ∈ C∞

0 (R) with 0 � χ � 1, suppχ ⊂ [−8/5; 8/5] and χ ≡ 1 on [−5/4; 5/4].
– For M ∈ 2Z, we then define ηM(ξ) := χ(ξ/M) − χ(2ξ/M), such that suppηM ⊂ {5/8M � |ξ | � 8/5M} and 

ηM ≡ 1 on {4/5M � |ξ | � 5/4M}. Thus ξ ∈ suppηM ⇒ ξ ∈ IM and |ξ | ∼ M .
– For K ∈ 2N, we also define ρ1(σ ) := χ(σ) and ρK(σ) := χ(σ/K) − χ(2σ/K), K > 1, such that suppρK ⊂

{5/8K � |σ | � 8/5K} and ρK ≡ 1 on {4/5M � |σ | � 5/4K}, K > 1. Thus σ ∈ suppρK ⇒ 〈σ 〉 ∼ K .
– When needed, we may use other decompositions ̃χ , ̃η and ̃ρ with the similar properties as χ , η, ρ and satisfying 

χ̃ ≡ 1 on suppχ , ̃η ≡ 1 on suppη and ρ̃ ≡ 1 on suppρ.
– Finally, for κ ∈ R∗+, we note χκ(x) := χ(x/κ).

• We also define the Littlewood–Paley projectors associated with the previous decompositions:

PMu := F−1 (ηM(ξ )̂u) and P�Mu :=
∑

M ′�M

PMu =F−1 (χM(ξ )̂u)

Moreover, we define

PLow := P�2−5 and PHigh := 1 − PLow

• The energy space Eλ is defined as in (1.3) for any period 2πλ:

E(R×Tλ) :=
{
u0 ∈ L2(R×Tλ), ∂xu0 ∈ L2(R×Tλ), ∂−1

x ∂yu0 ∈ L2(R×Tλ)
}

It is endowed with the norm

||u0||Eλ
:= ||〈ξ 〉 · p(ξ, q) · û0||L2

i.e. Eλ is a weighted Sobolev space, with the weight defined as
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p(ξ, q) :=
〈
〈ξ 〉−1q/ξ

〉
, (ξ, q) ∈ R× λ−1Z (2.1)

so that

|〈ξ 〉 · p(ξ, q)|2 = 1 + ξ2 + q2

ξ2 (2.2)

i.e.

||u0||2Eλ
= ||u0||2L2 + ||∂xu0||2L2 +

∣∣∣∣∣∣∂−1
x ∂yu0

∣∣∣∣∣∣2
L2

More generally, for α ∈N, we define

Eα
λ :=
{
u0(x, y) ∈ L2(R×Tλ), ||u0||Eα

λ
:= ∣∣∣∣〈ξ 〉α · p(ξ, q) · û0

∣∣∣∣
L2 < +∞

}
(2.3)

and

E∞
λ =
⋂

α∈N∗
Eα

λ (2.4)

• For a real ξ , we define

[ξ ]λ := λ−1�λξ� ∈ λ−1Z

• For a set A ⊂Rd , 1A is the characteristic function of A and if A is Lebesgue-measurable, |A| means its measure. 
Similarly, if A ⊂ λ−1Z, its measure with respect to (dq)λ will also be noted |A|. When A ⊂ Z is a finite set, its 
cardinal is denoted #A.

• For M > 0 and s ∈R, � Ms− means � CεM
s−ε for any choice of ε > 0 small enough. We define similarly Ms+.

3. Functions spaces

3.1. Definitions

Let M ∈ 2Z.
First, the dyadic energy space is defined as

Eλ,M :=
{
u0 ∈ E0

λ, PMu0 = u0

}
As in [9], for M ∈ 2Z and b1 ∈ [0; 1/2[, the dyadic Bourgain type space is defined as

X
b1
λ,M :=

{
f (τ, ξ, q) ∈ L2(R2 × λ−1Z), suppf ⊂R× IM × λ−1Z,

||f ||
X

b1
λ,M

:=
∑
K�1

K1/2β
b1
M,K ||ρK(τ − ω)f ||L2 < +∞

⎫⎬⎭
where the extra weight βM,K is

βM,K := 1 ∨ K

(1 ∨ M)3

This weight, already used in [3,19,5], allows to recover a bit of derivatives in the high modulation regime, thus 
preventing a logarithmic divergence in the energy estimate. Then, we use the Xb1

λ,M structure uniformly on time 
intervals of size (1 ∨ M)−1:

F
b1
λ,M := {u(t, x, y) ∈ C

(
R,Eλ,M

)
, PMu = u,

||u||
F

b1
λ,M

:= sup
tM∈R

∣∣∣∣p ·F {χ(1∨M)−1(t − tM)u
}∣∣∣∣

X
b1
λ,M

< +∞
}
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and

N
b1
λ,M := {u(t, x, y) ∈ C

(
R,Eλ,M

)
, PMu = u,

||u||
N

b1
λ,M

:= sup
tM∈R

∣∣∣∣∣∣(τ − ω + i(1 ∨ M))−1p ·F {χ(1∨M)−1(t − tM)u
}∣∣∣∣∣∣

X
b1
λ,M

< +∞
}

For a function space Y ↪→ C(R, Eα
λ), we set

Y(T ) := {u ∈ C
([−T ,T ],Eα

λ

)
, ||u||Y(T ) < +∞}

endowed with

||u||Y(T ) := inf {||̃u||Y , ũ ∈ Y, ũ ≡ u on [−T ,T ]} (3.1)

Finally, the main function spaces are defined as

Fα,b1
λ (T ) :=

⎧⎨⎩u ∈ C([−T ,T ],Eα
λ), ||u||

F
α,b1
λ (T )

:=
(∑

M>0

(1 ∨ M)2α ||PMu||2
F

b1
λ,M(T )

)1/2

< +∞
⎫⎬⎭ (3.2)

and

Nα,b1
λ (T ) :=

⎧⎨⎩u ∈ C([−T ,T ],Eα
λ), ||u||

N
α,b1
λ (T )

:=
(∑

M>0

(1 ∨ M)2α ||PMu||2
N

b1
λ,M(T )

)1/2

< +∞
⎫⎬⎭ (3.3)

The last space is the energy space

Bα
λ(T ) :=

⎧⎨⎩u ∈ C([−T ,T ],Eα
λ), ||u||Bα

λ(T ) :=
(∣∣∣∣P�1u0

∣∣∣∣2
Eα

λ
+
∑
M>1

sup
tM∈[−T ,T ]

||PMu(tM)||2Eα
λ

)1/2

< +∞
⎫⎬⎭

(3.4)

For b1 = 1/8, we drop the exponent.
If moreover α = 1, we simply write Fλ(T ), Nλ(T ) et Bλ(T ).
We define similarly the spaces

Eλ,M, F
b1
λ,M, N

b1
λ,M

which are the equivalents of Eλ,M , Fb1
λ,M , Nb1

λ,M but on an L2 level, i.e. without the weight p(ξ, q). In particular,

||u||2Fλ(T ) ∼
∑
M>0

(1 ∨ M)2 ||u||2
F

b1
λ,M(T )

+
∣∣∣∣∣∣∂−1

x ∂yu

∣∣∣∣∣∣2
F

b1
λ,M(T )

(3.5)

For the difference equation, we will then use the L2-type energy space

Bλ(T ) :=
{

u ∈ C([−T ;T ],L2(R×Tλ)), ||u||2
Bλ(T )

:= ∣∣∣∣P�1u0
∣∣∣∣

L2 +
∑
M>1

sup
tM∈[−T ;T ]

||PMu(tM)||2
L2 < +∞

}
(3.6)

and the spaces for the difference of solutions and for the nonlinearity are

Fλ
b1

(T ) :=
{

u ∈ C([−T ;T ],L2(R×Tλ)), ||u||2
Fλ

b1 (T )
:=
∑
M>0

||PMu||2
F

b1
λ,M(T )

< +∞
}

(3.7)

and

Nλ
b1

(T ) :=
{

u ∈ C([−T ;T ],L2(R×Tλ)), ||u||2
Nλ

b1 (T )
:=
∑
M>0

||PMu||2
N

b1
λ,M(T )

< +∞
}

(3.8)
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3.2. Basic properties

The following property of dyadic Bourgain type space is fundamental:

Proposition 3.1. Let M ∈ 2Z, b1 ∈ [0; 1/2[, fM ∈ X
b1
λ,M , and γ ∈ L2(R) satisfying

|γ̂ (τ )|� 〈τ 〉−4 (3.9)

Then, for any K0 � 1 and t0 ∈ R:

K
1/2
0 β

b1
M,K0

∣∣∣∣∣∣χK0(τ − ω)F
{
γ (K0(t − t0))F−1fM

}∣∣∣∣∣∣
L2

� β
b1
M,K0

||fM ||X0
λ,M

(3.10)

and ∑
K�K0

K1/2β
b1
M,K

∣∣∣∣∣∣ρK(τ − ω)F
{
γ (K0(t − t0))F−1fM

}∣∣∣∣∣∣
L2

� ||fM ||
X

b1
λ,M

(3.11)

and the implicit constants are independent of K0, t0, M or λ.

We will have several uses of the following estimate

Lemma 3.2. For any M ∈ 2Z and fM ∈ X0
λ,M , we have

||fM ||L2
ξ,qL1

τ
� ||fM ||X0

λ,M
(3.12)

Proof. We decompose fM according to its modulations:

||fM ||L2
ξ,qL1

τ
�
∑
K�1

||ρK(τ − ω)fM ||L2
ξ,qL1

τ
�
∑
K�1

K1/2
∣∣∣∣∣∣ρ̃K(τ − ω)〈τ − ω〉−1/2 · ρK(τ − ω)fM

∣∣∣∣∣∣
L2

ξ,qL1
τ

Next, using Cauchy–Schwarz inequality in the τ variable, we control the previous term with∑
K�1

K1/2
∣∣∣∣∣∣∣∣∣∣∣∣∣∣ρ̃K(τ − ω)〈τ − ω〉−1/2

∣∣∣∣∣∣
L2

τ

||ρK(τ − ω)fM ||L2
τ

∣∣∣∣∣∣∣∣
L2

ξ,q

Now, since for any fixed (ξ, q) ∈R × λ−1Z, 
∣∣∣∣∣∣ρ̃K(τ − ω)〈τ − ω〉−1/2

∣∣∣∣∣∣
L2

τ

� 1, the sum above is finally estimated by

∑
K�1

K1/2 ||ρK(τ − ω)fM ||L2
ξ,q,τ

= ||fM ||X0
λ,M

�

Now we prove the proposition.

Proof. Let us begin by proving (3.10). Using that 
∣∣∣∣χK0(τ − ω)

∣∣∣∣
L2 �K

1/2
0 , we estimate the term on the left-hand 

side by

K
1/2
0 β

b1
M,K0

∣∣∣∣∣∣∣∣∣∣∣∣χK0(τ − ω)
∣∣∣∣

L2
τ

∣∣∣∣∣∣(K−1
0 eiτ ′t0 γ̂ (K−1

0 τ ′)
)

�τ fM

∣∣∣∣∣∣
L∞

τ

∣∣∣∣∣∣∣∣
L2

ξ,q

� β
b1
M,K0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣(eiτ ′t0 γ̂ (K−1
0 τ ′)
)

�τ fM

∣∣∣∣∣∣
L∞

τ

∣∣∣∣∣∣∣∣
L2

ξ,q

(3.10) then follows from using Young’s inequality L∞ ×L1 → L∞ and (3.12), since ̂γ ∈ L∞ by the assumption (3.9).
Now we prove (3.11). We decompose fM according to its modulations and then distinguish two cases depending 

on the relation between K and K1:
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∑
K�K0

K1/2β
b1
M,K

∣∣∣∣∣∣ρK(τ − ω)F
{
γ (K0(t − t0))F−1fM

}∣∣∣∣∣∣
L2

�
∑

K�K0

K1/2β
b1
M,K

∑
K1�1

∣∣∣∣∣∣ρK(τ − ω)
(

eiτ ′t0 γ̂
K−1

0

)
�τ

(
ρK1(τ − ω)fM

)∣∣∣∣∣∣
L2

=
∑

K�K0

∑
K1�K/10

() +
∑

K�K0

∑
K1�K

() = I + II

For the first term, we have |τ − τ ′| ∼ K since |τ − ω| ∼ K and |τ ′ − ω| ∼ K1 � K/10, thus using Young inequality 
L∞ × L1 → L∞, the estimate ||ρK ||L2 �K1/2 and then summing on K � K0, we get the bound

I �
∑

K�K0

K−1β
b1
M,K

∑
K1�K/10

∣∣∣∣∣∣ρK(τ − ω)
(
|τ ′|3/2γ̂

K−1
0

)
�τ

(
ρK1(τ − ω)fM

)∣∣∣∣∣∣
L2

� K
−1/2
0

∑
K1�K/10

∣∣∣∣∣∣|τ ′|3/2γ̂
K−1

0
(τ ′)
∣∣∣∣∣∣

L∞
∣∣∣∣ρK1(τ − ω)fM

∣∣∣∣
L2

ξ,qL1
τ

This is enough for (3.11) after using (3.12) and∣∣∣∣∣∣| · |s γ̂K−1
0

∣∣∣∣∣∣
Lp

� K
s+1/p−1
0

∣∣∣∣| · |s γ̂ ∣∣∣∣
Lp (3.13)

and the right-hand side is finite by the assumption on gamma (3.9).
Finally, II is simply controlled using Young L1 × L2 → L2 and (3.13):

II �
∑

K1�K0

K
1/2
1 β

b1
M,K1

∣∣∣∣∣∣γ̂K−1
0

∣∣∣∣∣∣
L1

∣∣∣∣ρK1(τ − ω)fM

∣∣∣∣
L2 � ||fM ||

X
b1
λ,M

�

Remark 3.3. For the loss in (3.10) to be nontrivial, we need either b1 = 0 or K0 � (1 ∨ M)3. In particular, in the 
multilinear estimates we cannot localize the term with the smallest frequency on time intervals of size M−1

max when 
b1 > 0.

The next proposition deals with general time multipliers as in [9]:

Proposition 3.4. Let M > 0, b1 ∈ [0; 1/2[, fM ∈ F
b1
λ,M (respectively Nb1

λ,M ) and mM ∈ C4(R) bounded along with its 
derivatives. Then

||mM(t)fM ||
F

b1
λ,M

�
(

4∑
k=0

(1 ∨ M)−k
∣∣∣∣∣∣m(k)

M

∣∣∣∣∣∣
L∞

)
||fM ||

F
b1
λ,M

(3.14)

and

||mM(t)fM ||
N

b1
λ,M

�
(

4∑
k=0

(1 ∨ M)−k
∣∣∣∣∣∣m(k)

M

∣∣∣∣∣∣
L∞

)
||fM ||

N
b1
λ,M

(3.15)

respectively, uniformly in M > 0 and λ � 1.

Proof. Using the definition of Fb1
λ,M , we write

||mMfM ||
F

b1
λ,M

= sup
tM∈R

∑
K�1

K1/2β
b1
M,K

∣∣∣∣p · ρK(τ − ω)F
{
χ(1∨M)−1(t − tM)mM(t)fM

}∣∣∣∣
L2

Next we estimate∣∣F {χ(1∨M)−1(t − tM)mM

}∣∣ (τ ) �
∣∣∣∣χ(1∨M)−1(t − tM)mM

∣∣∣∣
L1 � (1 ∨ M)−1 ||mM ||L∞

and
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∣∣F {χ(1∨M)−1(t − tM)mM

}∣∣ (τ ) = |τ |−4
∣∣∣∣F d4

dt4

{
χ(1∨M)−1(t − tM)mM

}∣∣∣∣
� |τ |−4

4∑
k=0

∣∣∣∣∣∣m(k)
M

∣∣∣∣∣∣
L∞ (1 ∨ M)3−k

∣∣∣∣∣∣χ(4−k)
∣∣∣∣∣∣

L1

Thus we obtain

∣∣F {χ(1∨M)−1(t − tM)mM

}∣∣ (τ ) �
(

4∑
k=0

(1 ∨ M)−k
∣∣∣∣∣∣m(k)

M

∣∣∣∣∣∣
L∞

)
(1 ∨ M)−1

〈
(1 ∨ M)−1τ

〉−4

Using (3.10) and (3.11) with t0 = tM , K0 = (1 ∨ M) and γ (t) = F−1〈τ 〉−4 concludes the proof of (3.14). The proof 
of (3.15) follows similarly. �

The last proposition justifies the use of Fλ(T ) as a resolution space:

Proposition 3.5. Let α ∈ N∗, T ∈]0; 1], b1 ∈ [0; 1/2[ and u ∈ Fα,b1
λ (T ). Then

||u||L∞
T Eα

λ
� ||u||

F
α,b1
λ (T )

(3.16)

and

||u||L∞
T L2

xy
� ||u||

Fλ
b1 (T )

(3.17)

Proof. The proof is the same as in [9, Lemma 3.1]: let M ∈ 2Z, ũM be an extension of PMu to R with 
||ũM ||

F
b1
λ,M

� 2 ||PMu||
F

b1
λ,M(T )

and tM ∈ [−T ; T ], then it suffices to prove that∣∣∣∣p ·FxyũM(tM)
∣∣∣∣

L2
ξ,q

�
∣∣∣∣p ·F {χ(1∨M)−1(t − tM)ũM

}∣∣∣∣
X

b1
λ,M

Using the properties of χ and the inversion formula, we can write

ũM(tM) = {χ(1∨M)−1(· − tM)ũM

}
(tM) =

∫
R

Ft

{
χ(1∨M)−1(t − tM)ũM

}
(τ )eitMτ dτ

Thus, using (3.12), we get the final bound∣∣∣∣p ·FxyũM(tM)
∣∣∣∣

L2
ξ,q

�
∣∣∣∣p ·F {χ(1∨M)−1(t − tM)ũM

}∣∣∣∣
L2

ξ,qL1
τ
�
∣∣∣∣p ·F {χ(1∨M)−1(t − tM)ũM

}∣∣∣∣
X

b1
λ,M

�
4. Linear estimates

This section deals with (1.11) and (1.14).

Proposition 4.1. Let T > 0, b1 ∈ [0; 1/2[ and u ∈ Bα
λ(T ), f ∈ Nα,b1

λ (T ) satisfying

∂tu + ∂3
xu − ∂−1

x ∂2
yu = f (4.1)

on [−T , T ] ×R ×Tλ.
Then u ∈ Fα,b1

λ (T ) and

||u||
F

α,b1
λ (T )

� ||u||Bα
λ(T ) + ||f ||

N
α,b1
λ (T )

(4.2)

Proof. This proposition is proved in [9] (see also [14]). We recall the proof here for completeness.
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Looking at the definition of Fα,b1
λ (T ) (3.2), Nα,b1

λ (T ) (3.3) and Bα
λ(T ) (3.4), we have to prove that ∀M > 0,

||PMu||
F

b1
λ,M(T )

� ||PMu0||E0
λ
+ ||PMf ||

N
b1
λ,M(T )

if 0 < M � 1

||PMu||
F

b1
λ,M(T )

� sup
tM∈[−T ,T ]

||PMu(tM)||E0
λ
+ ||PMf ||

N
b1
λ,M(T )

if M > 1

Let M > 0. As in [14, Proposition 2.9, p. 14], we begin by constructing extensions ũM (respectively f̃M ) of PMu

(respectively PMf ) to R, with a control on the boundary terms.
To do so, we first define the smooth cutoff function

mM(t) :=

⎧⎪⎨⎪⎩
χ(1∨M)−1/10(t + T ) if t < −T

1 if t ∈ [−T ,T ]
χ(1∨M)−1/10(t − T ) if t > T

Next, we define f̃M on R with

f̃M(t) := mM(t)fM(t) (4.3)

where fM is an extension of PMf to R satisfying ||fM ||
N

b1
λ,M

� 2 ||PMf ||
N

b1
λ,M(T )

.

