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Abstract
In this article, we address the Cauchy problem for the KP-I equation
B+ 03w — 0 92u + udu =0

for functions periodic in y. We prove global well-posedness of this problem for any data in the energy space E = {u eLZ®xT,

Oyl € L? R xT), 0y 1 dyu € L2 (R x ']I‘)}. We then prove that the KdV line soliton, seen as a special solution of KP-I equation,

is orbitally stable under this flow, as long as its speed is small enough.
© 2018 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction
1.1. Motivations

The Kadomtsev—Petviashvili equations
du+ 0Ju+ €3, 07u + udeu =0 (1.1)
were first introduced in [12] as two-dimensional generalizations of the Korteweig—de Vries equation
du 4 2u +udu=0 (1.2)

They model long, weakly nonlinear waves propagating essentially along the x direction with a small dependence in
the y variable. The coefficient € € {—1; 1} takes into account the surface tension. When this latter is strong (¢ = —1),
(1.1) is then called KP-I equation, whereas KP-II equation refers to a small surface tension (¢ = +1).
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The KdV equation (1.2) admits a particular family of traveling waves solutions, the so-called solitons Q.(x — ct)
with speed ¢ > 0:

-2
Q¢ (x) :=3c - cosh (%x)

From the work of Benjamin [2], we know that these solutions are orbitally stable in H!(RR) under the flow generated
by the KdV equation (1.2), meaning that every solution of (1.2) with initial data close to Q. in H '(R) remains close
in H'(R) to the Q.-orbit (under the action of translations) at any time ¢ > 0.

Looking at (1.1), we see that every solution of the KdV equation (1.2) is a solution of the KP equations (1.1), seen
as a function independent of y. It is then a natural question to ask whether Q. is orbitally stable or unstable under the
flow generated by (1.1). In order to do so, we first need a global well-posedness theory for (1.1) in a space containing
Q.. In particular, this rules out any well-posedness result in an anisotropic Sobolev space H**2(R?). A more suited
space to look for is the energy space for functions periodic in y:

ER x T) := |u0(x, ) € LAR x T), dyupe LAR x T), 97 'dyup € LAR x T)} (1.3)
where T =R /27 7Z. Indeed, due to the Hamiltonian structure of (1.1), the mass
M@u)(1) := / u(t, x, y)dxdy (1.4)
RxT

and the energy

E) (1) == / {(Bxu)z(t,x,y)—l-(ax18),u)2(t,x,y)—%Lﬁ(t,x,y)}dxdy (1.5)
RxT

are (at least formally) conserved by the flow, i.e. M(u)(z) = M (u)(0) and £(u)(t) = E(u)(0), for any time ¢ and any
solution u of the KP-I equation defined on [0, #]. The conservation of the energy allows one to extend local solutions
in C([-T, T1],E) into solutions globally defined. In this article, we thus focus on the following Cauchy problem for
the KP-I equation set on R x T:

{8,u+8§u—8x18)2,u+u8xu=0, (t,x,y) eR*x T (1.6)

u(t=0)=upgeER x T)
1.2. Well-posedness results

The KP equations (1.1) have been extensively studied in the past few decades. Using a standard energy method,
I6rio and Nunes [11] proved existence and uniqueness of zero mean value solutions in H®, s > 2, for both KP equa-
tions on R? and T2. From the point of view of well-posedness, the KP-II equation is much better understood. Indeed,
since the pioneering work of Bourgain [3], we know that the KP-II equation is globally well-posed on both L*(R?) and
L?(T?). On R?, Takaoka and Tzvetkov [23] and Isaza and Mejia [10] pushed the low regularity local well-posedness
theory down to the anistropic Sobolev space H*!-%2 (Rz) with s; > —1/3, 52 > 0. Later, Hadac [6] and then Hadac,
Herr and Koch [7] reached the threshold s; > —1/2, s» > 0 which is the scaling critical regularity for the KP-II equa-
tion. As for the initial value problem on R x T, in order to study the stability of the KdV soliton under the flow of the
KP-II equation, Molinet, Saut and Tzvetkov [19] proved global well-posedness on L*(R x T).

The situation is radically different regarding the Cauchy theory for the KP-I equation. From the work of Molinet,
Saut and Tzvetkov [18], we know that this equation badly behaves with respect to perturbation methods. In particular,
it is not possible to get well-posedness of (1.6) using the standard Fourier restriction norm method of Bourgain, nor
any method using a fixed point argument on the Duhamel formula associated with (1.6) since Koch and Tzvetkov [15]
proved that on R2, the flow map even fails to be uniformly continuous on bounded sets of C([—7, T'], E). It is thus
expected to have the same ill-posedness result on R x T. Using the refined energy method introduced in [16], Kenig
[13], and then Ionescu and Kenig [8] proved global well-posedness in the “second energy space”

72 = {u eL? Puel® 3 %0ue L2}
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for functions on R?, and both R x T and T2, respectively. Lately, Ionescu, Kenig and Tataru [9] introduced the so-
called short time Fourier restriction norm method and were able to prove global well-posedness of the KP-I equation
in the energy space E(R?). Zhang [25] adapted this method in the periodic setting and got local well-posedness in the
Besov space B%’ 1 (T?), which is almost the energy space but still strictly embedded in it. Overcoming the logarithmic

divergence that appears in [25] to reach the energy space E(T?) is still an important open problem. In our case, we
prove the following theorem, which answers the global well-posedness issue in the partially periodic setting:

Theorem 1.1.

(a) Global well-posedness for smooth data
Take ug € E*°(R x T). Then, (1.6) admits a unique global solution

u=>%ug) eC (]R, E>*(R x 'JI'))
which defines a flow map
OX EXRxT)—C (]R, E®(R x T))
In addition, for any T > 0 and o € N*,
|| @0) || oo < C(T e, llutollge) (1.7)

(b) Global well-posedness in the energy space
For any ug e ER x T) and T > 0, there exists a unique solution u to (1.6) in the class

C(-T;T,EYNF(T)NB(T) (1.8)
Moreover, the corresponding global flow
o' :E— C(R,E)

is continuous and leaves M and & invariants.
The function spaces E¢, ES°, F and B are defined in section 3 below.
1.3. Stability results

As far as stability issues are concerned, Mizumachi and Tzvetkov [17] proved that the KdV line soliton is stable
under the flow generated by the KP-II equation on L?(R x T) for any speed ¢ > 0. Regarding the KP-I equation,
Rousset and Tzvetkov [21] proved that Q. is orbitally unstable in E!(R x T) under the KP-I flow constructed on
Z2(R x T) in [8], whenever ¢ > ¢* = 4/+/3, and that it is orbitally stable if ¢ < ¢*. Thus, as a byproduct of [21] and
of our Theorem 1.1, we can extend the range of admissible perturbations in [21, Theorem 1.4] to get

Corollary 1.2. Assume ¢ < 4//3, then Q. is orbitally stable in E.
More precisely, for every € > 0, there exists § > 0 such that for every ug € E(R x T) satisfying
[luo — QcllemxT) <8

we have

su ian@lu t,x —a,y) — .x—ctH <e
leﬂgaeR (uo)( ¥) — Ol )E(Rm

The proof of Corollary 1.2 is a straightforward adaptation of the argument in [21]. Indeed, the proof of [21, Theo-
rem 1.4] only uses the extra conditions afu eL? 0y 28}2,14 € L? to have the global solutions from [8]. For the sake of
completeness, we present the outlines of the proof in section 9.
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1.4. Strategy of the proof
Let us now briefly discuss the main ingredients in the proof of Theorem 1.1.
As pointed out above, it is irrelevant to look for functions spaces F(T) — C([—T, T'], E) and N(T) such that any

solution to (1.6) satisfies

1. alinear estimate

< 3 (1 H 1.9
lellecr) < ol + |36 || (1.9)
2. a bilinear estimate

[10x @)l Inery S ulleery Hvlgery (1.10)

In order to construct solutions in E, we will thus use the functions spaces F(7), N(7') and B(T") introduced in [9].
Those spaces are built to combine the idea introduced in [16] of a priori estimates on short times (depending on the
frequency) for frequency localized solutions, with the standard Bourgain spaces X*? of [3]. Thus, we will replace
(1.9)—(1.10) with

1. alinear estimate

< 3. (1 H 111
lllecry < el + o @) | (L1D)
2. a bilinear estimate

[10x @)l Inery S ulleery Hvleery (1.12)
3. an energy estimate

ullgery S Nuol i + Hul I r (1.13)

With (1.11)—(1.12)—(1.13) at hand, we will get the existence part of Theorem 1.1 from a standard continuity argument.
To get uniqueness, we will prove the analogous of (1.11)—(1.12)—(1.13) for the difference equation, at the L? level:

[lu — U||F(T) Sl — v”ﬁ(T) + [[0x{(u — v)(u + v)}”ﬁ(]‘) (1.14)
18,1t = )@ + 0D iy S e = vllgery le+ vllecr) (1.15)

it = Il < N0 = vol 72 + e+ vllery [l = vlig ) (1.16)
The main technical difficulties, compared to the case of R2, are the lack of a scale-invariant Strichartz estimate, and
the impossibility to make the change of variables as in the proof of [9, Lemma 5.1 (a)] to estimate the volume of
the resonant set. The first one is handled with frequency localized Strichartz estimates in the spirit of [3,19]. For the
second one, we follow Zhang [25, Lemma 3.1], but looking closely on the computations we are able to take advantage
of the smallness of the intervals in which the frequency for the x variable varies (note that this is not possible in [25]
since this frequency lives in Z) and to recover the same estimate as in [9] in this case. We also use a weighted Bourgain
type space to deal with the logarithmic divergence in the energy estimate.

1.5. Organization of the paper

Sections 2 and 3 introduce general notations as well as functions spaces. We begin the proof of Theorem 1.1 in
section 4 by proving estimate (1.11). After establishing some general dyadic estimates in section 5, sections 6 and 7
deal with (1.12) and (1.13) respectively. The proof of Theorem 1.1 is then completed in section 8. Finally, in the last
section 9 we recall the arguments to obtain Corollary 1.2.
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2. Notations

e We use the notations of [20] to deal with Fourier transform of periodic functions with a large period 2w A > 0. Let
A > 1 be fixed. We define (dg);, to be the renormalized counting measure on A~ Z:

1
/u(q)(dq)x = ) 1@

qe =17

In the sequel, all the Lebesgue norms in g will be with respect to (dg),. Moreover, the space-time Lebesgue
norms are defined as

p/r 1/p
1 llp 1y o= / / fIrde | dsdg);
RxAi~1zZ \R
For a 2 A-periodic function f, we define its Fourier transform as
272
= [ e fmay ger 'z
0
and we have the inversion formula

70 = [ ¢ Fayaa
We write T, :=R/27AZ. Whenever A = 1 we drop the lambda.

e The Fourier transform of a function ug(x, y) on R x T or u(¢, x, y) on R2 x T is denoted 7 or Fu:

(e, q) = / e EF 0 (x, y)dady, (£.q) €R x 177
RxT;
and
Uz, &, q) = / e ITHEXTA) Yy (1, x, y)drdxdy, (1,€,9) e R xA7'Z
szTA

Fru stands for the partial Fourier transform of u(t, x, y) with respect to #, whereas F,u means the partial Fourier
transform of u with respect to space variables x, y, and similarly for F, F,.
We always note (t,§,q) € R? x A~!Z the Fourier variables associated with (z, x, y) € R? x T;.
We note eventually ¢ = (£,¢) e R x A7 Z.
e We denote  the convolution product for functions on R or A~'Z: to specify the variables,

F (") *e g(x') means (f *g)(x) = / flx = xDg(xdx’
RorA~17Z
e We use the “bracket” notation (-) for the weight in the definition of inhomogeneous Sobolev spaces, i.e.

@ = (1+¢)"
e U(t) is the unitary group defined by the linear evolution equation associated with (1.6):
Vup € LAR x Ty), U(0uo(E, q) =e"EDiy (&, )
where

w(E, q) =8 +q°/¢

‘We also note
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2

o(1,§,q) ::T—w(g,q):r_§:3_q€

the modulation associated with (1.6).

e For positive reals a and b, a < b means that there exists a positive constant ¢ > 0 (independent of the various
parameters, including A) such thata < c - b.
The notation a ~ b stands for a < b and b < a.

e We note M € R (respectively K > 1) the dyadic frequency decomposition of |£| (respectively of (o)), i.e.
M e2” and K €2V,
We define then

ik i= {60 R xATIZ, ||~ M. (o(r.6,9) ~ K]
and
Dims<k ={@.6 9 eR <72, [g|~ M 06N K} = | Dim
K'<K
‘We note also
Iu ={M/2<|§| <3M/2}
and
Jem =g <3M/2= | Tur
M'<M
e We use the notations M| A M, := min(M, M) and M| Vv M, := max(M1, M>).
For M, M, M3 € Ri, Mmin < Mypeq < My,qx denotes the increasing rearrangement of My, M, M3, i.e.

Myin =M1 AM> AM3, Myay =M1V Mav Mz and Myyeq = My + My + M3 — Myax — Mpin

e We use two different Littlewood—Paley decompositions: the first one is homogeneous (on 2%) for |£|, the last one
is inhomogeneous for (o) € 2N,
Let x € C°(R) with 0 < x < 1, suppy C [—8/5;8/5]and x =1 on [-5/4;5/4].
— For M € 2%, we then define ny(£) := x (§/M) — x (26/M), such that suppny C {5/8M < |€| < 8/5M} and
nu=1on{4/5M < |&| <5/4M}. Thus & € suppny = & € Ty and |€| ~ M.
- For K € 2N, we also define p1(0) := x (o) and px (o) := x(6/K) — x(20/K), K > 1, such that supppg C
{5/8K <|o|<8/5K}and px =1o0n{4/5M < |o| <5/4K}, K > 1. Thus ¢ € supppx = (o) ~ K.
— When needed, we may use other decompositions ¥, 77 and © with the similar properties as x, 1, o and satisfying
X =1onsuppy, 7=1 on suppn and p = 1 on suppp.
— Finally, for € R, we note x, (x) := x (x/k).
e We also define the Littlewood—Paley projectors associated with the previous decompositions:

Pyu=F ' (q(E)i) and Peypus= Y Pyu=F " (xu(§))
M'<M

Moreover, we define
Prow := P¢y-s and Phigh :=1— Prow
e The energy space E, is defined as in (1.3) for any period 2w A:
ER x T) = {ug € 2R x Ty), dyug € LXR x Ty), 85 dyuo € LAR x Ty |
It is endowed with the norm

lluollg, == I1(§) - p(§. q) - tioll 2

i.e. E, is a weighted Sobolev space, with the weight defined as
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pEa)i=(©7"a/8) .0 eRxTZ @1
so that
q2
(&) pE I =1+8+ 2 (2.2)
i.e.
2 2 2 -1 2
ol , = Iluol 2 + l12.uol 2, + [0 By |
More generally, for @ € N, we define
By = {uo(r, y) € LAR X T, lluolly = [[(6)" - p(&. ) - || > < +o0} 23)
and
EX =) Ef (2.4)

aeN*

e For areal &, we define
(€], =2"" A& er'Z

e Foraset A C RY, 1, is the characteristic function of A and if A is Lebesgue-measurable, |A| means its measure.
Similarly, if A C A~!Z, its measure with respect to (dg); will also be noted |A|. When A C Z is a finite set, its
cardinal is denoted #A.

e For M > 0ands € R, < M*™ means < C, M*~¢ for any choice of ¢ > 0 small enough. We define similarly M*™.

