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Optimal linearization of vector fields on the torus in
non-analytic Gevrey classes

Abed Bounemoura

Abstract. We study linear and non-linear small divisors problems in analytic and non-analytic reg-
ularity. We observe that the Bruno arithmetic condition, which is usually attached to non-linear
analytic problems, can also be characterized as the optimal condition to solve the linear problem
in some fixed non-quasi-analytic class. Based on this observation, it is natural to conjecture that
the optimal arithmetic condition for the linear problem is also optimal for non-linear small divisors
problems in any reasonable non-quasi-analytic classes. Our main result proves this conjecture in
a representative non-linear problem, which is the linearization of vector fields on the torus, in the
most natural non-quasi-analytic class, which is the Gevrey class. The proof follows Moser’s argu-
ment of approximation by analytic functions, and uses works of Popov, Rüssmann and Pöschel in
an essential way.

1. Introduction

The motivation of this work is to try to understand the discrepancy between an elementary
remark and a deep theorem. Let T WDR=Z, ˛ 2 T irrational and .qn/n2N be the sequence
of denominators of the “best” rational approximations of ˛ (such approximations are given
by expansion into continued fractions). Let us say that ˛ 2 R (for Rüssmann, see [32]) if
ln.qnC1/ D o.qn/ as n goes to infinity and ˛ 2 B (for Bruno, see [12]) if the sequence
q�1n ln.qnC1/ is summable; obviously B ¨ R. The remark is that ˛ 2 R if and only if
for any real-analytic function f WT ! R with zero average, there exists a real-analytic
function gWT ! R satisfying the linear equation

g ıR˛ � g D f ; (1.1)

where R˛WT ! R denotes rotation by ˛. The deep theorem, due to Yoccoz (see [37]),
states that ˛ 2 B if and only if for any real-analytic orientation-preserving circle diffeo-
morphism F WT ! T with rotation number ˛ and sufficiently close to R˛ , there exists a
real-analytic circle diffeomorphism �WT ! T close to the identity satisfying the conju-
gacy equation

��1 ı F ı � D R˛: (1.2)
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The linear equation (1.1) appears as a “linearization” of the non-linear equation (1.2),
hence it may be surprising that the arithmetic condition needed to solve (1.2) is stronger
than the one needed to solve (1.1); this reflects the failure of any kind of inverse function
theorem (either the classical version or the Nash–Moser version) for this particular prob-
lem. Such a discrepancy does not appear in the smooth category; in this case (1.1) and (1.2)
are solvable if and only if ˛ 2D (for Diophantine) which can be expressed by the asymp-
totic condition ln.qnC1/DO.ln.qn//. In higher dimensions, results in the smooth case are
exactly the same (and the proofs as well) but not in the analytic case: Yoccoz’s proof relies
on a geometric construction which deeply uses the theory of holomorphic functions in one
variable and continued fractions for which there are no known good analogues in higher
dimensions. Yet one can still define a Bruno condition B in any dimension and Rüssmann
(see [34]) proved that it is a sufficient condition to solve the higher-dimensional analogue
of (1.2); it is unknown whether such a condition is necessary.1

The purpose of this paper is to study these linear and non-linear small divisors prob-
lems in any dimension for regularities intermediate between smooth and analytic. Those
regularities fall into two basic classes: the quasi-analytic classes, which are made of
functions completely determined by their Taylor expansion at just one point exactly like
analytic functions, and the others, the non-quasi-analytic classes, and we will be mainly
concerned with these latter classes. At that point we should stress that even if one is inter-
ested only in analytic problems, non-quasi-analytic classes appear naturally in problems
like (1.1) or (1.2). As we shall see below in Section 2.4, the Bruno condition ˛ 2 B,
which can be characterized by the solvability of (1.2) in the analytic case, can also be
characterized if one looks at (1.1) not in the analytic case but in some arbitrary yet fixed
non-quasi-analytic class; apparently this has not been noticed before, even though this
is elementary. Another way in which non-quasi-analytic classes show up is more classi-
cal: for various reasons one may be interested in the regularity of g D g.˛/ in (1.1) and
� D �.˛/ in (1.2) as functions of ˛ (with ˛ varying in a closed set, so regularity has to be
understood in the sense of Whitney). In general such a dependence is not analytic even if
the data is analytic, it is always smooth (see [31]) and, most probably, it always belongs
to some non-quasi-analytic class which depends on the arithmetic properties of ˛; in the
best-case scenario (when ˛ is Diophantine) such a dependence belongs to some Gevrey
non-analytic class ([24, 28]), which are the most studied non-quasi-analytic classes.

Our main result deals with those Gevrey classes, so let us informally state what it
implies in the particular case of (1.1) and (1.2). Let fn 2 C, n 2 Z be the Fourier coef-
ficients of an integrable function on T ; it is well known that f is analytic if and only if
jfnj � e

�sjnj for some s > 0 and for all n large enough; we shall say it belongs to the
a-Gevrey class, 0 < a � 1, if we have instead the asymptotic inequalities jfnj � e�sjnj

a
.

So 1-Gevrey is analytic, but a-Gevrey functions for 0 < a < 1 are non-quasi-analytic
(indeed, for 0 < a < 1 it is not hard to construct explicitly a non-zero a-Gevrey function
with an arbitrarily small support). It is easy to observe that (1.1) can be solved if and only

1According to Yoccoz, it is not (personal communication).
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if ln.qnC1/D o.qan/, while a consequence of the results in [9] and [23] is that (1.2) can be
solved if q�an ln.qnC1/ is summable. The latter condition is an adapted Bruno-type condi-
tion, which is optimal in the analytic case a D 1 in view of the work of Yoccoz, and one
may ask whether this is the case when 0 < a < 1. The answer is negative, as the following
informal theorem shows.

Theorem 1. In the a-Gevrey class for 0 < a < 1, we have ln.qnC1/ D o.qan/ if and only
if (1.1) can be solved if and only if (1.2) can be solved.

This is a particular case of Theorem C that will be stated in Section 2.2, and is a
corollary of our main result Theorem A which is a more quantitative statement, valid in
any dimension and in the continuous setting (the discrete setting can be recovered by the
usual suspension-section argument, which is rather straightforward in our context). So
for Gevrey non-analytic classes, there is no Bruno-type condition; actually this should be
true for any reasonable non-quasi-analytic class (where by reasonable we mean that such
a class should be stable with respect to basic non-linear operations, which, unlike (1.1),
seems needed if one wants to study (1.2)). For quasi-analytic classes, the problem is more
subtle.

2. The linear problem

2.1. The cohomological equation

The continuous version of equation (1.1) in any dimension n � 2 is as follows. Let ! 2
Rn be a non-resonant vector, meaning that for all non-zero k 2 Zn, the Euclidean inner
product k � ! is non-zero. We denote by F the space of real formal Fourier series, whose
elements are of the form f D

P
k2Zn fkek with fk 2 C satisfying xfk D f�k , and where

ek.x/ D e
2�ik�x . The problem is to find g D

P
k2Zn gkek 2 F and c 2 R such that

X!g D f � c; (L)

where X! D ! is the constant vector field on Tn, acting formally on F by derivation
in the direction !. Equation (L), which is usually called the cohomological equation, is
easily solved because it is a linear equation: both c D c.f / and g D g.f / depend linearly
on f . Necessarily,

c D f0 D

Z
Tn

f dx;

where dx is the Haar measure on Tn, and solutions of (L) are such that g0 2R is arbitrary,
while for non-zero k 2 Zn,

gk D .i2�k � !/
�1fk : (2.1)

The solution g is thus unique if we normalize the value of g0: we shall always choose
g0 D 0 and refer to g defined this way as the solution of (L). Now if f is regular, in order
for g to be regular there will be competition between the decay of jfkj and the inevitable
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growth of jk � !j as the norm of k goes to infinity. We shall quantify this by introducing a
weight as follows.

Definition 1. A weight 'W Œ0;C1/! Œ0;C1/ is a continuous function, normalized by
'.0/ D 0, which is non-decreasing and satisfies ln.1C t / D O.'.t//.

One should keep in mind the following three main examples of weights:

• the “smooth” weight '0.t/ WD ln.1C t /;

• the “Gevrey” weight 'a.t/ WD ta=a, for 0 < a < 1;

• the “analytic” weight '1.t/ WD t .