So f̃M is also an extension of PMf , with suppf̃M ⊂ [−T − (1 ∨ M)−1/5, T + (1 ∨ M)−1/5].
From (4.1), we have that

PMu(t) = U(t)PMu0 +
t∫

0

U(t − t ′)PMf (t ′)dt ′ on [−T ,T ] (4.4)

Thus we define ũM as

ũM(t) := mM(t)

⎧⎨⎩U(t)PMu0 +
t∫

0

U(t − t ′)f̃M(t ′)dt ′
⎫⎬⎭ , t ∈R (4.5)

The choice of f̃M and ũM is dictated from the necessity to control the boundary term. First using (3.15) with mM we 
have ∣∣∣∣f̃M

∣∣∣∣
N

b1
λ,M

� ||PMf ||
N

b1
λ,M(T )

and ũM defines an extension of PMu.
Moreover, if tM /∈ [−T , T ], from the choice of mM , we can write χ(1∨M)−1(t − tM)ũM(t) = χ(1∨M)−1(t −

t̃M)χ(1∨M)−1(t − tM)ũM(t) for a t̃M ∈ [−T , T ]. Then, using (3.10) and (3.11) we get

sup
tM /∈[−T ,T ]

∣∣∣∣χ(1∨M)−1(t − tM)ũM

∣∣∣∣
X

b1
λ,M

� sup
t̃M∈[−T ,T ]

∣∣∣∣χ(1∨M)−1(t − t̃M)ũM

∣∣∣∣
X

b1
λ,M

Thus it suffices to prove

sup
tM∈[−T ,T ]

||p ·F {χ(t − tM)ũM}||
X

b1
λ,M

� ||ũM(0)||E0
λ
+

sup
t̃M∈R

∣∣∣∣∣∣(τ − ω + i)−1p ·F {χ(t − t̃M)f̃M

}∣∣∣∣∣∣
X

b1
λ,M

if M � 1

and

sup
tM∈[−T ,T ]

∣∣∣∣p ·F {χM−1(t − tM)ũM

}∣∣∣∣
X

b1
λ,M

� sup
t̂M∈[−T ,T ]

∣∣∣∣ũM(t̂M)
∣∣∣∣

E0
λ
+

sup
t̃M∈R

∣∣∣∣∣∣(τ − ω + iM)−1p ·F {χM−1(t − t̃M)f̃M

}∣∣∣∣∣∣
X

b1
λ,M

if M > 1
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Note that, since mM ≡ 1 on [−T , T ] and u is a solution of (4.1), for tM ∈ [−T , T ], we have

PMu(tM) = U(tM)PMu0 +
tM∫

0

U(t − t ′)f̃M(t ′)dt ′

and thus

ũM(t + tM) = mM(t + tM)

⎧⎨⎩U(t)PMu(tM) +
t∫

0

U(t − t ′)f̃M(t ′ + tM)dt ′
⎫⎬⎭

Finally, it suffices to prove that

||p ·F {χ(t − tM)mM(t)U(t)PMu0}||
X

b1
λ,M

� ||ũM(0)||E0
λ

(4.6)

and ∣∣∣∣∣∣
∣∣∣∣∣∣p ·F

⎧⎨⎩χ(t − tM)mM(t)

t∫
0

U(t − t ′)f̃M(t ′)dt ′
⎫⎬⎭
∣∣∣∣∣∣
∣∣∣∣∣∣
X

b1
λ,M

�
∣∣∣∣∣∣(τ − ω + i)−1p ·F {χ(t − tM)f̃M

}∣∣∣∣∣∣
X

b1
λ,M

(4.7)

for the low-frequency part, and∣∣∣∣p ·F {χM−1(t)mM(t + tM)U(t)PMu(tM)
}∣∣∣∣

X
b1
λ,M

� ||ũM(tM)||E0
λ

(4.8)

and ∣∣∣∣∣∣
∣∣∣∣∣∣p ·F

⎧⎨⎩χM−1(t)mM(t + tM)

t∫
0

U(t − t ′)f̃M(tM + t ′)dt ′
⎫⎬⎭
∣∣∣∣∣∣
∣∣∣∣∣∣
X

b1
λ,M

�
∣∣∣∣∣∣(τ − ω + iM)−1p ·F {χM−1(t − tM)f̃M

}∣∣∣∣∣∣
X

b1
λ,M

(4.9)

for the high-frequency part.
To prove those estimates, we first notice that, since t ′ ∈ [0; t] and t ∈ suppχ(1∨M)−1 , we can write f̃M as

f̃M(tM + t ′) =
∑

|n|�100

fM,n(tM + t ′) :=
∑

|n|�100

γ
(
(1 ∨ M)t ′ − n

)
f̃M(tM + t ′)

where γ : R → [0; 1] is a smooth partition of unity, satisfying suppγ ⊂ [−1; 1] and for all x ∈R,∑
n∈Z

γ (x − n) = 1

The second observation is that, for a fixed tM , we have for the homogeneous term∣∣∣∣p ·F {χM−1(t)mM(t + tM)U(t)PMu(tM)
}∣∣∣∣

X
b1
λ,M

� ||mMU(t)PMu(tM)||
F

b1
λ,M

so we can remove the localization mM(t) thanks to (3.14), and similarly for the inhomogeneous term.
Computing the Fourier transform in the left-hand side of (4.6) and using the bound∣∣∣∣∣∣ρK(τ − ω)eitM(τ−ω)χ̂(τ − ω)

∣∣∣∣∣∣
L2

τ

�
∣∣∣∣∣∣ρK(τ)〈τ 〉−2

∣∣∣∣∣∣
L2

� K−3/2

since χ̂ ∈ S(R), we then obtain

||p ·F {χ(t − tM)U(t)PMu0}||
X

b1
λ,M

�
∑
K�1

K1/2β
b1
M,K

∣∣∣∣∣∣ρK(τ − ω)p · eitM(τ−ω)χ̂(τ − ω)P̂Mu0

∣∣∣∣∣∣
L2

� ||PMu0||L2
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The proof of (4.8) is the same replacing the first bound by∣∣∣∣∣∣∣∣ρK(τ − ω)M−1
〈
M−1(τ − ω)

〉−2
∣∣∣∣∣∣∣∣

L2
τ

� M−1K1/2(1 ∨ M−1K)−2

For (4.7) and (4.9), a computation gives first

F

⎧⎨⎩χ(1∨M)−1(t)

t∫
0

U(t − t ′)fM,n(tM + t ′)dt ′
⎫⎬⎭ (τ )

= (1 ∨ M)−1
∫
R

χ̂((1 ∨ M)−1(τ − τ ′)) − χ̂ ((1 ∨ M)−1(τ − ω))

i(τ ′ − ω)

· eitMτ ′F
{
fM,n

}
(τ ′)dτ ′

Now, we distinguish between two cases, whether |τ ′ − ω + i(1 ∨ M)| ∼ |τ ′ − ω| or |τ ′ − ω + i(1 ∨ M)| ∼ (1 ∨ M).
First, if |τ ′ − ω| � (1 ∨ M), we have∣∣∣∣ χ̂ ((1 ∨ M)−1(τ − τ ′)) − χ̂((1 ∨ M)−1(τ − ω))

i(τ ′ − ω)

∣∣∣∣� ∣∣∣∣ χ̂ ((1 ∨ M)−1(τ − τ ′))
i(τ ′ − ω + i(1 ∨ M))

∣∣∣∣+ ∣∣∣∣ χ̂ ((1 ∨ M)−1(τ − ω))

i(τ ′ − ω + i(1 ∨ M))

∣∣∣∣
Now if |τ ′ − ω| � (1 ∨ M) we apply the mean value theorem to χ̂ so that

χ̂ ((1 ∨ M)−1(τ − τ ′)) − χ̂ ((1 ∨ M)−1(τ − ω)) = (1 ∨ M)−1χ̂ ′(θ) · (τ ′ − ω)

for a θ ∈ [τ − τ ′; τ − ω]. Thus we have∣∣∣∣ χ̂ ((1 ∨ M)−1(τ − τ ′)) − χ̂((1 ∨ M)−1(τ − ω))

i(τ ′ − ω)

∣∣∣∣� (1 ∨ M)−1
∣∣χ̂ ′(θ)

∣∣� |τ ′ − ω + i(1 ∨ M)|−1|χ̂ ′(θ)|

Finally, using the assumption on θ and that χ̂ ∈ S(R), we have in both cases

∣∣∣∣ χ̂ ((1 ∨ M)−1(τ − τ ′)) − χ̂((1 ∨ M)−1(τ − ω))

i(τ ′ − ω)

∣∣∣∣�
∣∣∣∣∣∣∣
〈
(1 ∨ M)−1(τ − τ ′)

〉−4

τ ′ − ω + i(1 ∨ M)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
〈
(1 ∨ M)−1(τ − ω)

〉−4

τ ′ − ω + i(1 ∨ M)

∣∣∣∣∣∣∣
Coming back to (4.7) and (4.9), the left-hand side can be split into

∑
|n|�100

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣p · (1 ∨ M)−1

∫
R

∣∣∣∣∣∣∣
〈
(1 ∨ M)−1(τ − τ ′)

〉−4

τ ′ − ω + i(1 ∨ M)
F
{
fM,n

}
(τ ′)

∣∣∣∣∣∣∣dτ ′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
X

b1
λ,M

+
∑

|n|�100

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣p · (1 ∨ M)−1

∫
R

∣∣∣∣∣∣∣
〈
(1 ∨ M)−1(τ − ω)

〉−4

τ ′ − ω + i(1 ∨ M)
F
{
fM,n

}
(τ ′)

∣∣∣∣∣∣∣dτ ′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
X

b1
λ,M

The first term is handled with (3.10) and (3.11) with K0 = (1 ∨M) and γ =F−1
{〈·〉−4}. This term is thus controlled 

by

sup
|n|�100

∣∣∣∣∣∣p · (τ − ω + i(1 ∨ M))−1F
{
fM,n

}∣∣∣∣∣∣
X

b1
λ,M

�
∣∣∣∣f̃M

∣∣∣∣
F

b1
λ,M

where in the last step we have used that

γ ((1 ∨ M)t − n) = γ ((1 ∨ M)t − n)χ(1∨M)−1(t − (1 ∨ M)−1n)

and (3.10)–(3.11) to get rid of γ .
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It remains to treat the second term. By definition of the Xb1
λ,M norm, we can write it∑

K�1

K1/2β
b1
M,K

∣∣∣∣∣∣ρK(τ − ω)p · (1 ∨ M)−1

·
∫
R

∣∣∣∣∣∣∣
〈
(1 ∨ M)−1(τ − ω)

〉−4

τ ′ − ω + i(1 ∨ M)
F
{
fM,n

}
(τ ′)

∣∣∣∣∣∣∣dτ ′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2

=
∑
K�1

K1/2β
b1
M,K

∣∣∣∣∣∣∣∣p ·
∣∣∣∣∣∣(τ ′ − ω + i(1 ∨ M))−1F

{
fM,n

}∣∣∣∣∣∣
L1

τ ′

·
∣∣∣∣∣∣∣∣ρK(τ − ω)(1 ∨ M)−1

〈
(1 ∨ M)−1(τ − ω)

〉−4
∣∣∣∣∣∣∣∣

L2
τ

∣∣∣∣∣
∣∣∣∣∣
L2

ξ,q

Now, since∑
K�1

K1/2β
b1
M,K(1 ∨ M)−1

〈
(1 ∨ M)−1K

〉−4 ||ρK ||L2 � 1

we can use (3.12) to bound the last term with∣∣∣∣∣∣∣∣p ·
∣∣∣∣∣∣(τ ′ − ω + i(1 ∨ M))−1F

{
fM,n

}∣∣∣∣∣∣
L1

τ ′

∣∣∣∣∣∣∣∣
L2

ξ,q

�
∣∣∣∣∣∣p · (τ ′ − ω + i(1 ∨ M))−1F

{
fM,n

}∣∣∣∣∣∣
X

b1
λ,M

which concludes the proof through the same argument than above. �
Proceeding in the same way at the L2 level, we have also

Proposition 4.2. Let T > 0, b1 ∈ [0; 1/2[ and u ∈ Bλ
b1

(T ), f ∈ Nλ
b1

(T ) satisfying (4.1) on [−T , T ] ×R ×Tλ. Then

||u||
Fλ

b1 (T )
� ||u||Bλ(T ) + ||f ||

Nλ
b1 (T )

(4.10)

5. Dyadic estimates

As in the standard Bourgain method, we will need some bilinear estimates for functions localized in both their 

frequency and their modulation. This section deals with estimating expressions under the form 
∫

f1 � f2 · f3 which 

will be useful to prove the main bilinear estimate (1.12) as well as the energy estimate (1.13). The following lemma 
gives a first rough estimate:

Lemma 5.1. Let fi ∈ L2(R2 × λ−1Z) be such that suppfi ⊂ Dλ,Mi,�Ki
∩ R2 × Ii , with Mi ∈ 2Z, Ki ∈ 2N and 

Ii ⊂ λ−1Z, i = 1, 2, 3. Then∫
R2×λ−1Z

f1 � f2 · f3 � M
1/2
minK

1/2
min|I |1/2

min

3∏
i=1

||fi ||L2 (5.1)

Proof. The proof is the same as in [9, Lemma 5.1 (b)]. We just have to expand the convolution product in the left-hand 
side and then apply Cauchy–Schwarz inequality in the variable corresponding to the min: if, for example, K1 = Kmin, 
we have ∫

R2×λ−1Z

f1 � f2 · f3 =
∫

R2×λ−1Z

∫
R2×λ−1Z

f1(τ − τ2, ζ − ζ2) · f2(τ2, ζ2)f3(τ, ζ )dτ2dτdζ2dζ
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Using Cauchy–Schwarz inequality in τ , the previous term is less than∫
R×λ−1Z

∫
R×λ−1Z

||f3(ζ )||L2
τ

∣∣∣∣∣∣
∣∣∣∣∣∣
∫
R

f1(τ − τ2, ζ − ζ2)f2(τ2, ζ2)dτ2

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

τ

dζ2dζ

Next, a use of Young’s inequality L1 × L2 → L2 in τ gives the bound∫
R×λ−1Z

∫
R×λ−1Z

||f3(ζ )||L2
τ
||f2(ζ2)||L2

τ
||f1(ζ − ζ2)||L1

τ1
dζ2dζ

Finally, using again Cauchy–Schwarz inequality in τ1, the previous term is controlled with∫
R×λ−1Z

∫
R×λ−1Z

||f3(ζ )||L2
τ
||f2(ζ2)||L2

τ
K

1/2
1 ||f1(ζ − ζ2)||L2

τ1
dζ2dζ

We get (5.1) when proceeding similarly for the integrals in ξ and q . �
5.1. Localized Strichartz estimates

The purpose of this subsection is to improve (5.1). All the estimates we need are already used in [19] in the context 
of the KP-II equation. We briefly recall the outline of the proof here for the sake of completeness.

First, we are going to use the following easy lemmas:

Lemma 5.2. Let � ⊂R × λ−1Z. We assume that the projection of � on the ξ axis is contained in an interval I ⊂ R. 
Moreover, we assume that the measure of the q-sections of � (that is the sets 

{
q ∈ λ−1Z, (ξ0, q) ∈ �

}
for a fixed ξ0) 

is uniformly (in ξ0) bounded by a constant C. Then we have

|�|� C|I | (5.2)

Proof. The proof is immediate: by definition

|�| =
∫
I

(∫
1�(ξ, q)(dq)λ

)
dξ �
∫
I

Cdξ = C |I | �

Lemma 5.3. Let I , J be two intervals in R, and let ϕ : I → R be a C1 function with infξ∈J

∣∣ϕ′(ξ)
∣∣> 0. Then

|{x ∈ J, ϕ(x) ∈ I }| � |I |
infξ∈J |ϕ′(ξ)| (5.3)

and ∣∣∣{q ∈ J ∩ λ−1Z, ϕ(q) ∈ I
}∣∣∣� 〈 |I |

infξ∈J |ϕ′(ξ)|
〉

(5.4)

Proof. Let us define

J := {x ∈ J, ϕ(x) ∈ I }
and

Jλ :=
{
q ∈ J ∩ λ−1Z, ϕ(q) ∈ I

}
We just have to use the mean value theorem and write

|J | = sup |x2 − x1| = sup
|ϕ(x2) − ϕ(x1)|

|ϕ′(θ)|
x1,x2∈J x1,x2∈J
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for a θ ∈ [x1; x2], and (5.3) follows since supx1,x2∈J |ϕ(x2) − ϕ(x1)| � |I | by definition of J . The proof of (5.4) is 
the same, using that

|Jλ| � λ−1 + sup
q1,q2∈Jλ

|q2 − q1|

by definition of (dq)λ. �
Lemma 5.4. Let a �= 0, b, c be real numbers and I ⊂R a bounded interval. Then∣∣∣{x ∈ R, ax2 + bx + c ∈ I

}∣∣∣� |I |1/2

|a|1/2 (5.5)

and ∣∣∣{q ∈ λ−1Z, aq2 + bq + c ∈ I
}∣∣∣� 〈 |I |1/2

|a|1/2

〉
(5.6)

Proof. We begin by proving (5.5). By the linear change of variable x �→ x + b/(2a) it suffices to evaluate∣∣∣{y ∈ R, ay2 ∈ Ĩ
}∣∣∣ with Ĩ = I + b2/(4a) − c, |Ĩ | = |I |

Writing ε := sign(a), the measure of the previous set is∫
R

1Ĩ (ay
2)dy = |a|−1/2

∫
R

1εĨ (x
2)dx

• If 0 /∈ εĨ , by symmetry we may assume εĨ ⊂ R∗+ and write εĨ = [x1; x2] with 0 < x1 < x2. Then an easy 
computation gives∣∣∣{y ∈ R, ay2 ∈ Ĩ

}∣∣∣= |a|−1/2
∫
R

1[x1;x2](x2)dx = |a|−1/2
∫
R

1[x1;x2](y)
dy

2
√

y

= |a|−1/2 [√y
]x2
x1

= |a|−1/2(
√

x2 − √
x1)� |a|−1/2|I |1/2

• If 0 ∈ εĨ : defining I+ := (εĨ ∪ −εĨ ) ∩R+ = [0; x2] we have∣∣∣{y ∈ R, ay2 ∈ Ĩ
}∣∣∣� 2|a|−1/2

∫
R

1I+(x2)dx = 2|a|−1/2√x2 � |a|−1/2|I |1/2

The proof of (5.6) follows from (5.5) through the same argument as in the proof of (5.4). �
The main estimates of this section are the following.

Proposition 5.5 (Dyadic L4 − L2 Strichartz estimate). Let M1, M2, M3 ∈ 2Z, K1, K2, K3 ∈ 2N and let ui ∈ L2(R2 ×
λ−1Z), i = 1, 2, be such that supp(ui) ⊂ Dλ,Mi,�Ki

. Then∣∣∣∣∣∣1Dλ,M3,�K3
· u1 � u2

∣∣∣∣∣∣
L2

� (K1 ∧ K2)
1/2M

1/2
min ·
〈
(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4
〉
||u1||L2 ||u2||L2 (5.7)

Moreover, if we are in the regime Kmax � 10−10M1M2M3 then∣∣∣∣∣∣1Dλ,M3,�K3
· u1 � u2

∣∣∣∣∣∣
L2

� (K1 ∧ K2)
1/2M

1/2
min ·
〈
(K1 ∨ K2)

1/2M
−1/2
max

〉
||u1||L2 ||u2||L2 (5.8)

Proof. These estimates are proven in [19, Proposition 2.1 & Corollaire 2.9] and [22, Theorem 2.1, pp. 456–458]
for functions fi ∈ L2(R2 × Z) but with a slightly different support condition: the localization with respect to the 
modulations is done for the symbol of the linear operator associated with the KP-II equation (i.e. ̃ω(ξ, q) = ξ3 −q2/ξ ), 
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and the fifth-order KP-I equation (ω5th(m, η) = −m5 − η2/m) respectively. As a matter of fact, the proof only uses 
the form of the expression (q1/ξ1 − q2/ξ2) but does not take into account its sign within the resonant function. Thus 
we can obtain the similar estimates for the KP-I equation. Let us recall the main steps in proving these estimates: first, 
split u1 and u2 depending on the value of ξi on an M3 scale∣∣∣∣∣∣1Dλ,M3,�K3

· u1 � u2

∣∣∣∣∣∣
L2

�
∑
k∈Z

∑
�∈Z

∣∣∣∣∣∣1Dλ,M3,�K3
· u1,k � u2,�

∣∣∣∣∣∣
L2

with

ui,j := 1[jM3,(j+1)M3](ξi)ui

The conditions |ξ | ∼ M3, ξ1 ∈ [kM3, (k + 1)M3] and ξ − ξ1 ∈ [�M3; (� + 1)M3] require � ∈ [−k − c; −k + c] for an 
absolute constant c > 0. Thus we have to get estimates for functions ui supported in Dλ,Mi,Ki

∩ {ξi ∈ Ii} for some 
intervals Ii .