3. Functions spaces
3.1. Definitions

Let M €27,
First, the dyadic energy space is defined as

E, y:= {uo S Eg, Pyug = Mo}
As in [9], for M € 2% and b; € [0; 1/2], the dyadic Bourgain type space is defined as
Xﬁ}M = {f(t,é,q) e L>(R*> x A7 '7), suppf C R x Ips x A

b
£l =D KBy Pk (x = @) flip2 < +00
' K>1

where the extra weight Sy k is

=1V —
Pu.x (1v M)
This weight, already used in [3,19,5], allows to recover a bit of derivatives in the high modulation regime, thus
preventing a logarithmic divergence in the energy estimate. Then, we use the Xil y Structure uniformly on time

intervals of size (1 v M)~1:

Ff’lM ={u@t,x,y)€C(R, Expm), Pyu=u,

”””Fi"M ::tsi%||p.f{x(lv,w)_l(t —[M)u}HX:lM < +oo}
, » :
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and

N)Ii'M ={u@t,x,y)€C(R, Expm), Pyu=u,

[u]] NP1 = sup ‘(t—w+i(1\/M))_lp-F{X(lvM)_1(t—tM)u} by <+oo}
KM tmeR XA,M
For a function space ¥ < C(R, EY), we set
Y(T):={ueC([-T.TLES), llullyr) <-+oo}
endowed with
lully(ry = inf{ll@lly, @€Y, T=wuon[~T,T]) 3.1
Finally, the main function spaces are defined as
1/2
F(T) = Yu € CA=T, T1LE, [lullgan o, =<Z<1vM)2“||PMu||%] m) < +o0 (3.2)
M=>0
and
1/2
a,by ,_ B o 2a 2
NZPU(T) 1= qu € CA=T. TLED. llull o ) i= (%avm | Paguall AM(ﬁ) <+00 (3.3)
>

The last space is the energy space

12
BY(T) = {ueC(~T,TLE). lullger) —<|}P<1uo|}Eu+Z sup ||PMu(rM)||ég> < +00

=1 MEl=T.T]

(3.4)
For b1 = 1/8, we drop the exponent.
If moreover a = 1, we simply write F, (T), Ny (T') et B, (T).
We define similarly the spaces
Epu. Fy. NJ'y
which are the equivalents of Ej y, F f ,] v N f" ), buton an L? level, i.e. without the weight p(&, ¢). In particular,
2
- 201,012 Ly ull—
el ry ~ D (L M2l 2 | o (35)
M=>0 )L M s

For the difference equation, we will then use the L>-type energy space

B.(T) :=:ue6([ T:T1 LR x o). lullg- ) = || P<iuol[ 2 + )~ sup ||PMu<tM)||iz<+oo}
M>1MmE-TT]

(3.6)
and the spaces for the difference of solutions and for the nonlinearity are
F (T = {ueca T:T1, L*(R x Ty)), [ullZ. ey = Z I Munzmm <+oo} 3.7)
and
N (T = {u €C(—T; T1, L*(R x T»)), IIull_bl( ) . +OO} (3.8)
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3.2. Basic properties
The following property of dyadic Bourgain type space is fundamental:

Proposition 3.1. Let M € 2%, by € [0; 1/2[, fir € X',,, and y € LA(R) satisfying

y@IS @™ (3.9)
Then, for any Ko > 1 and ty € R:

K2 _
0Bt ko | (e = ) F |y (Kot =10 F || L S B 1Sl (3.10)
and
> KB4 k|| @ = ) F {y (Kot —onF T fu|| L Sl g G.11)
K>Ko M
and the implicit constants are independent of Ko, to, M or A.
We will have several uses of the following estimate
Lemma 3.2. For any M € 2% and fy € X(A),M’ we have
IIfMIIL;qL%SIIfMIIXg_M (3.12)

Proof. We decompose fj; according to its modulations:

Wl 10 <Y lok(@—o)fullpz 1Sy K2 |pk (T — o)t —w) ™2 pr(t — o) fu
£EqTT EqT
' K>1 ' K>1

L2 Ll

Next, using Cauchy—Schwarz inequality in the 7 variable, we control the previous term with

Z K12

K>1

—1/2

7% @ =) e =) 2| llox c = @) full.a
Lz 2

Now, since for any fixed (§,q) e R x A~

) (T —w)~1/? < 1, the sum above is finally estimated by
L3

172 — —
DK lox@—o) fullz  =lfully, O
K>1

Now we prove the proposition.

Proof. Let us begin by proving (3.10). Using that || XKo (T — o) | | 2 S Ké/ 2, we estimate the term on the left-hand
side by

Ko Bai ko || xx0 (T = @) 12

(K3 0Pk T)) *e fu|
Ll

(75" e)) = fMH

MK()

(3.10) then follows from using Young’s inequality L x L' — L and (3.12), since 7 € L by the assumption (3.9).
Now we prove (3.11). We decompose fjs according to its modulations and then distinguish two cases depending
on the relation between K and K:
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> K280 i ||ox @ — o F [y (Kot =) F ! fu |

L2
K>Kj
b ity ——
<Y K 3 |[exte - o) (07T e (ox 0 -0 fu)|
K>Ky Ki>1
LY Y 0+ X X o-rn
K>Ko K1<K/10 KZKo K\ 2K
For the first term, we have |t — 7| ~ K since |t — w| ~ K and |t’ — w| ~ K1 < K /10, thus using Young inequality

L%® x L' — L% the estimate loxll2 < K'/? and then summing on K > K, we get the bound

1S Y KB Y |lexe o (19P27) we (or (e - w)fM)]

K>Ko K1<K/10

L2

<K71/2 le |3/2
K1<K/10

ok = fullz

This is enough for (3.11) after using (3.12) and
S/\
‘ ‘ - Yo'l

and the right-hand side is finite by the assumption on gamma (3.9).
Finally, /1 is simply controlled using Young L! x L? — L? and (3.13):

12
1153 K8 |7
K12 Ko

, S K3+1/p_1 H| . |SJ’/\||LP (313)

Ky Ll||pK1(T_w)fMHL2S"”fM“Xi"M Od

Remark 3.3. For the loss in (3.10) to be nontrivial, we need either by =0 or Ko < (1 v M 3. In particu]ar in the
multilinear estimates we cannot localize the term with the smallest frequency on time intervals of size M, when
by > 0.

The next proposition deals with general time multipliers as in [9]:

Proposition 3.4. Let M > 0, by € [0; 1/2[, fim € F)[\),IM (respectively N){]}M) and my; € C*(R) bounded along with its
derivatives. Then

mas (@) ol o N<Z<1VM> "Hm<’<>HLw>||fM||F;IM (3.14)
and
4
1) ol (Z(l v ng’?Hm> 1l (3.15)
W\ & |

respectively, uniformly in M > 0 and ) > 1

Proof. Using the definition of F. f ! 1> WeE write

e fuall o = sup Y K'2Byt o |[p - ok (2 = ) F {xqrvmn-1 ¢ = ts)mu ) fu} |2
P tmeR g1

Next we estimate

| F {xavan -1 = tdmp }| (0) < || xvan-1 ¢ — tdmul],, S AV M) Himl| oo
L

and
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4 d*
\F{xavmy-1 —tadmy Y| () = ||~ f@ {xavan-1@ — tM)mM}‘

4
_ k _ _
Sie 3 [l vt

=0

Thus we obtain

|7 {xaoan-1  — tamu}| (1) S (i(l v M)~k ng’;) ‘ ‘Lw> (v M)—1<(1 v M)_lr)_

Using (3.10) and (3.11) with tg =tp, Ko= (1 V M) and y (t) = F-! (‘L’)_4 concludes the proof of (3.14). The proof
of (3.15) follows similarly. O

The last proposition justifies the use of F, (T') as a resolution space:
Proposition 3.5. Let « e N*, T €]0; 1], by € [0; 1/2[ and u € F‘;’bl (T). Then
oo <
lullgem < Nl g o, (3.16)
and

00 < —
lull o2, S ullgon (3.17)

Proof. The proof is the same as in [9, Lemma 3.1]: let M € 2Z i3 be an extension of Pyu to R with
Nl oy < 21| Ppue]] Loy and 7y € [—T; T1, then it suffices to prove that
F)L.M FA,M(T)

o Fuintn 2, < 110+ Dtavan 1@ = i |,

Using the properties of x and the inversion formula, we can write
i (tan) = {Xrvany+ ¢ = )iid } (a0) Z/]:’ {Xavany1 ¢ = t)ia } (0)e ™7 de
R

Thus, using (3.12), we get the final bound
[P - Fayitai (e |L§’q <|lp-F{xavan-1— fM)@}HL;# Slp - Fxavan -1 — ’M)ﬁl}“xf}M -
4. Linear estimates
This section deals with (1.11) and (1.14).
Proposition 4.1. Let T > 0, by € [0; 1/2[ and u € BS(T), f € N‘;f’bl (T) satisfying

du+ u—o; ' oju=f 4.1)

on[-T,T] xR xT;.
Thenu € F‘;’b' (T) and

< o .
g, < el ry + 11 lgeon (42)

Proof. This proposition is proved in [9] (see also [14]). We recall the proof here for completeness.
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Looking at the definition of F‘;’b‘ (T) (3.2), N‘;’b‘ (T) (3.3) and B (T) (3.4), we have to prove that VM > 0,
1Barll i, oy S 1 Parcollgy + 11 Pa flln 7y 180 < M <1

Pyul| » < su Ppu(t o+ ||P b ifM>1
[| Pps ||FA,1M(T) IMG[_I;!T]H mu(ta)lgo + 1 Mf”NA.IM(T)

Let M > 0. As in [14, Proposition 2.9, p. 14], we begin by constructing extensions i, (respectively fM) of Pyu
(respectively Py f) to R, with a control on the boundary terms.
To do so, we first define the smooth cutoff function

Xavmy-10t +T)ift < =T
my(t):=31ifte[-T,T]
Xavmy-1p0@ =T)ift>T

Next, we define fM on R with

Fu (@) == my () fu (1) 43)
where f)s is an extension of Py f to R satisfying ||fM||Nb1 < 2||PMf||N;;1 .
rM )»,M(T)

So ﬁ\} is also an extension of Py, f, with suppﬁ/[ Cl-T—AvMY5T+0vM3].
From (4.1), we have that
t
Ppu(t) = U(t)PMuo—i—/U(t — )Py fdt on [T, T] (4.4)
0
Thus we define it as
t
up(t) :=mp (1)  U(t) Ppug + / UGt —t) fu(t)de' §, teR 4.5)
0

The choice of ﬁ/l and 1y is dictated from the necessity to control the boundary term. First using (3.15) with m; we
have

17l SUPMSN o o,

and )7 defines an extension of Pysu.
Moreover, if ty ¢ [—T,T], from the choice of my;, we can write X(lvM)—l(t — thyuy () = X(lvM)*l(t —
ﬁ)X(lvM)fl (t — ta)iips (t) for a fp; € [=T, T. Then, using (3.10) and (3.11) we get

_ — Y < _ — )i
tM;[l_lI;’T]HX(IvM) 1t fM>uM||X;1MN%:{gr;ﬂlmvm (= D[y

Thus it suffices to prove

sup ||p'f{X(t_tM)’/rﬁjl}||XflM5“”2;1(0)”];24_

tyel-T,T]
sup H(T —o+i)'p-Flxa —t’;,)ﬁ,,}‘ p FM <1
fmeR Xy
and
up 1 F a1 = )i} [ o S sup | o) |gg +
tyel-T,T] oM o el-T.T 0
sup H(r—w+iM)—1p..7-"{XM_1(t—ﬁ\})f7M}‘ y i M > 1
t’;IER X)L,M
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Note that, since my; =1 on [—T, T] and u is a solution of (4.1), for ty; € [T, T], we have
tm

Pyu(ty) = U(ty) Pyug +/U(r — ) (t)dt'
0
and thus

t
up(t +ty) =mpy(t +tay) U(t)PMu(tM)-l-/U(t—t/)ﬁ,[(t/—i-tM)dt/
0

Finally, it suffices to prove that

1P F (@ = a)mag YU ) Paguoll oy S 1131 0) gy
and
t
po L xa=nomu [ve-nfuwrar ]l 5|[@-os T F e -nnfil]|,
0 X;lM rM

for the low-frequency part, and
1P+ F a1 @ma (¢ 4+ iU @O Py | 5 137 ) g
and

t
p-F xM—l(t)mM(tthM)fU(t—t/)ﬁu(tMH/)dt/
0

by
XM

s||@=o+iny ™ F - =0 ful|

by
XA,M

for the high-frequency part.
To prove those estimates, we first notice that, since ¢’ € [0; ¢] and ¢ € supp X(van-1, We can write fys as

i +y="3" funtm+1):= > y (VMY —n) furlts +1)
In] <100 In] <100
where y : R — [0; 1] is a smooth partition of unity, satisfying suppy C [—1; 1] and for all x € R,

doya—m=1

nez

The second observation is that, for a fixed )7, we have for the homogeneous term
[P - F{xp-1@Ompt + DU @) Py || o1 S lmarU @) Prutan| o,
rM M

so we can remove the localization m s (¢) thanks to (3.14), and similarly for the inhomogeneous term.
Computing the Fourier transform in the left-hand side of (4.6) and using the bound
s|fex@@||

ok @ =@ I7@ —w)| | <

< K73/2
2 ~Y
since ¥ € S(R), we then obtain
Ilp - F{xt = t)U (1) Pyuoll b,
WM

b 1 —w)~ -
S KBk HPK(T —w)p- ™M p(r _w)PMUO‘
K>1

<
L2 S |1 Puuollr2

1785

(4.6)

.7

(4.8)

4.9)
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The proof of (4.8) is the same replacing the first bound by

For (4.7) and (4.9), a computation gives first

-2
,oK(r—a))M_1<M_l(t—a))> <MTIKY2(0 v MTIK) 2
2

LT

t
F om0 f UGt = 1) fun(en + 150§ ()
0

=1V M)—1/ AV M) T =) =31V M)z —w)

i(t' —w)
R

T F fua} (2t

Now, we distinguish between two cases, whether [t/ —w +i(1 vV M)|~ |t/ —w|or |7 —w+i(1Vv M)|~ (1V M).
First, if |t — w| 2 (1 vV M), we have

XAVM) @ =) -3V M)t —w) ‘ <
(7 — w) ~

X((1v M)~ —1)
(' —w+i(lv M)

X((AVM) ™ (—w)
it —w+i(lv M)

Now if |t/ — w| < (1 v M) we apply the mean value theorem to ¥ so that
X(AVM) =) =gV T —0) =0V M) O) (' - o)
fora# €[t — 7/; T — w]. Thus we have

X(AVvM) @ =) -3V M)z —w)

. SAvM X O] ST —o+iav TR O
(T —w)

Finally, using the assumption on 6 and that ¥ € S(R), we have in both cases

4 —4
5(\((1\/M)il(l'—‘If/))—j(\((l\/M)il(T—a))) - <(1VM)_1(‘[_‘L'/)> ((IVM)_I(‘[—C())>
i(t/ —w) ~otU—w+4i(lvM) '—w+i(1VvM)

Coming back to (4.7) and (4.9), the left-hand side can be split into

—4
. <(lvM)_1(t—r’)> 1,
Y |lp-avm / T ) )] ar

1| <100 R

Xy

1v M)~} o)
+ Z p~(1vM)—1/ <( b (r_w)> Flfun}@)|dd
'—w+i(lvM) o

In]< 100 R

by
XA.M

The first term is handled with (3.10) and (3.11) with Ko = (1 v M) and y = F ! {(-)_4}. This term is thus controlled
by

sup ||+ (@ —w-+i(1v M)V F { fir )
[n] <100

<

~ M| b
Xy Hf HF‘A,]M
where in the last step we have used that

y((A v M)t —n)=y((1V M)t —n)xqym-1 (¢ — 1V M) 'n)
and (3.10)—(3.11) to get rid of y.
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It remains to treat the second term. By definition of the X f{‘ ) horm, we can write it

> K284 ||ox @ —@p- v !

