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Effective viscosity of random suspensions
without uniform separation

Mitia Duerinckx

Abstract. This work is devoted to the definition and the analysis of the effective viscosity associated
with a random suspension of small rigid particles in a steady Stokes fluid. While previous works on
the topic have conveniently assumed that particles are uniformly separated, we relax this restrictive
assumption in the form of mild moment bounds on interparticle distances.

1. Introduction

Consider a colloidal suspension of small rigid particles in a Stokes fluid. Suspended par-
ticles act as obstacles, hindering the fluid flow and thus increasing the viscosity. In a
recent contribution ([7]) with Gloria, we show in terms of homogenization theory that
the suspension behaves at leading order like a Stokes fluid with some effective viscosity,
and in [8] we establish optimal error estimates. In [6] we analyze the value of this effec-
tive viscosity in the low-density regime, in particular establishing the so-called Einstein
formula and improving on several recent works on the topic ([14, 17–19, 22]). In [10]
we further investigate the collective sedimentation of suspended particles under gravity.
In all those contributions, a crucial technical assumption is that particles are uniformly
separated, which is necessary in various arguments, for instance when appealing to trace
estimates and regularity theory at particle boundaries. This separation assumption is how-
ever unsatisfactory from the physical viewpoint, as it is incompatible with the steady-state
behavior, e.g. [1, 2], and the present contribution aims at relaxing it as much as possible
in the form of mild inverse moment bounds on interparticle distances. We focus on the
definition of the effective viscosity and on the qualitative homogenization result, and we
further provide general tools that can be used to adapt some more advanced results; see
e.g. [6, Section 2] and [18, Section 5] on the validity of Einstein’s formula in the low-
density regime without uniform separation.

In the case of smooth particles with some nondegeneracy condition, we essentially
show in three dimensions that the effective viscosity is well defined provided that
EŒ��1� <1, where � stands for the distance between two neighboring particles, and we
prove qualitative homogenization under the stronger condition EŒ��3=2� <1. Although
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likely optimal in a general stationary ergodic setting, these moment bounds on interpar-
ticle distances are still quite restrictive and unphysical; cf. [1, 2]. We may draw the link
with the well-known paradox of absence of solid–solid contacts in a three-dimensional
Stokes flow, which is related to flaws in the modeling: real-life solid particles are slightly
elastic, their boundaries display some roughness, and no-slip boundary conditions are not
exactly valid; see e.g. [16] and references therein. Such corrections are not considered
in the present contribution and we rather provide a detailed analysis of the ideal Stokes
model. In [9], with Gloria, we investigate another line of research: under suitable mixing
conditions, large clusters of close particles are unlikely in view of subcritical percolation,
which can be exploited to prove homogenization without any conditions on interparticle
distances. Finer geometric information might also be used in the spirit of [15].

Our approach in this contribution is mainly inspired by the work of Jikov ([24,25]) on
the homogenization problem for scalar elliptic equations with stiff inclusions; see also [20,
Section 8.6]. In that scalar setting, however, required moment bounds on interparticle
distances are much milder and only logarithmic moments are required in three dimensions.
We emphasize two main differences:

• First, and most importantly, the incompressibility constraint in the present Stokes
problem brings important rigidity and leads to completely different scalings. This is
easily understood by noting that the incompressibility constraint can be eliminated by
writing the Stokes equations as fourth-order elliptic equations on the vector potential;
see e.g. [12]. As in [16], spatial cutoffs in this situation are then naturally to be per-
formed on the vector potential, so that one derivative of cutoff functions is lost with
respect to scalar and compressible settings, which explains the different scalings; see
the proof of Proposition 3.1.

• Second, the vectorial character of the Stokes problem prohibits the use of scalar trun-
cations: in contrast with e.g. [20, Section 8.6], this forces us to appeal to the Sobolev
embedding and further deteriorates the required moment conditions.

We note some similarities with the homogenization problem for elliptic systems with
degenerate random coefficients, e.g. [3–5, 11], where similar inverse moment conditions
are required on coefficients.

Before stating our main results, we close this introduction by recalling the formulation
of the Stokes model for a viscous fluid in the presence of a random suspension of small
rigid particles, e.g. [7]. We denote by d � 2 the space dimension, and we consider a
random ensemble of particles 	 D

S
n In � Rd . Stationarity, ergodicity, and regularity

assumptions are postponed to Section 2. In order to model a dense suspension of small
particles, we rescale the random set 	 by a small parameter " > 0 and consider "	 DS
n "In. We then view these small particles ¹"Inºn as suspended in a solvent described

by the steady Stokes equation: in a reference domain U � Rd , given an internal force
f 2 L2.U /d , the fluid velocity u" 2 H 1.U n "	/d satisfies

�4u" CrS" D f; div.u"/ D 0; in U n "	; (1.1)
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with u" D 0 on @U . (We implicitly assume here that no particle intersects the bound-
ary.) The pressure field is only defined up to an additive constant and we choose S" 2
L1.U n "	/ with

R
Un"	

S" D 0. Next, no-slip boundary conditions are imposed at par-
ticle boundaries: since particles are constrained to have rigid motions, this amounts to
letting the velocity field u" be extended inside particles, u" 2 H 1.U /d , with the rigidity
constraint