Moreover, we may assume ξi � 0 on supp ui (see [22, p. 460]). This is crucial as ξ ∼ ξ1 ∨ (ξ − ξ1) in this case.
Squaring the left-hand side, it then suffices to evaluate

∫
R×R+×λ−1Z

∣∣∣∣∣∣∣
∫

R×R+×λ−1Z

1Dλ,M3,�K3
· u1(τ1, ζ1)u2(τ − τ1, ζ − ζ1)dτ1dξ1(dq1)λ

∣∣∣∣∣∣∣
2

dτdξ(dq)λ

Using Cauchy–Schwarz inequality, the integral above is controlled by

sup
τ,ξ�0,q∈Dλ,M3,�K3

∣∣Aτ,ξ,q

∣∣ · ||u1||2L2 ||u2||2L2

where Aτ,ξ,q is defined as

Aτ,ξ,q :=
{
(τ1, ζ1) ∈ R×R+ × λ−1Z, ξ1 ∈ I1, ξ − ξ1 ∈ I2, 0 � ξ1 ∼ M1,

0 � ξ − ξ1 ∼ M2, 〈τ1 − ω(ζ1)〉 � K1, 〈τ − τ1 − ω(ζ − ζ1)〉� K2
}

Using the triangle inequality in τ1, we get the bound∣∣Aτ,ξ,q

∣∣� (K1 ∧ K2)
∣∣Bτ,ξ,q

∣∣
where Bτ,ξ,q is defined as

Bτ,ξ,q :=
{
ζ1 ∈R+ × λ−1Z, ξ1 ∈ I1, ξ − ξ1 ∈ I2, 0 � ξ1 ∼ M1,

0 � ξ − ξ1 ∼ M2, 〈τ − ω(ζ ) − �(ζ1, ζ − ζ1,−ζ )〉� (K1 ∨ K2)
}

where � is the resonant function for (1.6), defined on the hyperplane ζ1 + ζ2 + ζ3 = 0:

�(ζ1, ζ2, ζ3) := ω(ζ1) + ω(ζ2) + ω(ζ3) = −3ξ1ξ2ξ3 + (ξ1q2 − ξ2q1)
2

ξ1ξ2ξ3

= − ξ1ξ2

ξ1 + ξ2

{
(
√

3ξ1 + √
3ξ2)

2 −
(

q1

ξ1
− q2

ξ2

)2
}

(5.9)

Now, (5.7) follows directly from applying Lemma 5.2 and (5.6) to Bτ,ξ,q since its projection on the ξ1 axis is controlled 

by |I1| ∧ |I2|, whereas for a fixed ξ1, the cardinal of the q1-section is estimated by 
〈
(K1 ∨ K2)

1/2(M1 ∧ M2)
1/2
〉

using (5.6) as τ − ω(ζ ) − �(ζ1, ζ − ζ1, −ζ ) is a polynomial of second order in q1, with a dominant coefficient 
∼ (M1 ∧ M2)

−1. Thus

|Bτ,ξ,q | � (|I1| ∧ |I2|)
〈
(K1 ∨ K2)

1/2(M1 ∧ M2)
1/2
〉
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which gives the estimate (5.7) when applied with I1 = [kM3; (k + 1)M3] ∩IM1 and I2 = [�M3, (� + 1)M3] ∩IM2 and 
using Cauchy–Schwarz inequality to sum over k ∈ Z.

In the case Kmax � 10−10M1M2M3, we compute∣∣∣∣ ∂�

∂q1

∣∣∣∣= 2

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣= 2

{
ξ

ξ1(ξ − ξ1)
(� + 3ξ1(ξ − ξ1)ξ)

}1/2

Thus, from the condition |�| �Kmax � 10−10M1M2M3 we get∣∣∣∣ ∂�

∂q1

∣∣∣∣� ∣∣∣∣ ξ

ξ1(ξ − ξ1)
· ξ1(ξ − ξ1)ξ

∣∣∣∣1/2

∼ Mmax

At last, we can estimate |Bτ,ξ,q | in this regime by using (5.4) instead of (5.6), which gives the final bound

|Bτ,ξ,q | � (|I1| ∧ |I2|)
〈
(K1 ∨ K2)M

−1
max

〉
and (5.8) follows through the same argument as for (5.7). �
Remark 5.6. The estimate (5.7) is rather crude, yet sufficient for our purpose. (5.8) is better than (5.10) below in the 
regime Kmax �M1M2M3, Mmin � 1. Thus we do not need to use some function spaces with a special low-frequency 
structure as in [9] to deal with the difference equation, therefore we get a stronger uniqueness criterion. Note that we 
can perform the same argument in R2.

5.2. Dyadic bilinear estimates

We are now looking to improve (5.8) in the case Mmin � 1. We mainly follow [25, Lemme 3.1]. However, in our 
situation the frequency for the x variable lives in R and not in Z, and thus the worst case of [25, Lemma 3.1] (when 
Kmed � MmaxMmin) is avoided. So, using that this frequency is allowed to vary in very small intervals, we are able to 
recover the same result as in [9, Lemme 5.1(a)]. Again, we will crucially use Lemmas 5.2 and 5.3.

Proposition 5.7. Let Mi, Ki ∈ 2N and fi : R2 × λ−1Z → R+, i = 1, 2, 3, be such that fi ∈ L2(R2 × λ−1Z) with 
suppfi ⊂ Dλ,Mi,�Ki

.
If Kmax � 10−10M1M2M3 and Kmed � Mmax , then∫

R2×λ−1Z

f1 � f2 · f3dτdξ(dq)λ �
(

K1K2K3

M1M2M3

)1/2

||f1||L2 ||f2||L2 ||f3||L2 (5.10)

Proof. We begin as in [9, Lemma 5.1(a)]. Defining

I(f1, f2, f3) :=
∫

R2×λ−1Z

f1 � f2 · f3dτdξ(dq)λ

we observe that

I(f1, f2, f3) = I(f̃1, f3, f2) = I(f̃2, f3, f1) (5.11)

where we define f̃ (x) := f (−x). Thus, as 
∣∣∣∣f̃ ∣∣∣∣

L2 = ||f ||L2 , up to replacing fi by f̃i , we may assume K1 � K2 � K3.
Moreover, since the expression is symmetrical in f1, f2 we can assume M2 � M1.
We first write

I(f1, f2, f3) =
∫

R2×λ−1Z

f1 � f2 · f3dτdξ(dq)λ

=
∫

R2×λ−1Z

∫
R×R+×λ−1Z

f1(τ1, ζ1)f2(τ2, ζ2)f3(τ1 + τ2, ζ1 + ζ2)dτ1dτ2dζ1dζ2
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Defining f #
i (θ, ζ ) := fi(θ + ω(ζ ), ζ ) we get 

∣∣∣∣f #
i

∣∣∣∣
L2 = ||fi ||L2 and suppf #

i ⊂ {|θ | � Ki, |ξ | ∼ Mi}. Changing of 
variables, we have

I(f1, f2, f3) =
∫

R2×λ−1Z

∫
R2×λ−1Z

f #
1 (θ1, ζ1)f

#
2 (θ2, ζ2)

· f #
3 (θ1 + θ2 + �(ζ1, ζ2,−ζ1 − ζ2), ζ1 + ζ2)dθ1dθ2dζ1dζ2

where the resonant function

�(ζ1, ζ2,−ζ1 − ζ2) = − ξ1ξ2

ξ1 + ξ2

{√
3|ξ1 + ξ2| +

∣∣∣∣q1

ξ1
− q2

ξ2

∣∣∣∣}{√3|ξ1 + ξ2| −
∣∣∣∣q1

ξ1
− q2

ξ2

∣∣∣∣}
has been defined in (5.9) in the previous proposition.

Thus

I(f1, f2, f3) =
∫
A

f #
1 (θ1, ζ1)f

#
2 (θ2, ζ2) · f #

3 (θ1 + θ2 + �(ζ1, ζ2,−ζ1 − ζ2), ζ1 + ζ2)dθ1dθ2dζ1dζ2

with

A :=
{
(θ1, ζ1, θ2, ζ2) ∈ (R2 × λ−1Z)2, |ξi | ∼ Mi, |ξ1 + ξ2| ∼ M3, |θi |� Ki,

|θ1 + θ2 + �(ζ1, ζ2,−ζ1 − ζ2)| �K3, i = 1,2
}

We can decompose A ⊂ I�K1 × I�K2 × B with B defined as

B :=
{
(ζ1, ζ2) ∈ (R× λ−1Z)2, |ξi | ∼ Mi, i = 1,2, |ξ1 + ξ2| ∼ M3, |�|� K3

}
(5.12)

We can further split

B = �
|�|�K3/K2

B�

with

B� := {(ζ1, ζ2) ∈ B, � ∈ [�K2; (� + 1)K2]} (5.13)

and as well for f3:

f #
3 =

∑
|�|�K3/K2

f #
3,� with f #

3,�(θ, ξ, q) := 1[�K2,(�+1)K2](θ)f #
3 (θ, ξ, q) (5.14)

Next, using Cauchy–Schwarz inequality in θ2 then θ1, we obtain

I(f1, f2, f3)�
∑

|�|�K3/K2

∫
I�K1×B�

|f #
1 (θ1, ξ1, q1)|

∣∣∣∣f #
2 (θ2, ξ2, q2)

∣∣∣∣
L2

θ2

· ∣∣∣∣f #
3,�(θ1 + θ2 + �,ξ1 + ξ2, q1 + q2)

∣∣∣∣
L2

θ2

dθ1dξ1dξ2(dq1)λ(dq2)λ

�K
1/2
1

∑
|�|�K3/K2

∫
B�

∣∣∣∣f #
1 (θ1, ξ1, q1)

∣∣∣∣
L2

θ1

∣∣∣∣f #
2 (θ2, ξ2, q2)

∣∣∣∣
L2

θ2

· ∣∣∣∣f #
3,�(θ, ξ1 + ξ2, q1 + q2)

∣∣∣∣
L2

θ

dξ1dξ2(dq1)λ(dq2)λ

This allows us to work with functions depending on (ξ1, q1), (ξ2, q2) only, loosing just a factor K1/2
1 in the process. 

The informations |�| �K3 and suppf3 ⊂ I�K3 ×IM3 ×λ−1Z have been kept in the decomposition on � of B and f #
3 .

Finally, defining

gi(ξi, qi) := ∣∣∣∣f #
i (θi, ξi, qi)

∣∣∣∣
L2 , i = 1,2 and g3,�(ξ, q) := ∣∣∣∣f #

3,�(θ, ξ, q)
∣∣∣∣

L2

θi θ
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and writing

J�(g1, g2, g3,�) :=
∫
B�

g1(ξ1, q1)g2(ξ2, q2)g3,�(ξ1 + ξ2, q1 + q2)dξ1dξ2(dq1)λ(dq2)λ (5.15)

it suffices to prove that

J :=
∑

�

J�(g1, g2, g3,�) �
(

K2K3

M1M2M3

)1/2

||g1||L2
ξ1,q1

||g2||L2
ξ2,q2

{∑
�

∣∣∣∣g3,�

∣∣∣∣2
L2

ξ,q

}1/2

(5.16)

As we are in the regime Kmax � M1M2M3, � is close to zero. Since qi ∈ λ−1Z, we cannot just make a change 

of variables as in [9, Lemme 5.1(a)]. Thus, to take into account that (
√

3ξ1 + √
3ξ2)

2 ∼
(

q1

ξ1
− q2

ξ2

)2

, we split B�

depending on the values of q1 and q2.
First, as in [9, Lemma 5.1(a)], we can split

B� := B++
� � B+−

� � B−+
� � B−−

�

with

B
ε1,ε2
� :=

{
(ξ1, q1), (ξ2, q2) ∈ B�, sign(ξ1 + ξ2) = ε1, sign

(
q1

ξ1
− q2

ξ2

)
= ε2

}
where εi ∈ {±1}.

Since the transformations (ξ1, q1), (ξ2, q2) �→ (ε1ξ1, ε2q2), (ε1ξ1, ε2q2) maps Bε1,ε2
� to B++

� , it suffices to estimate

J++
� (g1, g2, g3,�) :=

∫
B++

�

g1(ξ1, q1)g2(ξ2, q2)g3,�(ξ1 + ξ2, q1 + q2)dξ1dξ2(dq1)λ(dq2)λ

Moreover, the definition of � and the condition |�| �K3 give∣∣∣∣√3(ξ1 + ξ2) −
(

q1

ξ1
− q2

ξ2

)∣∣∣∣� |�|
|ξ1ξ2| �

K3

M1M2
(5.17)

on B++
� .

Now, we can define

Q1(ξ1, q1, ξ2, q2) :=
⌊

M1M2

K2
(q1 − √

3ξ2
1 )/ξ1

⌋
∈ Z (5.18)

and

Q2(ξ1, q1, ξ2, q2) := Q1(ξ1, q1, ξ2, q2) −
⌊

M1M2

K2
(q2 + √

3ξ2
2 )/ξ2

⌋
∈ Z (5.19)

So we can split B++
� according to the level sets of Q1 and Q2:

B++
� = �

Q1,Q2∈Z
B�,Q1,Q2

where B�,Q1,Q2 is defined as

B�,Q1,Q2 := {(ξ1, q1), (ξ2, q2) ∈ B++
� , Q1(ξ1, q1, ξ2, q2) = Q1, Q2(ξ1, q1, ξ2, q2) = Q2

}
From definitions (5.18) and (5.19), for (ξ1, q1), (ξ2, q2) ∈ B�,Q1,Q2 , Q2 is such that

Q2 =
⌊

M1M2

K2

(
q1

ξ1
− q2

ξ2
− √

3(ξ1 + ξ2)

)⌋
or Q2 =

⌊
M1M2

K2

(
q1

ξ1
− q2

ξ2
− √

3(ξ1 + ξ2)

)⌋
+ 1
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Thus,

q1

ξ1
− q2

ξ2
− √

3(ξ1 + ξ2) ∈
[

K2

M1M2
(Q2 − 1) ; K2

M1M2
(Q2 + 1)

]
(5.20)

Finally, if (ξ1, q1), (ξ2, q2) ∈ B�,Q1,Q2 we obtain from (5.9) and (5.20) that

�(ξ1, q1, ξ2, q2) = ξ1ξ2

ξ1 + ξ2

K2

M1M2
(Q2 + ν)

(∣∣∣∣q1

ξ1
− q2

ξ2

∣∣∣∣+ √
3 |ξ1 + ξ2|

)
= ξ1ξ2K2

M1M2
(Q2 + ν)

(
2
√

3 + K2

M1M2

Q2 + ν

(ξ1 + ξ2)

)
(5.21)

with

|ν| � 1

The choice of the parameter 
K2

M1M2
in the definitions of Qi allows us to have 

q1

ξ1
and 

q2

ξ2
of the same order, and 

thus to keep an error ν of size O(1) in this “change of variables”. The measure of the qi-sections of B�,Q1,Q2 is then 

controlled with 
K2Mi

M1M2
� 1 (as K2 �Mmax ), i = 1, 2.

Using (5.17), we get

|Q2|� K3

K2

Moreover, by definition

∀(ξ1, q1), (ξ2, q2) ∈ B�, � =
⌊

�(ξ1, q1, ξ2, q2)

K2

⌋
and so a key remark is that if (ξ1, q1), (ξ2, q2) ∈ B�,Q1,Q2 :

� = �(ξ1, ξ2,Q2) =
⌊

ξ1ξ2

M1M2
(Q2 + ν)

(
2
√

3 + K2

M1M2

Q2 + ν

ξ1 + ξ2

)⌋
(5.22)

Using that |ξi | ∼ Mi , ξ1 + ξ2 ∼ M3, |Q2| � K3/K2 and that we assumed K3 � 10−10M1M2M3, we get that∣∣∣∣ K2

M1M2

Q2 + ν

ξ1 + ξ2

∣∣∣∣� 10−5

which means that for any fixed Q1, Q2 there is at most 10 possible values for � such that B�,Q1,Q2 is non empty.
Let us write J�,Q1,Q2 the contribution of the region B�,Q1,Q2 in the integral J++

� . To control J�,Q1,Q2 we first use 
Cauchy–Schwarz inequality in q1, q2, ξ1, ξ2:

J�,Q1,Q2 � ||g1||L2(B1
Q1

) ||g2||L2(B2
Q1,Q2

) ·

⎧⎪⎨⎪⎩
∫

B�,Q1,Q2

g2
3,�(ξ1 + ξ2, q1 + q2)dξ1dξ2(dq1)λ(dq2)λ

⎫⎪⎬⎪⎭
1/2

where we define

B1
Q1

:=
{
(ξ1, q1) ∈ IM1 × λ−1Z,

√
3ξ2

1 + Q1
K2

M1M2
ξ1 � q1 <

√
3ξ2

1 + (Q1 + 1)
K2

M1M2
ξ1

}
(5.23)

and

B2
Q1,Q2

:=
{
(ξ2, q2) ∈ IM2 × λ−1Z,

−√
3ξ2

2 + (Q1 − Q2)
K2

M1M2
ξ2 � q2 < −√

3ξ2
2 + (Q1 − Q2 + 1)

K2

M1M2
ξ2

}
(5.24)
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Let us start by treating the integral over B�,Q1,Q2 .
If (ξ1, q1), (ξ2, q2) ∈ B�,Q1,Q2 , we can parametrize the qi-sections with

r1 := q1 −
[√

3ξ2
1 + Q1

K2

M1M2
ξ1

]
λ

∈ λ−1Z

and

r2 := q2 −
[
−√

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

∈ λ−1Z

such that 0 � ri �
K2Mi

M1M2
.