K>1
—4
<(1\/M)_1(r—a))> 1.
/ TRV VS Flfuan}@hlde
R LZ
=2 KBk Hp @ —otiay iy F || ,
K>1 T/
-1 -1 —4
"PK(T—w)(l\/M) (v~ -w)
Now, since

—4
> KB v v TR ekl S 1
K>1

we can use (3.12) to bound the last term with

Hp H(f/—a)—kl(lVM))_l.F{fM,n}

Ll

by
'[/ X

AM

S|lp @ —oriay )T F S
LZ
which concludes the proof through the same argument than above. O

Proceeding in the same way at the L? level, we have also

Proposition 4.2. Let T > 0, by € [0;1/2[ and u € B,''(T), f € N,''(T) satisfying (4.1) on [=T, T] x R x Ty. Then
lallgotr gy S Wty + 111t (4.10)
5. Dyadic estimates

As in the standard Bourgain method, we will need some bilinear estimates for functions localized in both their
frequency and their modulation. This section deals with estimating expressions under the form [ f1 « f> - f3 which

will be useful to prove the main bilinear estimate (1.12) as well as the energy estimate (1.13). The following lemma
gives a first rough estimate:

Lemma 5.1. Let f; € L*(R? x A~'Z) be such that suppf; C Dy m,.<k; N R* x I;, with M; € 2%, K; € 2 and
L CA™'Z,i=1,2,3. Then

3
1/2 ,,1/2,4,1/2

fixfr Ml ke T2 (5.1)

R2xA~1Z i=l1

Proof. The proof is the same as in [9, Lemma 5.1 (b)]. We just have to expand the convolution product in the left-hand

side and then apply Cauchy—Schwarz inequality in the variable corresponding to the min: if, for example, K| = Kip,
we have

/ fixfa- f3= / / [T =12, = 8) - (12, &) f3(1, §)dradrdErde

R2xA~1Z RZxA—1ZRZxA—1Z
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Using Cauchy—Schwarz inequality in 7, the previous term is less than

[ 1a@i|| [ e - - o h || do
R

RxA—1ZRxA~1Z L2

Next, a use of Young’s inequality L' x L> — L? in t gives the bound

/ / O 2 120612 11 - 4“2)||L;1 d&dg
RxA-1ZRxA~1Z

Finally, using again Cauchy—Schwarz inequality in 77, the previous term is controlled with

[ ] 1a@ @i kP 1 - ol ded
RxA~1ZRxA~Z

We get (5.1) when proceeding similarly for the integrals in £ and ¢g. O
5.1. Localized Strichartz estimates

The purpose of this subsection is to improve (5.1). All the estimates we need are already used in [19] in the context
of the KP-II equation. We briefly recall the outline of the proof here for the sake of completeness.
First, we are going to use the following easy lemmas:

Lemma 5.2. Let A C R x A~1Z. We assume that the projection of A on the & axis is contained in an interval I C R.
Moreover, we assume that the measure of the q-sections of A (that is the sets {q er1Z, (5, q) € A} for a fixed &)
is uniformly (in &y) bounded by a constant C. Then we have

Al < CII| (5.2)

Proof. The proof is immediate: by definition

|A|=/(/ms,q)(dqn)ds</Cds=cu| U
I I

Lemma 5.3. Let 1, J be two intervals in R, and let ¢ : I — R be a c! Sunction with infg ¢y |g0’($)| > 0. Then
1]

J, < —— 53
HxeJ, o) el} infre) [0/ ®)] (5.3)

and

quJm‘lz, w(q)el}‘5<infgg|%> -

Proof. Let us define

J ={xel, p(x)el}

and
T = {q eJNr'z, v(q) € 1}

We just have to use the mean value theorem and write

lp(x2) — p(x1)|
|Tl= sup |xa—xi|= sup ————
x1,x6J x1,0ed l¢’(0)]
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for a 6 € [x1; x2], and (5.3) follows since SUPy, x,e T lo(x2) — p(x1)| < |I| by definition of 7. The proof of (5.4) is
the same, using that

|7l <A7' 4+ sup o — i
q1,92€ T2

by definition of (dg),. O

Lemma 5.4. Let a # 0, b, ¢ be real numbers and I C R a bounded interval. Then

) |1|l/2
erm, ax +bx+ceIH§ o (5.5)
|al
and
1 1/2
qu,\—lz, aq2+bq+c€IH§ % (5.6)
la|1/?

Proof. We begin by proving (5.5). By the linear change of variable x > x + b/(2a) it suffices to evaluate
Hy €R, ay’ e TH with T = I +b2/(4a) — ¢, |T| = |1
Writing ¢ := sign(a), the measure of the previous set is

f]l;(ay2)dy: |a|_1/2f187(x2)dx

R R

e If0¢ el, by symmetry we may assume el C R% and write el = [x1; x2] with O < x1 < x2. Then an easy
computation gives

~ _ _ dy
[rer a?eT)|=al [ =107 [ 101003
R R Zﬁ

=la|™ "2 (3] = lal V2 (a2 = an) < lal V1)1

e If0 € el: defining I := (¢ U —e]) NRT = [0; x»] we have

[y er e el <2|a|—1/2/11+<x2)dx=2|a|—1/2\/_x25 lal =121 11112
R

The proof of (5.6) follows from (5.5) through the same argument as in the proof of (5.4). O

The main estimates of this section are the following.

Proposition 5.5 (Dyadic L* — L2 Strichartz estimate). Let My, M2, M3 € 2Z Ky, K>, K3 e 2N and let u; € L2(R? x
A71Z), i = 1,2, be such that supp(u;) C D um; <k;- Then

172
20,01y -1 w02|| L S Ko n KD 2M - ((Ky v K P A M) a2 ] 2 (5.7)
Moreover, if we are in the regime Ky < 107 19M | My M5 then

min

1/2 —1/2
LS KA KD M (K1 K P Ml a2 a2 (5:8)

H]lD*MsvéKa Bt ‘L

Proof. These estimates are proven in [19, Proposition 2.1 & Corollaire 2.9] and [22, Theorem 2.1, pp. 456-458]
for functions f; € L>(R? x Z) but with a slightly different support condition: the localization with respect to the
modulations is done for the symbol of the linear operator associated with the KP-II equation (i.e. &(&, ¢) = £ —¢?/&),
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and the fifth-order KP-I equation (> (m, n) = —m> — n?/m) respectively. As a matter of fact, the proof only uses
the form of the expression (g1/§1 — g2/&2) but does not take into account its sign within the resonant function. Thus
we can obtain the similar estimates for the KP-I equation. Let us recall the main steps in proving these estimates: first,
split #1 and u» depending on the value of & on an M3 scale

HJIDLMK,(3 “up *u2HL2 < ZZ Hllpk_,v,}g,(3 -ul,k*uz’[‘
keZ LeZ

L2
with

ui j = 1My, (j+1ms1Eui

The conditions || ~ M3, & € [kM3, (k+ 1)M3] and & — &1 € [{M3; (€ + 1) M3] require £ € [—k — ¢; —k + ] for an
absolute constant ¢ > 0. Thus we have to get estimates for functions u; supported in Dy u; k; N {&; € I;} for some
intervals ;.
Moreover, we may assume &; > 0 on supp u; (see [22, p. 460]). This is crucial as & ~ & v (§ — &) in this case.
Squaring the left-hand side, it then suffices to evaluate

2

/ [ 1o ek, o c0ua(r = 1 = f0dnd @) | drdédg),

RxRixA™1Z RxRyxA—1Z

Using Cauchy—Schwarz inequality, the integral above is controlled by

2 2
sup |Aczq| - llull7 luzll?
7,6 20,9€D5 M3,<k5

where A 4 is defined as

Arg g = {(Tl,fl) eERXxRy xA7'Z, &1 e, E &1 €, 0<E ~ My,
0<E—&~My, (1 —w@)) SKI, (t—1 -0l —0) SK2}
Using the triangle inequality in 71, we get the bound
[Aceq| S (Ki A K2) | Brggl

where By ¢ 4 is defined as

Brgg={01eRy x27 12 e1e 6 —g1€ b, 0< 61~ M,

0<E—& ~ M, (1 —0@)— Q1.0 — 0. —0) S (K1 V K)}
where €2 is the resonant function for (1.6), defined on the hyperplane ¢ + &, + 3 = 0:

_ 2
Q(%1,82,53) =) + 0 () +w(83) = —36168 + G192 — 52q1)
§16283
S IL T P TRV T (ﬂ - q—2>2 (5.9)
&1 +& & & '

Now, (5.7) follows directly from applying Lemma 5.2 and (5.6) to B¢ ¢ 4 since its projection on the &; axis is controlled
by |I1]| A |I2|, whereas for a fixed &1, the cardinal of the g;-section is estimated by <(K1 \Y K2)1/2(M1 A M2)1/2>
using (5.6) as T — w(¢) — (&1, ¢ — &1, —¢) is a polynomial of second order in g1, with a dominant coefficient
~ (My A Mp)~!. Thus

|Breql S UNIARD((Ki v K2)' (M1 A M) )
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which gives the estimate (5.7) when applied with I} = [kM3; (k+ 1)M3]1N Ty, and I = [EM3, (£ +1)M3]1N Ty, and
using Cauchy—Schwarz inequality to sum over k € Z.
In the case Kqr < 10710M My M3, we compute

082 91 99— q & 1/2
_o |9 _ _s 013 -
g1 & £E-& {"31("3—51)( +351(5 51)5)}
Thus, from the condition |Q| < Kpux < 10719M1 My M3 we get
082 £ 1/2
el S o - NMmax
o 2 i e e

At last, we can estimate | B¢ ¢ 4| in this regime by using (5.4) instead of (5.6), which gives the final bound

|Breql S (01 AILD((K1 Y KMyl )

and (5.8) follows through the same argument as for (5.7). O

Remark 5.6. The estimate (5.7) is rather crude, yet sufficient for our purpose. (5.8) is better than (5.10) below in the
regime Ky < MiMyM3, Myi, < 1. Thus we do not need to use some function spaces with a special low-frequency
structure as in [9] to deal with the difference equation, therefore we get a stronger uniqueness criterion. Note that we
can perform the same argument in R2.

5.2. Dyadic bilinear estimates

We are now looking to improve (5.8) in the case M,,;,, > 1. We mainly follow [25, Lemme 3.1]. However, in our
situation the frequency for the x variable lives in R and not in Z, and thus the worst case of [25, Lemma 3.1] (when
Kied < Myax Miin) is avoided. So, using that this frequency is allowed to vary in very small intervals, we are able to
recover the same result as in [9, Lemme 5.1(a)]. Again, we will crucially use Lemmas 5.2 and 5.3.

Proposition 5.7. Let M;, K; € 2N and f; : R? x A7'Z — R, i = 1,2,3, be such that f; € L*(R? x A~'Z) with
supp fi C D m;.<kK;-

If Kpnax < 10719M My M3 and Kopeq = Moy, then
Ki1K>K3

1/2
M1M2M3> Al 2 2l 2 1 f3l g2 (5.10)

/ fix fo- frdede(dg), < (

R2xA~1Z

Proof. We begin as in [9, Lemma 5.1(a)]. Defining

Z(f1, f2, f3) = f fix fr- f3drdé(dg);,
RZxAr~17Z
we observe that
I(f1. fo. £3) =Z(fr. f3. f) =L(fa. f3. f1) (5.11)

where we define f(x) := f(—x). Thus, as ||f| 2= [|f1].2, up to replacing f; by ]NC, we may assume K| < K» < Ks.
Moreover, since the expression is symmetrical in fi, f> we can assume M < M.
We first write

I, fon f3) = / Fix fr- frdrde(dg);

R2xr-17

= / / f1(z1, 81) f2(22, 82) f3(11 + 12, §1 + &2)dT1dTadd1dS

R2xA~1ZRxRT xA~1Z
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Defining £(6,¢) := fi(0 + w(¢), ) we get || £7|| > =1 £ill,2> and suppf¥ C {|6] < K. €] ~ M;}. Changing of
variables, we have

I(fi, fo 3) = / / ORIV
R2xA-1ZR2xA-17Z
O+ 02+, &, 01 — ), &1 + £2)d01d6rdgr A

where the resonant function

16 { 9 @ ” q1 6&}
QL G, —l1 — ) =—— A3l + &+ | = — |} {V3IE + &l — | — =
(1,82, =51 = 82) £+ 5 11 + &2 P, 11 + &2 5 &
has been defined in (5.9) in the previous proposition.

Thus
I(f1, fr, f3) = / 61,00 302, 0) - 01+ 60+ Q1 &, =81 — &), &1 + £2)d01dbrde Ao
A

with
A= {01,61,62.8) € ®OTIDR, Jl ~ M, 11+ &1~ Ms, 161 S Ki,
01+ 624+ Q¢1, 8, —01 — ) S K3, i=1,2}
We can decompose A C Ik, x I<k, x B with B defined as
Bi={@ ) e RxATD)% 16|~ Mii =1.2, |1+ &l ~ Ms, 191 S K3 (5.12)

We can further split

B:I_lBg

eISK3/K>
with
By :=1{(¢1,0) € B, Qe [tKy; (£ + 1)K3]} (5.13)
and as well for f3:
=" A with f,0.£.9) =1k, 00k 0) 0. 8.9) (.14)
16I<K3/Ka

Next, using Cauchy—Schwarz inequality in 6, then 01, we obtain

I ffo< Y / sl |6 el

|£|SK3/K21<1<1 x By
N fe@1+ 02+ 2 61+ £2,91 + )| 2 d61d81d62(dg1)1 (dg2)s
2

1/2

SKTOY /||ff*(91,sl,q1>||L51||f§<ez,sz,qz)||%

[tI<K3/K2B,

15760, 61+ 8,91 + 92)|| 2 dE1d52(dg1)1 (dg2)s

This allows us to work with functions depending on (&1, q1), (§2, g2) only, loosing just a factor K 11 /% in the process.