We have 'a.t/! '1.t/ as a ! 1, whereas for t � 1, 'a.t/ � 1=a D .ta � 1/=a !
ln.t/ as a! 0, which is equivalent to '0.t/. As we shall see below, our minimal growth
requirement on ', which can be written again as '0.t/D O.'.t//, is no loss of generality
for the problems we are interested in. To a given weight function we will associate a scale
of regularity classes and a scale of arithmetic classes, where we shall always use the norm

jxj WD max
1�i�n

jxi j; x D .x1; : : : ; xn/ 2 Rn:

Definition 2. Given a weight ' and a regularity parameter r 2 R, we define a regularity
class

F '
r WD

®
f 2 F j kf kr WD supk2Zn jfkje

r'.jkj/ < C1
¯
:

Observe that F
'
r is always a Banach space, and we have compact inclusions F

'
r2 �F

'
r1

whenever r1 � r2. Let us make some technical comment on the choice of the “Fourier-
based” l1-norm k � kr we used to define the space F

'
r . We could have easily chosen any

lp-norm for p 2 Œ1;C1�:

kf kpr WD

� X
k2Zn

jfkj
pepr'.jkj/

�1=p
:

These norms are non-equivalent and lead to different spaces, yet they are “comparable”
so the (projective and inductive) limits we will consider below are the same. For the linear
problem that we shall consider here, the precise choice of such a norm does not make any
difference, but this is not the case for non-linear problems. The l1-norm has the advantage
that it defines a Banach algebra provided the weight ' is sub-additive (that is, '.t C
s/ � '.t/ C '.s/) and thus leads to very simple product estimates, while the l2-norm
has the advantage that it defines a Hilbert space, and the norm is equivalent to a “space-
based” L2-norm which is characterized by the growth of the derivatives, provided f is a
smooth function. We choose the l1-norm since it will be more convenient for the (almost)
characterization of such spaces (under assumptions on the weight ') by almost analytic
extension and analytic approximation (see Section 4.2).

For the smooth weight '0.t/ D ln.1C t /, we shall write F
'0
r D F 0

r and this space
can be compared to the space C r .Tn/ of Hölder 1-periodic functions on Rn as follows:

F 0
rCdC" � C

r .Tn/ � F 0
r
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for any " > 0, hence F 0
r contains sufficiently smooth functions when r is sufficiently

large, and so the same remains true in general for F
'
r according to our assumption '0.t/D

O.'.t//.

Definition 3. Given a weight ' and an arithmetic parameter � > 0, we define an arithmetic
class

A'
� WD

®
! 2 Rn j 
�1� .!/ WD supk2Znn¹0º j2�k � !j

�1e��'.jkj/ < C1
¯
:

Observe that A
'
� might be the empty set; however, the set A

'0
� D A0

� is precisely the
set of Diophantine vectors with exponent � , which is non-empty for � � n� 1 and of full
Lebesgue measure for � > n � 1. Hence our assumption '0.t/ D O.'.t// ensures that
A
'
� is non-empty and of full measure for all � large enough, and this explains why our

minimal growth assumption is no loss of generality. The following lemma is obvious.

Lemma 2. For any ! 2 A
'
� ¤ ; and any r 2 R, we have

kgkr�� � 

�1
� .!/kf kr ;

hence g 2 F
'
r�� provided f 2 F

'
r .

As a side remark, the above lemma holds true (up to a multiplicative constant which
depends on the dimension) with F 0

r replaced by the space C r .Tn/, r > 0 and r … N
(this follows from a Paley–Littlewood decomposition, and holds true actually for general
Besov spaces allowing r 2 R).

2.2. The projective limit

Next we look at the projective limit of the scale of Banach spaces .F '
r /r>0 and its asso-

ciated arithmetic class

F '
1 WD

\
r>0

F '
r ; A'

1 WD

[
�>0

A'
� ;

which are also characterized by

f 2 F '
1 , '.jkj/ D o.ln.jfkj�1//; ! 2 A'

1 , ln.j2�k � !j�1/ D O.'.jkj//:

Endowed with its natural projective limit topology, F
'
1 is a Fréchet space. We shall say

that a weight ' dominates another weight  if

 .t/ D O.'.t// ,  � '

and we obviously have

 � ' ) F '
1 � F  

1 ; A 
1 � A'

1:

The converse holds true under some restrictions (for sub-additive weights for instance).
By definition, an arbitrary weight dominates the smooth weight '0 and since

F 0
1 D C

1.Tn/; A0
1 D D ;
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where D is the set of all Diophantine vectors, for an arbitrary weight ' we have

F '
1 � C

1.Tn/; D � A'
1:

so A
'
1 is always of full measure. If  � ' and ' � the weights are said to be equivalent

and they define, in the above limits, the same regularity and arithmetic classes. Finally, for
the analytic weight '1.t/ D t , F

'1
1 D F 1

1 identifies with entire periodic functions. The
following lemma is well known.

Lemma 3. The vector ! 2 A
'
1 if and only if equation (L) can be solved in F

'
1. More

precisely, if ! 2 A
'
1, then for any f 2 F

'
1 we have g 2 F

'
1 and if ! … A

'
1, there exists

f 2 F
'
1 such that g does not belong to

F '
�1 WD

[
r<0

F '
r :

So the statement says that either we can always solve equation (L) in the same regu-
larity class or the solution may lose all regularity (observe that F 0

�1 D F
'0
�1 is precisely

the space of periodic distributions). When ! 2 A
'
1, the assertion follows directly from

Lemma 2. When ! … A
'
1, we have

lim sup
k2Znn¹0º

ln.j2�k � !j�1/
'.jkj/

D C1;

hence for any positive sequence �j ! C1 one can find a sequence of integer vectors
kj 2 Zn n ¹0º with jkj j ! C1 such that j2�kj � !j�1 � e�j '.jkj j/. If we choose

f D
X
j

fkj ekj ; fkj WD .i2�kj � !/j2�kj � !j
�1=2

then f 2 F and the infinitely many non-zero Fourier coefficients of f and g satisfy

jfkj j D j2�kj � !j
1=2
� e�.�j =2/'.jkj j/; gkj D j2�kj � !j

�1=2
� e.�j =2/'.jkj j/

and the conclusion follows.

2.3. The inductive limit

Now we look at the inductive limit and its associated arithmetic class

F
'
C WD

[
r>0

F '
r ; A

'
C WD

\
�>0

A'
�

which admit the “dual” characterizations

f 2 F
'
C , '.jkj/ D O.ln.jfkj�1/; ! 2 A

'
C , ln.j2�k � !j�1/ D o.'.jkj//;

and which are again well defined up to equivalent weights. The inductive limit topology
on F

'
C is more complicated, but it is still a complete locally convex topological vector

space (yet not metrizable). We obviously have the strict inclusions

F '
1 ¨ F

'
C ; A

'
C ¨ A'

1:
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Now we shall say that a weight ' strictly dominates another weight  if

 .t/ D o.'.t// ,  � '

and we have
 � ' ) F

'
C � F  

1 ; A 
1 � A

'
C:

In particular, if '0.t/ D o.'.t//, then A
'
C always contains the set of Diophantine vectors,

and therefore it is of full measure (but in full generality it might be empty, as is the case
for ' D '0). For the analytic weight '1.t/ D t , F

'1
C D F 1

C is precisely the space O.Tn/

of real-analytic functions on Tn and the condition A
'1
C D A1

C is exactly the Rüssmann
condition R as introduced in [32]. For the Gevrey weight 'a.t/D ta=a, F

'a
C D F a

C is the
so-called space of Gevrey functions.

Lemma 4. The vector ! 2A
'
C ¤ ; if and only if equation (L) can be solved in F

'
C . More

precisely, if ! 2 A
'
C, then for any f 2 F

'
C we have g 2 F

'
C and if ! … A

'
C, there exists

f 2 F
'
C such that g does not belong to

F '
� WD

\
r<0

F '
r :

Again, either we can always solve equation (L) in the same regularity class or the
solution may lose all positive regularity (observe that F 1

� D F '1
� is precisely the space of

periodic hyperfunctions in the sense of Kato). The proof is completely analogous to the
proof of Lemma 3: when ! 2A

'
C this follows from Lemma 2 and when ! …A

'
C we have

lim sup
k2Znn¹0º

ln.j2�k � !j�1/
'.jkj/

> 0

and one can use the same example as before, replacing the positive sequence �j ! C1
by some � > 0.