As we assumed M2 � M1, the q2-sections of B�,Q1,Q2 are then smaller than the q1-sections, and thus 0 � r1 + r2 �
r1. So if ξ1, ξ2 are fixed, we obtain:∫ ∫

1B�,Q1,Q2
(ξ1, q1, ξ2, q2)g

2
3,�(ξ1 + ξ2, q1 + q2)(dq1)λ(dq2)λ

=
∫ ∫

1[0;K2/M2](r1)1[0;K2/M1](r2)g
2
3,� (ξ1 + ξ2,[√

3ξ2
1 + Q1

K2

M1M2
ξ1

]
λ

+ r1 +
[
−√

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

+ r2

)
(dr1)λ(dr2)λ

� K2

M1

∫
1[0;K2/M2](|r|)g2

3,� (ξ1 + ξ2,[√
3ξ2

1 + Q1
K2

M1M2
ξ1 − √

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

+ r

)
(dr)λ

The integral over B�,Q1,Q2 is thus controlled by

J�,Q1,Q2 �
(

K2

M1

)1/2

||g1||L2(B1
Q1

) ||g2||L2(B2
Q1,Q2

)

⎧⎪⎨⎪⎩
∫
R2

∫
1[0;K2/M2(|r|)g2

3,� (ξ1 + ξ2,

[√
3ξ2

1 + Q1
K2

M1M2
ξ1 − √

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

+ r

)
dξ1dξ2(dr)λ

}1/2

It remains to sum those contributions: using the previous estimates and that for fixed Q1, Q2 there is at most 10 values 
of � such that B�,Q1,Q2 is not empty,

J =
∑

|�|�K3/K2

∑
Q1∈Z

∑
|Q2|�K3/K2

J�,Q1,Q2

�
∑

Q1∈Z

∑
|Q2|�K3/K2

(
K2

M1

)1/2

||g1||L2(B1
Q1

) ||g2||L2(B2
Q1,Q2

)

·

⎧⎪⎨⎪⎩
∑

|�|�K3/K2

∫
R2

∫
1[0;K2/M2](|r|)g2

3,� (ξ1 + ξ2,

[√
3ξ2

1 + Q1
K2

M1M2
ξ1 − √

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

+ r

)
dξ1dξ2(dr)λ

}1/2

Next, a use of Cauchy–Schwarz inequality in Q2 then Q1 gives
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J �
(

K2

M1

)1/2
⎛⎝∑

Q1∈Z
||g1||2L2(B1

Q1
)

⎞⎠1/2⎛⎝∑
Q1∈Z

∑
|Q2|�K3/K2

||g2||2L2(B2
Q1,Q2

)

⎞⎠1/2

·

⎧⎪⎨⎪⎩sup
Q1

∑
|Q2|�K3/K2

∑
|�|�K3/K2

∫
R2

∫
1[0;K2/M2](|r|)g2

3,� (ξ1 + ξ2,

[√
3ξ2

1 + Q1
K2

M1M2
ξ1 − √

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

+ r

)
dξ1dξ2(dr)λ

}1/2

Now, from the definitions of B1
Q1

(5.23) and B2
Q1,Q2

(5.24):⎛⎝∑
Q1∈Z

||g1||2L2(B1
Q1

)

⎞⎠1/2

= ||g1||L2
ξ1,q1

= ||f1||L2

and ⎛⎝∑
Q1∈Z

∑
|Q2|�K3/K2

||g2||2L2(B2
Q1,Q2

)

⎞⎠1/2

�
(

K3

K2

)1/2
⎛⎝sup

Q2

∑
Q1∈Z

||g2||2L2(BQ1,Q2 )

⎞⎠1/2

=
(

K3

K2

)1/2

||g2||L2
ξ2,q2

=
(

K3

K2

)1/2

||f2||L2

To conclude, it suffices to prove

sup
Q1

∑
|Q2|�K3/K2

∑
|�|�K3/K2

∫
R2

∫
1[0;K2/M2](|r|)g2

3,� (ξ1 + ξ2,

[√
3ξ2

1 + Q1
K2

M1M2
ξ1 − √

3ξ2
2 + (Q1 − Q2)

K2

M1M2
ξ2

]
λ

+ r

)
dξ1dξ2(dr)λ

� K2

M2M3
||f3||L2 (5.25)

Here, we can see the interest of splitting f #
3 over �: the sum over � is controlled by the sum over Q2 thanks to (5.22), 

whereas a direct estimate on this sum would lose an additional factor K3/K2 (or in other words, when ξ1, ξ2, Q2 are 
fixed, we do not have the contribution of the full L2 norm of f #

3 in the θ variable, which allows us to sum those 
contributions without loosing an additional factor).

We begin the proof of (5.25) with the change of variables ξ1 �→ ξ := ξ1 + ξ2: the left-hand side now reads

sup
Q1

∑
|Q2|�K3/K2

∑
|�|�K3/K2

∫
R2

∫
1[0;K2/M2](|r|)g2

3,� (ξ,

[√
3ξ(ξ − 2ξ2) + Q1

K2

M1M2
ξ − Q2

K2

M1M2
ξ2

]
λ

+ r

)
dξ2dξ(dr)λ

Now, using (5.22) and the definition of g3,�, we have that for fixed ξ, Q1, ξ2, Q2, r :

∑
|�|�K3/K2

g2
3,�

(
ξ,

[√
3ξ(ξ − 2ξ2) + Q1

K2

M1M2
ξ − Q2

K2

M1M2
ξ2

]
λ

+ r

)

�
∫

1

(
θ ∈
[
(ξ − ξ2)ξ2K2

M1M2
(Q2 − 2)

(
2
√

3 + K2

M1M2

Q2 − 2

ξ

)
;

R
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(ξ − ξ2)ξ2K2

M1M2
(Q2 + 2)

(
2
√

3 + K2

M1M2

Q2 + 2

ξ

)])
· (f #

3 )2
(

θ, ξ,

[√
3ξ(ξ − 2ξ2) + Q1

K2

M1M2
ξ − Q2

K2

M1M2
ξ2

]
λ

+ r

)
dθ

Now, fixing only ξ , and Q1, integrating in ξ2 and r and summing over Q2, we can write the previous term as∑
|Q2|�K3/K2

∫
IM2

∫
1[0;K2/M2](|r|)

∫
R

1 {θ ∈ I (ξ, ξ2,Q2)} · (f #
3 )2 (θ, ξ, [ϕ(ξ,Q1, ξ2,Q2)]λ + r)dθ(dr)λdξ2

where the interval I (ξ, ξ2, Q2) is defined as

I (ξ, ξ2,Q2) :=
[
(ξ − ξ2)ξ2K2

M1M2
(Q2 − 2)

(
2
√

3 + K2

M1M2

Q2 − 2

ξ

)
;

(ξ − ξ2)ξ2K2

M1M2
(Q2 + 2)

(
2
√

3 + K2

M1M2

Q2 + 2

ξ

)]
and the function ϕ is defined as

ϕ(ξ,Q1, ξ2,Q2) := √
3ξ(ξ − 2ξ2) + Q1

K2

M1M2
ξ − Q2

K2

M1M2
ξ2

In order to recover the L2 norm of f #
3 in q , we decompose the previous term in

λ

∫
λ−1Z

∑
|Q2|�K3/K2

∫ ∫
�n(ξ,Q1,Q2)

∫
R

1 {θ ∈ I (ξ, ξ2,Q2)} · (f #
3 )2 (θ, ξ, n)dθ(dξ2(dr)λ)(dn)λ

where the set �n(ξ, Q1, Q2) ⊂ R × λ−1Z for n ∈ λ−1Z is defined as

�n(ξ,Q1,Q2) :=
{
(ξ2, r) ∈ IM2 × [− K2

M2
; K2

M2
], ϕ(ξ,Q1, ξ2,Q2) ∈ [n − r;n + λ−1 − r[

}
First, using the localizations |ξ | ∼ M3, |ξ2| ∼ M2 and |ξ − ξ2| ∼ M1 and the conditions |Q2| � K3/K2 and K3 �
10−10M1M2M3, we have for any ξ, ξ2, Q2:

I (ξ, ξ2,Q2) ⊂
{
|θ | ∈
[
c−1K2(Q2 − 2), cK2(Q2 + 2)

]}
for an absolute constant c > 0.

Thus we are left with estimating

λ

∫
λ−1Z

∑
|Q2|�K3/K2

∫
R

1
{
|θ | ∈ [c−1K2(Q2 − 2); cK2(Q2 + 2)]

}
· |�n(ξ,Q1,Q2)| (f #

3 )2(θ, ξ, n)dθ(dn)λ (5.26)

We trivially control the measure of the r-sections of �n with 2
K2

M2
. It remains to estimate the measure of the pro-

jection of �n on the ξ2 axis, uniformly in n, ξ, Q1 and Q2. To do so, we are going to make a good use of Lemma 5.3. 

We are then left to compute 
∂ϕ

∂ξ2
:

∂ϕ

∂ξ2
= −2

√
3ξ − Q2

K2

M1M2

Now, as |Q2| � K3/K2 and K3 � 10−10M1M2M3, we obtain that∣∣∣∣ ∂ϕ

∂ξ2

∣∣∣∣∼ 2
√

3|ξ | ∼ M3

So, applying (5.3), we get that the projection of �n(ξ, Q1, Q2) on the ξ2 axis is controlled by λ−1M−1
3 . A use of 

Lemma 5.2 finally leads to
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|�n(ξ,Q1,Q2)| � λ−1 K2

M2M3

uniformly in n, ξ, Q1, Q2.
Getting back to (5.26), we have

(5.26) � K2

M2M3

∫
λ−1Z

∫
R

⎛⎝ ∑
|Q2|�K3/K2

1
{
θ ∈ [c−1K2(Q2 − 2); cK2(Q2 + 2)]

}⎞⎠
· (f #

3 )2(θ, ξ, n)dθ(dn)λ

� K2

M2M3

∫
λ−1Z

∫
R

1
{|θ | ∈ I�K3

}
(f #

3 )2(θ, ξ, n)dθ(dn)λ

Now, neglecting the θ localization and integrating in ξ , we finally get (5.25), which completes the proof of the 
proposition. �
Remark 5.8. In the case (x, y) ∈ T2 ([25, Lemma 3.1]), we can still use Lemma 5.3, but since ξ2 ∈ Z in that case, we 
have to use (5.4) instead of (5.3), and thus we have the rougher estimate

|�n|� K2

M2

(
1 + M−1

3

)
� K2

M2

as Mi � 1 for localized functions on T2. This is the main obstacle to recover the same estimate as in R2 or R ×T, and 
the cause of the logarithmic divergence in the energy estimate.

The following corollary summarizes the estimates on 
∫

f1 � f2 · f3 according to the relations between the M’s 

and the K’s:

Corollary 5.9. Let fi ∈ L2(R2 × λ−1Z) be positive functions with the support condition suppfi ⊂ Dλ,Mi,�Ki
, i =

1, 2, 3. We assume Kmed � Mmax � 1.

(a) If Kmax � 10−10M1M2M3 then∫
R2×λ−1Z

f1 � f2 · f3 �
(
Mmin ∧ M−1

min

)1/2
M−1

max

3∏
i=1

K
1/2
i ||fi ||L2 (5.27)

(b) If Kmax � M1M2M3 and (Mi, Ki) = (Mmin, Kmax) for an i ∈ {1, 2, 3} then∫
R2×λ−1Z

f1 � f2 · f3 � (1 ∧ Mmin)
1/4M−1

max

3∏
i=1

K
1/2
i ||fi ||L2 (5.28)

(c) If Kmax � M1M2M3 but (Mi, Ki) �= (Mmin, Kmax) for any i = 1, 2, 3 then∫
R2×λ−1Z

f1 � f2 · f3 � (1 ∨ Mmin)
1/4M

−5/4
max

3∏
i=1

K
1/2
i ||fi ||L2 (5.29)

Proof. Using the symmetry property (5.11), we can assume K3 = Kmax . Note that, since Mmax � 1 and in order for 
the integral to be non zero, we must have (1 ∨ Mmin) � Mmed ∼ Mmax . Then we treat the different cases.

Case (a): This has already been proven in the previous proposition in the case Mmin � 1.
If Mmin � 1, (5.27) follows from (5.8), since K3 = Kmax � (K1 ∨ K2) � Mmax .



T. Robert / Ann. I. H. Poincaré – AN 35 (2018) 1773–1826 1799
Case (b): M3 = Mmin. Then, if M3 � 1, (5.28) follows from (5.7) since〈
(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4
〉
� (K1 ∨ K2)

1/2

as (K1 ∨ K2) � Mmax .
If M3 � 1, since this is symmetrical in f1 and f2 we may assume that K1 = K1 ∧ K2. Then we apply (5.7) with f1

and f3 to get (5.28) since K−1/4
3 � M

−1/4
min M

−1/2
max and K−1/2

2 = K
−1/2
med � M

−1/2
max .

Case (c): Again, (5.29) follows from (5.7) since〈
(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4
〉
� (K1 ∨ K2)

1/2M
−1/4
max (1 ∨ Mmin)

1/4 �
We conclude this section by stating another estimate which takes into account the weight in the definition of the 

energy space:

Proposition 5.10. Let fi ∈ L2(R2 × λ−1Z) be positive functions with the support condition suppfi ⊂ Dλ,Mi,Ki
, i =

1, 2 for M3 > 0, K3 � 1. Then∣∣∣∣∣∣1Dλ,M3,K3
· f1 � f2

∣∣∣∣∣∣
L2

� (1 ∨ M1)M
1/2
minK

1/2
min ||p · f1||L2 ||f2||L2 (5.30)

Proof. We follow [9, Corollaire 5.3 (b)&(c)]: we split the cases M1 � 1 or M1 � 1 and we decompose f1 on its y

frequency in order to estimate p(ξ, q) ∼ 1 + |q|
|ξ |〈ξ 〉 .

Case 1: If M1 � 1.

We then have p(ξ, q) ∼ 1 + |q|
|ξ |2 . We split

f1 =
∑

L�M2
1

f L
1 = 1I�M2

1
(q)f1 +

∑
L>M2

1

1IL
(q)f1

such that∣∣∣∣∣∣1Dλ,M3,K3
· f1 � f2

∣∣∣∣∣∣
L2

�
∑

L�M2
1

L1/2M
1/2
minK

1/2
min

∣∣∣∣∣∣f L
1

∣∣∣∣∣∣
L2

||f2||L2

after using (5.1). Now, for L = M2
1 we have L−1/2p ∼ M−1

1 (1 + M−2
1 |q|) � M−1

1 = L1/2M−2
1 , and for L > M2

1 we 
also have L−1/2p ∼ L−1/2(1 + LM−2

1 ) � L1/2M−2
1 . Thus, using Cauchy–Schwarz inequality in L, we obtain∣∣∣∣∣∣1Dλ,M3,K3

· f1 � f2

∣∣∣∣∣∣
L2

� M
1/2
minK

1/2
min ||f2||L2

∑
L�M2

1

L−1/2M2
1

∣∣∣∣∣∣p · f L
1

∣∣∣∣∣∣
L2

� M2
1M

1/2
minK

1/2
min · M−1

1 ||p · f1||L2

Case 2: If M1 � 1.
This time, we split the y frequency for L � 1 since for M1 < λ−1 there is just the frequency q = 0:

f1 =
∑
L�1

f L
1 = 1I�1(q)f1 +

∑
L>1

1IL
(q)f1

For L = 1, we have L−1/2p � 1 = L1/2, and for L > 1, we also have L−1/2p � L1/2M−1
1 � L1/2. Thus, using again 

(5.1) and then Cauchy–Schwarz inequality in L, we only get in that case∣∣∣∣∣∣1Dλ,M3,K3
· f1 � f2

∣∣∣∣∣∣
L2

�
∑
L�1

L1/2M
1/2
minK

1/2
min

∣∣∣∣∣∣f L
1

∣∣∣∣∣∣
L2

||f2||L2

� M
1/2
minK

1/2
min

∑
L�1

L−1/2
∣∣∣∣∣∣p · f L

1

∣∣∣∣∣∣
L2

||f2||L2

� M
1/2
minK

1/2
min ||p · f1||L2 ||f2||L2 �
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6. Bilinear estimates

The aim of this section is to prove (1.12) and (1.15). We will treat separately the interactions Low × High → High, 
High×High → Low and Low×Low → Low. Those are the only possible interactions, since for functions fi localized 
in |ξi | ∼ Mi , we have∫

f1 � f2 · f3 �= 0 ⇒ Mmin � Mmed ∼ Mmax

6.1. For the equation

We first prove (1.12).

Lemma 6.1 (Low × High → High). Let M1, M2, M3 ∈ 2Z with (1 ∨ M1) � M2 ∼ M3 and b1 ∈ [0; 1/2[. Then for 
uM1 ∈ N0

λ,M1
and vM2 ∈ N0

λ,M2
, we have∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� M
1/2
1

∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣
F 0

λ,M2
(6.1)

Proof. By definition, the left-hand side of (6.1) is

sup
tM3∈R

∣∣∣∣∣∣(τ − ω + iM3)
−1p ·F

{
χ

M−1
3

(t − tM3)PM3∂x

(
uM1 · vM2

)}∣∣∣∣∣∣
X

b1
λ,M3

Let γ :R → [0; 1] be a smooth partition of unity, satisfying suppγ ⊂ [−1; 1] and

∀x ∈R,
∑
m∈Z

γ (x − m) = 1

Since (1 ∨ M1) � M2 ∼ M3, we have

χ
M−1

3
(t − tM3) =

∑
|m|,|n|�100

χ
M−1

3
(t − tM3)γM−1

2
(t − tM3 − M−1

2 m)

· γ(1∨M1)
−1(t − tM3 − M−1

2 m − (1 ∨ M1)
−1n)

Since we take the supremum in m and n, without loss of generality, we can assume m = n = 0. Thus, if we define

f
(1∨M1)
1 := χ(1∨M1)(τ − ω)F

(
γ(1∨M1)

−1(t − tM3)uM1

)
and

f
K1
1 := ρK1(τ − ω)F

(
γ(1∨M1)

−1(t − tM3)uM1

)
, if K1 > (1 ∨ M1) (6.2)

and as well for v

f
M2
2 := χM2(τ − ω)F

(
γ
M−1

2
(t − tM3)vM2

)
and

f
K2
2 := ρK2(τ − ω)F

(
γ
M−1

2
(t − tM3)vM2

)
, if K2 > M2 (6.3)

by splitting the term in the left-hand side according to its modulations, we then get∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� sup
tM3∈R

∑
K1�(1∨M1)

∑
K2�M2

∣∣∣∣∣∣(τ − ω + iM3)
−1p ·F

{
PM3∂xF−1

(
f

K1
1 � f

K2
2

)}∣∣∣∣∣∣
Xλ,M3

= sup
tM3∈R

∑
K1�(1∨M1)

∑
K2�M2

∑
K3�1

K
1/2
3 β

b1
M3,K3

·
∣∣∣∣∣∣(τ − ω + iM3)

−1p · ρK3(τ − ω)F
{
PM3∂xF−1

(
f

K1
1 � f

K2
2

)}∣∣∣∣∣∣
L2
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Let us start with the modulations K3 < M3: the first factor in the previous norm allows us to gain a factor (M3 ∨K3)
−1

which makes up for the derivative, thus∑
1�K3<M3

K
1/2
3

∣∣∣∣∣∣(τ − ω + iM3)
−1p · ρK3(τ − ω)F

{
PM3∂xF−1

(
f

K1
1 � f

K2
2

)}∣∣∣∣∣∣
L2

�
∑

1�K3<M3

K
1/2
3

∣∣∣∣∣∣1Dλ,M3,�M3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

and using that 
∑

1�K3<M3

K
1/2
3 � M

1/2
3 we get that the previous sum is controlled with

M
1/2
3

∣∣∣∣∣∣1Dλ,M3,�M3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

Proceeding as well for the modulations K3 � M3 and choosing a factor K−1
3 instead of M−1

3 , we get now∑
K3�M3

K
1/2
3 β

b1
M3,K3

∣∣∣∣∣∣(τ − ω + iM3)
−1p · ρK3(τ − ω)F

{
PM3∂xF−1

(
f

K1
1 � f

K2
2

)}∣∣∣∣∣∣
L2

� M3

∑
K3�M3

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

In particular, the first sum over the modulations K3 < M3 is controlled by the first term in the second sum over the 
modulations K3 � M3.

Finally, it suffices to show that ∀Ki � (1 ∨ Mi), i = 1, 2,

M3

∑
K3�M3

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

�M
1/2
1

(
K

1/2
1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

)(
K

1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

)
(6.4)

Indeed, combining all the previous estimates, summing over Ki � (1 ∨ Mi) and using the definitions of f Ki

i (6.2), 
(6.3), the left-hand side of (6.1) is controlled by

M
1/2
1

⎛⎝ ∑
K1�(1∨M1)

K
1/2
1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

⎞⎠⎛⎝ ∑
K2�M2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

⎞⎠
The first sum is

(1 ∨ M1)
1/2
∣∣∣∣χ(1∨M1)(τ − ω)F

(
γ(1∨M1)

−1(t − tM3)uM1

)∣∣∣∣
L2

+
∑

K1>(1∨M1)

K
1/2
1

∣∣∣∣p · ρK1(τ − ω)F
{
γ(1∨M1)

−1(t − tM3)uM1

}∣∣∣∣
L2

As χ ≡ 1 on suppγ , we have

γ(1∨M1)
−1(t − tM3) = γ(1∨M1)

−1(t − tM3)χ(1∨M1)
−1(t − tM3)

so this term is controlled by 
∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1
thanks to (3.10) and (3.11) with

f =F
{
χ(1∨M1)

−1(t − tM3)uM1

}
and K0 = (1 ∨ M1).