The informations |Q| < K3 and supp f3 C I<k; X Iu, X 1717 have been kept in the decomposition on £ of B and f3# .
Finally, defining

8 ai) =10 & a)] . i =1.2and g0 6. 0) =] £, 0.6.9)|] 2
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and writing

Jo(g1, 82, 83.0) == / 8161, q1)82(82, 92) 83,061 + &2, q1 + q2)dE1dé2(dg1)x (dg2)a (5.15)
By

it suffices to prove that

K2K3 \'? 2 v
J = ;Je(gl,gz,gs,z) < <M]T2M3> lgillzz | Mellzz {XZ: ||33J3||L§q} (5.16)
As we are in the regime Ky, < MiMyMs, Q is close to zero. Since ¢; € 2717, we cannot just mzake a change
of variables as in [9, Lemme 5.1(a)]. Thus, to take into account that (\/gél + \/352)2 ~ (g—; — %) , we split By

depending on the values of g1 and ¢».
First, as in [9, Lemma 5.1(a)], we can split

By:=B/"uB/ uB;fuB, "~
with

B, = {(51741), (§2,92) € By, sign(§1 + &) =1, sign (g - g) =82}

where ¢; € {£1}.
&

Since the transformations (&1, q1), (&2, ¢2) — (e1&1, €292), (€11, £2g2) maps Bel #2 to BL}H', it suffices to estimate

I (g1, 82, 83.0) = / 811, 918282, 42) 83,061 + &2, g1 + q2)dE1dE2(dg1)1 (dg2)

++
By

Moreover, the definition of Q2 and the condition || < K3 give

i+ - (2-2)|< Bl b (5.17)

& &) E& Y MM,
on BZ‘+.
Now, we can define
MM
Q1(&1. 91,6, q2) :{ 2 (g —ﬁsf)/le Y/ (5.18)
and
MM
(&1 q1. E2.42) == Q11 q1. E2. ) — { }Q 2 (g2 + \/3522)/§2J €Z (5.19)

So we can split BZ‘+ according to the level sets of Q; and Q»:

++
Bf*= || Bruoi.o
01,02€Z

where By ¢, 0, is defined as

Bi.o,.0, = {E1.q). E.q) € BT, Q1(€1,91.6.92) = 01, Q2(€1, 91,62, 92) = 0>}
From definitions (5.18) and (5.19), for (§1, q1), (62, q2) € B¢, 0,,0,, Q2 is such that

MMy (1 g MM, (g1 q
= _—— — — = - — — — 1
0> { 5 (sl :, ~/§($1+52)>J or 0> L % (g1 :, ﬁ(sl+sz>)J+
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Thus,
g ~ VB +8) e [—(Qz —1): ] (5.20)
Finally, if (51, q1), (52, q2) € Be,0,,0, we obtain from (5.9) and (5.20) that
162 < q1
Q€L q1. 6, q) = (Q2+v) +f|él+ez|
D6 = e &
5152 2 ( Ky Qx+v
(Q +v) (2V3+ == ") (521
- MM MM (&1 +&2)
with
<1
The choice of the parameter in the definitions of Q; allows us to have an and 2 of the same order, and

1M> 1 2
thus to keep an error v of size O(1) in this “change of variables”. The measure of the g;-sections of By ¢, ¢, is then
. KoM; .
controlled with VM 21 (as Ko 2 M), i =1,2.

1
Using (5.17), we get

K3
< =2
IQZINK

Moreover, by definition

V(&1 q1). (B2, q2) € By, L= LMJ

K>
and so a key remark is that if (§1, q1), (52, g¢2) € Be,0,,0:

5152 Ky Qx+v
E=10(1,6, 02 = { (Q2+v) 23+ (5.22)
MM & + &
Using that |&;| ~ M;, & + & ~ M3, | Q2| < K3/K3 and that we assumed K3 < 10~ 1001, Mo M3, we get that
Ky Ox+v <105
MMy &+ &

which means that for any fixed Q1, Q> there is at most 10 possible values for £ such that By, g,, ¢, is non empty.
Let us write J¢,,, 0, the contribution of the region By ¢, ¢, in the integral J,"*. To control J¢, ¢, ¢, e first use
Cauchy-Schwarz inequality in g1, g2, &1, &2:

1/2
Te.o1.0: SN2y ) sy, ) / €3 (&1 + &2, q1 + 02)dE1dEx(dg1) 1 (dg2):
Bi.0;.0,
where we define
By, = {(él Q1) €I, x 272 N3EL + 0 Mé Q1<~/—§1+(Q1+1) 51} (5.23)

and
B0, {(Ezyqz) €Im, x 172,

—V3E2 4+ (01 — 02)

K
de252<612<—\/§§22+(Q1 Q2+ 1) Ez} (5.24)
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Let us start by treating the integral over By ¢, 0,-
If (¢1,q1), (&2, q2) € By, 9,,0,, We can parametrize the g;-sections with

_ X »
r i=q — \/§$2+Q1—E11| eENZ
L ! M\ M> A
and
ri=qy— _—\/5522 +(01—02) K> Ez:| erz
L MiM; " |,
Ko M;
suchthat 0 < r; < 200
MM,

1795

As we assumed M, < M, the g-sections of By ¢, 0, are then smaller than the g -sections, and thus 0 < rj +r2 <

r1. So if &1, & are fixed, we obtain:

f / 1,01 o, 1,1, 62,0283 (&1 + &2, 01 +42) (A1) (A,

=//ﬂ[O;Kz/Mz](rl)ﬂ[O;Kz/Ml](’?)g%j ¢é1 + &,

K;
MM,

K
[ﬁs%wl 2 sl] +r1+[—~/§€22+(Q1—Q2)
A

MM, "32:|A + 72> (dr1)(dr2);

K>
S A ﬂ[o;Kz/Mz](Vl)g%,g &1+ &,

K
[ﬁsf+ Q1—> 6 — 35+ (01— 02)

MM

K> s} + )(d)
r r
1‘411‘422)L A

The integral over By g, 0, is thus controlled by

12
K>
J"Q"QzS(E) etz iz ) //1[0;K2/M2(|r|>g§,g<sl+sz,
R2

K>
MM,

1/2
|:‘/§§12+Q1 Kzzsl—ﬁs§+<Q1—Qz> sz] +")d§1d§2(d7)x}
A

M M

It remains to sum those contributions: using the previous estimates and that for fixed Q1, Q> there is at most 10 values

of £ such that By ¢, g, is not empty,

I= > > > Juono

[LI<K3/K2 Q1€Z|Q2|SK3/K,

1/2
K>
DY (E) gl 2am, ) gl 22 o

Q1€Z|02|<K3/K>

> / / 110: ko /o] (1783 ¢ (€1 + &2,
[I<SK3/Kop2

|:~/§§12+ 01

K, 1/2
61— V3E2 (01— 02) sz] + r) dsld&(dm}
A

K>
MM 1

MM,

Next, a use of Cauchy—Schwarz inequality in Q; then Q; gives
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1/2 1/2

K, 1/2 5
<[ ==
J5 <M1> > ||g1||L2(Bl ) oy ls2llpzgm

Q1€Z Q1€Z|02|1<K3/K>

Sup Z Z //]I[O;Kz/Mz](VDg%j & + &,

Q1 | 0aI<Ks/Ka 1S K3/ Koo

5 1/2
32 - d&,dé>(d

[fsl + Qi Ez} ) £1déx( m}

Now, from the definitions of B1 (5 23) and BQl 0, (5.24):

V3E +(01 - Q)

1/2

> stz sy | =il =l

Q€

and

1/2 1/2

) K3 1/2
<= su
> 2l o, ) N<K2) P lgallap, o)

01€Z|0,|<K3/K> % gez

(5 e = (5 s
- K> £2 ngqu o K> 202

To conclude, it suffices to prove

Sup Z Z //R[O;KZ/MZ](VDg%,z 1+ &,

Q1 10)<Ks /Ky 16ISK3/Kop2

[ﬁ§f+Q1M ;/I &1

— 3+ (01— 02) sz] r) dg1dé (dr);

5.25
M M (5.25)
Here, we can see the interest of splitting f3# over £: the sum over ¢ is controlled by the sum over Q, thanks to (5.22),
whereas a direct estimate on this sum would lose an additional factor K3/K»> (or in other words, when &1, &, Q> are
fixed, we do not have the contribution of the full L2 norm of f3# in the 6 variable, which allows us to sum those
contributions without loosing an additional factor).

We begin the proof of (5.25) with the change of variables &) — & := & 4 &;: the left-hand side now reads

sup Y > / / Ljo; ko /51 (1783 ¢ (&

Q1 1 0yIS K3/ K2 1S Ks /Koo

f;“Qz

[f E(E—28) + Qi sz] )dézdadm

Now, using (5.22) and the definition of g3 ¢, we have that for fixed &, Q1, &, Q2,7:

K>
> g%,e(57[\/§5(5—2§2)+Q1M1MZ§ 0> Mlefz] +r>

1LISK3 /Ko
(& —&)6 K> Ky 02—-2)\
Sk[ﬂ<9€|: MM, (Q2_2)<2ﬁ+M1M2 § ) ’
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¢ — &) K, Ky Ox+2
- - 2)(2
MM, (@2 )< I+M1M2 & >}>

2 K>
- (9,5, [ﬁs<s—zsz>+Q1M1Mzs—Q T Ez} r)de

Now, fixing only &, and Q1, integrating in &, and r and summing over Q», we can write the previous term as

O Y T / 16 € 16,6, 02} - (FH2 0.8, [0(&, 01, &2, 0], + 1) dO(dr),des

|021SK3 /Koy,

where the interval I (€, &>, Q) is defined as

_ K K _9
](%‘,éz,Qz) = [m (Q2_2) (2ﬁ+ 2 Q2 ) :

MM, MM, &
(& — )6 K> Ky Qx+2
= = 2){2V3
MM, (@2 )( \/_+M1M2 & >:|
and the function ¢ is defined as
K>
9(E, Q1 &, 02) == V/3E(E - 2sz>+Q1M A TR

In order to recover the L? norm of f3# in g, we decompose the previous term in

DS [ [reeica 0 uh?e.smwaaw,

-1z 115K /K2 A, (6.01,00) R
where the set A, (&, Q1, Q2) C R x A1 Z for n € A~17Z is defined as

A . K2. K> . -1
n(“;:9 Ql’ QZ) = (ngr) € jMz X [_ﬁzv Vz]v (/)(és Qlag2a QZ) € [}’l —rin+Aa _r[

First, using the localizations |&| ~ M3, |&| ~ M, and |§ — &| ~ M and the conditions |Q>| < K3/K3 and K3 <
10190, M, M3, we have for any &, &, O»:

168,02 C {l0] € [ Ka(02 =), cKa(02+2) |}

for an absolute constant ¢ > 0.
Thus we are left with estimating

2 > [ 1]t Ka(02 - Dscka(@2 4 2] 1An(E. 01, ) (0. Emdbn); (526

a1z, 1021SK3/Ka R

K
We trivially control the measure of the r-sections of A, with 22 It remains to estimate the measure of the pro-
2
jection of A, on the & axis, uniformly in n, &, Q1 and Q». To do so, we are going to make a good use of Lemma 5.3.

We are then left to compute _(p:
3?2

dp
¥ _
062 V3 -0 M1M2

Now, as |Q7] < K3/K; and K3 < 10_10M1M2M3, we obtain that

(2
_r N2 3 NM
‘agz‘ V3IE| ~ M;

So, applying (5.3), we get that the projection of A, (¢, Q1, O2) on the & axis is controlled by A_1M3_1. A use of
Lemma 5.2 finally leads to
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A, (E, , <)»_1—2
AR, O1, 0| S VoM

uniformly in n, &, Q1, Q>.
Getting back to (5.26), we have

(526) < -

o[ 1{0 € [c7 K202~ 2); cKa(Q2 +2)1)

1-17 R |Q2|<K3/K2

S(fH2,¢, n)de<dn>k
/ / (0] € I<x, ) (F)2(0. £ n)d0 (dn)y

11z R

MzM

Now, neglecting the 6 localization and integrating in &, we finally get (5.25), which completes the proof of the
proposition. 0O

Remark 5.8. In the case (x, y) € T2 ([25, Lemma 3.1]), we can still use Lemma 5.3, but since & € Z in that case, we
have to use (5.4) instead of (5.3), and thus we have the rougher estimate

K K
Ml s (1M S 2
My M,

as M; > 1 for localized functions on T2, This is the main obstacle to recover the same estimate as in R? or R x T, and
the cause of the logarithmic divergence in the energy estimate.

The following corollary summarizes the estimates on / f1* f2 - f3 according to the relations between the M’s
and the K’s:

Corollary 5.9. Let f; € L>*(R?> x A~'7Z) be positive functions with the support condition supp f; C Dj. M <K;» 1=
1,2,3. We assume Keq = Mpax > 1.

@) If Kpax < 10719M | My M5 then

1/2
[ siese S (i ) max]‘[K”Z 11l (527)

R2xA~17Z

(b) Imeax 2 MiMyM3 and (M;, K;) = (Myin, Kiax) for ani € {1,2,3} then

3
/ fixfr 5 SN Myin) /My h 1‘[1<}/2 1 fill 2 (5.28)
=1

R2x1~17Z

©) If Kipax = MiMyM3 but (M;, K;i) # (Myin, Kmax) for anyi =1,2,3 then

3
—-5/4 1/2
fix o f3 AV Myi) M2 1K1 A2 (5.29)
R2xA-1Z '

Proof. Using the symmetry property (5.11), we can assume K3 = K,,,,,. Note that, since M,,,, > 1 and in order for
the integral to be non zero, we must have (1V Myin) < Mypea ~ Miay. Then we treat the different cases.

Case (a): This has already been proven in the previous proposition in the case M,,;, > 1.