2.4. The Bruno condition

Finally, we would like to discuss the so-called Bruno condition, which was first introduced
by Bruno in [12] in a linearization problem in the vicinity of a singular point, and then in
various other equivalent forms for other linearization problems on a torus by Rüssmann
(see for instance [33–35]). This condition appears in a non-linear version of Lemma 4
in the analytic case, and for n D 2 it can be actually characterized this way (recall prob-
lem (1.2) in Section 1); we shall explain how it can also be characterized if one looks at
Lemma 3 in an arbitrary non-quasi-analytic class, at the projective limit. We should say
that a weight is non-quasi-analytic ifZ C1

1

'.t/

t2
dt <1

and we denote by NQ the set of all non-quasi-analytic weights; the terminology is
justified by the famous Denjoy–Carleman theorem which identifies the above condition as
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the necessary and sufficient condition for non-quasi-analyticity (or even more precisely,
for the existence of functions with arbitrarily small support). Now following the definition
of [35], a vector satisfies the Bruno condition if and only if it belongs to A

'
1 for some

quasi-analytic weight '; indeed the “approximating function” in the sense of Rüssmann is
nothing but the exponential of a quasi-analytic weight (we point out that Rüssmann does
not require ln.1C t / D O.'.t//, but without such an assumption A

'
1 is always empty so

the definition remains unchanged). Using the fact that a weight ' is quasi-analytic if and
only if �' is quasi-analytic for some � > 0, we arrive at the following representation of
Bruno vectors:

B D
[
'2NQ

A
'
1 D

[
'2NQ

[
�>0

A'
� D

[
'2NQ

A'
1: (2.2)

For n D 2, ! D .1; ˛/, the elementary equivalence of ! 2 B and ˛ 2 B, as defined in
Section 1, is proved in [35] for instance. Lemma 3 allows the following characterization
of B.

Lemma 5. The vector ! 2 B if and only if there exists ' 2 NQ such that equation (L)
can be solved in F

'
1.

The discrepancy between B ¨ R seems to be related somehow to the existence of
non-trivial quasi-analytic classes F

 
1 which strictly contains the analytic class O.Tn/.

Indeed, first observe that when ' is non-quasi-analytic, we obviously have '.t/ D o.t/,
therefore we have the following inclusions, which are moreover strict:

F '
1 © O.Tn/; A'

1 ¨ R:

Taking respectively the intersection and the union over all non-quasi-analytic classes one
actually obtains \

'2NQ

F '
1 D O.Tn/; B D

[
'2NQ

A'
1 ¨ R:

The first equality claims that the intersection of all non-quasi-analytic classes is precisely
the space of real-analytic functions: this is a rather surprising result first proved in [4] in a
different setting (see [6] for more general results and see also [5,11,13] for results adapted
to our setting). On the other hand, the set B, which is the union of A

'
1 over all non-quasi-

analytic classes, is not equal to R; indeed, take any quasi-analytic weight  .t/D o.t/ for
which O.Tn/ ¨ F

 
1 . For instance, one may choose  D  1 with

 1.t/ WD t .log.1C t //�1I (2.3)

then any vector in A
 
1 (which is non-empty) is in R but not in B.

As a final remark, we would like to point out that in his first attempts to obtain a lin-
earization result with a Bruno condition in any dimension, Rüssmann (see [33]) required
not only the weight to be non-quasi-analytic but also that t�1'.t/ decrease monotonically
to zero; the extra condition is the monotonicity requirement but such an (a priori mild)
condition prevents the identification of vectors ! D .1; ˛/ 2 R2 satisfying this condition



Optimal linearization of vector fields on the torus in non-analytic Gevrey classes 509

with Bruno numbers ˛. In fact, when t�1'.t/ decreases monotonically to zero, it is easy to
show that ' is sub-additive; if we let NQS be the set of all non-quasi-analytic sub-additive
weights, then we have another Bruno-type condition,

B1
WD

[
'2NQS

A'
1 ¨ B: (2.4)

It is proved in [5] that for ' 2 NQS, not only do we have '.t/ D o.t/ but also '.t/ D
o. 1.t// with  1 as in (2.3) and therefore (see [5, 6]) the intersection of all non-quasi-
analytic sub-additive classes is no longer the real-analytic class, but the larger quasi-
analytic class associated to  1,\

'2NQS

F '
1 D F

 1
C © O.Tn/: (2.5)

One should point out that in (2.4) and (2.5), one could replace NQS by quasi-analytic
weights which are either strictly concave or satisfy t�1'.t/ & 0: the strict concavity
implies the monotonicity condition which implies sub-additivity, and quasi-analytic sub-
additive weights are equivalent to strict concave weights (see [5, 27] for instance). For
non-linear problems, one may largely speculate that in the quasi-analytic class F

 1
C , vec-

tors in B1 could play the same role as Bruno vectors in the analytic class.
Finally, let us briefly explain how, in the sequel we will use the observation that Bruno

vectors can be represented as (2.2). For a given ' 2 NQ, this observation implies that non-
linear analytic problems (such as (1.2) described in Section 1) can be solved if ! 2 A

'
�

for an arbitrary � ; if one has a suitable control on how the analytic problem can be solved,
and if one can characterize functions in F

'
r in terms of approximation by real-analytic

functions, then one may expect that ! 2 A
'
� also allows us to solve the problem in the

larger space F
'
r ; clearly there will be competition in this approach but it does work in

the smooth case ' D '0, as was proved by Moser in [25]. The competition in the Gevrey
case ' D 'a is more subtle (since it has to become singular for a D 1) but we will show
that it works too, and the proof also shows that it should be true for a large class of non-
quasi-analytic weights (the Gevrey weights allow for a simpler approach and more explicit
computations).

3. A non-linear problem and the main result

3.1. Linearization of vector fields on the torus

So now we finally look at the continuous version of problem (1.2) in any dimension n� 2.
We consider a smooth vector field X D X! C F on Tn, where F is sufficiently close to
zero with respect to a suitable topology, and we wish to conjugate X to X! by a diffeo-
morphism close to the identity. This is clearly not possible in general as there are obvious
topological restrictions, so to circumvent them the question we ask is whether we can find
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a constant vector field X� D � 2 Rn close to zero and a diffeomorphism ˆWTn ! Tn

close to the identity such that

ˆ�.X �X�/ D X! I (V)

that is, we wish to conjugate the modified vector field X � X�, with an unknown � 2
Rn, to X! . So given X D X! C F , a solution of (V) is a couple .ˆ; �/ which satisfy
equation (V) and which is close to .Id; 0/: upon normalization (for instance fixing the
average of ˆ � Id to be zero) it can be shown that such a solution, if it exists, is unique.
Such a “modifying term” formulation was introduced by Arn’old (see [2]) in this setting,
and then generalized by Moser (see [26]). If we require the rotation set of X to contain !,
then it is not hard to show that necessarily � D 0 and this is precisely the generalization
of (1.2) in any dimension, but we prefer to keep the modifying term since it gives a more
flexible formulation which allows us to consider arbitrary vector fields X close to X! .
In general problem (V) is non-linear, in the sense that both � D �.F / and ˆ � Id D
.ˆ � Id/.F / depend on F in a non-linear fashion. There is, however, one simple case in
which (V) is actually equivalent to the linear problem (L) we studied in Section 2: this is
the case where X is proportional to X! , which can be written

X D X! C P D
1

f
X! (3.1)

for some nowhere-vanishing smooth function f WTn! R (one may assume f to be close
to 1 to consider this problem as perturbative, but this is not necessary since it is not a
perturbative problem). The flow associated to X is nothing but a time-reparametrization
of the flow ofX! , and it is not hard to prove that the unique (upon normalization) solution
.ˆ; �/ of (V) has to be of the form

ˆ � Id D g!; � D .1 � c/!; c D

Z
Tn

f dx; (3.2)

where gWTn ! R is the solution of (L). This is essentially due to Kolmogorov (see [20])
in an implicit form and Herman (see [17]) in this more explicit form. It follows that the
necessary and sufficient conditions on ! which were given respectively in Lemmas 3
and 4 to solve (L) respectively in F

'
1 and F

'
C are automatically necessary (but a priori

not sufficient) conditions to solve (V) in those regularity classes. In general, since we look
at (V) in a perturbative setting, linearizing the conjugacy equation at P D 0,ˆD Id yields
a linear equation between vector fields, which is nothing but a vector-valued version of (L).
The basic question is whether the optimal arithmetic conditions introduced for the linear
problem, which we know are necessary for the non-linear problem, are also sufficient.