We can similarly bound the second sum by 
∣∣∣∣vM2

∣∣∣∣
F 0 .
λ,M2
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For now, we have established some estimates on expressions in the form 
∫

f1 � f2 · f3. Thus we first have to 

express p · f1 � f2 according to (p · f1) and (p · f2). So, using the localizations in |ξi | and the relation between the 
Mi , we can estimate

p(ξ1 + ξ2, q1 + q2) ∼ 1 + |q1 + q2|
(ξ1 + ξ2)2 � 1 + |q2|

ξ2
2

+ |ξ1|〈ξ1〉
(ξ1 + ξ2)2 · |q1|

|ξ1|〈ξ1〉
� p(ξ2, q2) + M1(1 ∨ M1)

M2
3

p(ξ1, q1) (6.5)

We then treat separately the low and high frequency cases.
Case 1: If M1 � 1.
We use the previous estimate to get∣∣∣∣∣∣1DM3,�K3

· p · f K1
1 � f

K2
2

∣∣∣∣∣∣
L2

�
∣∣∣∣∣∣1Dλ,M3,�K3

· f K1
1 � (p · f K2

2 )

∣∣∣∣∣∣
L2

+ M1(1 ∨ M1)

M2
3

∣∣∣∣∣∣1Dλ,M3,�K3
· (p · f K1

1 ) � f
K2
2

∣∣∣∣∣∣
L2

= I + II

To treat I , we use (5.30):

I � (1 ∨ M1)M
1/2
1 K

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Using that K2 � M2 ∼ M3, we obtain

I � (K1K2)
1/2M

1/2
1 M

−1/2
3

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Next, as we can exchange the roles played by f1 and f2 in (5.30), we can also apply this estimate to control II :

II � M1(1 ∨ M1)

M2
3

(1 ∨ M2)M
1/2
1 K

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Using that M1 � 1 � M3 ∼ M2, we directly get

II � M
3/2
1 M

−3/2
3 (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Finally∣∣∣∣∣∣1DM3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� M
1/2
1 M

−1/2
3 · K1/2

1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

so after summing

M3

∑
K3�M3

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1DM3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� M
1/2
1 · K1/2

1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

since ∑
K3�M3

K
−1/2
3 β

b1
M3,K3

� M
−1/2
3

This is (6.4) in that case.
Case 2: If M1 > 1.
It is still sufficient to use (6.5) if K3 is large enough.
Indeed, let us split the sum over K3 in two parts, depending on whether K3 � M2

1M3 or M3 � K3 � M2
1M3.

Case 2.1: If K3 � M2
1M3.

We proceed as in the case M1 � 1 to get∣∣∣∣∣∣1DM3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

�
∣∣∣∣∣∣1Dλ,M3,�K3

· f K1
1 � (p · f K2

2 )

∣∣∣∣∣∣
L2

+ M1(1 ∨ M1)

M2
3

∣∣∣∣∣∣1Dλ,M3,�K3
· (p · f K1

1 ) � f
K2
2

∣∣∣∣∣∣
L2

= I + II
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As previously,

I � M
3/2
1 K

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

�M
3/2
1 (K1K2)

1/2M
−1/2
2

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

As for II , we have again

II �M
5/2
1 M2M

−2
3 K

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

� M
3/2
1 (K1K2)

1/2M
−1/2
2

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

It remains to sum for the modulations K3 � M2
1M3:

M3

∑
K3�M2

1 M3

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

�M
1/2
1

(
K

1/2
1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

)(
K

1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

)
(6.6)

since ∑
K3�M2

1 M3

K
−1/2
3 β

b1
M3,K3

� M−1
1 M

−1/2
3 β

b1

M3,M
2
1 M3

and for M1 > 1, we have M2
1M3 < M3

3 so βM3,M
2
1 M3

= 1.

Case 2.2: If M3 � K3 � M2
1M3.

We improve (6.5) using the resonant function (cf. (5.9)). Observe that, since �(ζ1, ζ2, ζ3) and the hyperplane 
ζ1 + ζ2 + ζ3 = 0 are invariant under permutation, we have∣∣∣∣q1 + q2

ξ1 + ξ2
− q2

ξ2

∣∣∣∣= ∣∣∣∣ ξ2

ξ1(ξ1 + ξ2)
�(−ζ1 − ζ2, ζ2, ζ1) + 3ξ2

1

∣∣∣∣1/2

Since suppfi ⊂ Dλ,Mi,�Ki
and 
∫

f1 � f2 · f3 �= 0 ⇒ |�| � Kmax , we deduce the bound

p(ξ1 + ξ2, q1 + q2) � 1 + |q1 + q2|
|ξ1 + ξ2|2 � p(ξ2, q2) + M

1/2
1 M−2

3 K
1/2
max (6.7)

Therefore, we have the bound∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

�
∣∣∣∣∣∣1Dλ,M3,�K3

· f K1
1 � (p · f K2

2 )

∣∣∣∣∣∣
L2

+ M
−1/2
1 M−1

3 K
1/2
max

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

as M1 � M3.
To treat those terms, we distinguish the cases of Corollary 5.9.
Case 2.1 (a): If Kmax �M1M2M3. In that case we estimate K1/2

max in the second term and then apply (5.27) to both 
terms to get the bound

M3

M2
1 M3∑

K3=M3

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� ln (M1)M
−1/2
1 · (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Case 2.2 (b)&(c): If Kmax � M1M2M3. Then we lose the factor K1/2
max in the first term and use (5.7) for both terms 

with the indices corresponding to Kmin and Kmed , getting the final bound

M3

M2
1 M3∑

K3=M3

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� ln (M1) · (K1K2)
1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

�
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Lemma 6.2 (High × High → Low). Let M1, M2, M3 ∈ 2Z with M1 ∼ M2 � (1 ∨ M3), and b1 ∈ [0; 1/2[. Then for 
uM1 ∈ N0

λ,M1
and vM2 ∈ N0

λ,M2
, we have∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� M
3/2+4b1
2 (1 ∨ M3)

−1
∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣
F 0

λ,M2
(6.8)

Proof. We proceed similarly to the previous lemma, but this time the norm on the left-hand side only controls func-
tions on time intervals of size (1 ∨M3)

−1 whereas the norms on the right-hand side require a control for time intervals 
of size M−1

2 . Thus will cut the time intervals in smaller pieces.
To do so, we take γ as in the previous lemma. Since now M1 ∼ M2 � (1 ∨ M3), we can write

χ(1∨M3)
−1(t − tM3) =

∑
|m|�M2(1∨M3)

−1

∑
|n|�100

χ(1∨M3)
−1(t − tM3)γM2(t − tM3 − M−1

2 m)

· γM1(t − tM3 − M−1
2 m − M−1

1 n)

As previously, without loss of generality, we can assume m = n = 0, and defining

f1 := F
{
γ
(
M1(t − tM3)

)
uM1

}
and

f2 := F
{
γ
(
M2(t − tM3)

)
vM2

}
it then suffices to prove that ∀Ki � (1 ∨ Mi):

M2(1 ∨ M3)
−1 · M3

∑
K3�(1∨M3)

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

�M2
2 (1 ∨ M3)

−1K
1/2
1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

(6.9)

where we have denoted

f
M2
i := χMi

(τ − ω)fi and f
Ki

i := ρKi
(τ − ω)fi, Ki > Mi

As previously, we need to estimate p(ξ1 + ξ2, q1 + q2) with respect to p(ξ1, q1) and p(ξ2, q2):

p(ξ1 + ξ2, q1 + q2) � 1 + |q1 + q2|
|ξ1 + ξ2|〈ξ1 + ξ2〉

� 1 + |ξ1|〈ξ1〉
|ξ1 + ξ2|〈ξ1 + ξ2〉

|q1|
|ξ1|〈ξ1〉 + |ξ2|〈ξ2〉

|ξ1 + ξ2|〈ξ1 + ξ2〉
|q2|

|ξ2|〈ξ2〉
� M2

2M−1
3 (1 ∨ M3)

−1 (p(ξ1, q1) + p(ξ2, q2)) (6.10)

Just as before, we distinguish several cases.
Case 1.1: If M3 � 1 and K3 � M5

2 :
We use (6.10), so that the left-hand side of (6.9) is controlled with

M3
2

∑
K3�M5

2

K
b1−1/2
3

{∣∣∣∣∣∣1Dλ,M3,�K3
· (p · f K1

1 ) � f
K2
2

∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣1Dλ,M3,�K3

· f K1
1 � (p · f K2

2 )

∣∣∣∣∣∣
L2

}
Using (5.30) and that M1 ∼ M2 � 1 and K1, K2 � M2, we get the bound∑

K3�M5
2

K
b1−1/2
3 M3

2 · M2M
1/2
3 K

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

� M
1+5b1
2 M

1/2
3 · (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

which suffices for (6.9).
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Case 1.2: If M3 � 1 and 1 �K3 � M5
2 :

We improve the control on p in this regime by using � as in (6.7). We get in this case∣∣∣∣q1 + q2

ξ1 + ξ2
− q1

ξ1

∣∣∣∣= ∣∣∣∣ ξ2

ξ1(ξ1 + ξ2)
�(ζ1,−ζ1 − ζ2, ζ2) + 3ξ2

2

∣∣∣∣1/2

�M2 + M
−1/2
3 K

1/2
max

from which we deduce

p(ξ1 + ξ2, q1 + q2) � M2p(ξ1, q1) + M
−1/2
3 K

1/2
max (6.11)

Using this estimate, we get the bound

M3M
2
2

M5
2∑

K3=1

K
b1−1/2
3

{∣∣∣∣∣∣1Dλ,M3,�K3
· (p · f K1

1 ) � f
K2
2

∣∣∣∣∣∣
L2

+ M
−1/2
3 M−1

2 K
1/2
max

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

}
Observe that the term within the braces is the same as in case 2.2 of Lemma 6.1, so we control it the exact same way 
to get the final bound

M
1/2
3 M

1+5b1
2 · (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Case 2.1: If M3 � 1 and K3 � M4
2M−1

3 .
We use again (6.10) so that the left-hand side of (6.9) is controlled with

M2

∑
K3�M4

2 M−1
3

K
−1/2
3 β

b1
M3,K3

M2
2M−2

3

{∣∣∣∣∣∣1Dλ,M3,�K3
· (p · f K1

1 ) � f
K2
2

∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣1Dλ,M3,�K3

· f K1
1 � (p · f K2

2 )

∣∣∣∣∣∣
L2

}
With (5.30) again, we obtain the bound∑

K3�M4
2 M−1

3

K
−1/2
3 β

b1
M3,K3

M3
2M−2

3 · M2M
1/2
3 K

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

� M
3/2+4b1
2 M

−1−4b1
3 · (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Case 2.2: If M3 � 1 and M3 �K3 � M4
2M−1

3 .
(6.11) becomes in this case

p(ξ1 + ξ2, q1 + q2) � M−1
3 M2p(ξ1, q1) + M

−3/2
3 K

1/2
max (6.12)

So the use of (6.12) allows us to bound the left-hand side of (6.9) with

M2
2M−1

3

M4
2 M−1

3∑
K3=M3

K
−1/2
3 β

b1
M3,K3

{∣∣∣∣∣∣1Dλ,M3,�K3
· (p · f K1

1 ) � f
K2
2

∣∣∣∣∣∣
L2

+M
−1/2
3 M−1

2 K
1/2
max

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

}
Proceeding similarly to the previous cases, we finally obtain the bound

M
1+4b1
2 M

−1−4b1
3 · (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

�
Lemma 6.3 (Low × Low → Low). Let M1, M2, M3 ∈ 2−Z and b1 ∈ [0; 1/2[. Then for uM1 ∈ F 0

λ,M1
and vM2 ∈ F 0

λ,M2
we have∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� (M1M2M3)
1/2
∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣
F 0

λ,M2
(6.13)
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Proof. As in the previous lemmas, it is enough to prove that ∀K1, K2 � 1,

M3

∑
K3�1

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

�K
1/2
1

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

K
1/2
2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

(6.14)

By symmetry, we may assume M1 � M2, so similarly to (6.10), we have in this case

p(ξ1 + ξ2, q1 + q2) �M2M
−1
3 (p(ξ1, q1) + p(ξ2, q2))

It then suffices to use (5.30) along with the previous bound to get (6.14):

M3

∑
K3�1

K
−1/2
3 β

b1
M3,K3

∣∣∣∣∣∣1Dλ,M3,�K3
· p · f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� M2

∑
K3�1

K
b1−1/2
3 M

1/2
minK

1/2
min

∣∣∣∣∣∣p · f K1
1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

� (M1M2M3)
1/2 · (K1K2)

1/2
∣∣∣∣∣∣p · f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

�
Proposition 6.4. Let T ∈]0; 1], α � 1 and b1 ∈ [0; 1/8]. Then for u, v ∈ Fα,0

λ (T ) we have

||∂x(uv)||
N

α,b1
λ (T )

� ||u||Fα,0
λ (T )

||v||F1,0
λ (T )

+ ||u||F1,0
λ (T )

||v||Fα,0
λ (T )

(6.15)

Proof. For M1 ∈ 2Z, let us choose an extension uM1 ∈ F 0
λ,M1

of PM1u satisfying∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1
� 2
∣∣∣∣PM1u

∣∣∣∣
F 0

λ,M1
(T )

and let us define vM2 analogously.
Using the definition of Fα,b1

λ (T ) (3.2) and Nα,b1
λ (T ) (3.3), it then suffices to show that∑

M1,M2,M3

(1 ∨ M3)
2α
∣∣∣∣PM3∂x(uM1 · vM2)

∣∣∣∣2
N

b1
λ,M3

�
∑

M1,M2

{
(1 ∨ M1)

2α
∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1
(1 ∨ M2)

2
∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2

+ (1 ∨ M1)
2
∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1
(1 ∨ M2)

2α
∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2

}
(6.16)

Since the left-hand side of (6.15) is symmetrical in u and v, we can assume M1 �M2.
Then we can decompose the left-hand side of (6.16) depending on the relation between M1, M2 and M3:

∑
M1,M2,M3>0

(1 ∨ M3)
2α
∣∣∣∣PM3∂x(uM1 · vM2)

∣∣∣∣2
N

b1
λ,M3

=
3∑

i=1

∑
(M1,M2,M3)∈Ai

(1 ∨ M3)
2α
∣∣∣∣PM3∂x(uM1 · vM2)

∣∣∣∣2
N

b1
λ,M3

where⎧⎪⎨⎪⎩
A1 := {(M1,M2,M3) ∈ 2Z, (1 ∨ M1) � M2 ∼ M3

}
A2 := {(M1,M2,M3) ∈ 2Z, (1 ∨ M3) � M1 ∼ M2

}
A3 := {(M1,M2,M3) ∈ 2Z,Mmax � 1

}
Using Lemma 6.1, the first term is estimated by∑

(M1,M2,M3)∈A1

(1 ∨ M3)
2α
∣∣∣∣PM3∂x(uM1 · vM2)

∣∣∣∣2
N

b1
λ,M3

�
∑

M2�1

∑
M1�M2

M1(1 ∨ M2)
2α
∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2

which suffices for (6.16). For the second term, the use of Lemma 6.2 provides the bound
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∑
(M1,M2,M3)∈A2

(1 ∨ M3)
2α
∣∣∣∣PM3∂x(uM1 · vM2)

∣∣∣∣2
N

b1
λ,M3

�
∑

M2�1

∑
M1∼M2

M
3+8b1+2(α−1)
2

∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2

which is enough for (6.16) since b1 ∈ [0; 1/8]. Finally, Lemma 6.3 allows us to control the last term by∑
(M1,M2,M3)∈A3

(1 ∨ M3)
2α
∣∣∣∣PM3∂x(uM1 · vM2)

∣∣∣∣2
N

b1
λ,M3

�
∑

M1∈2−N

∑
M2∈2−N

M1M2
∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2

which concludes the proof of the bilinear estimate. �
6.2. For the difference equation

The end of this section is devoted to treating (1.15). Let b1 ∈ [0; 1/2[.
We begin with the low frequency interactions:

Lemma 6.5 (Low × Low → Low). Let M1, M2, M3 ∈ 2−Z. Then for uM1 ∈ F 0
λ,M1

and vM2 ∈ F 0
λ,M2

, we have∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� M3M
1/2
min

∣∣∣∣uM1

∣∣∣∣
F

b1
λ,M1

∣∣∣∣vM2

∣∣∣∣
F

b1
λ,M2

Proof. Proceeding as for the previous lemmas, it suffices to prove that for all K1, K2 � 1 and f Ki

i : Dλ,Mi,�Ki
→R+,

M3

∑
K3�1

K
−1/2
3 βM3,K3

b1

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� M3M
1/2
min · (K1K2)

1/2
∣∣∣∣∣∣f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

This follows directly from (5.30). �
Lemma 6.6 (High × High → Low). Let M1, M2, M3 ∈ 2Z with M1 ∼ M2 � (1 ∨ M3). Then for uM1 ∈ F 0

λ,M1
and 

vM2 ∈ F 0
λ,M2

, we have∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� (1 ∧ M3)
3/2M2

∣∣∣∣uM1

∣∣∣∣
F

b1
λ,M1

∣∣∣∣vM2

∣∣∣∣
F

b1
λ,M2

Proof. Following the proof of Lemma 6.2, it is enough to prove that for all Ki � (1 ∨Mi) and f Ki

i : Dλ,Mi,�Ki
→R+,

M3M2(1 ∨ M3)
−1

∑
K3�(1∨M3)

K
−1/2
3 βM3,K3

b1

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� (1 ∧ M3)
3/2M2 · (K1K2)

1/2
∣∣∣∣∣∣f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

This is a consequence of (5.7). �
It remains to treat the interaction between low and high frequencies. Since u and v do not play a symmetric role 

anymore, we have to distinguish which one has the low frequency part.

Lemma 6.7 (Low × High → High). Let (1 ∨ M1) � M2 ∼ M3 and uM1 ∈ F 0
λ,M1

, vM2 ∈ F 0
λ,M2

. Then∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N

b1
λ,M3

� M
1/2
1 (1 ∨ M1)

1/4M
1/4
2

∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣
F 0

λ,M2

Proof. Following the proof of Lemma 6.1, it suffices to prove that for all Ki � (1 ∨Mi) and f Ki

i : Dλ,Mi,�Ki
→R+,

M3

∑
K3�M3

K
−1/2
3 βM3,K3

b1

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� M
1/2
1 (1 ∨ M1)

1/4M
1/4
2 · (K1K2)

1/2
∣∣∣∣∣∣f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

Again, this follows from using (5.7). �
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Lemma 6.8 (High × Low → High). Let (1 ∨ M2) � M1 ∼ M3 and uM1 ∈ F 0
λ,M1

, vM2 ∈ F 0
λ,M2

. Then∣∣∣∣PM3∂x

(
uM1 · vM2

)∣∣∣∣
N0

λ,M3

� (1 ∨ M2)
∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1

∣∣∣∣vM2

∣∣∣∣
F 0

λ,M2

Proof. As previously, it is enough to prove

M3

∑
K3�M3

K
−1/2
3

∣∣∣∣∣∣1Dλ,M3,�K3
· f K1

1 � f
K2
2

∣∣∣∣∣∣
L2

� (1 ∨ M2) · (K1K2)
1/2
∣∣∣∣∣∣f K1

1

∣∣∣∣∣∣
L2

∣∣∣∣∣∣p · f K2
2

∣∣∣∣∣∣
L2

for Ki � (1 ∨ Mi) and f Ki

i : Dλ,Mi,�Ki
→ R+.