If M,,i <1, (5.27) follows from (5.8), since K3 = Kyyax = (K1 V Kp) = M4y
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Case (b): M3 = M,,;,. Then, if M3 > 1, (5.28) follows from (5.7) since
(Ko v KMy A M) ) S (K v K2

as (K1 Vv K») 2, Mypax .-
If M3 < 1, since this is symmetrical in f] and f> we may assume that K1 = K| A K». Then we apply (5.7) with f;
and f3 to get (5.28) since 1(3_1/4 < M_1/4Mm;,/¢2 and Kz_l/2 Kk 2< M,;(L{z.

min med ~

Case (c): Again, (5.29) follows from (5.7) since
(Ko v K A0 A M) S (Ki v K Pl (Y M) O

We conclude this section by stating another estimate which takes into account the weight in the definition of the
energy space:

Proposition 5.10. Let f; € L>(R? x A~'7Z) be positive functions with the support condition supp f; C Dy m; ki =
1,2 for M3 >0, K3 > 1. Then
1/2 172

100y 12 2] L SOV MOME K D Al 1 2ll (5.30)
Proof. We follow [9, Corollaire 5.3 (b)&(c)] we split the cases M| <1 or M| 2 1 and we decompose fi on its y
frequency in order to estimate p(&, g) ~ |$||q<|§>

Casel: If M; > 1
We then have p(&,q9) ~ 1+ ||5||2 We split
fi= 20 M=l ,@fi+ 3 1@h
L>M? L>M?

such that

H]]'D}HMSJ(S 'fl*fz‘ L

| LAl

1/2 0172 g 1/2
2’5 Z L/Mmm min
>M}
after using (5.1). Now, for L = M? we have L™'2p ~ M (1 + M ?|q]) 2 M[' = L'2M?, and for L > M} we
also have L=12p ~ L=1/2(1 4+ LM1_2) 2z Ll/le_z. Thus, using Cauchy—Schwarz inequality in L, we obtain

1/2 .-1/2
 SMLK Rl Y L7 ||p |

L>M

2

H]le,M3,K3 “Six fZ‘
1/2 172 4,
S M; Mm/me/in ’ Ml ' llp- fill 2
Case 2: If M| < 1.
This time, we split the y frequency for L > 1 since for M; < A~! there is just the frequency g = 0:
A=) =l @h+) 1@

L>1 L>1

For L =1, wehave L~'/2p >1=L"Y2 andfor L > 1, we also have L~/2p > L1/2M]_1 > L2 Thus, using again
(5.1) and then Cauchy—Schwarz inequality in L, we only get in that case

12 3172 g 1/2
100 S12 12| S D0 L PM K| FE]] L 12l
1/2 -1/2 1/2
m/m m/mZL / Hp fl 2”]CZHL2
1/2 ,,1/2
SMYPZK2 N p. fill 2Nl D
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6. Bilinear estimates

The aim of this section is to prove (1.12) and (1.15). We will treat separately the interactions Low x High — High,
High x High — Low and Low x Low — Low. Those are the only possible interactions, since for functions f; localized
in |&;| ~ M;, we have

/fl*fZ'f37éOz>Mmin,SMmed'\’Mmax

6.1. For the equation
We first prove (1.12).
Lemma 6.1 (Low x High — High). Let M1, M, M3 € 2% with (1 v My) < My~ M3 and by € [0; 1/2[. Then for

0 0
up, € N)L’Ml and vy, € N/\,Mz’ we have

1/2

HPMzax (”Ml 'UMz) S M, ||”1V11||F£M1 HUM2||F£M2 (6.1)

e,

Proof. By definition, the left-hand side of (6.1) is

sup H(r —a)+iM3)_1p-]-'{xM71(t — tr3) Pty Ox (uag, 'UMZ)H
l‘MzER 3

by

X)»,M:;

Let y : R — [0; 1] be a smooth partition of unity, satisfying suppy C [—1; 1] and

Vx e R, Zy(x—m):l

mez
Since (1 v M) < M, ~ M3, we have
X C =)= D Xy (€= 1)y (= tygy — M3 ' m)
Im],|n| <100
Vv (¢ =ty — My 'm = (1v My)™'n)
Since we take the supremum in m and n, without loss of generality, we can assume m = n = 0. Thus, if we define

IvM
1( VM) = X(]\/Ml)(f _w)f(Y(lle)—l(t _tM3)uMl) and

£ = ok, (0 = O F (viguagyy-1 (¢ — tuung ), if Ky > (1v Mp) - (6.2)
and as well for v
fZM2 = xm, (T — 0)F (yM;1 (- tM3)vM2> and
% = oo (0 = O F (v = taoms, ) i Ko > Mz (63)

by splitting the term in the left-hand side according to its modulations, we then get

|| Par 0 (e, - vans)| |Nf,1M3

T S oY A R

3R k> (1vmy) Ko =M,

= sup Z Z Z K31/2ﬂ§/113,1(3

3 €R g > (VM) Ka>My K3 >1

: H(r —w+iM3) "' p oy (e —w)F{PMgaxf_l ( = *fsz)H

X)»,M:;

L2
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Let us start with the modulations K3 < M3: the first factor in the previous norm allows us to gain a factor (M3 v K3)~!
which makes up for the derivative, thus

3 K1/2H(t—w+1M3) P oK (T — w)]—‘[PM38 F! ( K, sz)”
1<K3<M3

L2

172 K,
S Z K H]]'DA,M3‘§M3 P fi
1<K3<M3

L2
. 1/2 « 2 01/2 . . .
and using that Z K;'" S M5’ we get that the previous sum is controlled with
1 g K3 <M3

1/2‘ Kz

‘]lDAM:; <3 P f 12

Proceeding as well for the modulations K3 > M3 and choosing a factor K5 !instead of My ' we get now

Z K31/2,3h H(T w+iM3)"'p- PKz(T_w)‘F{PM3a'F (Kl sz)”

K3>2M3
~1/2
Z K ﬂM3 K3
K32M3

L2

Kz

DA,M3 <K3 Wz f 12

In particular, the first sum over the modulations K3 < M3 is controlled by the first term in the second sum over the
modulations K3 > Ms.
Finally, it suffices to show that VK; > (1 v M;),i = 1,2,

—1,2
M3 Z K, 'BMz K3
K32M3

Ky L$)
DA,M3.<K3 pfi xS

L2

SR G

12
L2> (K2 Hp

Indeed, combining all the previous estimates, summing over K; > (1 v M;) and using the definitions of fl.Ki (6.2),
(6.3), the left-hand side of (6.1) is controlled by

172 172 K 1/2
LA D SIS (LI 1Y N D D S T2

Ky =(vMy) Kx>M,

2 L2) (6.4)

L2
The first sum is

(v MDY || xavmy (T — ) F (Yavmy-1 ¢t = ZMS)MMI)H]}

+ > K lpe k(6= o) F {yavan - @ =t ]
Ki>(vMyp)

As x =1 on suppy, we have

Yavmy -1 = ta3) = Yavmy—1 (& — i) Xvar)—1 (8 — tuz)

so this term is controlled by ||MM1 ||F0 thanks to (3.10) and (3.11) with
A My

f:]:{X(l\/Ml)—l(l _tM3)MM1}

and Ko = (1 Vv My).
We can similarly bound the second sum by Hv M, | ’ 70
A My
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For now, we have established some estimates on expressions in the form | f1 % f>- f3. Thus we first have to

express p - f1 x f2 according to (p - f1) and (p - f>). So, using the localizations in |&;| and the relation between the
M;, we can estimate

lg1 + 2| g2 1E11(81) lq1]
<14 24 :
Grer~ T2 T @t ElE)

péE1+&E.q+q)~1+——F=

M{(1vM
< pErgn) + %p(& ) (65)

3
We then treat separately the low and high frequency cases.
Case 1: If M; < 1.
We use the previous estimate to get

H]lDM3 <K3 ‘P f

L2
Mi(1v M)
K K 1 1 K K
s HﬂDm},g,@ R e B e R T R
3
To treat I, we use (5.30):
172 ,1/2 K
rsavmomk2 o 0]

Using that K> > M, ~ M3, we obtain
172 ,—1/2
T SR |

Next, as we can exchange the roles played by f1 and f> in (5.30), we can also apply this estimate to control /1:

Mi(1v M) 1/2 4 1/2
1157M2 (1 M)M mm
3

Using that M| < 1 < M3 ~ M, we directly get

K
P'fll

3/2 5 ,=3/2
115 M2y (K k) 2 |- £

L2
Finally
K 1/2,—1/2 172 K K2
T 130 I POV
so after summing
-1/2 K /2 ,1/2 K2
My Y Ky B e by ek, P F £ L2§M1/ K/ Hp o /Hp

K3>M;

since

~1/2 71/2
Z K3 'BM% K3 S
Kz>M3

This is (6.4) in that case.
Case 2: If M| > 1.
It is still sufficient to use (6.5) if K3 is large enough.
Indeed, let us split the sum over K3 in two parts, depending on whether K3 > M 2M3 or M3 < Kz<M 12M3.
Case 2.1: If K3 /M Ms.
We proceed as in the case M < 1 to get

HEDM? <k P f L2
Mi(1v My) H

2
M3

K K K K
< HnDLMM S by cry (P FED % 2] =141

L
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As previously,

1< M3/2K1/2

min

1/2
VA KK 2y 2 |

L? S L?

As for 11, we have again

5/2 —2.,1/2 K 1/2 K
11 Panm ikl - 19 , SMP KK Py P | 2
L L L
It remains to sum for the modulations K3 > M Ms:
—1/2 K
WE Z Ky ﬂM3 K3 ﬂDAvM3<<K3 P 1 L2
K3>M?M;
< 1/2( 1/2‘ ) Kl) )( 1/2‘ > )
SM"T (K, P f 2 K, l|p 2 (6.6)
since
—-1/2 < —-1/2
Z Ky 'BMszwM M ﬂM MM
K3>M M3

and for M > 1, we have M12M3 < M33 SO ,BM3 Mims = 1.

Case 2.2: If M3 < K3 < M12M3.
We improve (6.5) using the resonant function (cf. (5.9)). Observe that, since ({1, {2, ¢3) and the hyperplane
¢1 + & + &3 = 0 are invariant under permutation, we have

1/2
5 1;’22 o= @ (=01 = 02, ©2.01) + 387
Since supp fi C D; m;, <k; and ffl * 2+ 3£ 0= |Q| < Kpax, we deduce the bound
PE + 8. a1+ ) ST+ l';“:;j'z < pEa) + MM 2K (6.7)
Therefore, we have the bound
HJIDA My<ky P i I
< H]lDA_Myg,(} S HD| A MM K |10y, - |

as M| < Ms.
To treat those terms, we distinguish the cases of Corollary 5.9.

Case 2.1 (a): If Kjpgx < MMy Ms3. In that case we estimate Kmax in the second term and then apply (5.27) to both
terms to get the bound

M}Ms3
—-1/2
M3 Z K ‘BM3 K3
=M3

K K>
Dj. m3,<k3 'p'fl *fz

S i k&) o |

Case 2.2 (b)&(c): If K,;jqx = M1 M M3. Then we lose the factor Km/ax in the first term and use (5.7) for both terms
with the indices corresponding to K,i, and K4, getting the final bound

MM;

-12
M3 Z K ﬁMs K3
=M3

Sin(M) - (KiK' ||p- £

K
1) pycks " P o : L2



1804 T. Robert / Ann. I. H. Poincaré — AN 35 (2018) 1773-1826

Lemma 6.2 (High x High — Low). Let My, M>, M3 € 2% with M\ ~ M» 2 (1 v M3), and by € [0; 1/2[. Then for
up, € N)(L)’M1 and vy, € N)?’Mz, we have

L S [ I R A P [ [ [ 8

Proof. We proceed similarly to the previous lemma, but this time the norm on the left-hand side only controls func-
tions on time intervals of size (1 v M3)~! whereas the norms on the right-hand side require a control for time intervals
of size M, ' Thus will cut the time intervals in smaller pieces.

To do so, we take y as in the previous lemma. Since now M| ~ M, 2 (1 v M3), we can write

X(vms)-1 (& = tpy) = Z Z Xavmy -1 & — 1) Ym, (E — iy — ijlm)
Im| <Ma(1vM3)=! |n] <100
Yyt =ty — My ' m — M)

As previously, without loss of generality, we can assume m = n = 0, and defining

firi=F{y (M1t — tp;)) umy }
and

foi=Fly (Ma(t — tiy)) va, }
it then suffices to prove that VK; > (1 v M;):

K

_ —1/2 ,b K
My(1v M3)™" - M Z Ky /1311/}3,1(3 Lpyyany P ST xSy

K32 (1vM3)

L2

<M1 v M) K| Hp ke

1/2 K
KZ/ Hp 22

(6.9)

L? L?

where we have denoted
K;
M=y, (v — @) fr and £ = pi,(r — o) fi, Ki > M;

As previously, we need to estimate p(§1 + &2, g1 + ¢2) with respect to p(§1, g1) and p(§2, ¢2):

lg1 + gq2|
, <4 rTdal
PEF S ) S e )
e EIE) ol l8le) el

~ &1 + &1 + &) 1&11¢€61) &1 + &1 +&2) |621(62)
SMIMSI (Y M3) T (pErLq) + p(E2,q2))  (6.10)

Just as before, we distinguish several cases.
Case 1.1: If M3 < 1 and K3 > M5:
We use (6.10), so that the left-hand side of (6.9) is controlled with

b1—1/2 K K
73D D <O [P P
K32=M;3

)

K K
12 + H]]-DA'M}QIQ : f] ! *(P ' f2 2)

Using (5.30) and that M} ~ M> > 1 and K, K; 2 M», we get the bound

1/2

min

> Kl
K32>M;3

K
p'fzz

K
p'fll

L? L2

1/2
§M21+5b1M3/ '(KIKZ)I/ZHP'f{(]’ P'f2K2

L? L?

which suffices for (6.9).
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Casel.2: If M3 <land 1< K3 < M25:
We improve the control on p in this regime by using €2 as in (6.7). We get in this case

12
atq q & 2 12 ,1/2
— == |1, =81 — &, o) + 3£ SMy+M, '°K
e e riax
from which we deduce
< “12 102
p&1+8&,q1+q2) SMapEr,q1) +M; " Ky (6.11)

Using this estimate, we get the bound

5

b1—1/2 K
MM Y KD [ A Y
K3=1

—1/2 1/2
LMy M K

2
L2

Observe that the term within the braces is the same as in case 2.2 of Lemma 6.1, so we control it the exact same way
to get the final bound

K K
ﬂDA,M3,<K3' 1 *f

R N SE e[

L2

Case 2.1: If M3 > 1 and K3 > MM .
We use again (6.10) so that the left hand side of (6.9) is controlled with

—1 2 M2 K K
M Z / ‘BM"; Kz M; {H]lDA.M3.gK3 (p- fi 1)*f2 ?

Ky>Mimy!