For the general smooth case, the answer is yes: the vector ! 2 D if and only if one
can solve the problem (V), which is the exact analogue of Lemma 3 (observe that the
analogue of Lemma 4 does not make any sense here since the corresponding arithmetic
class is empty). In fact, a much more precise statement holds true: if ! 2 D� for some
� � n � 1, then it suffices for P to be of class C r with r > � C 1 (r … N) for ˆ to be of
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class C r���" for any " > 0. This is almost a non-linear analogue of Lemma 2, except for
the fact that one needs r > � C 1 instead of r > � (for ˆ to be at least C 1), but the loss of
regularity is essentially the same, namely one loses any � 0 > � instead of � .

For the analytic case, the answer is no in general. As we have already explained, the
Bruno condition ! 2 B which is stronger than the Rüssmann condition R, is known to
be sufficient to solve (V) for any n � 2 ([34]) and it is known that it is also necessary for
n D 2 ([37]), hence there is no analogue of Lemma 4 for the analytic weight '1.t/ D t
when nD 2 (and this is most probably the case for any n � 2). Here again, a more precise
statement is true: Yoccoz’s example shows in fact that there is no analogue of Lemma 2
since the Bruno condition is optimal for (V) no matter how large is the regularity parameter
r > 0 (which here is essentially a width of analyticity). The question of whether a non-
linear analogue of Lemma 3 holds true (the regularity class in this case corresponds to
entire functions) is, to our knowledge, open.

The main result of this article deals with Gevrey regularity, which is associated to the
weight 'a.t/ D ta=a for 0 < a < 1, and we shall prove that in this case the answer is
again positive. Actually, we shall prove a non-linear perturbative version of Lemma 2,
which is Theorem A below, with however a significant quantitative difference: the loss
of derivatives will be essentially c.a/� with 1 < c.a/ < C1; at the formal limit a! 0

then c.a/! 1 in concordance with the fact that in this case functions tend to “behave”
as general smooth functions (beware though that there are many smooth functions that
do not belong to any Gevrey class) and at the formal limit a ! 1 then c.a/! C1 in
concordance with the fact that such a result cannot hold true in the analytic case (beware
that other constants, such as the threshold of applicability, will have a singular limit as
a! 1 so the fact that c.a/!C1 is not necessarily unavoidable). Regardless of this, such
a statement is still enough to guarantee we have exact non-linear analogues of Lemma 3
and Lemma 4.

3.2. Main results: the Gevrey case

To state our result properly for the Gevrey weight 'a.t/ D ta=a for 0 < a < 1, we recall
that

F a
r WD F 'a

r D
®
f 2 F j kf kr D supk2Zn jukje

r'a.jkj/ < C1
¯

(3.3)

and

Aa
� WD A'a

� D
®
! 2 Rn j 
�1� .!/ D supk2Znn¹0º j2�k � !j

�1e��'a.jkj/ < C1
¯
: (3.4)

In particular, F a
r is strictly contained inC1.Tn/ for any r > 0 and Aa

� strictly contains D

for any � > 0. For any smooth vector field F D .f1; : : : ; fn/WTn ! Rn, slightly abusing
notation we shall still say that F 2 F a

r if

kF kr WD max
1�i�p

kfikr < C1:

This is the main result.



A. Bounemoura 512

Theorem A. Let 0 < a < 1, r0 > r > 0, � > �0 > 0, 1 < � < 2, assume that

r > c�; c D c.a; �/ WD 32a=.1�a/.� � 1/.�1�a � 1/�1=.1�a/ (3.5)

and let � WD r � c� > 0 and � WD 8�a=.1�a/� > 0. Then there exist a small positive constant
"� and a large positive constant C that depend on a, r0, r , � , �0, � and n such that for any

X D X! C F; ! 2 Aa
�0
; kF kr0 D " � 
�0.!/"

�

there exists a vector �2Rn and a diffeomorphismˆ2F a
� , with � WD �=2, which solve (V)

with the estimates

j�j � C"; kˆ � Idk� � C
� "


�0.!/

��
; � WD 8�a=.1�a/.2r/�1�:

We shall discuss later this rather technical statement, especially the conditions r0 > r ,
� > �0 and r > c� , but first we would like to observe that these conditions disappear at
the limits, that is, when we look at the spaces

F a
1 WD

\
r>0

F a
r ; F a

C WD

[
r>0

F a
r

and their associated arithmetic classes

Aa
1 WD

[
�>0

Aa
� ; Aa

C WD

\
�>0

F a
�

and lead to the following non-technical statements, which are non-linear perturbative ana-
logues of Lemmas 3 and 4.

Theorem B. The vector ! 2 Aa
1 if and only if equation (V) can be solved in F a

1.

Theorem C. The vector ! 2 Aa
C if and only if equation (V) can be solved in F a

C .

The direct implications for both statements follow from Theorem A. It is important
to observe that the requirement that F be close to zero need not be formulated in the
limit topology; one only need assume the norm of F to be small in some fixed space F a

r0
:

in Theorem B, once �0 is given (possibly large), it suffices to choose r0 D r0.�0/ large
enough to satisfy (3.5), and in Theorem C, once r0 is given (possibly small), it suffices to
choose �0 D �0.r0/ small enough to satisfy (3.5). That this is so is clear for Theorem C,
but not so obvious for Theorem B, yet this is a classical matter. (One has to verify that we
can impose additional smoothness on F in Theorem A to get additional smoothness on ˆ
with the same smallness condition. See for example [36, Corollary 1] in the smooth case;
the argument in our case is similar.) The converse implications of both statements follow
from the converse implications in Lemmas 3 and 4 respectively, together with the case of
reparametrized constant vector fields described in (3.1) and (3.2).
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3.3. Some comments on Theorem A

Let us now comment on the technical conditions r0 > r , � > �0 and r > c� in Theorem A.
The fact that the initial arithmetic parameter �0 deteriorates to � > �0 is in a sense unavoid-
able: this comes from the fact that for the non-linear problem (V), the small divisors are
not the quantities jk � !j but rather jkj�1jk � !j, or equivalently, the small parameter is not
the size of F but rather the size of its differential (of course one could still modify the
space (3.3) or the set (3.4) to take this into account, but we have decided not to do so).
In the smooth case, this has the effect of replacing �0 by � D �0 C 1 but in the Gevrey
case, any � > �0 is sufficient. Then the initial regularity parameter r0 also deteriorates to
r < r0 but this, however, is artificial: this will be used in order to compensate the fact
that, throughout the proof, we shall use various non-equivalent norms and consequently,
the constants " and C becomes singular at the limit r ! r0. One can in principle work
with the same norm throughout the proof and allow r D r0, but for our non-linear prob-
lem this leads to technical difficulties (changing norms will allow us to somehow avoid
these difficulties, at the expense of introducing a singular limit r ! r0). For some other
simpler non-linear problems (that will be mentioned below) one can indeed work with the
same norm and reach r D r0 (and also � D �0). Finally, let us discuss our assumption
r > c.a; �/� with

c.a; �/ D 32a=.1�a/.� � 1/.�1�a � 1/�1=.1�a/:

As we have already mentioned, when a ! 0 then c.a; �/! 1 and this is the best one
can hope for, in view of the linear analogue given by Lemma 2. But when a ! 1, then
c.a; �/! C1 at variance with Lemma 2: here we do not know whether this is artificial
or not.