Following the proof of Lemma 6.1, we distinguish several cases.
Case 1: If M2 � 1.
This is a consequence of (5.30).
Case 2: If M2 � 1.
We split the sum over K3 into two parts. The high modulations part K3 � M2M3 is treated again with (5.30), 

whereas for the sum over the modulations M3 � K3 � M2M3 is controlled by using (5.28) (which is the worst case of 
Corollary 5.9). �

We finally combine the previous estimates to get

Proposition 6.9. Let T ∈]0; 1], b1 ∈ [0; 1/2[ and u ∈ Fλ
0
(T ), v ∈ F1,0

λ (T ). Then

||∂x(uv)||
Nλ

b1 (T )
� ||u||

Fλ
0
(T )

||v||F1,0
λ (T )

(6.17)

Proof. First, for M1, M2 ∈ 2Z, we fix an extension uM1 ∈ F 0
λ,M1

of PM1u to R satisfying∣∣∣∣uM1

∣∣∣∣
F 0

λ,M1

� 2
∣∣∣∣PM1u

∣∣∣∣
F 0

λ,M1
(T )

and similarly for vM2 .

Using the definition of Fλ
0

(3.7) and Nλ
b1 (3.8), it then suffices to show that∑

M1,M2,M3∈2Z

∣∣∣∣∂x(uM1 · vM2)
∣∣∣∣2

N
b1
λ,M3

(T )
�
∑

M1,M2∈2Z

∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1
(T )

(1 ∨ M2)
2
∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2
(T )

(6.18)

As in the proof of Proposition 6.4, we separate 4 cases, so it suffices to show that for i ∈ {1, 2, 3, 4},∑
(M1,M2,M3)∈Bi

∣∣∣∣∂x(uM1 · vM2)
∣∣∣∣2

N
b1
λ,M3

(T )
�
∑

M1,M2∈2Z

∣∣∣∣uM1

∣∣∣∣2
F 0

λ,M1
(T )

(1 ∨ M2)
2
∣∣∣∣vM2

∣∣∣∣2
F 0

λ,M2
(T )

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1 := {(M1,M2,M3) ∈ 2−Z

}
B2 := {(M1,M2,M3) ∈ 2Z, M1 ∼ M2 � (1 ∨ M3)

}
B3 := {(M1,M2,M3) ∈ 2Z, M2 ∼ M3 � (1 ∨ M1)

}
B4 := {(M1,M2,M3) ∈ 2Z, M1 ∼ M3 � (1 ∨ M2)

}
This follows from Lemmas 6.5, 6.6, 6.7, and 6.8 respectively. �
7. Energy estimates

In this section we prove the energy estimates (1.13) and (1.16). As the nonlinear term is expressed as a bilinear 
form, we will need some control on trilinear form to deal with the energy estimate:
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Lemma 7.1. Let T ∈ [0; 1[, M1, M2, M3 ∈ 2Z with Mmax � 1, and b1 ∈ [0; 1/8]. Then for ui ∈ F
b1
λ,Mi

(T ), i ∈ {1, 2, 3}, 
with one of them in Fb1

λ,Mi
(T ) (in order for the integral to converge), we have∣∣∣∣∣∣∣

∫
[0,T ]×R×Tλ

u1u2u3dtdxdy

∣∣∣∣∣∣∣� �b1(Mmin,Mmax)

3∏
i=1

||ui ||
F

b1
λ,Mi

(T )
(7.1)

where

�b1(X,Y ) =
(
X ∧ X−1

)1/2 +
(

(1 ∨ X)

Y

)2b1

(7.2)

Proof. Using the symmetry property (5.11), we may assume M1 � M2 � M3. We begin by fixing some extensions 

uMi
∈ F

b1
λ,Mi

of ui to R satisfying 
∣∣∣∣uMi

∣∣∣∣
F

b1
λ,Mi

� 2 ||ui ||
F

b1
λ,Mi

(T )
.

Let γ : R → [0; 1] be a smooth partition of unity as in the proof of Lemma 6.1, satisfying now suppγ ⊂ [−1; 1]
and

∀t ∈R,
∑
n∈Z

γ 3(t − n) = 1 (7.3)

We then use γ to chop the time interval in pieces of size M−1
3 :∫

[0;T ]×R×Tλ

u1u2u3dtdxdy �
∑
n∈Z

∫
R2×λ−1Z

f1,n � f2,n · f3,ndτdξ(dq)λ (7.4)

where we define

fi,n := F
(
γ (M3t − n)1[0,T ]uMi

)
We can divide the set of integers such that the trilinear form is not zero into two subsets

A := {n ∈ Z, γ (M3t − n)1[0,T ] = γ (M3t − n)
}

and B =
{
n ∈ Z \A,

∫
f1,n � f2,n · f3,n �= 0

}
Let us notice that #A �M3 and #B � 4.

Let us start by dealing with the sum over A:∑
n∈A

∫
R2×λ−1Z

f1,n � f2,n · f3,n �M3 sup
n∈A

∑
K1,K2,K3�M3

∫
R2×λ−1Z

f
K1
1,n � f

K2
2,n · f K3

3,n

where f Ki

i,n is defined as

f
Ki

i,n (τ, ξ, q) := ρKi
(τ − ω(ξ, q))fi,n(τ, ξ, q), i = 1,2,3 if Ki > M3 (7.5)

and

f
M3
i,n (τ, ξ, q) := χM3(τ − ω(ξ, q))fi,n(τ, ξ, q), i = 1,2,3

Then, we separate the sum into three parts depending on the relations between the M’s and the K’s as in Corollary 5.9:

∑
K1,K2,K3

∫
R2×λ−1Z

f
K1
1,n � f

K2
2,n · f K3

3,n =
3∑

i=1

∑
(K1,K2,K3)∈Ai

∫
R2×λ−1Z

f
K1
1,n � f

K2
2,n · f K3

3,n

with
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⎧⎪⎨⎪⎩
A1 := {(K1,K2,K3) ∈ 2N, Ki � M3, Kmax � 10−10M1M2M3

}
A2 := {(K1,K2,K3) ∈ 2N, Ki � M3, K1 = Kmax �M1M2M3

}
A3 := {(K1,K2,K3) ∈ 2N, Ki � M3, Kmax = (K2 ∨ K3) �M1M2M3

}
We treat those terms separately, using the estimates of Corollary 5.9. Denoting Ji the contribution of the region Ai in 
the sum, we have

J1 � M3 sup
n∈A

∑
K1,K2,K3�M3

(
Mmin ∧ M−1

min

)1/2
M−1

max

3∏
i=1

K
1/2
i

∣∣∣∣∣∣f Ki

i,n

∣∣∣∣∣∣
L2

�
(
Mmin ∧ M−1

min

)1/2 3∏
i=1

∣∣∣∣uMi

∣∣∣∣
F 0

λ,Mi

after using (5.27) and

sup
n∈A

∑
Ki�M3

K
1/2
i

∣∣∣∣∣∣f Ki

i,n

∣∣∣∣∣∣
L2

�
∣∣∣∣uMi

∣∣∣∣
F 0

λ,Mi

(7.6)

Indeed, (7.6) follows from the definition of f Ki

i,n (7.5), the fact that χ(1∨Mi)
−1 ≡ 1 on the support of γ

M−1
3

, and the use 
of (3.10) and (3.11).

Proceeding analogously, we get

J3 � M3 sup
n∈A

∑
K1,K2,K3�M3

M−1
max

(
(1 ∨ Mmin)

Mmax

)1/4 3∏
i=1

K
1/2
i

∣∣∣∣∣∣f Ki

i,n

∣∣∣∣∣∣
L2

�
(

(1 ∨ Mmin)

Mmax

)2b1 3∏
i=1

||ui ||
F 0

λ,Mi

by using (5.29) and that b1 ∈ [0; 1/8].
Finally, the last contribution is controlled thanks to (5.28), (7.6) and the weight βb1

M1,K1
:

J2 � sup
n∈A

∑
K1�M1M2M3

∑
K2,K3�M3

(1 ∧ Mmin)
1/4

3∏
i=1

K
1/2
i

∣∣∣∣∣∣f Ki

i,n

∣∣∣∣∣∣
L2

� (1 ∧ Mmin)
1/4
(

(1 ∨ Mmin)
3

MminM2
max

)b1 2∏
i=1

∣∣∣∣uMi

∣∣∣∣
F 0

λ,Mi

·
⎛⎝sup

n∈A

∑
K1�M1M2M3

β
b1
M1,K1

K
1/2
1

∣∣∣∣∣∣f K1
1,n

∣∣∣∣∣∣
L2

⎞⎠
This suffices for (7.1) since

sup
n∈A

∑
K1�M1M2M3

β
b1
M1,K1

K
1/2
1

∣∣∣∣∣∣f K1
1,n

∣∣∣∣∣∣
L2

�
∣∣∣∣uM1

∣∣∣∣
F

b1
λ,M1

as we only need to use (3.11) in this regime.
Let us now come back to (7.4). It remains to treat the border terms. We have∑

n∈B

∫
R2×λ−1Z

f1,n � f2,n · f3,n �
∑
n∈B

∑
K1,K2,K3

∫
R2×λ−1Z

g
K1
1,n � g

K2
2,n · gK3

3,n

where gKi

i,n is defined as

g
Ki

i,n := ρKi
(τ − ω)F

(
γ (M3t − n)1[0,T ]uMi

)
, i = 1,2,3, Ki � 1 (7.7)

Once again, we separate the different cases of Corollary 5.9. Let us define Gi the contribution of the region Ai in the 
sum above.

Using (5.27), we can control the first term:

G1 �
(
Mmin ∧ M−1

min

)1/2
M−1

max sup
n∈B

∑ 3∏
K

1/2
i

∣∣∣∣∣∣gKi

i,n

∣∣∣∣∣∣
L2

(7.8)

(K1,K2,K3)∈A1 i=1
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Now, we need to replace (7.6) by an analogous estimate on B:

sup
n∈B

sup
Ki�M3

K
1/2
i

∣∣∣∣∣∣gKi

i,n

∣∣∣∣∣∣
L2

�
∣∣∣∣uMi

∣∣∣∣
F 0

λ,Mi

(7.9)

Let us prove this estimate. Using the definition of gKi

i,n (7.7), if we note ũMi
:= γ (M3t − n)uMi

then we have to 
estimate∣∣∣∣∣∣gKi

i,n

∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣ρKi

(τ − ω) · 1̂[0,T ] �F
(
ũMi

)∣∣∣∣∣∣
L2

We then split F
(
ũMi

)
depending on its modulations:∣∣∣∣∣∣gKi

i,n

∣∣∣∣∣∣
L2

�
∑

K�Ki/10

∣∣∣∣∣∣ρKi
(τ − ω) · 1̂[0,T ] �τ

(
ρK(τ ′ − ω)F

(
ũMi

))∣∣∣∣∣∣
L2

+
∑

K�Ki/10

∣∣∣∣∣∣ρKi
(τ − ω)Ft

{
1[0,T ]F−1

t

(
ρK(τ ′ − ω)F

(
ũMi

))}∣∣∣∣∣∣
L2

= I + II

To treat I , we use that 
∣∣∣1̂[0,T ](τ − τ ′)

∣∣∣� |τ − τ ′|−1 ∼ K−1
i since |τ − ω| ∼ Ki and |τ ′ − ω| ∼ K � Ki/10. Thus, 

from Young inequality L∞ × L1 → L∞ we deduce that

K
1/2
i · I � Ki

∣∣∣∣∣∣1̂[0,T ] �τ

(
ρK(τ ′ − ω)F

(
ũMi

))∣∣∣∣∣∣
L2

ξ,qL∞
τ

�
∣∣∣∣ρK(τ ′ − ω)F

(
ũMi

)∣∣∣∣
L2

ξ,qL1
τ

which is enough for (7.9) due to (3.12) and then (3.10)–(3.11).
To deal with II , we simply neglect the localization ρKi

(τ −ω), use Plancherel identity, then neglect the localization 
1[0;T ] and use Plancherel identity again and that K1/2

i � K1/2 to get

K
1/2
i · II �

∑
K�Ki/10

K1/2
∣∣∣∣ρK(τ ′ − ω)F

(
ũMi

)∣∣∣∣
L2

ξ,q,τ
�
∣∣∣∣F (ũMi

)∣∣∣∣
X0

λ,Mi

This proves (7.9) after using again (3.10)–(3.11).
Coming back to (7.8) and using (7.9) along with #B � 4, we then infer

G1 � 〈ln (M1M2M3)〉3(Mmin ∧ M−1
min)

1/2M−1
max

3∏
i=1

||ui ||
F 0

λ,Mi

as 
∑

(K1,K2,K3)∈A1

1 � 〈ln (M1M2)〉3. This is enough for (7.1).

Let us now turn to G2. We use (5.28) combined with (7.9) to get

G2 � (1 ∧ Mmin)
1/4M0+

minM
(−1)+
max

∑
(K1,K2,K3)∈A2

K0−
max

3∏
i=1

sup
n∈B

sup
Ki

K
1/2
i

∣∣∣∣∣∣gKi

i,n

∣∣∣∣∣∣
L2

� M(−1)+
max

3∏
i=1

∣∣∣∣uMi

∣∣∣∣
F 0

λ,Mi

which is sufficient as well.
Finally, we treat G3, using now (5.29) and (7.9):

G3 � (1 ∨ Mmin)
(1/4)+M

(−5/4)+
max

∑
(K1,K2,K3)∈A3

K0−
max

3∏
i=1

sup
n∈B

sup
Ki

∣∣∣∣∣∣gKi

i,n

∣∣∣∣∣∣
L2

� M(−1)+
max

3∏
i=1

∣∣∣∣uMi

∣∣∣∣
F 0

λ,Mi

which concludes the proof of Lemma 7.1. �
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Following [9, Lemme 6.1 (b)], we then use the previous estimate to control the special terms in the energy esti-
mate 1.13:

Lemma 7.2. Let T ∈]0; 1], b1 ∈ [0; 1/8], M, M1 ∈ 2Z, with M � 10(1 ∨ M1), and u ∈ F
b1
λ,M(T ), v ∈ F

b1
λ,M1

(T ). Then∣∣∣∣∣∣∣
∫

[0,T ]×R×Tλ

PMu · PM(PM1v · ∂xu)dtdxdy

∣∣∣∣∣∣∣� M1�b1(M1,M)
∣∣∣∣PM1v

∣∣∣∣
F

b1
λ,M1

(T )

∑
M2∼M

∣∣∣∣PM2u
∣∣∣∣2

F
b1
λ,M2

(T )
(7.10)

Proof. First, we chop the integral in the left-hand side of (7.10) into two terms∫
[0,T ]×R×Tλ

PMu · PM(∂xuPM1v)

=
∫

[0,T ]×R×Tλ

PMu · PM∂xu · PM1v +
∫

[0,T ]×R×Tλ

PMu · [PM(∂xuPM1v) − PM∂xu · PM1v]

= I + II

The first term is easy to control: integrating by parts and using (7.1), we get the bound

|I | =

∣∣∣∣∣∣∣
1

2

∫
[0,T ]×R×Tλ

(PMu)2 · ∂xPM1v

∣∣∣∣∣∣∣� M1�b1(M1,M) ||PMu||2
F

b1
λ,M(T )

∣∣∣∣PM1v
∣∣∣∣

F
b1
λ,M1

(T )

To deal with II , we proceed as for the previous lemma: after choosing some extensions (still denoted u ∈ F
b1
λ,M and 

v ∈ F
b1
λ,M1

) of u and v to R, we chop the integral in

II =
∑
n∈Z

∫
R2×Tλ

PMun · [PM(∂xunPM1vn) − PM∂xun · PM1vn]

where we define un := 1[0,T ]γ (Mt − n)u and vn := 1[0,T ]γ (Mt − n)v for a function γ as in the previous lemma.
Using Plancherel identity, we can write II as

II =
∑
n∈Z

∫
R2×λ−1Z

P̂Mun ·
∫

R2×λ−1Z

K(ζ, ζ1)ûn(ζ − ζ1) ̂∂xPM1vn(ζ1)dζ1dζ

where the kernel K is given by

K(ζ, ζ1) = ξ − ξ1

ξ1
[ηM(ξ) − ηM(ξ − ξ1)] η̃M1(ξ1)

∑
M2∼M

ηM2(ξ − ξ1)

The last sum appears since |ξ | ∼ M and |ξ1| ∼ M1 � M/10, thus |ξ − ξ1| ∼ M .
Using the mean value theorem, we can bound the kernel with

|K(ζ, ζ1)| �
∣∣∣∣ξ − ξ1

ξ1

∣∣∣∣M−1|ξ1|η̃M1(ξ1)
∑

M2∼M

ηM2(ξ − ξ1) � η̃M1(ξ1)
∑

M2∼M

ηM2(ξ − ξ1) (7.11)

Therefore, as in [9, Lemma 6.1 (b)], (7.10) follows after repeating the proof of (7.1) and using (7.11). �
We finally prove (1.13). From now on, we fix b1 = 1/8 and drop the parameter when writing the main spaces.
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Proposition 7.3. Let T ∈]0; 1] and u ∈ C([−T , T ], E∞
λ ) be a solution of{

∂tu + ∂3
xu − ∂−1

x ∂yu + u∂xu = 0

u(0, x) = u0(x)
(7.12)

on [−T , T ]. Then for any α � 1,

||u||2Bα
λ(T ) � ||u0||2Eα

λ
+ ||u||Fλ(T ) ||u||2Fα

λ(T ) (7.13)

Proof. Using the definitions of Bα
λ(T ) (3.4) and p (2.1) along with (3.5), it suffices to prove∑

M3�1

sup
tM3∈[−T ;T ]

M2α
3

∣∣∣∣PM3u(tM3)
∣∣∣∣2

L2 − M2α
3

∣∣∣∣PM3u0
∣∣∣∣2

L2 � ||u||Fλ(T )

∑
M3�1

M2α
3

∣∣∣∣PM3u
∣∣∣∣2

F
b1
λ,M3

(T )
(7.14)

and ∑
M3�1

sup
tM3∈[−T ;T ]

M
2(α−1)
3

∣∣∣∣∣∣PM3∂
−1
x ∂yu(tM3)

∣∣∣∣∣∣2
L2

− M
2(α−1)
3

∣∣∣∣∣∣PM3∂
−1
x ∂yu0

∣∣∣∣∣∣2
L2

� ||u||Fλ(T )

∑
M3�1

M2α
3

∣∣∣∣PM3u
∣∣∣∣2

F
b1
λ,M3

(T )
(7.15)

Let us start with (7.14).
Applying PM3 to (7.12), multiplying by PM3u and integrating, we get

∣∣∣∣PM3u(tM3)
∣∣∣∣2

L2 − ∣∣∣∣PM3u0
∣∣∣∣2

L2 =
tM3∫
0

d

dt

∣∣∣∣PM3u(t)
∣∣∣∣2

L2 dt �

∣∣∣∣∣∣∣
tM3∫
0

∫
R×Tλ

PM3u · PM3(u∂xu)dt ′dxdy

∣∣∣∣∣∣∣ (7.16)

since ∂3
x and ∂−1

x ∂2
y are skew-adjoint.