)

K K
12 + H:H-DA'M3"<K3 'f] ! *(p f2 :

With (5.30) again, we obtain the bound

241/2

—1/2 1/
> K B MM MK - S )LZ
Ky=Mimy!
3/244by 5 ,—1— 1 2
S M '(K‘KZ)I/ZHP'flKI L2 / Hp L2
Case 2.2: If M3 > 1 and M3 < K3 < MyM; .
(6.11) becomes in this case
—3/2 12
P& +E2.q1 +2) S My Map(Er.q) + M3 Kol (6.12)

So the use of (6.12) allows us to bound the left-hand side of (6.9) with

42,1
MM3

~1/2 K K
Z K / ﬂM3 K3{H1DA,M3,<K3 ’(p‘fl 1)*f2 :

L2

1/2

—1/2, ,— K
+M; Py K 2

K
1DA.M3,<K3 Ji 0

)

Proceeding similarly to the previous cases, we finally obtain the bound

144by 5 ,—1—4b K 12
M2+ 1]‘43 1'(K1K2)1/2Hp'f11 /

o7

L2

Lemma 6.3 (Low x Low — Low). Let M|, My, M3 € 27Z and b; € [0; 1/2[. Then for upy, € F)(\),M. and vy, € F)?’M2
we have

2 o vl 0002800 o, el 61
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Proof. As in the previous lemmas, it is enough to prove that VK, K» > 1,

—-1/2 K 1/2 172
Ms ) K, ﬂm & || LDirgcks P 1 oSk H )L K H L (6.14)
K3>1
By symmetry, we may assume M < My, so similarly to (6.10), we have in this case
P& +&,q1+q2) S MM (p(Er, q1) + pE2, 42)
It then suffices to use (5.30) along with the previous bound to get (6.14):
—-1/2 K
M3 Z K ﬁM3 K3 DMM&SK} i 1 L2
Kz>1
—1/2,1/2 172
< M2 Z K mm mm f ’
Kz>1
<O MM)' - (K Ko)' 2 Hp A 0
Proposition 6.4. Let T €]0; 1], « > 1 and by € [0; 1/8]. Then for u,v € F‘; 0(T) we have
| |3x (MU)| |N‘;’hl (T) f, ||M| |F§'0(T) ||U| |F}l\’O(T) + | |u||F)l\O(T) | |U| |F;’O(T) (615)

Proof. For M € 2%, let us choose an extension uy, € FA m, Of Payu satisfying
u <2 || Pymyu
|| M1||F)?_ || M, ||F0M(T)

and let us define vy, analogously.
Using the definition of F‘;"b‘ (T) (3.2) and N‘;’b‘ (T) (3.3), it then suffices to show that

Z (1\/M3)2a HPM3ax(uM| 'UM2)||i/b1
M, My, M3 o

< X oy e, v 2ol
My, M, V ’

+ (1vM1)2}|uM1}|§£M (1vM2)2“||usz|§SM } (6.16)
My My

Since the left-hand side of (6.15) is symmetrical in # and v, we can assume M| < M.
Then we can decompose the left-hand side of (6.16) depending on the relation between M1, M> and M3:

S AV M || Pagy b, - vmny)| [y n, Z SV MY || PatydCun, - vany) ||y
My, My, M3>0 3 =1 (M), My, M3)eA; A M3

where
={(M1, My, M3) €27, (1 v My) < My ~ M3}
—{(Ml,Mz,M%)€2Z (1V M3) S M~ M}
= {(M1, My, M3) €27, Mo S 1}

Using Lemma 6.1, the first term is estimated by

Do AV M [Py van)l[yn <30 30 MiCty M [fu [ HszHngM
(My, My, M3)€A; M3 My>1 My <M, 2

which suffices for (6.16). For the second term, the use of Lemma 6.2 provides the bound
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2 — 2 2
Y v M) | Pudctun o fe S 30 30 T o oo,
(M, M, M3)eA; My 21 Mi~M;

which is enough for (6.16) since by € [0; 1/8]. Finally, Lemma 6.3 allows us to control the last term by
2 2 2
> avy Pt ol 5 XY oo, e,
(My,M>,M3)€A3 M3 M]EZ_N M262_N | 2

which concludes the proof of the bilinear estimate. O
6.2. For the difference equation

The end of this section is devoted to treating (1.15). Let by € [0; 1/2[.
We begin with the low frequency interactions:

Lemma 6.5 (Low x Low — Low). Let M1, M, M3 € 27Z, Then for uy, € F)E) M, and vy, € F)E) My We have

< M3M i [, |

HPM33x (uM1 . UMZ)HNAb.lm |EHUM2HF;’,|M2

Proof. Proceeding as for the previous lemmas, it suffices to prove that for all K1, K> > 1 and fiKi i Dy oMy <k — Ry,

~1/2 K
M3 Y K; 2pM3, K3" Pt
K3>1

This follows directly from (5.30). O

K K>

1/2 K
’]lD)»,MyéKg "1 * 2 <M3M/ (Kle)l/sz] l’

2~ min

L? L?

Lemma 6.6 (High x High — Low). Let My, My, M3 € 2% with My ~ My 2, (1 vV M3). Then for uy, € Fy ,, and
VM, € F)?,Mz’ we have

HPM38x (MMl 'UMz)Hms (1A M3 2 M, ||MM1 ||ﬁ||UM2||FAhIM2
M3 M1 '

Proof. Following the proof of Lemma 6.2, it is enough to prove that for all K; > (1 Vv M;) and fl.Ki Dy v <k — Ry,

_ —1/2
MsMy(1v M)~ > K, M3, K3
K32 (1vM3)

Ki K>
]1DA.M3,<K3 SRR 12

< (1 AM3)Y2M, - (K1Ko)' HflK1 P13

L? L?

This is a consequence of (5.7). O

It remains to treat the interaction between low and high frequencies. Since u and v do not play a symmetric role
anymore, we have to distinguish which one has the low frequency part.

Lemma 6.7 (Low x High — High). Let (1 vV M) < My ~ M3 and uy, € F) My UM € F) u,- Then

< M11/2(1 \Y M1)1/4M21/4 HMM] H%HUMZHFSMZ

”PM38X (“Ml ’UM2)HN171
My

Proof. Following the proof of Lemma 6.1, it suffices to prove that for all K; > (1 v M;) and fiKi s Dy oMy <k — Ry,

—1/2 K K
My ) Ky PBMs K3 |1,y o 2 1|
K3>2M3
1/2 1/4 K K
S R A R R Y SE FF I‘LZ P

Again, this follows from using (5.7). O
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Lemma 6.8 (High x Low — High). Let (1 M) < My ~ M3 and uy, € F) \y , v, € Fy . Then

||PM33X (MMI . UM2) S (1v M,) ||I,£M1 ||m||vM2||FS,M2

|l —
NA,M3

Proof. As previously, it is enough to prove

—1/2 K K>
M3 Z K3 HILD)L,M3‘<K3. 1 *J2
K3 >2M3

K
p'f22

LSV M- (KiK' 2|9

L? L?

for K; > (1 v M;) and fiKi : Dy vy, <k; —> Ry

Following the proof of Lemma 6.1, we distinguish several cases.

Case 1: If M, < 1.

This is a consequence of (5.30).

Case 2: If M > 1.

We split the sum over K3 into two parts. The high modulations part K3 > M M3 is treated again with (5.30),
whereas for the sum over the modulations M3 < K3 < M M3 is controlled by using (5.28) (which is the worst case of
Corollary 5.9). O

We finally combine the previous estimates to get

Proposition 6.9. Let T €10; 11, by € [0; 1/2[ and u € F, (T), v € F(T). Then

<
18 @) g oy S Hellgo ) Nollgrog, (6.17)

Proof. First, for M, M, € 2%, we fix an extension u M, €F f M of Py u to R satisfying
u —— < 2|| Py u||=—
H M]||FA0,M1 = || M ||F;?.M1(T)

and similarly for vy, .
Using the definition of F_ (3.7) and N, ' (3.8), it then suffices to show that

2 2 2 2

. < 2

Z Hax(uMl sz)HN)[:lM ) ~ Z HMMIHF)?,MI(T) (1 \/MZ) ||vM2HF)(\).M2(T) (618)
Ml,Mz,M3EZZ 3 MI,M2€2Z

As in the proof of Proposition 6.4, we separate 4 cases, so it suffices to show that for i € {1, 2, 3,4},

Z HaX(”Ml'UMz)HZ S Z HuMlHi"R—MI(T)(lVMZ)ZHUMZHisMZ(T)

by
N, (D)
(M, M2, M3)€B; M3 My, Mye2Z

with

{(My, My, M3) €277

{(My1, My, M3) €22, My ~ M 2 (1V M3)}
{(My, Ma, M3) €22, My~ M3 2 (1 v M)}
By := {(M],Mz,M3) €22, My ~ Mj 21 \/Mz)}

Bi:
B;:
Bs:

This follows from Lemmas 6.5, 6.6, 6.7, and 6.8 respectively. O
7. Energy estimates

In this section we prove the energy estimates (1.13) and (1.16). As the nonlinear term is expressed as a bilinear
form, we will need some control on trilinear form to deal with the energy estimate:
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Lemma7.1. Let T € [0; 1[, My, Ma, M3 € 2% with Myyay > 1, and by € [0; 1/8]. Then for u; € Ff’lMi(T), ie{l,2,3},

with one of them in F. f}M’_ (T) (in order for the integral to converge), we have

uiupuzdrdxdy < Abl (Mpin, Mpax) 1_[ [uill—5— # @ (7.1)
0,T1xRxT;, i=1 P
where
N2 (av )\
Ap (X, Y) = (X AX ) +(— (1.2)

Proof. Using the symmetry property (5.11), we may assume M| < M, < M3. We begin by fixing some extensions

upm, eF 5 M; of u; to R satisfying ||uM H ,,l <2 ||uill—— ,,l (T)

Let y : R — [0; 1] be a smooth partltlon of unity as in the proof of Lemma 6.1, satisfying now suppy C [—1; 1]
and

Vi e R, Zy3(t—n)=1 (7.3)

nez

We then use y to chop the time interval in pieces of size M3 L

uiupuzdrdedy S fin* fon - f3ndrdEq)s (7.4)
[0:T]xRx T} n€lpa -1z

where we define
fin :=F (y (M3t — )L, ryun;)
We can divide the set of integers such that the trilinear form is not zero into two subsets
={neZ, y(Mst —n)ljo,r)=y (M3t —n)} and B= {” EZ\ A, /fl,n * fon: fin# 0}

Let us notice that #.4 < M3 and #5 < 4.
Let us start by dealing with the sum over A:

Z / fl,n*fZ,n'f:’a,nSM?) sup Z f fllii*fZI,{lff;,(rj
nehpr 5oz ”EAKl,Kz,K3>M3RerlZ
where flli’ is defined as
FRE ) = pk, (T — 0 @) fin(T.E.q). i =1,2,3if K; > M3 (7.5)

and

R E.q) = xuy (T — 0 E ) fin(T.E.q). i =123

Then, we separate the sum into three parts depending on the relations between the M’s and the K ’s as in Corollary 5.9:

SR B IVEIVE TS S S R I

KI’KZ‘K*}]RZX)FIZ i=1(K,K>, K3)€AiR2><A’IZ

with
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Ap:={(K1, K2, K3) € 2V, K;i > M3, Kpax < 107'°M My M3)
Ay :={(K1, K2, K3) € 2V, Ki > M3, K| = Kpax 2 Mi M M3}
Az :={(K1, K2, K3) €2V, K; > M3, Kpar = (K2 vV K3) 2 M Mo M3}

We treat those terms separately, using the estimates of Corollary 5.9. Denoting J; the contribution of the region A; in
the sum, we have

— 1/2
J1 S M3 sup Z (Mmm A Mmlln) max HK / ‘
neA K| Ky K32 Ms

l}'l

3
1\ /2
g2 S (Mo ) T oo g
after using (5.27) and

wp ¥ K2k

neA K; >M’;

(7.6)

ol

Indeed, (7.6) follows from the definition of fllil (7.5), the fact that ;. p,)-1 = 1 on the support of Vasts and the use

of (3.10) and (3.11).
Proceeding analogously, we get

1V M,
J3 < M3 sup Z M, <7( I mm)) HKl/z‘
neA g, Ky, K3>Ms max

(1V Minin)
fim LZN( o 1"!||ul||F£M[

by using (5.29) and that by € [0; 1/8].
Finally, the last contribution is controlled thanks to (5.28), (7.6) and the weight ﬂf,}l’ K

ZETU D DD (MMmm)”“]_[KW\

nEAK1>M|M2M3 K>, K3 > M3

1vM
§(1AMmin)1/4<(M mn;lzn) ) l_[||”M ||Fo

max

ln 2

b 12| -k
Sup Z ’31‘/;1,K1K1 Hfl,r}

neA k> My My M3

This suffices for (7.1) since

1/2 Ky
sup Z IBM] x K Hfln 2§||”M1||Fb1
neA K\ > M My M3 W

as we only need to use (3.11) in this regime.
Let us now come back to (7.4). It remains to treat the border terms. We have

K1 Kz
> / Sk fun <2 2 [ alheatioaly
neBpa -1y neB Ki.K2,Kypy 5-17

where g " is defined as

gi,;', = pk, (T — ) F (y (M3t —n)Ljo,rqup;), i =1,2,3, Ki > 1 (7.7)

Once again, we separate the different cases of Corollary 5.9. Let us define G; the contribution of the region A; in the
sum above.
Using (5.27), we can control the first term:

2

N\ 12
Gl 5 (Mmin A Mmiln) Mmz;x sup Z 1_[ K / ’
neB (k| Ky K3)eA, i=1

i
l n

(7.8)
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Now, we need to replace (7.6) by an analogous estimate on B:

12| K;
sup sup Ki/ Hgi’r’l
neBK;>M; L

o Sllewn 77 (7.9)

Let us prove this estimate. Using the definition of giK ' (7.7), if we note uyy, := y (M3t — n)uy, then we have to
estimate

K; i o s
T -

L2

We then split 7 (it37,) depending on its modulations:

< Y k@ -0 T« (o & — ) F ()|
K<K:/10

K;
gi,n 12 1.2

+ Z HPK(T a))}"z{ﬂ[or]-' (,oK(r—a))]-'(uM))}HL2=1+11
K>K;/10

To treat I, we use that ‘]@(r - ‘L'/)‘ <=t '~ Ki_1 since |t — w| ~ K; and |7’ — w| ~ K < K;/10. Thus,

from Young inequality L>® x L' — L* we deduce that

K. 1<k (ox (' = ) F (37|

i Sl =07 @)

which is enough for (7.9) due to (3.12) and then (3.10)—(3.11).

To deal with /1, we simply neglect the localization pk, (T — ), use Plancherel identity, then neglect the localization
1j0. 7] and use Plancherel identity again and that K l.l/ 2 < K2 to get

KPa1s Y Kok~ o) F @)l S I1F @ e,
K>K;/10 !

This proves (7.9) after using again (3.10)—(3.11).
Coming back to (7.8) and using (7.9) along with #B < 4, we then infer

G1 S (In (MiMaM3))* (Miin A Myt )" M 1‘[||u 7

max

as Z 1 < {(In(M; M>))>. This is enough for (7.1).
(K1,K2,K3)€A;
Let us now turn to G,. We use (5.28) combined with (7.9) to get

4340 2
G2<(1/\Mmm)1/ ManM,imi)“L Z Kmaxl_[supsupK 1/ ‘ gln < ,imi)“Ll—[HuM ||F0
(K1,K2,K3)eAs j=1n€B Ki
which is sufficient as well.
Finally, we treat G3, using now (5.29) and (7.9):
—5/4
G3 5 (1 \% Mmin)(l/4)+Mr(nax/ " Z max 1_[ sup Sup ‘ gl n N mux FO
(K1,K2,K3)€A3 —1neB

which concludes the proof of Lemma 7.1. O
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Following [9, Lemme 6.1 (b)], we then use the previous estimate to control the special terms in the energy esti-
mate 1.13:

Lemma 7.2. Let T €]0: 1], by € [0; 1/8], M, My € 2%, with M > 10(1 v My), and u € F,\,(T), v € F}'), (T). Then

2
b
iy, ()

Pyt - Py (Pygy v - dyu)dedxdy §M1Ab1(M1,M)||PM1vHFT(T) > || Py (7.10)
AMy y~

0,T1xRxTs, My~M

Proof. First, we chop the integral in the left-hand side of (7.10) into two terms

Ppru - Ppg(0xu Py, v)
[0,T]xRxT)

= f Pyru - Ppyoxu - Ppyv + [ Ppru - [Par(0xu Py v) — PpgOxu - Ppy v]
[0,T]xRxT, [0, T]xRxT)
=I1+11

The first term is easy to control: integrating by parts and using (7.1), we get the bound

1
=1 / (Paa)? - 8y Pagyv| < My Apy (M. M) || Pyl B || Pagy v |5
2 T) Fym

F (D)

[0, T1xRxT;

To deal with 71, we proceed as for the previous lemma: after choosing some extensions (still denoted u € F. )}f ), and

ve Fxh,lMl) of u and v to R, we chop the integral in

nm=>y" Pygtty, - [Pyt (it Pty vn) — Ppgdittn - Pagy val
neszxT)\

where we define u,, := 1[0, 71y (Mt — n)u and v, := 1jo, 71y (Mt — n)v for a function y as in the previous lemma.
Using Plancherel identity, we can write 11 as