To discuss this last issue, let us recall that the smooth analogue of Theorem A, which
we have already mentioned, can be proved either by analytic approximations or by using
Nash–Moser theory, and even though these techniques are clearly related, they are not the
same (though they may be equivalent in some sense): in Nash–Moser theory a crucial use
is made of the so-called “tame estimates”, whereas they are not used at all if one uses ana-
lytic approximations. Our proof of Theorem A will use analytic approximations, together
with the application of an analytic KAM theorem at each step, and it is the analytic KAM
theorem which introduces this large constant c D c.a; �/. One could, and perhaps should,
replace the analytic KAM theorem by an analytic KAM step since this is clearly what is
needed; to apply a KAM step one essentially has to require r > � but the convergence
argument becomes quite technical and heuristic considerations suggest that one needs to
ask for much more than r > � (applying a KAM theorem instead of a KAM step makes
the convergence proof elementary). In principle we could also use Nash–Moser theory,
albeit in a “generalized” sense since we only have “generalized” tame estimates, and we
would like to point out that with this approach one faces the same singular limit when
a! 1. First recall that for the Fourier l1-norm

kf k1r D
X
k2Zn

jfkje
r'.jkj/
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associated to any sub-additive weight (so in particular the smooth weight '0, the Gevrey
weight 'a and the analytic weight '1), one has the general product estimate

kfgk1r � kf k
1
rkgk

1
r :

Now for the smooth weight '0, we have the better tame estimates

kfgk1r � C.r/.kf k
1
rkgk

1
0 C kf k

1
0kgk

1
r /; '0.t/ D ln.1C t /; (3.6)

which are fundamental in Nash–Moser theory; these product estimates are the simplest
non-linear tame estimates. For the Gevrey weight 'a, one can only prove weaker tame
estimates

kfgk1r � C.kf k
1
rkgk

1
�.a/r C kf k

1
�.a/rkgk

1
r /; 'a.t/ D

ta

a
(3.7)

with 0 < �.a/ < 1 such that �.a/! 0 as a! 0 and �.a/! 1 as a! 1; in general these
estimates are the best possible and for the analytic weight aD 1, one cannot do better than
the general product estimate. Even though estimates (3.7) are weaker than those in (3.6),
a generalized Nash–Moser argument applies: this was done in [22] for instance, and their
result leads to exactly the same singular behavior as a ! C1. More precisely, in the
language of Nash–Moser theory we have a “non-constant loss of derivatives” for the non-
linear tame estimates (we still have nice linear tame estimates as Lemma 2 shows) and the
result of [22] requires r > c0.a/� with c0.a/DO2.1=.1� �.a/// (there � D 3=2 is fixed).
Of course product estimates are not sufficient to deal with the non-linear problem (V), as
one also needs composition estimates which are usually harder to obtain, and this is why
we eventually used analytic approximations, which, in our opinion, turn out to be simpler
(even though they require the use of non-equivalent norms and induce an artificial small
loss of regularity).

3.4. Some comments on other (non-)quasi-analytic classes

Let us now discuss the case of other weights, starting with non-quasi-analytic ones. Again,
to deal with non-linear problems such as (V), one should require further properties that
ensure stability with respect to non-linear operations such as products and compositions:
a general property that guarantees such stability properties is the sub-additivity of the
weight. A statement such as Theorem A seems hard to obtain for an abstract weight,
since it depends strongly on the weight and on the choice of a norm for a given regularity
parameter: this is not the case for statements such as Theorems B or C which depend only
on the equivalence class of the weight and on the topology of the limit spaces, so we shall
discuss only those statements. Let us say that a weight ' is of moderate growth if there
exists H > 1 such that

lim inf
t!C1

'.Ht/

'.t/
> 1:

The following conjecture seems reasonable.
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Conjecture 1. Theorems B and C hold true for any non-quasi-analytic sub-additive
weight of moderate growth.

Indeed, for any non-quasi-analytic sub-additive weights, the result of Section 4.2,
which deals with characterization of functions in F

'
r by their approximation with real-

analytic functions, and the result of Section 4.3, which deals with the analytic KAM
theorem for vectors in A

'
r , apply (for the results of Section 4.2, one needs to change

to some equivalent weight and somehow lose precise control of the regularity parameter;
see [27] or [16]). To be more accurate, the approximation by real-analytic functions and
the application of an analytic KAM step (and not KAM theorem) are both governed by
the same function, which is the Young conjugate of ' (see Section 4.2 for a definition):
the case of Gevrey weight is simpler since its Young conjugate has an explicit expression,
and, more importantly, it also governs the application of the analytic KAM theorem (up to
a large factor, a point which we have already discussed). For more general weights, simple
examples show that this last point is no longer true, so to solve the above conjecture one
probably has to replace the analytic KAM theorem by an analytic KAM step, but heuris-
tic considerations suggest that one can still obtain a convergent scheme (which has to be
more involved than what is done in Section 4.4). The moderate growth condition, which
also frequently appears in the literature, is clearly used in the proof in Section 4.4, but
we do not know whether this is necessary: again Gevrey weights are homogeneous and
this moderate growth property is then obvious and very explicit. Apart from the Gevrey
weight, a specific family of weights satisfying the requirements of the above conjecture is
given by

 b.t/ D t .ln.1C t //�b; b > 1:

The quasi-analytic case is more subtle, and we should only discuss the analogue of
Theorem C in the most representative case of the weight

 1.t/ D t .ln.1C t //�1

which has already appeared in Section 2.4. We can ask the following question.

Question 1. What is the necessary and sufficient condition on ! to solve (V) in F
 1
C ?

The condition ! 2A
 1
C , defined in Section 2.3, is clearly a necessary condition but we

do not know whether it is also a sufficient condition. The results of Section 4.2 do apply
as well, but not the results of Section 4.3 since vectors in A

 1
1 are not Bruno: but exactly

as before, one could replace the analytic KAM theorem by an analytic KAM step (which
only requires '.t/D o.t/, hence applies to ' D  1) but unlike non-quasi-analytic classes,
heuristic considerations do not suggest that such a scheme could converge.

For this quasi-analytic problem, it may be the case that a Bruno-type condition
appears, like they do for the analytic problem. Results in [8] do apply here and give the
following sufficient condition to solve (V) in F

 1
C :

! 2 A
'
1 ;

Z C1
1

ln.1C t /'.t/
t2

< C1:
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One may still improve this condition; perhaps the weaker condition ! 2 B1, which was
introduced in Section 2.4 and reads ! 2 A

'
1 for some non-quasi-analytic sub-additive

weight (equivalently, ' is non-quasi-analytic and satisfies t�1'.t/& 0), could play a role
here.

3.5. Some comments on other non-linear problems

Finally, we claim that Theorem A (and hence Theorems B and C) also holds true for other
non-linear problems on the torus: we choose the case of perturbation of constant vector
fields since it is the simplest case in which non-trivial arithmetic conditions are known to
be necessary. But as will be clear from the proof (which will be described in Section 4.1),
everything also works for the persistence of a Lagrangian quasi-periodic invariant torus in
Hamiltonian systems as pioneered by Kolmogorov ([21]), or, even more generally, for the
quasi-periodic solutions constructed in [26] upon introducing modifying terms: consider-
ing this more general setting only introduces further non-essential technicalities that we
have decided to avoid.

In particular, everything applies as well to the problem of reducibility of elliptic quasi-
periodic cocycles, as studied in [14,33] for instance: with modifying terms this is nothing
but a “linear” particular case of [25] in which the frequency ! is fixed under perturba-
tion (but some other “elliptic” frequency moves in a non-linear fashion). This problem
is technically simpler as only product estimates are needed (see for instance [7]) and the
proof of the equivalent of Theorem A in this case greatly simplifies: using a “generalized”
Nash–Moser argument that we described in Section 3.3, we can work with the same norm
and the statement of Theorem A holds true with r D r0 and even � D �0. But more seems
to be true: indeed it was proved in [19] (see [3] for the discrete setting) that for n D 2, the
analogue of Theorem A also holds true even for the analytic case a D 1 (with a proper
arithmetic condition on the elliptic component): hence there are no Bruno-type conditions
as far as the “base” frequency ! is concerned. It is reasonable to expect that there should
be no Bruno-type condition on ! for any n � 2, yet this is an open problem.

4. Proof of the main result

4.1. Strategy of the proof, following Moser

The proof follows Moser’s argument of approximation by real-analytic functions, as
described for instance in [25] in the smooth case. The proof in the smooth case relies
on the following two principles. First, a finitely differentiable function can be character-
ized by the rate of approximation by real-analytic functions; if r is the regularity and sj
is the sequence (converging to zero) of analytic widths associated to the analytic approx-
imations, then the optimal rate of convergence is of order srj . It is important to observe
that those analytic approximations can actually be chosen to be much more than analytic,
namely one can choose entire functions of exponential type (which, in the periodic case we
are considering, are nothing but trigonometric polynomials) and they are easily obtained
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by convolution. Second, for an analytic perturbation, with analytic width sj , of a constant
Diophantine vector field with exponent � > 0, the threshold of applicability of the ana-
lytic KAM theorem is easily seen to be of order s�C1j . Combining these two principles one
obtains a result in regularity r > � C 1.