We separate the right-hand side of (7.16) in∑
M1�M3/10

∫
[0,tM3 ]×R×Tλ

PM3u · PM3

(
PM1u · ∂xu

)
dtdxdy (7.17)

+
∑

M1�M3

∑
M2>0

∫
[0,tM3 ]×R×Tλ

(PM3)
2u · PM1u · ∂xPM2udtdxdy (7.18)

Using (7.10) and Cauchy–Schwarz inequality in M1, the first term (7.17) is estimated by

(7.17) �
∑

M1�M3/10

M1�b1(M1,M3)
∣∣∣∣PM1u

∣∣∣∣
F

b1
λ,M1

(T )

∑
M2∼M3

∣∣∣∣PM2u
∣∣∣∣2

F
b1
λ,M2

(T )

� ||u||Fλ(T )

∑
M2∼M

∣∣∣∣PM2u
∣∣∣∣2

F
b1
λ,M2

(T )

since ⎡⎣ ∑
0<M1�M3/10

(1 ∨ M1)
−2M2

1�b1(M1,M3)
2

⎤⎦1/2

� 1

Thus ∑
M3�1

M2α
3 · (7.17) � ||u||Fλ(T ) ||u||2Fα

λ(T )

To treat (7.18), we use (7.1) and then we separate the sum on M2 depending on whether M1 ∼ M3 � M2 or M1 ∼
M2 � M3:
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(7.18) �
∑

M1∼M3

∑
M2�M3

M2�b1(M2,M3)

3∏
i=1

∣∣∣∣PMi
u
∣∣∣∣

F
b1
λ,Mi

(T )

+
∑

M1�M3

∑
M2∼M1

M2�b1(M3,M2)

3∏
i=1

∣∣∣∣PMi
u
∣∣∣∣

F
b1
λ,Mi

(T )
= I + II

Applying Cauchy–Schwarz inequality in M2 we get the bounds

I �
∣∣∣∣PM3u

∣∣∣∣2
F

b1
λ,M3

(T )
||u||Fλ(T )

and

II �
∑

M1�M3

M1�b1(M3,M1)
∣∣∣∣PM3u

∣∣∣∣
F

b1
λ,M3

(T )

∣∣∣∣PM1u
∣∣∣∣2

F
b1
λ,M1

(T )

Summing on M3 and using Cauchy–Schwarz inequality in M3 and M1 for II , we finally get∑
M3�1

M2α
3 · (7.18) � ||u||Fλ(T ) ||u||2Fα

λ(T )

+
∑

M3�1

∑
M1�M3

Mα
3 �b1(M3,M1)M

1+α
1

∣∣∣∣PM3u
∣∣∣∣

F
b1
λ,M3

(T )

∣∣∣∣PM1u
∣∣∣∣2

F
b1
λ,M1

(T )

� ||u||Fλ(T ) ||u||2Fα
λ(T )

Now we turn to the proof of (7.15).
This time, we apply PM3∂

−1
x ∂y to (1.6), we multiply by PM3∂

−1
x ∂yu and we integrate to get

∣∣∣∣∣∣PM3∂
−1
x ∂yu(tM3)

∣∣∣∣∣∣2
L2

−
∣∣∣∣∣∣PM3∂

−1
x ∂yu0

∣∣∣∣∣∣2
L2

�

∣∣∣∣∣∣∣
∫

[0,tM3 ]×R×Tλ

PM3∂
−1
x ∂yu · PM3∂

−1
x ∂y(u∂xu)dtdxdy

∣∣∣∣∣∣∣ (7.19)

using again the skew-adjointness of ∂3
x and ∂−1

x ∂2
y .

The right-hand side of (7.19) is similarly split up into∑
M1�M3/10

∫
[0,tM3 ]×R×Tλ

PM3∂
−1
x ∂yu · PM3(PM1u · ∂yu)dtdxdy (7.20)

+
∑

M1�M3

∑
M2

∫
[0,tM3 ]×R×Tλ

(PM3)
2∂−1

x ∂yu · PM1u · ∂yPM2udtdxdy (7.21)

Writing v := ∂−1
x ∂yu, using (7.10) and Cauchy–Schwarz inequality in M1, we obtain

(7.20) �
∑

M1�M3/10

M1�b1(M1,M3)
∣∣∣∣PM1u

∣∣∣∣
F

b1
λ,M1

(T )

∑
M2∼M3

∣∣∣∣vM2

∣∣∣∣2
F

b1
λ,M2

(T )

� ||u||Fλ(T )

∑
M2∼M3

∣∣∣∣∣∣PM2∂
−1
x ∂yu

∣∣∣∣∣∣2
F

b1
λ,M2

(T )

which is enough for (7.15) after summing on M3.
As for (7.21), we separate again the sum on M2:

(7.21) = I + II =
∑

M1∼M3

∑
M2�M3

∫
[0,tM ]×R×Tλ

(PM3)
2v · PM1u · ∂xvM2dtdxdy
3
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+
∑

M1�M3

∑
M2∼M1

∫
[0,tM3 ]×R×Tλ

(PM3)
2v · PM1u · ∂xPM2vdtdxdy

For the first term, we use again (7.1) which gives

I �
∑

M1∼M3

∑
M2�M3

M2�b1(M2,M3)
∣∣∣∣PM3v

∣∣∣∣
F

b1
λ,M3

(T )

∣∣∣∣PM1u
∣∣∣∣

F
b1
λ,M1

(T )

∣∣∣∣PM2v
∣∣∣∣

F
b1
λ,M2

(T )

We first sum on M2 by using Cauchy–Schwarz inequality to get the bound∑
M1∼M3

M3
∣∣∣∣PM3v

∣∣∣∣
F

b1
λ,M3

(T )

∣∣∣∣PM1u
∣∣∣∣

F
b1
λ,M1

(T )
||u||Fλ(T )

and then we can sum on M3 using Cauchy–Schwarz inequality again to get (7.15) for this term.
For the second term, we apply also (7.1), then we first sum on M3 using Cauchy–Schwarz inequality and M2(α−1)

3 �
M

2(α−1)
1 in this regime, and finally sum on M1 using again Cauchy–Schwarz inequality to get (7.15). �
In the same spirit, following [9] we have for the difference equation

Proposition 7.4. Let T ∈]0, 1[ and u, v ∈ Fλ(T ) satisfying{
∂tu + ∂3

xu − ∂−1
x ∂yu + ∂x(uv) = 0

u(0, x) = u0(x)
(7.22)

on [−T , T ] ×R ×Tλ. Then

||u||2
Bλ(T )

� ||u0||2L2
λ

+ ||v||Fλ(T ) ||u||2
Fλ(T )

(7.23)

and to deal with the equation satisfied by PHigh∂x(u1 − u2) we need

Proposition 7.5. Let T ∈]0; 1] and u ∈ Fλ(T ) with u = PHighu. Moreover, let v ∈ Fλ(T ), wi ∈ Fλ(T ), i = 1, 2, 3, 
and w′

i ∈ Fλ(T ), i = 1, 2, 3 and finally h ∈ Fλ(T ) with h = P�1h. Assume that u satisfies

∂tu + ∂3
xu − ∂−1

x ∂2
yu = PHigh(v∂xu) +

3∑
i=1

PHigh(wiw
′
i ) + PHighh (7.24)

on [−T ; T ] ×R ×Tλ. Then

||u||2
Bλ(T )

� ||u0||2L2
λ

+ ||v||Fλ(T ) ||u||2
Fλ(T )

+ ||u||Fλ(T )

3∑
i=1

||wi ||Fλ(T )

∣∣∣∣w′
i

∣∣∣∣
Fλ(T )

(7.25)

Proof. (7.23) follows from (7.25) after splitting up u into PLowu and PHighu and observing that PHighu satisfies an 
equation of type (7.24).

To prove (7.25), we follow the proof of Proposition 7.3. Using the definitions of Bλ(T ) (3.6), it suffices to prove∑
M3>1

sup
tM3∈[−T ;T ]

∣∣∣∣PM3u(tM3)
∣∣∣∣2

L2 − ∣∣∣∣PM3u0
∣∣∣∣2

L2

� ||v||Fλ(T ) ||u||2
Fλ(T )

+ ||u||Fλ(T )

3∑
i=1

||wi ||Fλ(T )

∣∣∣∣w′
i

∣∣∣∣
Fλ(T )

(7.26)

Take M3 > 1. Applying PM3 to (7.24), multiplying by PM3u and integrating, we get
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∣∣∣∣PM3u(tM3)
∣∣∣∣2

L2 − ∣∣∣∣PM3u0
∣∣∣∣2

L2 =
tM3∫
0

d

dt

∣∣∣∣PM3u(t)
∣∣∣∣2

L2 dt

�

∣∣∣∣∣∣∣
tM3∫
0

∫
R×Tλ

PM3u · PM3PHigh(u∂xv)dt ′dxdy

∣∣∣∣∣∣∣
+

3∑
i=1

∣∣∣∣∣∣∣
tM3∫
0

∫
R×Tλ

PM3u · PM3PHigh(wiw
′
i )dt ′dxdy

∣∣∣∣∣∣∣ (7.27)

since ∂3
x and ∂−1

x ∂2
y are skew-adjoint. The term in h vanishes after applying PM3 , due to its frequency localization.

To treat the first term in the right-hand side of (7.27) we split it up in

∑
M1�M3/10

∫
[0,tM3 ]×R×Tλ

PM3u · PM3

(
PM1v · ∂xu

)
dtdxdy (7.28)

+
∑

M1�M3

∑
M2

∫
[0,tM3 ]×R×Tλ

(PM3)
2u · PM1v · ∂xPM2udtdxdy (7.29)

The first term (7.28) is estimated similarly to (7.20) with α = 1 and exchanging the roles of u and v, whereas for 
(7.29) we proceed as for (7.21).

To treat the second term in the right-hand side of (7.27), we perform a dyadic decomposition of wi and w′
i . By 

symmetry we can assume M1 � M2, thus either M1 � M2 ∼ M3 or M3 � M1 ∼ M2. Then we apply (7.1) to bound 
the sum on M3 by∑

M3�1

∑
M2∼M3

∑
M1�M2

�b1(M1,M2)

· ∣∣∣∣PM3u
∣∣∣∣

F
b1
λ,M3

(T )

∣∣∣∣PM1wi

∣∣∣∣
F

b1
λ,M1

(T )

∣∣∣∣PM2w
′
i

∣∣∣∣
F

b1
λ,M2

(T )

+
∑

M2�1

∑
M1∼M2

∑
1�M3�M2

�b1(M3,M2)

· ∣∣∣∣PM3u
∣∣∣∣

F
b1
λ,M3

(T )

∣∣∣∣PM1wi

∣∣∣∣
F

b1
λ,M1

(T )

∣∣∣∣PM2w
′
i

∣∣∣∣
F

b1
λ,M2

(T )

For the second term, we can just use Cauchy–Schwarz inequality in M3 and M2 since M1 ∼ M2 � M3 � 1. For the 
first term, we use that∑

0<M1�M2

�b1(M1,M2)
∣∣∣∣PM1wi

∣∣∣∣
F

b1
λ,M1

(T )
� ||wi ||Fλ(T )

Note that this is the only step where we need (5.8) to avoid a logarithmic divergence when summing on very low 
frequencies, thus we do not need the extra decay for low frequency as in [9].

Thus we finally obtain

∑
M�1

(7.29) �
3∑

i=1

||u||Fλ(T ) ||wi ||Fλ(T )

∣∣∣∣w′
i

∣∣∣∣
Fλ(T )

which concludes the proof of (7.25). �
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8. Proof of Theorem 1.1

We finally turn to the proof of our main result. We follow the scheme of [14, Section 6].
We begin by recalling a local well-posedness result for smooth data:

Proposition 8.1. Assume u0 ∈ E∞
λ . Then there exists Tλ ∈]0; 1] and a unique solution u ∈ C([−Tλ; Tλ], E∞

λ ) of (1.6)
on [−Tλ; Tλ] ×R ×Tλ. Moreover, Tλ = T (||u0||E3

λ
) can be chosen as a nonincreasing function of ||u0||E3

λ
.

Proof. This is a straightforward adaptation of [11] to the case of partially periodic data. Indeed, Proposition 8.1
follows from the standard energy estimate (see for example [13, Lemma 1.3])

||u||L∞
T Eα

λ
� Cα ||u0||Eα

λ
exp
(
C̃α ||∂xu||L1

T L∞
xy

)
(8.1)

along with the Sobolev embedding

||∂xu||L1
T L∞

xy
� T ||u||L∞

T E3
λ

�
8.1. A priori estimates for smooth solutions

In this subsection we improve the control on the previous solutions.

Proposition 8.2. There exists ε0 ∈]0; 1] such that for u0 ∈ E∞
λ with

||u0||Eλ
� ε0 (8.2)

then there exists a unique solution u to (1.6) in C([−1; 1], E∞
λ ), and it satisfies for α = 1, 2, 3,

||u||Fα
λ(1) � Cα ||u0||Eα

λ
(8.3)

where Cα > 0 is a constant independent of λ.

Proof. Let T = T
(
||u0||E3

λ

)
∈]0; 1] and u ∈ C([−T ; T ], E∞

λ ) be the solution to (1.6) given by Proposition 8.1. Then, 

for T ′ ∈ [0; T ], we define

Xλ,α(T ′) := ||u||Bα
λ(T ′) + ||u∂xu||Nα

λ(T ′) (8.4)

Recalling (4.2)–(6.15)–(7.13) for α ∈N∗, we get⎧⎪⎨⎪⎩
||u||Fα

λ(T ) � ||u||Bα
λ(T ) + ||f ||Nα

λ(T )

||∂x(uv)||Nα
λ(T ) � ||u||Fα

λ(T ) ||v||Fλ(T ) + ||u||Fλ(T ) ||v||Fα
λ(T )

||u||2Bα
λ(T )

� ||u0||2Eα
λ
+ ||u||Fλ(T ) ||u||2Fα

λ(T )

(8.5)

Thus, combining those estimates first with α = 1, we deduce that

Xλ,1(T
′)2 � c1 ||u0||2Eλ

+ c2

(
Xλ,1(T

′)3 +Xλ,1(T
′)4
)

(8.6)

Let us remind here that the constants appearing in (4.2)–(6.15)–(7.13) do not depend on λ � 1, so neither does (8.6). 
Thus, using Lemma 8.3 below and a continuity argument, we get that there exists T0 = T0(ε0) ∈]0; 1] such that 
Xλ,1(T ) � 2c0ε0 for T ∈ [0; T0]. Thus, if we choose ε0 small enough such that

2c2c0ε0 + 4c2c
2
0ε

2
0 <

1

2
then

Xλ,1(T ) � ||u0||Eλ

for T ∈ [0; T0].
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(8.3) for α = 1 then follows from (4.2).
Next, substituting the estimate obtained above in (8.5), we infer that for α = 2, 3

Xλ,α(T )2 � cα ||u0||2Eα
λ
+ c̃αε0Xλ,α(T )2

which in turn, up to choosing ε0 even smaller such that c̃αε0 < 1/2, gives (8.3) for α = 2, 3.
To reach T = 1, we just have to use (8.3) with α = 3 along with (3.16), and then extend the lifespan of u by using 

Proposition 8.1 a finite number of times. �
Therefore it remains to prove the following lemma:

Lemma 8.3. Let T ∈]0; 1] and u ∈ C
([−T ;T ],E∞

λ

)
. Then Xλ,1 : [0; T ] → R, defined in (8.4), is continuous and 

nondecreasing, and furthermore

lim
T ′→0

Xλ,1(T
′) � c0 ||u0||Eλ

where c0 > 0 is a constant independent of λ.

Proof. From the definition of Bλ(T ) (3.4) it is clear that for u ∈ C([−T ; T ], E∞
λ ), T ′ �→ ||u||Bλ(T ′) is nondecreasing 

and continuous and satisfies

lim
T ′→0

||u||Bλ(T ′) � ||u0||Eλ

where the constant only depends on the choice of the dyadic partition of unity.
Thus it remains to prove that for all v ∈ C([−T ; T ], E∞

λ ), T ′ �→ ||v||Nλ(T ′) is increasing and continuous on [0; T ]
and satisfies

lim
T ′→0

||v||Nλ(T ′) = 0 (8.7)

The proof is the same as in [14, Lemma 6.3] or [4, Lemma 8.1]: first, for M > 0 and T ′ ∈ [0; T ], take an extension 
vM of PMv outside of [−T ; T ], then using the definition of Nb1

λ,M we get

||PMv||
N

b1
λ,M(T ′) � ||χT ′(t)vM ||

N
b1
λ,M

� ||p ·F {χT ′(t)vM}||L2

Using the Littlewood–Paley theorem, we obtain the bound

||v||Nλ(T ′) =
(∑

M>0

(1 ∨ M)2 ||PMv||2
N

b1
λ,M(T ′)

)1/2

�
(∑

M>0

(1 ∨ M)2 ||p ·F {χT ′(t)vM}||2
L2

)1/2

� ||χT ′v||L2
T Eλ

� (T ′)1/2 ||v||L∞
T Eλ

(8.8)

This proves (8.7) and the continuity at T ′ = 0. The nondecreasing property follows from the definition of ||·||Y(T ′)
(3.1). It remains to prove the continuity in T0 ∈]0; T ].

Let ε > 0. If we define for u0 ∈ L2(R ×T) and L > 0,

PLu0 := F−1 {χL(ω(ξ, q))û0}
then by monotone convergence theorem we can take L large enough such that

||(Id −PL)v||Nλ(T0)
< ε

Then it suffices to show that there exists δ0 > 0 such that for r ∈ [1 − δ0; 1 + δ0],∣∣||vL||N (T ) − ||vL||N (rT )

∣∣< ε

λ 0 λ 0
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Thus we may assume v = PLv in the sequel. In particular, PMv = 0 if M3 � L.
As in [9], we define for r close to 1 the scaling operator

Dr(v)(t, x, y) := v(t/r, x, y)

Proceeding as in (8.8), we have∣∣∣∣v − DT ′/T0(v)
∣∣∣∣

Nλ(T ′) � (T ′)1/2
∣∣∣∣v − DT ′/T0(v)

∣∣∣∣
L∞

T Eλ
−→

T ′→T0

0

where we use that v ∈ C([−T ; T ], Eλ) to get the convergence.
Consequently, we are left with proving

||v||Nλ(T0) � lim inf
r→1

||Dr(v)||Nλ(rT0) (8.9)

and

lim sup
r→1

||Dr(v)||Nλ(rT0)
� ||v||Nλ(T0)

(8.10)

Let us begin with (8.9). Fixing ̃ε > 0 and r ∈ [1/2; 2], for any M ∈ 2Z, M3 � L, we can choose an extension vM,r of 
PMDr(v) satisfying vM,r ≡ PMDr(v) on [−rT0; rT0] and∣∣∣∣vM,r

∣∣∣∣
N

b1
λ,M

� ||PMDr(v)||
N

b1
λ,M(rT0)

+ ε̃

Since D1/r (vM,r ) ≡ PMv on [−T0; T0], it defines an extension of PMv and thus

||v||Nλ(T0)
�

⎛⎝ ∑
M�L1/3

(1 ∨ M)2
∣∣∣∣D1/r (vM,r )

∣∣∣∣2
N

b1
λ,M

⎞⎠1/2

Finally, it remains to prove that∣∣∣∣D1/r (vM,r )
∣∣∣∣

N
b1
λ,M

� ψ(r)
∣∣∣∣vM,r

∣∣∣∣
N

b1
λ,M

(8.11)

to get (8.9), where ψ is a continuous function defined on a neighborhood of r = 1 and satisfying lim
r→1

ψ(r) = 1.

From the definition of Nb1
λ,M , we have∣∣∣∣D1/r (vM,r )

∣∣∣∣
N

b1
λ,M

= sup
tM∈R

∣∣∣∣∣∣(τ − ω + i(1 ∨ M))−1pF
{
χ(1∨M)−1(· − tM)D1/r (vM,r )

}∣∣∣∣∣∣
X

b1
λ,M

and a computation gives

χ(1∨M)−1(· − tM)D1/r (vM,r ) = D1/r

(
χr(1∨M)−1(· − rtM)vM,r

)
so that

F
{
χ(1∨M)−1(· − tM)D1/r (vM,r )

}= r−1Dr

(
F
{
χr(1∨M)−1(· − rtM)vM,r

})
Thus, using the definition of Xb1

λ,M , the left-hand side of (8.11) equals

r−1/2 sup
t̃M∈R

∑
K�1

K1/2β
b1
M,K

∣∣∣∣∣∣(rτ − ω + i(1 ∨ M))−1ρK(rτ − ω)pF
{
χr(1∨M)−1(· − t̃M)vM,r

}∣∣∣∣∣∣
L2

Now, for r ∼ 1, we observe that for K � 1010L, we have |τ | ∼ |τ − ω| ∼ |rτ − ω| ∼ K , whereas for K � L we have 
|τ |, |τ − ω| and |rτ − ω| � L.