=Y [ e [ KGe)m@ - c0n i
nelgay-iz, R2x)-1Z
where the kernel K is given by

K, 5)= u[UM(é) —nm(E — &1, (1) Z N, (§ — &1)

&1 Vo
The last sum appears since |£| ~ M and |&1| ~ M1 < M /10, thus |§ —&| ~ M.
Using the mean value theorem, we can bound the kernel with
§—§&
&1

M~ ENTL D) Y iy E —E) S ED DY nE — &) (7.11)

Mr~M Mr~M

|K(Z, 1) S‘

Therefore, as in [9, Lemma 6.1 (b)], (7.10) follows after repeating the proof of (7.1) and using (7.11). O

We finally prove (1.13). From now on, we fix b = 1/8 and drop the parameter when writing the main spaces.
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Proposition 7.3. Let T €]0; 1] and u € C([-T, T, E;’f’) be a solution of

du + d3u — 07 dyu + udcu =0

u(0, x) = uo(x) 712
on [T, T). Then for any a > 1,
il e 7y S Nuwol g =+ Naal iy 7y ol ey (7.13)
Proof. Using the definitions of B () (3.4) and p (2.1) along with (3.5), it suffices to prove
sup M| Pusata| 32 = 33 P [ S il oy Y- M3 [Pl B,y 019

M >1 3 €l=T:T] M3 >1
and

2 2
2(a—1 —
MY Hpmax layuo)

2(a—1 —
sup MV || Paggd dyucengy) ,

Mas1 My €-T:T]

Slulley 32 M3 [ Pusil [y 0115

M3>1
Let us start with (7.14).
Applying Py, to (7.12), multiplying by Puy,u and integrating, we get
tM3 IM3
2 2 d 2
| Passueina)| s — || Prssiao| s = f 1P| / f Past - Pay(udydi'dxdy|  (7.16)
0 0 RxT;
since 33 and 97192 are skew-adjoint.
We separate the right-hand side of (7.16) in
> Pyyu - Pagy (Pagyu - dcu) dedxdy (7.17)
MySM3/1%0, 1y, xR T,
+ > / (Pyty)%u - Pygyu - 0 Pag,udrdxdy (7.18)

MiZ M3 M2>Q0 1, [xRxT;,

Using (7.10) and Cauchy—Schwarz inequality in M|, the first term (7.17) is estimated by

(717 < My Ay, (My, M3) || Pyt |—— Pusu|[P—
M1§ZM3/10 o : ’ || MluHFflel(T)MzzMsH MZMHF;’]Mz(T)
2
§||u||FA(T>M;MHPMz”HTIMz(T)
since
12
Y avM)TMIA, (M M3 | <1
0<M;<M3/10
Thus

> M- (107 Sl o ||”||%§<T>
M32>1

To treat (7.18), we use (7.1) and then we separate the sum on M, depending on whether M| ~ M3 2> M, or M| ~
My Z Msj:
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s Y > MzAbl(Mz,Mz)]_[HPM || 7

m; (1)
Mi~M3 M2<M; i=1

+ Z Z MzAbl(M3,M2)HHPMuH ”1 =1+

M2 > M3 My~M;
Applying Cauchy—Schwarz inequality in M> we get the bounds

15| Pasu 5

[l
Ry D

and

1< My Ay, (M3, My) || P Pyyoul|2—
et st

Summing on M3 and using Cauchy—Schwarz inequality in M3 and M for /1, we finally get

3 M3* - (7.18) S llulle, oy eI )
M3>1

+ Y Y M§ Ay (M3, MM || Pagyu| | Fl

||PM1M||i~”1
A M
M3>1M1>M3 3

(T) oy

(1)

2
< ||u||F;L(T) ||u”F‘)’f(T)

Now we turn to the proof of (7.15).
This time, we apply Py, 0, ! dy to (1.6), we multiply by Pps;0; ! dyu and we integrate to get

2
s

S / Pardy By - Pagy 7 '8y (udyu)dedxdy|  (7.19)

—1
‘ ‘ Ppg; 05 0yu(tyy)
O,tM3]><RxT;L

using again the skew-adjointness of 8;' and 9 ! Byz.
The right-hand side of (7.19) is similarly split up into

> Py 7 dyue - Pagy (Pygyu - yu)drdxdy (7.20)

MiSM3/100, 1y, xRXT;,

+ YY) / (Py3)?07 " 9yu - Pygyu - y Pygyudrdxdy (7.21)
MIZM3 M2 0,1y, [xRXT),

Writing v 1= 9 1 dyu, using (7.10) and Cauchy—Schwarz inequality in M, we obtain

(T200S > MiAp (M1, M3) || Pgyu]|—5— o > ||UM2HiTT
My <M3/10 B T v, 2y ity ()

b
oy )

2
—1
§||u||F,\(T) HPM2 - Oyu -
Mo~M3

which is enough for (7.15) after summing on M3.
As for (7.21), we separate again the sum on M»:

J2h=I+1l= Y > / (Py;)?v - Pygyu - 3y vpg,ddxdy
Mi~M3s MySM3[0, 1y, X RXT;,
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+ Z Z / (Paty)?v - Pygyue - 3y Pagyvdrdxdy
MZM3 M2Mifo 1y, 1xRXT;,

For the first term, we use again (7.1) which gives

I< Mo Ap, (Mo, M3) || P —
N Z Z 2Ap, (Ma, M3) || M3v||Ff,lM3(T>

[ Paayue| | [ Pav] |~
Mi~Ms; M2§M3 ?

by
Fly, (D Fly, (D)

We first sum on M3 by using Cauchy—Schwarz inequality to get the bound

2 MallPavll (1 Paul |5
»M3 A,

Mi~M3 1

and then we can sum on M3 using Cauchy—Schwarz inequality again to get (7.15) for this term.

For the second term, we apply also (7.1), then we first sum on M3 using Cauchy—Schwarz inequality and M; @D <

M lz(a_l) in this regime, and finally sum on M using again Cauchy—Schwarz inequality to get (7.15). O
In the same spirit, following [9] we have for the difference equation

Proposition 7.4. Let T €]0, 1[ and u, v € F, (T) satisfying

du + 33w — 37 dyu + 3y () =0

(7.22)
u(0, x) = up(x)
on[—T,T] xR x T,. Then
2 2 2
1y S ol + 101, 7y Nl (723)

and to deal with the equation satisfied by Pg;g0x (#1 — u2) we need

Proposition 7.5. Let T €]0; 1] and u € F,.(T) with u = Pyignu. Moreover, let v € F (T), w; e F,.(T), i =1,2,3,
and w; € F_)\(T), i=1,2,3 and finally h € F_;\(T) with h = Pg1h. Assume that u satisfies

3
Ot + d3u — 3;133” = Phign(viyu) + Z Prigh(wiw)) + PHignh (7.24)
i=1
on[=T;T] xR xT,. Then
3
el oy S ol 72 + [101le, 7y el oy + el ey Y il il ey (7.25)

i=1

Proof. (7.23) follows from (7.25) after splitting up u into Py, and Ppyignu and observing that Py;gpu satisfies an
equation of type (7.24). o
To prove (7.25), we follow the proof of Proposition 7.3. Using the definitions of B, (T) (3.6), it suffices to prove

s {| Pt [~ | Pusol

My>1m3€=T;
3

2 ’
S Mol ey Nl + Nl ry 2 il [0, 726)
i=1

Take M3 > 1. Applying Py, to (7.24), multiplying by Pps,u and integrating, we get
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oty
||PM3u<tM3)||§2—||PM3uo||§2=/%||PM3u(t)||§2d;
0
Imy
S / f Ppryu - Ppgy Prigh (udyv)dt’dxdy
0 RxT;,
3 | ™M
+Z / / Ppryu - Ppgy Prign(wiw))dt'dxdy|  (7.27)
=10 RxT,

since 83 and 9 ! 8)2, are skew-adjoint. The term in % vanishes after applying Py, due to its frequency localization.
To treat the first term in the right-hand side of (7.27) we split it up in

> / Paryt - Pagy (Pagy v - 35u) dedxdy (7.28)
MISM3/100, 1y, xRXT;,

+ Z Z / (PM3)2” . PMIU ' axPMz“dthdy (7.29)
M2 M3 M2[0,1M3]><R><TA

The first term (7.28) is estimated similarly to (7.20) with « = 1 and exchanging the roles of u# and v, whereas for
(7.29) we proceed as for (7.21).

To treat the second term in the right-hand side of (7.27), we perform a dyadic decomposition of w; and w;. By
symmetry we can assume M| < M», thus either M| < My ~ M3 or M3 < M| ~ M». Then we apply (7.1) to bound
the sum on M3 by

DY D Ap(My, My

M3>l M2~M3 Ml SMZ

: ||PM3”||TIM3<T> || P wi||FkTMl(

+ Y)Y Ap (M3, My)

My>1 M~M; 1<M3§M2

/
- || Par, w| |Ff,'M2(T)

N1Pwsal

o 1P

/
o 1Pl

by
Fly, (D)

For the second term, we can just use Cauchy—Schwarz inequality in M3 and M, since M| ~ M, = M3 > 1. For the
first term, we use that

Z Abl(Ml,Mz)HPleiHFT( S Nwillggr

X T)
0<M1§M2 » My

Note that this is the only step where we need (5.8) to avoid a logarithmic divergence when summing on very low
frequencies, thus we do not need the extra decay for low frequency as in [9].
Thus we finally obtain

3
Y 7295 Ml Mwillgs ey il gy
M>1 i=1

which concludes the proof of (7.25). O
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8. Proof of Theorem 1.1

We finally turn to the proof of our main result. We follow the scheme of [14, Section 6].
We begin by recalling a local well-posedness result for smooth data:

Proposition 8.1. Assume ug € ES°. Then there exists Ty, €10; 1] and a unique solution u € C([—Ty; T).], E{®) of (1.6)
on [—Ty; Th] x R x Ty. Moreover, T, = T (| |”0||E§) can be chosen as a nonincreasing function of ||ug| |Ei'

Proof. This is a straightforward adaptation of [11] to the case of partially periodic data. Indeed, Proposition 8.1
follows from the standard energy estimate (see for example [13, Lemma 1.3])

lill e < Ca lluol g exp (Ca 19l 1. ) 8.1)
along with the Sobolev embedding

Ot <Tllu
l10xull ) o0 STl oy O
8.1. A priori estimates for smooth solutions
In this subsection we improve the control on the previous solutions.

Proposition 8.2. There exists e €]0; 1] such that for ug € ES° with

[luollg, < e€o (8.2)
then there exists a unique solution u to (1.6) in C([—1; 1], Eio), and it satisfies fora =1, 2, 3,
Il lpe 1y < Co o] g (8.3)

where Cy > 0 is a constant independent of A.

Proof. LetT =T <| lug| |E3) €l0;1landu e C([-T; T], Eio) be the solution to (1.6) given by Proposition 8.1. Then,
for T’ € [0; T'], we define
Xoa(T") = lullgy(rry + ludsullne 7v) (3.4)
Recalling (4.2)—(6.15)—(7.13) for « € N*, we get
ullpe ) S Nuellgg oy + 11 Tne

110x o)l Ine (1) S Huellge oy [V11E, 7y + ulle, () Hvllre (8.5)
||u“123i‘(T) S ||M0||]2;; + [lullp, () ||M||%<;(T)

Thus, combining those estimates first with @ = 1, we deduce that
(T < et o, + 2 (X1 (T + 21 (T)*) (8.6)

Let us remind here that the constants appearing in (4.2)—(6.15)—(7.13) do not depend on A > 1, so neither does (8.6).
Thus, using Lemma 8.3 below and a continuity argument, we get that there exists Top = Top(€g) €]0; 1] such that
Xy 1(T) < 2cp€p for T € [0; To]. Thus, if we choose €p small enough such that

20 |
2c2c0€p +4crchey < 2
then

X1 (T) S Mluollg,
for T € [0; To].
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(8.3) for @ = 1 then follows from (4.2).
Next, substituting the estimate obtained above in (8.5), we infer that for ¢« =2, 3
2 2 ~ 2
Xk,a(T) < Cq ||u0||Eg + CaeoXk,a(T)

which in turn, up to choosing €y even smaller such that ¢yep < 1/2, gives (8.3) for a = 2, 3.
To reach T = 1, we just have to use (8.3) with « = 3 along with (3.16), and then extend the lifespan of u by using
Proposition 8.1 a finite number of times. O

Therefore it remains to prove the following lemma:

Lemma 8.3. Let T €]0; 1] and u € C ([—T; T1, Eio) Then X, 1 :1[0; T] — R, defined in (8.4), is continuous and
nondecreasing, and furthermore

lim X, ((T") < co lluollg,
T'—0

where co > 0 is a constant independent of \.

Proof. From the definition of By (T) (3.4) it is clear that for u € C([-T; T1, E}°), T +— ||ul g, (77) 18 nondecreasing
and continuous and satisfies

H <
TI}EO||M||B~A(T’) S Hluollg,

where the constant only depends on the choice of the dyadic partition of unity.
Thus it remains to prove that for all v € C([-T'; T], E{°), T — ||v] IN, (77 is increasing and continuous on [0; T']
and satisfies

lim ||v n=0 8.7
T,HOH N, (17 3.7

The proof is the same as in [14, Lemma 6.3] or [4, Lemma 8.1]: first, for M > 0 and T’ € [0; T'], take an extension
vy of Pyv outside of [—T'; T], then using the definition of N fl 1 We get

< / < . /
1Pwvllyn g Sl @vmllyn S11p-F G Ouillz

Using the Littlewood—Paley theorem, we obtain the bound

v ny = E 1vM Pyv
|| ||NA(1 ) < ( ) || M ||N}I:Y1M(T,)>

M=>0

1/2
S <Z<1 v M)>? ||p-f{xT/<t)vM}||iz)

M=>0
Slxrollg, S @D 2 llpe,  8.8)

This proves (8.7) and the continuity at 7" = 0. The nondecreasing property follows from the definition of ||-|[y 7+
(3.1). It remains to prove the continuity in Ty €]0; T'].
Let € > 0. If we define for ug € LR x T) and L > 0,

Prug:=F ' {xr (@, q))io}

then by monotone convergence theorem we can take L large enough such that

(Id = Pr)vlIN, () < €
Then it suffices to show that there exists §g > 0 such that for » € [1 — §p; 1 + 5o,

vl 7y = vz ling e | < €
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Thus we may assume v = Py v in the sequel. In particular, Pyyv =0 if M> > L.
As in [9], we define for r close to 1 the scaling operator
Dr(v)(t»x» )’) = U(t/r,x, y)

Proceeding as in (8.8), we have

v = D11, |, 7y S T2 [0 = Doy )| oo, 0

where we use that v € C([—T; T], E,) to get the convergence.
Consequently, we are left with proving

Nvlln, (1) < lifn_)i{lf||Dr(U)||Nk(rTO) (8.9)
and
limsup [[ Dy (W) IN; (-15) < VN, (1) (3.10)
r—1