In the a-Gevrey case for 0 < a < 1, we will follow the same principles but they are
somehow more complicated in this situation. First, as was observed in [28], approximation
of Gevrey functions by real-analytic functions through entire functions of exponential
type do not lead to an optimal rate of approximation: if r is the regularity and sj is the
sequence of analytic widths, then the rate of convergence is of order exp.�r.1=sj /a/
and does not characterize a-Gevrey functions: one could argue that the space of entire
functions of exponential type is too small and does not allow us to discriminate between
the case 0 < a < 1 and the analytic case a D 1, whereas one obviously would like the
rate of approximation to tend to infinity as a approaches 1. The idea of Popov (see [28])
is to obtain a sequence of analytic approximations in a much more precise way through
almost analytic extensions, which are an extension to the complex domain for which the
N@-operator does not vanish (so the extension is not analytic) but vanishes asymptotically
with a precise rate as the imaginary part tends to zero. Once we have almost analytic
extensions, one can further approximate them to solve the N@-operator and this leads to
a sequence of real-analytic approximations with an optimal rate of order exp.�r.r=sj /b/
with bD a=.1� a/, which does tend to infinity as a tends to 1 and which does characterize
a-Gevrey functions. Second, the threshold of applicability of the analytic KAM theorem
with a Bruno frequency vector (recall that frequency vectors ! 2 Aa

� are Bruno) is more
subtle, but very precise statements have been given by Rüssmann (see [33–35]). In fact,
results in [34, 35] do apply to an arbitrary Bruno vector (see also [10, 30]) and it turns out
that they are not very well suited to the special Bruno vectors ! 2 Aa

� we are considering
(they lead to an artificial singular limit when a approaches 0). Consequently, we shall rely
on a result of Pöschel ([29]) which follows [33] and gives a quite precise statement for
vectors ! 2 Aa

� : the threshold is of order exp.�c�.�=sj /b/ with c D c.a/ > 1. Again,
combining these two principles one obtains a result in regularity r > c� .

4.2. Analytic approximation, following Popov

In this section we recall the results of Popov (see [28] and also [18]) on the approximation
of Gevrey functions by real-analytic functions through almost analytic extension. Some
little modifications are required as far as the almost analytic extensions are concerned,
since we use a Fourier-based l1-norm whereas the results in [28] use a space-based L1-
norm (that characterizes the regularity of a function through the growth of the sequence
of its derivatives). One could simply convert our Fourier norm into a proper space norm,
as this would only involve an arbitrarily small loss of regularity parameter (up to some
polynomially large factor that can be absorbed by the exponentially small error term that
will come into play; anyway such a procedure will be used several times in the sequel).
However, those results are known in greater generality and they are valid for a large class
of weights (even some quasi-analytic weights). The first general result on the existence
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of almost analytic extension is due to Dynkin (see [15] for a survey) still using space-
based norms; for Fourier norms we shall rely on the results contained in [1, 27]: results
in [27] are stated for functions with one variable but since our weights are “radial” (in the
sense that '.jkj/ for k 2 Zn depends only on jkj 2 N) these results apply as well, but
alternatively the results of [1] are stated in any dimension and for general (not necessarily
radial) weights. Finally, there are also recent results in [16] which apply to both space-
based or Fourier-based norms.

Given v > 0, we consider the complex domain

Tn
v WD

®
� D x C iy 2 Cn=Zn j jyj < v

¯
and for any bounded function gWTn

u ! C, we consider the sup-norm over the complex
domain, as well as the sup-norm over the real domain

jgjv WD sup
�2Tn

v

jg.�/j; jgj0 WD sup
�2Tn

jg.�/j:

Recall that a C 1 function Qf WTn
v ! C is analytic if and only if it is holomorphic, that is it

satisfies a system of Cauchy–Riemann equations

N@l Qf .�/ WD
1
2

�
@xl
Qf .�/C i@yl

Qf .�/
�
D 0; 1 � l � n;

for any � D .x1 C iy1; : : : ; xn C iyn/ 2 Tn
v . Now a real-analytic function f 2 O.Tn/ DT

s>0F 1
s possesses a (unique) analytic extension Qf to Tn

v for some v > 0: more precisely,
one can choose any v < s provided f 2 F 1

s . This is no longer true for f 2 F a
r with

0 < a < 1, but a (non-unique) “almost” analytic extension always exists (and one can take
v as large as one wants, though only the case where v is small will be of interest).

To state the result, we shall introduce the Young conjugate of the weight 'a.t/D ta=a,
which is defined by

'�a .�/ WD sup
t�0

®
'a.t/ � �t

¯
; � > 0: (4.1)

It is always finite since 'a.t/ D o.t/, convex, decreasing and we also have

'a.t/ D inf
�>0

®
'�a .�/C �t

¯
; t > 0

since 'a is concave. Moreover, for any r > 0 we have

r'�a .�=r/ D sup
t�0

®
r'a.t/ � �t

¯
; � > 0: (4.2)

In fact, the form of the Gevrey weight allows for a simple computation of '�a : define the
conjugate exponent b by

0 < b WD
a

1 � a
< C1;

1

a
�
1

b
D 1I (4.3)

then it is easy to check that

'�a .�/ D
1

b�b
D 'b.1=�/; � > 0: (4.4)

We have the following statement.
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Proposition 6. Let f 2 F a
r0

and 0 < r < r0. Then f admits a C 1 extension Qf WTn
r0
! C

such that for any 0 < v � r0,

j Qf jv � C1kf kr0 ; j
N@l Qf jv � C1kf kr0e

�r'b.r0=v/; 1 � l � n

with a positive constant C1 D C1.a; r; r0; n/.

This is a consequence of [27, Theorem 2.4] (see also [1, Theorems 2.2, 4.1]). Actually,
the quality of approximation is more precisely an exponentially small factor e�r0'b.r0=v/

up to some polynomially large factor .r0=v/d with d D d.a; n/; we simply decreased
r < r0 to absorb this last factor.

Now, for the sequence vj D 2�j v0, j 2 N with v0 � r0, the proposition gives a
sequence Qfj WTn

vj
!C which is almost analytic in the sense that jN@l Qf jvj for any 1� l � n

decreases to zero with a stretched exponential speed (in vj ) with exponent b; in view
of (4.3) we have b !C1 as a! 1 which agrees with the fact that for a D 1, the exten-
sion can be chosen so that jN@l Qf jvj is identically zero.

Proposition 6 constitutes one half of Popov’s approximation lemma by real-analytic
functions; once we have almost analytic extensions, [28, Proposition 3.1] (see also [18,
Proposition 2.1]) yields a sequence of real-analytic approximations fj with the same
stretched exponential speed. However, the approximations fj have to be constructed on
a domain Tn

uj
which is slightly smaller than the domain Tn

vj
on which one has estimates

for Qfj ; it suffices to take uj < vj (in [28] the author chooses uj D vj =2 for simplicity)
and so again we use our absorbing factor r < r0 to choose uj D .r=r0/vj . Proposition 6,
together with Popov’s approximation lemma, leads to the following statement.

Proposition 7. Let f 2 F a
r0

, 0 < u0 � r < r0 and uj D 2�ju0 for j 2 N. There exists a
sequence of real-analytic functions fj WTn

uj
! C such that8̂̂<̂

:̂
jf0ju0 � C2kf kr0 ;

jfjC1 � fj jujC1 � C2kf kr0e
�r'b.r=uj /;

jfj � f j0 � C2kf kr0e
�r'b.r=uj /

with a positive constant C2 D C2.a; r; r0; n/.

Finally, as in [18], we shall prove that the above proposition admits a partial converse;
we shall state it in a way adapted to the proof of Theorem A.