Thus,∣∣∣∣ 1

(rτ − ω)2 + (1 ∨ M)2 − 1

(τ − ω)2 + (1 ∨ M)2

∣∣∣∣� |1 − r|(1 ∨ L)2 · 1

(τ − ω)2 + (1 ∨ M)2 (8.12)
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and the use of the mean value theorem provides

|ρK(rτ − ω) − ρK(τ − ω)| � |1 − r|

⎧⎪⎪⎨⎪⎪⎩
∑

K ′∼K

ρK ′(τ − ω) if K � 1010L

K−1L
∑

K ′�L

ρK ′(τ − ω) if K � L
(8.13)

Combining all the estimates above, we get the bound∣∣∣∣D1/r (vM,r )
∣∣∣∣

N
b1
λ,M

� ψ̃(r) sup
t̃M

∣∣∣∣∣∣(τ − ω + i(1 ∨ M))−1pF
{
χr(1∨M)−1(· − t̃M)vM,r

}∣∣∣∣∣∣
X

b1
λ,M

(8.14)

where ψ̃(r) = r−1/2
(

1 + C(1 ∨ L)2|r − 1|
)3/2 −→

r→1
1.

It remains to treat the time localization term: using the fundamental theorem of calculus, we have

F(t − t̃M) := χr(1∨M)−1(t − t̃M) − χ(1∨M)−1(t − t̃M) =
r−1∫
1

s−1ϕ(s(1 ∨ M)(t − t̃M))ds

with ϕ(t) := tχ ′(t). In particular, for r ∈ [1/2; 2], from the support property of χ , the support of F(· − t̃M) is included 
in [t̃M − 4(1 ∨ M); ̃tM + 4(1 ∨ M)], thus we can represent

F(t − t̃M) = F(t − t̃M)
∑
|�|�4

γ ((1 ∨ M)(t − t̃M − �)χ(1∨M)−1(t − t̃M − �(1 ∨ M)−1)

where γ is a smooth partition of unity with suppγ ⊂ [−1; 1] satisfying ∀x ∈ R, 
∑
�∈Z

γ (x − �) = 1.

Now, using Minkowski’s integral inequality to deal with the integral in s, the right-hand-side of (8.14) is less than

ψ̃(r)

⎛⎜⎝∣∣∣∣vM,r

∣∣∣∣
N

b1
λ,M

+
∫

I (r)

s−1 sup
t̃M

∑
|�|�4

∣∣∣∣∣∣(τ − ω + i(1 ∨ M))−1pF
{
ϕ(s(1 ∨ M)(t − t̃M)

·γ(1∨M)−1(t − t̃M − (1 ∨ M)−1�)χ(1∨M)−1(t − t̃M − (1 ∨ M)−1�)vM,r

}∣∣∣∣∣∣
X

b1
λ,M

ds

)
with I (r) = [1; r−1] if r ∈ [1/2; 1] and I (r) = [r−1; 1] if r ∈ [1; 2].

Since ϕ(t) = tχ ′(t) and γ are smooth, twice the use of (3.10) and (3.11) (with K0 = s(1 ∨ M) and K0 = (1 ∨ M)

respectively) provides the final bound∣∣∣∣D1/r (vM,r )
∣∣∣∣

N
b1
λ,M

� ψ̃(r) (1 + C |ln(r)|) ∣∣∣∣vM,r

∣∣∣∣
N

b1
λ,M

(8.15)

(here we used that the implicit constant in (3.10) and (3.11) are independent of s). This concludes the proof of (8.9).
To prove (8.10), as before we may assume v = PLv. Given ε̃ > 0 for any M > 0 we take an extension vM of 

PMv outside of [−T0; T0] and satisfying ||vM ||
N

b1
λ,M

� ||PMv||
N

b1
λ,M(T0)

+ ε̃. Then for r ∈ [−1/2; 2], Dr(vM) defines 

an extension of PMDr(v) outside of [−rT0; rT0]. Then, since in the proof of (8.15) we did not used the dependence 
in r of vM,r , the same estimate actually holds for vM , and thus

||Dr(vM)||
N

b1
λ,M

� ψ(1/r) ||vM ||
N

b1
λ,M

which is enough for (8.10) and thus concludes the proof of the lemma. �
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8.2. Global well-posedness for smooth data

In view of the previous proposition, Theorem 1.1 (a) follows from the conservation of the energy.
Indeed, take u0 ∈ E∞

λ satisfying

||u0||Eλ
� ε1 � ε0 (8.16)

and let T ∗ := sup{T � 1, ||u(T )||Eλ
< +∞} where u is the unique maximal solution of (1.6) given by Proposi-

tion 8.2. Then, using the anisotropic Sobolev estimate (see [24, Lemma 2.5])∫
R×Tλ

u0(x, y)3dxdy � 2 ||u0||3/2
L2 ||∂xu0||L2

∣∣∣∣∣∣∂−1
x ∂yu0

∣∣∣∣∣∣1/2

L2
(8.17)

we have for T < T ∗

||u(T )||2Eλ
=M(u(T )) + E(u(T )) + 1

3

∫
R×T

u3(T , x, y)dxdy

�M(u(T )) + E(u(T )) + 2 ||u(T )||3/2
L2 ||∂xu(T )||L2

∣∣∣∣∣∣∂−1
x ∂yu(T )

∣∣∣∣∣∣1/2

L2

�M(u(T )) + E(u(T )) + 2M(u(T )) ||u(T )||2Eλ

Thus, from the conservation of M and E (as u is a smooth solution), we finally obtain

||u(T )||2Eλ
�M(u0) + E(u0) < +∞

for any T < T ∗ provided ε2
1 < 1/4, from which we get T ∗ = +∞.

Finally, let us notice that equation (1.6) admits the scaling

uλ(t, x, y) := λ−1u(λ−3/2t, λ−1/2x,λ−1y), (x, y) ∈R×Tλλ0 (8.18)

meaning that uλ is a solution of (1.6) on [−λ3/2T ; λ3/2T ] × R × Tλλ0 if and only if u is a solution of (1.6) on 
[−T ; T ] ×R ×Tλ0 . Moreover,

||uλ(0)||Eλλ0
� λ−1/4 ||u(0)||Eλ0

Thus, take u0 ∈ E∞
λ0

. If ||u0||Eλ0
> ε1, then there exists

λ = λ
(
||u0||Eλ0

)
∼ ε−4

1 ||u0||−4
Eλ0

> 1

such that 
∣∣∣∣u0,λ

∣∣∣∣
Eα

λλ0
� ε1 (since ε1 > 0 is independent of λ � 1). Thus, if uλ ∈ C(R, E∞

λλ0
) is the unique global 

solution associated with u0,λ satisfying (8.16), then

u(t, x, y) := λuλ(λ
3/2t, λ1/2x,λy) ∈ C

(
R,E∞

λ0

)
is the unique global solution associated with u0.

The rest of the section is devoted to the proof of Theorem 1.1 (b).

8.3. Lipschitz bound for the difference of small data solutions

Let T > 0, u0, v0 ∈ Eλ and u, v in the class (1.8) be the corresponding solutions of the Cauchy problems (1.6). As 
before, up to rescaling and using the conservation of M and E , it suffices to prove uniqueness for T = 1 and

||u0||Eλ
, ||v0||Eλ

� ε2 � ε0

Set w := u − v. Then w is also in the class (8.2) and solves the equation

∂tw + ∂3
xw − ∂−1

x ∂yw + ∂x

(
w · u + v

)
= 0 (8.19)
2
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on [−1; 1] ×R ×Tλ. Then, since u0, v0 satisfy (8.2), using (8.3) and then (3.17), (4.10)–(6.17)–(7.23), we obtain for 
ε2 small enough

||w||L∞[−1;1]L2
xy
� ||w||Fλ(1) � ||u0 − v0||L2 (8.20)

from which we get u ≡ v on [−1; 1] if u0 = v0.

8.4. Global well-posedness in the energy space

In this subsection we end the proof of Theorem 1.1 (b). We proceed as in [9, Section 4].

Take T > 0, and let u0 ∈ Eλ and (u0,n) ∈ (E∞
λ

)N such that (u0,n) converges to u0 in Eλ. Again, up to rescaling we 
can assume ||u0||Eλ

� ε � ε2 and 
∣∣∣∣u0,n

∣∣∣∣
Eλ

� ε � ε2. Using again the conservation of M and E , it then suffices to 

prove that 
(
�∞(u0,n)

) ∈ (C([−1;1],E∞
λ )
)N is a Cauchy sequence in C([−1; 1], Eλ).

For a fixed M > 1 and m, n ∈N, we can split∣∣∣∣�∞(u0,m) − �∞(u0,n)
∣∣∣∣

L∞
1 Eλ

�
∣∣∣∣�∞(u0,m) − �∞(P�Mu0,m)

∣∣∣∣
L∞

1 Eλ

+ ∣∣∣∣�∞(P�Mu0,m) − �∞(P�Mu0,n)
∣∣∣∣

L∞
1 Eλ

+ ∣∣∣∣�∞(P�Mu0,n) − �∞(u0,n)
∣∣∣∣

L∞
1 Eλ

Since ∣∣∣∣S∞
T (P�Mu0,n)

∣∣∣∣
L∞

1 Eα
λ
� C(α,M)

thanks to (1.7), the middle term is then controlled with the analogous of (8.1) for the difference equation along with a 
Sobolev inequality with α large enough, which gives∣∣∣∣�∞(P�Mu0,m) − �∞(P�Mu0,n)

∣∣∣∣
L∞

1 Eλ
� C(M)

∣∣∣∣u0,m − u0,n

∣∣∣∣
Eλ

Therefore it remains to treat the first and last terms. A use of (3.16) provides∣∣∣∣�∞(u0,m) − �∞(P�Mu0,m)
∣∣∣∣

L∞
1 Eλ

�
∣∣∣∣�∞(u0,m) − �∞(P�Mu0,m)

∣∣∣∣
Fλ(1)

and thus we have to estimate difference of solutions in Fλ(1). Let us write u1 := �∞(u0,m), u2 := �∞(P�Mu0,m)

and v := u1 − u2.
Using (4.2) and (6.15) combined with (8.3) we obtain the bound

||v||Fλ(1) � ||v||Bλ(1) + ||v||Fλ(1) ε

Therefore, taking ε small enough, it suffices to control ||v||Bλ(1). Using the definition of Bλ(1) (3.4), we see that

||v||Bλ(1) �
∣∣∣∣P�1v0

∣∣∣∣
Eλ

+ ∣∣∣∣P�2v
∣∣∣∣

Bλ(1)

Now, in view of the definition of Bλ(1) and Bλ(1), we have∣∣∣∣P�2v
∣∣∣∣

Bλ(1)
∼ ∣∣∣∣∂xP�2v

∣∣∣∣
Bλ(1)

+
∣∣∣∣∣∣∂−1

x ∂yP�2v

∣∣∣∣∣∣
Bλ(1)

Combining this remark with the previous estimates, we finally get the bound

||v||Fλ(1) � ||v0||Eλ
+ ∣∣∣∣P�2∂xv

∣∣∣∣
Bλ(1)

+
∣∣∣∣∣∣P�2∂

−1
x ∂yv

∣∣∣∣∣∣
Bλ(1)

(8.21)

We now define U := PHigh∂xv and V := PHigh∂
−1
x ∂yv. We begin by writing down the equations satisfied by U

and V :

∂tU + ∂3
xU − ∂−1

x ∂2
yU = PHigh(−u1 · ∂xU) + PHigh(−PLowu1 · ∂2

xPLowv)

+ PHigh(−PHighu1 · ∂2
xPLowv) + PHigh(−∂xv · ∂x(u1 + u2)) + PHigh(−v · ∂2

xu2) (8.22)

and
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∂tV + ∂3
xV − ∂−1

x ∂2
yV = PHigh(−u1 · ∂xV ) + PHigh(−PLowu1 · ∂xPLow∂−1

x ∂yv)

+ PHigh(−PHighu1 · ∂xPLow∂−1
x ∂yv) + PHigh(−v · ∂yu2) (8.23)

Let us look at (8.22). We set h := −PLowu1 · ∂2
xPLowv, w1 := −PHighu1, w′

1 := ∂2
xPLowv, w2 := −∂xv, w′

2 :=
∂x(u1 + u2) and w3 := −v, w′

3 := ∂2
xu2. Since u1, u2 ∈ Fλ(1) we have v ∈ Fλ(1), thus h, wi and w′

i satisfy the 
assumptions of (7.25). Thence we infer

||U ||2
Bλ(1)

� ||∂xv0||2L2
λ

+ ||u1||Fλ(1) ||U ||2
Fλ(1)

+ ||U ||Fλ(1)

(∣∣∣∣PHighu1
∣∣∣∣

Fλ(1)

∣∣∣∣∣∣∂2
xPLowv

∣∣∣∣∣∣
Fλ(1)

+||∂xv||Fλ(1) ||∂x(u1 + u2)||Fλ(1) + ||v||Fλ(1)

∣∣∣∣∣∣∂2
xu2

∣∣∣∣∣∣
Fλ(1)

)
Therefore, using (8.3) and (8.20), the previous estimate reads

||U ||2
Bλ(1)

� ||v0||2Eλ
+ ε ||U ||2

Fλ(1)
+ ||U ||Fλ(1)

(
ε ||v0||L2

λ
+ ||v||Fλ(1) ε + ||v0||L2

λ
||u2||F2

λ(1)

)
Proceeding similarly for V , we obtain the estimate

||V ||2
Bλ(1)

�
∣∣∣∣∣∣∂−1

x ∂yv0

∣∣∣∣∣∣2
L2

λ

+ ||u1||Fλ(1) ||V ||2
Fλ(1)

+ ||V ||Fλ(1)

·
(∣∣∣∣PHighu1

∣∣∣∣
Fλ(1)

∣∣∣∣∣∣∂xPLow∂−1
x ∂yv

∣∣∣∣∣∣
Fλ(1)

+ ||v||Fλ(1)

∣∣∣∣∣∣∂x∂
−1
x ∂yu2

∣∣∣∣∣∣
Fλ(1)

)
after applying (7.25). Again, a use of (8.3) and (8.20) gives

||V ||2
Bλ(1)

� ||v0||2Eλ
+ ε ||V ||2

Fλ(1)
+ ||V ||Fλ(1)

(
ε ||v||Fλ(1) + ||v0||L2

λ
||u2||F2

λ(1)

)
Combining the estimates for U and V along with (8.21), we get the final bound

||v||Fλ(1) � ||v0||Eλ
+ ε ||v||Fλ(1) + ∣∣∣∣P�Mu0,m

∣∣∣∣
E2

λ
||v0||L2

λ

since ||u2||F2
λ(1) � ||u2(0)||E2

λ
by (8.3).

Taking ε small enough and M > 1 large enough concludes the proof.

9. Orbital stability of the line soliton

In this last section, we turn to the proof of Corollary 1.2. We briefly recall the main steps of [21, Section 2].
Let us remember that equation (1.6) has a Hamiltonian structure, with Hamiltonian E(u). To study the orbital 

stability of Qc(x − ct), we first make a change of variable to see Qc(x) as a stationary solution of (1.6) rewritten in a 
moving frame:

∂tu − c∂xu + ∂3
xu − ∂−1

x ∂2
yu + u∂xu = 0 (9.1)

Equation (9.1) still has a Hamiltonian structure, with the new Hamiltonian

Ec(u) := E(u) + cM(u)

The key idea of the proof is then to show, as for the orbital stability of Qc under the flow of KdV [2], that the Hessian 
of Ec about Qc is strictly positive on the codimension-2 subspace H := {〈v,Qc〉L2 = 〈v,Q′

c〉L2 = 0
}

to get a lower 
bound on Ec(�

1(u0)(t)) − Ec(Qc) in term of 
∣∣∣∣�1(u0)(t) − Qc

∣∣∣∣
E.

To study D2Ec(Qc) on H , we begin by computing

Ec(Qc + v(t)) = Ec(Qc) +
⎛⎝||∂xv||2

L2 +
∣∣∣∣∣∣∂−1

x ∂yv

∣∣∣∣∣∣2
L2

+ c ||v||2
L2 −
∫

R×T

Qc · v2dxdy

⎞⎠−
∫

R×T

v3dxdy
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The linear term in v vanishes since Qc is a stationary solution.
Using the Plancherel identity in the y variable, we can write the Hessian of Ec about Qc as the sum of the bilinear 

forms
1

2
D2Ec(Qc)(v, v) =

∑
k∈Z

Bk
c (Fyv(t, x, k),Fyv(t, x, k))

with

Bk
c (̃v(x), ṽ(x)) = ||∂xṽ||2

L2 + k2
∣∣∣∣∣∣∂−1

x ṽ

∣∣∣∣∣∣2
L2

+ c ||̃v||2
L2 −
∫
R

Qc · ṽ2dx

Observe that B0
c is the Hessian about Qc of the Hamiltonian associated with the KdV equation in a moving frame, 

and thus by the study in [2] B0
c is H 1 bounded from below as desired.

To treat the terms with k �= 0, first make the change of test function

f (x) := ∂−1
x Fyv(t, x, k) ∈ L2(R)

Then, using that k2 � 1, we can write

Bk
c (Fyv(t, x, k),Fyv(t, x, k)) � 〈Lcf, f 〉

where the linear operator Lc is defined as

Lc := ∂4
x − c∂2

x + ∂xQc∂x + 1

Since Qc is exponentially decreasing, ∂xQc∂x is compact with respect to ∂4
x −c∂2

x +1 and thus SpecessLc ⊂ [1, +∞[. 
To get a lower bound on 〈Lcf, f 〉, it remains to study the existence of negative eigenvalues. Following the method of 
[1], a change of variables leads to consider the eigenvalue problem

g(4) − 4

(
1 − 3

cosh2

)
g′′ + 3ν2g = 0 (9.2)

where

3ν2 = 16

c2 (1 − λ0)

and λ0 � 0 is the possible negative eigenvalue. Using again the exponential decreasing of Qc, g behaves at infinity as 
a solution of the linear equation

h(4) − 4h′′ + 3ν2h = 0 (9.3)

For each characteristic value μ of (9.3), there is an exact solution

gμ(x) := eμx
(
μ3 + 2μ − 3μ2 tanh(x)

)
of (9.2). For these solutions to behave as eμx at infinity, this requires

μ3 + 2μ − 3μ2 = 0

As μ is also a characteristic value, this implies μ = 1 and thus ν2 = 1 from which we finally infer

c2 = 16

3
(1 − λ0)

Consequently, there is no possible negative eigenvalue λ0 if c < c∗ = 4/
√

3.
Hence we have a lower L2 bound for the bilinear form associated with Lc, which provides the bound

Bk
c (̃v, ṽ)�

∣∣∣∣∣∣∂−1
x ṽ

∣∣∣∣∣∣2
L2

Linearly interpolating with the obvious bound (since Qc � 3c)
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Bk
c (̃v, ṽ)� ||∂xṽ||2

L2 +
∣∣∣∣∣∣∂−1

x ṽ

∣∣∣∣∣∣2
L2

− 2c ||̃v||2
L2

yields to an L2 lower bound for Bk
c , which in return provides the final bound

Bk
c (̃v, ṽ)� ||̃v||2

H 1 + k2
∣∣∣∣∣∣∂−1

x ṽ

∣∣∣∣∣∣2
L2

uniformly in k.

The last trilinear term 
∫

v3 is treated with the anisotropic Sobolev inequality (8.17).

Combining all the bounds from below finally provides a control of ||w||E in term of Ec(Qc + w0) − Ec(Qc) for 
any w ∈ H . The end of the proof is then standard (cf. [2],[21, Section 2]).
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