Let us begin with (8.9). Fixing € > 0 and r € [1/2; 2], for any M € ZZ, M3 < L, we can choose an extension vy , of
Py D, (v) satisfying vy, = Py Dy (v) on [—rTp; rTo] and

[lost.rllyn <UHPMD@lyor )+

[y
Nym

Since D1/, (vpm,r) = Pyv on [—Tp; Tp], it defines an extension of Py v and thus

1/2
ol < [ D2 v 2 ||Dyyrur)| [
MZLIB .
Finally, it remains to prove that
HDl/r(vM,r)HNbl <¢(F)||UM,r||Nb1 (8.11)
A M A M

to get (8.9), where ¥ is a continuous function defined on a neighborhood of r» = 1 and satisfying lim1 v(r)=1.
r—

From the definition of Nf 'y» We have

by
Xom

HD]/,«(UMJ)HNI;I = sup H(r —w+i(lv M))_lpf{x(lvM)—l (- tM)Dl/r(UM,r)}’
M tyeR
and a computation gives

Xavan-1C =)Dy mr) = Diyr (Xpvan-1 ¢ = rim)vm )
so that

Flxavm-1¢ =) Diyr(opr)} = r~'D, (f{Xr(lvM)’l ¢ —riy)vm,r})

Thus, using the definition of Xi” - the left-hand side of (8.11) equals

V2 sup 3O KB || 0r — 01V M) ok (e = 0)pF (st vany1 ¢ = o)
tyeR K>1

L2

Now, for r ~ 1, we observe that for K > 10'°L, we have |t| ~ |t — w| ~ |rt — 0| ~ K, whereas for K < L we have
Iz, |t —w| and |rt —w| S L.
Thus,

1

1 1
<1 — 2,
[1—r|(1V L) R ENTRVYS:

rt—02+(AVM?2 (t—w)2+(0VvM?2[~

(8.12)
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and the use of the mean value theorem provides

Z ox (T — ) if K >10°L
—w) — —w)|<|1—r] { KK 1
Pk (T =@ —prE =@l SH=rly g5 S 6tk <t (8.13)
K'<L

Combining all the estimates above, we get the bound

b (8.14)

AM

1Dy )|y <T@ sup || = w410V M) PF vy = vm ||
| o

it -1/2 2 3/2
where 3 (r) = 1/ (1 +CcavLr— 1|) — 1.
r—
It remains to treat the time localization term: using the fundamental theorem of calculus, we have

ol

F( =) = Xy tvan 1 (6 = 000) = Xqtwan 1 — n) = f s p(s(1v M)(t — fap))ds
1

with (1) := 1 x'(¢). In particular, for r € [1/2; 2], from the support property of x, the support of F(- —fy;) is included
in [fy —4(1 v M); far +4(1 v M)], thus we can represent

F(t—im)=Ft—ty) Y y((AV M)t = s = Oxupy-1 (t — g — £V M)~
[e1<4

where y is a smooth partition of unity with suppy C [—1; 1] satisfying Vx € R, Z yx—£0)=1.

LeZ
Now, using Minkowski’s integral inequality to deal with the integral in s, the right-hand-side of (8.14) is less than

T ||vM’,}|NAblM+/s supZ H(r—w—i—z(lvM))’ pF{p(s(1v M)t — i)

1 |4

Virvan & = i = AV MO x a1 @ = g = 1V D™ v, |

d
X )
with I(r) =[1;r~']ifr € [1/2; 1] and I (r) = [r~'; 1]if r € [1;2].
Since ¢(t) =t x’(¢) and y are smooth, twice the use of (3.10) and (3.11) (with Ko =s(1 v M) and Ko = (1 v M)
respectively) provides the final bound

||Dl/r(UM,r)HN:1M <Y () (1+ClIn(r)]) ||vM,r||NflM (8.15)

(here we used that the implicit constant in (3.10) and (3.11) are independent of s). This concludes the proof of (8.9).
To prove (8.10), as before we may assume v = Prv. Given € > 0 for any M > 0 we take an extension vy of
Pyv outside of [—Tp; To] and satisfying ||vyy]| hl < || Pyl bl (7o) + €. Then for r € [—1/2;2], D,(vy) defines

an extension of Py D, (v) outside of [—rTp; rTo] Then since in the proof of (8.15) we did not used the dependence
in r of vy, the same estimate actually holds for vy, and thus

1D, @il </ llomllyn

which is enough for (8.10) and thus concludes the proof of the lemma. O
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8.2. Global well-posedness for smooth data

In view of the previous proposition, Theorem 1.1 (a) follows from the conservation of the energy.
Indeed, take uq € ES° satisfying

[luollg, <e€1<e€o (8.16)
and let T* :=sup{T > 1, |lu(T)||g, < +oo} where u is the unique maximal solution of (1.6) given by Proposi-
tion 8.2. Then, using the anisotropic Sobolev estimate (see [24, Lemma 2.5])

1/2

3/2
[ oty axdy <21l 10,0l Lz

RXTA

07 3y

(8.17)

we have for T < T*

1
()1, = MG@(T) + E@T) + 5 / W (T, x, y)dudy
RxT

3/2

SM@(T)) + E(T)) + 21u(DIl 3

. 1/2
o (D)2 ||o oy )|

SMw(T)) + Ew(T)) + 2Mu(T)) IIM(T)||12;A
Thus, from the conservation of M and £ (as u is a smooth solution), we finally obtain
[ (T)I1F, < Muo) + Euo) < +o0

forany T < T* provided €7 < 1/4, from which we get T* = +oco0.
Finally, let us notice that equation (1.6) admits the scaling

w(t,x,y) = AT w27 2, 07 y), () € R x Ty, (8.18)

meaning that u, is a solution of (1.6) on [—A3/2T:232T] x R x Ty, if and only if u is a solution of (1.6) on
[-T;T] xR xT,,. Moreover,

12 Ok, S 2~ (O],

Thus, take ug € Eiﬁ If ||ug| |Eko > €1, then there exists

_ 4 —4
a=2 (ol ) ~ e lluollg? > 1
such that ||u0,;\||Ea < €] (since €] > 0 is independent of A > 1). Thus, if u; € C(R, Eﬁo) is the unique global
Aho
solution associated with ug  satisfying (8.16), then
u(t,x,y) = A (W32, 02 ry)eC (R, E;XOJ)

is the unique global solution associated with u.
The rest of the section is devoted to the proof of Theorem 1.1 (b).

8.3. Lipschitz bound for the difference of small data solutions

Let T > 0, ug, vo € E;, and u, v in the class (1.8) be the corresponding solutions of the Cauchy problems (1.6). As
before, up to rescaling and using the conservation of M and &, it suffices to prove uniqueness for 7 = 1 and

luollE, - llvollg, < €2 < €0

Set w :=u — v. Then w is also in the class (8.2) and solves the equation

dw + 3w — a7 dyw + 0, (w.”;rv>=o (8.19)
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on [—1; 1] x R x T,. Then, since ug, vg satisfy (8.2), using (8.3) and then (3.17), (4.10)—(6.17)—(7.23), we obtain for
€, small enough

Hwllzee 12, S Hwllg ) S llwo —voll 2 (8.20)

from which we get u = v on [—1; 1] if ug = vo.
8.4. Global well-posedness in the energy space

In this subsection we end the proof of Theorem 1.1 (b). We proceed as in [9, Section 4].

Take T > 0, and let up € E; and (up_,) € (Ei")N such that (o ,) converges to up in E;. Again, up to rescaling we
can assume ||ug||g, <€ <€ and Huoﬁ | }EA < € < e2. Using again the conservation of M and &, it then suffices to

prove that (®*(uo,»)) € (C([—1; 1], Ei"))N is a Cauchy sequence in C([—1; 1], E}).
For a fixed M > 1 and m, n € N, we can split

||(b°o(u0,m) - q>°°(1,to’n)|iL?OEx < ||(-D00(u0,m) _ q)OO(PSMuO,m)HL?oEA
+ || @ (P<muom) — @ (P<yuon)| |L?eEA + || 0% (Pepitg ) — Do) |Lf°E,\
Since
157 (P<artiom)]] ope < Cla, M)

thanks to (1.7), the middle term is then controlled with the analogous of (8.1) for the difference equation along with a
Sobolev inequality with « large enough, which gives

|| 0% (P<aruom) = @ (P<atton)|| oo, < CM) |[uo.m — o[,
Therefore it remains to treat the first and last terms. A use of (3.16) provides
|| 2% Guo,m) = @ (Pcprtto.m)|| o, S 1@ @om) = @ (P<attom)][g,

and thus we have to estimate difference of solutions in Fy(1). Let us write u1 := ®*°(ug,m), u2 := @ (P<pito,m)
and v:=u; —uj.
Using (4.2) and (6.15) combined with (8.3) we obtain the bound

Holle, )y S Hvll, ) + I, 1y €

Therefore, taking € small enough, it suffices to control ||v||g, (1). Using the definition of B; (1) (3.4), we see that
vllB, 1y < || P<ivo||g, +[[P=2v][g, )

Now, in view of the definition of B, (1) and B; (1), we have

HP>2UHBA(1) ~ ||3XP>2”||BT(1) + ‘ 3;18yP>2vHB_A(])

Combining this remark with the previous estimates, we finally get the bound

8.21)

B;.(1)

olle, 1y S Hvollg, + || P=20xv] |5, + HP>23;13yv‘

We now define U := Pyigndyv and V := Ppyigy 8;18yv. We begin by writing down the equations satisfied by U
and V:

U + U — 0. '07U = Prign(—u1 - 9:U) + Prigh(—PLowit1 - 87 PLow)
+ Prigh(— Prightt1 - 92 PLowv) + Prigh(—8yv - 8y (1 + 12)) + Ppiign(—v - 82uz) (8.22)

and
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WV + 0}V — 09795V = Prign(—u1 - 0 V) + Ppigh(—PLowtt) - 0x PLowdy ' 9y)
+ Phigh(—Prigntt1 - 3x PLowdy ' dyv) + Pign(—v - dyuz)  (8.23)
Let us look at (8.22). We set h := —Prowlt1 * 92 PLowv, W1 = —PHjgntt1, W} = 32 Prowv, w = —dyv, wh =

O (uy + uz) and w3 := —v, wj = Bfuz. Since uy,us € Fy (1) we have v € Fj (1), thus &, w; and w; satisfy the
assumptions of (7.25). Thence we infer

2 2 2
101Gy, S 1asvol s + llunlle, 1y 10113

+11UlIg; ) <HPHighul||ﬁ(1) ‘ HF(l)

+ 110l

H_(n)

Therefore, using (8.3) and (8.20), the previous estimate reads

I ) S lvollg, +e€ VI ) + 11U, (€110l 2 + Mol 0y € + 1voll,2 luzllgz ) )

Proceeding similarly for V, we obtain the estimate

2
VIR,

lawo) , +lhalle, o 1V i, + 11Vl

0 PLoudy 0]

0.0 oy

M(l))

.+ ||U||ﬁ(1) ‘

: <||nghu1 &) ‘ Fi(D)

after applying (7.25). Again, a use of (8.3) and (8.20) gives

IVIZ- ) S 1vollf, +€IVIR )+ VI, (€110lle, a) + Hvoll 2 lleallez )
Combining the estimates for U and V along with (8.21), we get the final bound
lollg, 1y S Hvollg, + € 11vllr, a1y + || P<yom] | g2 [voll 2
since [lu2llgz 1) S 1u2(0)] g2 by (8.3).
Taking € small enough and M > 1 large enough concludes the proof.

9. Orbital stability of the line soliton

In this last section, we turn to the proof of Corollary 1.2. We briefly recall the main steps of [21, Section 2].

Let us remember that equation (1.6) has a Hamiltonian structure, with Hamiltonian E(u). To study the orbital
stability of Q.(x — ct), we first make a change of variable to see Q.(x) as a stationary solution of (1.6) rewritten in a
moving frame:

it — cdpu+ u — 35 3u + udu =0 9.1)
Equation (9.1) still has a Hamiltonian structure, with the new Hamiltonian
Ecu) :=Eu) + cM(u)

The key idea of the proof is then to show, as for the orbital stability of Q. under the flow of KdV [2] that the Hessian

of & about Q. is strictly positive on the codimension-2 subspace H := {(v, Qc)p2= (v, QL) 2 } to get a lower

bound on E.(®' (o) (1)) — E:(Q.) in term of ||®! (uo) (1) — O
To study D?E.(Q.) on H, we begin by computing

le-

2
Eul Qe +v(1) = £c(Q) + [ 10012 + [0 9y

el = [ ooy )~ [ vasay

RxT RxT
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The linear term in v vanishes since Q. is a stationary solution.
Using the Plancherel identity in the y variable, we can write the Hessian of £, about Q. as the sum of the bilinear
forms

1
§D2€C(Qc)(v, V) = k%Bg‘(fyv(t,x, k), Fyv(t, x, k))

with

BE(@00), 50)) =110,3112, + £ |

8—1"" 2 ~2 _ ~2dx
x U L2+C||U||L2 Qc-v
R

Observe that B? is the Hessian about Q. of the Hamiltonian associated with the KdV equation in a moving frame,
and thus by the study in [2] B,? is H' bounded from below as desired.
To treat the terms with k # 0, first make the change of test function

fx) =0 Fyu(r, x, k) € L*(R)
Then, using that k? > 1, we can write
BE(Fyv(t, x, k), Fyu(t, x,k) = (Lc f, f)
where the linear operator L, is defined as
Loi=3F —cd2 + 0,000, + 1

Since Q. is exponentially decreasing, d, Q.0 is compact with respect to 8;‘ — caf + 1 and thus Spec, L. C [1, +o0l.
To get a lower bound on (L. f, f), it remains to study the existence of negative eigenvalues. Following the method of
[1], a change of variables leads to consider the eigenvalue problem

g(4) _4(1 _

where

cosh2> ¢ +3v2g=0 9.2)

3v2—1—6(1—x)

and 1 < 0 is the possible negative eigenvalue. Using again the exponential decreasing of Q., g behaves at infinity as
a solution of the linear equation

h® —4h” +3v°h =0 9.3)
For each characteristic value p of (9.3), there is an exact solution
gu(x) :=eh* (,u3 +2u —3u? tanh(x))
of (9.2). For these solutions to behave as e/* at infinity, this requires
1P +2u =37 =0
As p is also a characteristic value, this implies = 1 and thus v? = 1 from which we finally infer
1

6(1—)»)
3 0

Consequently, there is no possible negative eigenvalue Ag if ¢ < ¢* =4/+/3.
Hence we have a lower L2 bound for the bilinear form associated with L, which provides the bound

6’2=

2
8;1’17)

ko) >
Bc(v,v)N‘ 12

Linearly interpolating with the obvious bound (since Q. < 3¢)
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ko~ ~ 2 —1|? ~ 2
BEW, D) 2 110,311, + || 3|, - 2e19112,

yields to an L? lower bound for Bé‘, which in return provides the final bound

2
ki~ ~112 2 —1~
BEW, D) 2 11, + k2 |07 '7]|

uniformly in k.
The last trilinear term / v3 is treated with the anisotropic Sobolev inequality (8.17).

Combining all the bounds from below finally provides a control of ||w||g in term of £.(Q. + wo) — E(Q.) for
any w € H. The end of the proof is then standard (cf. [2],[21, Section 2]).
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