Proposition 8. Given r >0, consider for j 2N a geometric sequencewj�1D2�jw�1<r
and a sequence of real-analytic functions f j�1W Tn

wj�1
! C such that f �1 D 0, and

assume that

jf j � f j�1jwj�1 � e
��'b.r=wj�1/; wj�1 < r; j 2 N

for some constant 0 < � < r . Then for any 0 < � < � , if

e�.���/.2
b�1/'b.r=w�1/ �

1
2
; (4.5)
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the sequence f j�1 converges in F a
� and the limit f satisfies

kf k� � 2e
�.���/'b.r=w�1/:

Proof. Let us define hj Df j �f j�1 and expand it into Fourier series hj D
P
k2Zn h

j

k
ek :

since hj is analytic we have

jhkj j � jhj jwj�1e
�wj�1jkj � e��'b.r=wj�1/e�wj�1jkj

so thatX
j�0

khj k� D
X
j�0

sup
k2Zn
jh
j

k
je�'a.jkj/ �

X
j�0

e��'b.r=wj�1/ sup
t�0

®
e�'a.t/�wj�1t

¯
I

therefore, from (4.2) and (4.4) we haveX
j�0

khj k� �
X
j�0

e��'b.r=wj�1/e�'b.�=wj�1/ �
X
j�0

e�.���/'b.r=wj�1/ < 2e�.���/'b.r=w�1/;

where we used the fact that 'b.�=wj�1/� 'b.r=wj�1/ since 0 < � < � < r and r >wj�1,
and (4.5) which allows us to bound the last series by a geometric series. It follows that the
sum of the hj converges normally in F a

� , and since the latter is a Banach space, the sum
converges to some f which is necessarily the limit of f j�1 and from the last inequality
and the fact that f �1 D 0, at the limit one has the wanted estimate.

4.3. Analytic KAM theorem, following Rüssmann

In this section we shall state an analytic KAM theorem adapted to a frequency ! 2 Aa
�0

,
which by definition (recall (3.4)) satisfies the inequalities

j2�k � !j � 
�0.!/e
��0'a.jkj/; k 2 Zn n ¹0º;

which can be written as

jk � !j �
˛

�.jkj/
; �.t/ WD e�0'a.t/; ˛ WD


�0.!/

2�
; k 2 Zn n ¹0º: (4.6)

Vectors which satisfy (4.6) are clearly Bruno vectors, hence the results of Rüssmann
(see [34, 35], see also [10, 30]) apply. However, those results apply to any Bruno vec-
tor ! and as we will explain below, for the special vectors satisfying (4.6) they do not give
the best quantitative result.2 The difference is that in order to reach a statement valid for
all Bruno vectors, it seems that one has to avoid using a “superlinear” scheme of conver-
gence (Newton method) but rather use a scheme whose “speed” depends on the arithmetic
property of !. Now, for vectors satisfying (4.6) (or more generally for the set of vectors

2One should point out that, unlike [35] for instance, the threshold of the main theorem in [34] is not
correct: this comes from a slight mistake in Lemma 3.2 in that reference.
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B1 we mentioned in Sections 2.4 and 4.4), a superlinear scheme is possible and does give
a better quantitative result. Such an analytic KAM theorem with a superlinear scheme is
contained in [33] where the sup-norm is used and a variant of this scheme (in a much more
general setting) is contained in [29] where the Fourier l1-norm is used; it turns out that
using the Fourier norm, and consequently the results in [29], is much more practical (this
will also be explained below).

So to state the main result of [29] (in the simple setting we are considering), recall that
� was defined in (4.6), and we now define

�.�/ WD sup
t�0

®
.1C t /�.t/e��t

¯
; � > 0; (4.7)

and for a given 1 < � < 2, we set

‰�.�/ WD inf
C1Y
jD0

�.�j /
�j ; �j WD .� � 1/�

�.jC1/; (4.8)

where the infimum (which can be shown to be a minimum) is taken over all non-increasing
sequences .�j /j2N whose sum is less than or equal to � . The fact that (4.7) and (4.8) are
indeed finite will be verified later; we shall actually need explicit estimates for them. Given
s > 0 and f WTn ! R we recall that

kf k1s WD
X
k2Zn

jfkje
sjkj

and the assumption that kf k1s < C1 implies that f extends to a holomorphic function
on Tn

s . We then extend the definition of the above norm for vector fields on Tn by taking
the maximum norm of each component. Here is the analytic KAM theorem we shall rely
on.

Proposition 9. Let 0 < a < 1, 1 < � < 2, 0 < 2� < s and for X D X! C F with !
satisfying (4.6), assume that

C4˛
�1‰�.�/kF k

1
s � 1

for some positive numerical constant C4. Then there exist � 2 Rn and ˆWTn
s�2� ! Tn

s

such that
ˆ�.X � �/ D X! (4.9)

with the estimates

j�j � C4kF k
1
s ; max

®
kˆ � Idk1s�2� ; kDˆ � Idk1s�2�

¯
� C4˛

�1‰�.�/kF k
1
s :

This is a direct consequence of [29, Theorem A] and [29, Estimates of Theorem A] in
the very special case where the Hamiltonian is linear with respect to the action variables,
there are no elliptic variables (one can put M D 0 in the above reference) and the Cantor
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set of frequencies is reduced to a single point. We shall now make several modifications
to this result in order to have a statement which will be more convenient in this sequel.

First we shall actually use Proposition 9 in the case where s, and thus � < s=2, is a
small parameter and in this case, we shall obtain explicit estimates for �.�/ in (4.7) and
‰�.�/ in (4.8). Observe that

�.�/ D sup
t�0

®
.1C t /e�0'a.t/��t

¯
and the supremum is reached at a value t� !C1 as � ! 0 and that within this limit, the
polynomially large factor .1C t / is dominated by the exponentially large factor e�0'a.t/.
Hence given � > �0, there exists s� D s�.a; �; �0/ > 0 such that for 0 < 2� < s � s�, we
have

�.�/ � sup
t�0

®
e�'a.t/��t

¯
and recalling the definition of '�a in (4.1), together with relations (4.2) and (4.4), this gives

�.�/ � e�'b.�=�/:

If we had used the sup-norm (as in [33]) instead of the Fourier l1-norm, the supremum
in the definition of �.�/ in (4.7) would have to be replaced by a sum (or an integral)
and the computations in this case are less explicit: this is the reason why we choose the
Fourier l1-norm (sup-norms will be converted into Fourier l1-norms below). Next we shall
estimate ‰�.�/ in (4.8), and actually, we have nothing to do since it is explicitly done
in [29, Lemma 6]: if we optimize among geometric sequences one is lead to consider

�j WD �.�
1�a
� 1/��.1�a/.jC1/; j 2 N

which gives the estimate

‰�.�/ � e
ı�'b.�=�/; ı D ı.a; �/ WD .� � 1/.�1�a � 1/�1=.1�a/: (4.10)

Observe that as a! 1, then ı ! C1, and as a! 0, then ı ! 1 which is the best one
can expect: if we had used results valid for any Bruno vectors such as [35], we would
have found another constant ı0 for which ı0!C1 as a! 1 but also as a! 0, which is
clearly not natural.

Next we convert sup-norms into Fourier l1-norms by using the well-known relations

jf js � kf k
1
s ; kf k

1
s�2� � .coth �/njf js; 0 < 2� < s:

Using again � > �0, the polynomial large factor .coth�/n can be absorbed by the exponen-
tial large factor in (4.10) (strictly speaking, we should introduced yet another � 0 > � > �0
but clearly one can replace � by �0 C .� � �0/=2 and then take � 0 D � ) and it follows that
Proposition 9 holds true with (4.10) if we replace the Fourier l1-norm by the sup-norm,
require 0 < 4� < s instead of 0 < 2� < s and allow the constant C4 to depend now on � ,
�0, a, � and n.
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Finally, as observed by Moser in [25], the modifying term � in (4.9) need not be
constant and it can be replaced by a non-constant modifying term of the form ‚��, that
is,

‚��.x/ WD .Dx‚/
�1�

with
‚WTn

s ! Cn=Zn; jD‚ � Idjs � 1
3
: (4.11)

Indeed, the last inequality implies j.D‚/�1 � Idjs � 1=2 and therefore, for any � 2 Rn,
we have

j�j

2
� jˆ��js �

3j�j

2
:

We refer to [25] for the reduction of this seemingly more general statement to the case
where ‚ D Id; clearly this only changes C4 by a numerical factor. With all these modifi-
cations, we can finally state a more convenient version of Proposition 9.

Proposition 10. Let 0 < a < 1, � > �0 > 0, 1 < � < 2. There exists s� D s�.a; �; �0/

such that for any 0 < 4� < s � s�, the following holds true. Given X D X! C F with !
satisfying (4.6) and ‚ satisfying (4.11), if we assume that

C4˛
�1eı�'b.�=�/jF js � 1; ı D .� � 1/.�1�a � 1/�1=.1�a/ (4.12)

for some positive constantC4DC4.a;�; �; �0;n/, then there exist �2Rn andˆWTn
s�4�!

Tn
s such that

ˆ�.X �‚��/ D X!

with the estimates and

j�j � C4jF js; max
®
jˆ � Idjs�4� ; jDˆ � Idjs�4�

¯
� C4˛

�1
jF jse

ı�'b.�=�/:

4.4. Proof of Theorem A

This section is entirely devoted to the proof of Theorem A. We recall that we are given
0 < a < 1, r0 > r > 0, � > �0 > 0, 1 < � < 2, such that

r > c�; c D c.a; �/ WD 32bı D 32b.� � 1/.�1�a � 1/�1=.1�a/: (4.13)

Our assumption is that ! 2 Aa
�0

and

kF kr0 WD "0

will be required to be sufficiently small. We now define u0 D u0."0/ > 0 by the equality

e�r'b.r=.2u0// WD
C2C4"0

˛
�
1

2
; (4.14)

where ˛D 
�0.!/=2� and C2 and C4 are the constants appearing in Propositions 7 and 10
respectively. Then we set

�0 D
s0

8
D
u0

16
; (4.15)
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and we define geometric sequences converging to zero,

�j WD 2
�j�0; sj WD 2

�j s0; uj WD 2
�ju0: (4.16)

We have already assumed that "0 is small enough so that (4.14) is less than 1=2 (we will
require much more than that in the sequel), and in view of (4.15), any further small-
ness condition on "0 is equivalent to a smallness condition on u0 or �0 or s0. Thus
we may assume 2u0 < r , so in particular Proposition 7 applies, with the sequence uj
defined in (4.16), to each component of F and yields a sequence of analytic vector fields
Fj WTn

uj
! C such that 8̂̂<̂

:̂
jF0ju0 � C2"0;

jFjC1 � Fj jujC1 � C2"0e
�r'b.r=uj /;

jFj � F j0 � C2"0e
�r'b.r=uj /:

(4.17)

We wish to apply Proposition 10 to the analytic vector fieldX0 DX! CF0 on the domain
Tn
s0

, which makes sense since F0 is defined on Tn
u0

and s0 < u0, and with ‚ D Id. To do
so, first observe that s0 � s� is yet another smallness condition, 4�0 D s0=2 < s0 so that
we only need to verify (4.12), which is implied by

eı�'b.�=�0/
C2C4"0

˛
D e32

bı�'b.�=2u0/e�r'b.r=.2u0// � e�.r�c�/'b.r=.2u0// � 1; (4.18)

where we used the equality in (4.14), the fact that �0 D u0=16 D 2u0=32, 2u0 < r and
the definition of c D 32bı. But our assumption (4.13) is precisely that r > c� , therefore
the last inequality in (4.18) holds true because of the inequality in (4.14). Consequently,
Proposition 10 applies and, since s0 � 4�0 D s1, we obtain �0 2 Rn and ˆ0WTn

s1
! Tn

s0

such that
.ˆ0/�.X0 � �

0/ D X! ;

and setting � D r � c� > 0 we have the estimates

j�0j � ˛e�r'b.r=.2u0//; max
®
jˆ0 � Idjs1 ; jDˆ

0
� Idjs1

¯
� e��'b.r=.2u0//:

Moreover, since s0 < u1, we have ˆ0WTn
s1
! Tn

u1
.

Claim. Set ��1 D 0 2 Rn,ˆ�1 D Id and u�1 D 2u0. We claim that for any j 2 N, there
exist ˆj WTn

sjC1
! Tn

ujC1
and �j 2 Rn such that for Xj D X! C Fj we have

.ˆj /�.Xj � �
j / D X! (4.19)

and ´
j�j � �j�1j � ˛e�r'b.r=uj�1/;

max
®
jˆj �ˆj�1jsjC1 ; jDˆ

j �Dˆj�1jsjC1
¯
� e��'b.r=uj�1/:

(4.20)
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Proof of the claim. We have already shown the claim to be true for j D 0, so we may
proceed by induction and we assume the statement to hold true for 0 � i � j with j 2 N,
and we need to show that it remains true for j C 1. First observe that from (4.20), for u0
small enough one has

max
®
jˆj � IdjsjC1 ; jDˆ

j
� IdjsjC1

¯
� 2e��'b.r=.2u0// � 1

3
: (4.21)

Then we write
XjC1 D X! C FjC1 D Xj C .FjC1 � Fj /

and we apply our inductive assumption to get

.ˆj /�.XjC1 � �
j / D .ˆj /�.Xj � �

j /C .ˆj /�.FjC1 � Fj / D X! CGj ; (4.22)

where Gj D .ˆj /�.FjC1 � Fj / is well defined since ˆj maps Tn
sjC1

into Tn
ujC1

which is
the domain of definition of FjC1 � Fj ; it follows from (4.21) and (4.17) that

jGj jsjC1 � jDˆ
j
jsjC1 jFjC1 � Fj jujC1 � 2C2"0e

�r'b.r=uj /: (4.23)

We wish to apply Proposition 10 to the vector field (4.22), with ‚ D ˆj : it follows
from (4.21) that (4.11) holds true; obviously sjC1 � s� since this is the case for j D �1.
Also, in view of (4.23), to verify (4.12) one needs to check that

e�ı�'b.�=�jC1/
�2C2C4"0

˛

�
e�r'b.r=uj / � e�32

bı�'b.�=uj /e�r'b.r=uj /

� e��'b.r=uj / � 1; (4.24)

where we used the inequality in (4.14), the fact that �jC1 D ujC1=16 D uj =32 and the
definition of � D r � 32bı� . Again, (4.24) holds true since it holds true for j D �1 in
view of (4.18). Hence Proposition 10 applies (with ‚ D ˆj ) and gives a vector �jC1 and
a transformation ĵC1 with the estimates

j�jC1j � ˛e
�r'b.r=uj /; max

®
j ĵC1 � IdjsjC2 ; jD ĵC1 � IdjsjC2

¯
� e��'b.r=uj / (4.25)

so that
. ĵC1/

�..ˆj /�.XjC1 � �
j / � .ˆj /��jC1/ D X! :

Hence if we set ˆjC1 D ˆj ı ĵC1, �jC1 D �j C �jC1 then

.ˆjC1/�.XjC1 � �
jC1/ D X!

and the estimates (4.20), with j replaced by j C 1, follow from (4.25) and (4.21). Finally,
since (4.20) holds true with j replaced by j C 1, then (4.21) as well holds true with j
replaced by j C 1, and since the transformations are real, for � 2 Tn

sjC2
we have

jIm.ˆjC1.�//j � jDˆjC1jsjC2 jIm.�/j � 2sjC2 D ujC2

and therefore ˆjC1 maps Tn
sjC2

into Tn
ujC2

, hence the claim is proved.
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To conclude the proof of Theorem A, we define wj�1 D sjC1 D uj�1=8 for j 2 N so
that (4.20) gives

max
®
jˆj �ˆj�1jwj�1 ; jDˆ

j
�Dˆj�1jwj�1

¯
� e��'b.r=.wj�1//; � WD 8�b�:

Since w�1 D u0=4 < r , if we fix 0 < � D �=2 < � , the assumptions of Proposition 8 are
satisfied because (4.5) is yet another smallness condition, so we can apply this proposition
to each component of ˆj�1 � Id and Dˆj�1 � Id and consequently ˆj�1 converges to
some map ˆ 2 F a

� , which is necessarily a diffeomorphism in view of the convergence of
Dˆj�1, and satisfies the estimate

kˆ � Idk� � 2e�.���/'b.r=w�1/ D 2e�8
�b.���/'b.r=2u0/ D 2

�C2C4"0
˛

��
(4.26)

with � D 8�b.2r/�1� , where we used the definition in (4.14), whereas for the �j�1, it
follows directly from (4.20) that it converges to some � 2 R which satisfies

j�j � 2˛e�r'b.r=u�1/ D 2˛e�r'b.r=.2u0// D 2C2C4"0: (4.27)

Since Fj converges uniformly to F by (4.17), Xj converges uniformly to X D X! C F
and going to the limit j !C1 in (4.19) we find

ˆ�.X � �/ D X!

and the wanted estimates follows from (4.26) and (4.27).
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