D.u"/ D 0 in "	; (1.2)

where D.u"/ stands for the symmetric gradient of u". In other words, this condition means
that the velocity field u" coincides with a rigid motion x 7! V";n C ‚";nx inside each
particle "In, for some V";n 2 Rd and some skew-symmetric matrix‚";n 2 Rd�d . Finally,
assuming that the particles have the same mass density as the fluid, or in the absence of
gravity, buoyancy forces vanish, and the force and torque balances on each particle take
the form Z

"@In

�.u"; S"/� D 0; (1.3)Z
"@In

‚x � �.u"; S"/� D 0 for all skew-symmetric ‚ 2 Rd�d ; (1.4)

where �.u"; S"/ is the Cauchy stress tensor

�.u"; S"/ D 2D.u"/ � S" Id; (1.5)

and where � stands for the outward unit normal vector at the particle boundaries. These
equations (1.1)–(1.5) have the following weak formulation:

2

Z
U

D.g/ W D.u"/ D
Z
U

g � f; 8g 2 C 1c .U /
d
W div.g/ D 0; D.g/j"	 D 0:

This Stokes problem can also be viewed as a model for incompressible linear elasticity
with stiff inclusions.

Notation

• For vector fields u, u0 and matrix fields T , T 0, we set .ru/ij Drjui , div.T /DrjTij ,
T W T 0D TijT

0
ij , .u˝u0/ij Duiu0j , where we systematically use Einstein’s summation

convention on repeated indices. For a matrix E, we write rEu D E W ru.

• For a velocity field u and pressure field S , we denote by .D.u//ij D 1
2
.rjui Criuj /

the symmetric gradient and by �.u; S/ D 2D.u/ � S Id the Cauchy stress tensor. At
particle boundaries, we let � denote the outward unit normal vector.

• We denote by Msym � Rd�d the subset of symmetric matrices, by Msym
0 the subset of

symmetric trace-free matrices, and by Mskew the subset of skew-symmetric matrices.
We also write Lp.Rd /d�dsym D Lp.Rd IMsym/.
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• We denote by C � 1 any constant that only depends on the dimension d , on the ref-
erence domain U , and on the parameters appearing in the different assumptions (in
particular on ı in (Hı

ı
)–(H0

ı
) below). The value of the constant C is allowed to change

from one line to another. We use the notation . (resp. &) for�C� (resp.� 1
C
�) up to

such a multiplicative constant C . We add subscripts to C;.;& to indicate dependence
on other parameters.

• The ball centered at x of radius r in Rd is denoted by Br .x/, and we simply write
B.x/ D B1.x/, Br D Br .0/, and B D B1.0/.

2. Main results

We focus on the case d > 2 for the statement of the main results, while the two-
dimensional case has some important differences and is briefly discussed in Remark 3.4.

2.1. Assumptions

We start with the construction and suitable assumptions on the random ensemble of parti-
cles. Given an underlying probability space .�;A;P /, let P D ¹xnºn be a random point
process on Rd , with a given enumeration, consider a collection of random shapes ¹I ın ºn,
where each I ın is a connected random Borel subset of the unit ballB ,1 and define the corre-
sponding random inclusions In WD xnC I ın . We then consider the random set 	 WD

S
n In,

which is assumed to satisfy the following general conditions, for some deterministic con-
stant ı > 0.

Assumption (Hı
ı
) – General conditions.

• Stationarity and ergodicity: The point process P D ¹xnºn and the associated random
set 	 are stationary and ergodic.2

• Uniform C 2 regularity: Random shapes ¹I ın ºn almost surely satisfy interior and exte-
rior ball conditions with radius ı.

• Hardcore condition: There holds NIn \ NIm D ¿ almost surely for all n ¤ m.

When particles are close, not only does their distance matter, but also the order of their
quasi-contact. We therefore need to refine the above hardcore condition, and we focus on
the case of smooth particles with uniformly nonosculating boundaries. This is expressed

1Letting B.Rd / denote the Borel � -algebra on Rd , we recall that a map I ıW� ! B.Rd /W ! 7!

I ı.!/ is a random Borel subset of Rd if the set ¹.!; x/ W ! 2 �; x 2 I ı.!/º belongs to the product
� -algebra A � B.Rd /, or alternatively if the indicator function 1I ı is .A � B.Rd //-measurable on
� �Rd .

2Stationarity means that the laws of the translated point process x CP and of the translated random
Borel set x C 	 do not depend on the shift x 2 Rd . Ergodicity then means that, if a measurable function
of P or 	 is almost surely unchanged when P or 	 is replaced by x CP or x C 	 for any x 2 Rd , then
the function is almost surely constant.



Effective viscosity of random suspensions without uniform separation 1013

below in the form of some “parabolic” version of a cone condition. While always satisfied
in the case of spherical particles, this excludes for instance the case of particles that would
almost touch on flat components, as it would correspond to a contact of infinite order;
see Figures 1–2. Note that our analysis is easily adapted to intermediate situations with
contacts of any fixed order: this would lead to stronger moment conditions on interparticle
distances and is not pursued here.

Figure 1. The figure displays a configuration with close particles satisfying Assumption (H0
ı
).

Disjoint neighborhoods ¹ICn ºn are represented as light gray areas around the particles. The zooms
on the neighborhoods of quasi-contact points show that particle boundaries are not osculating, as
prescribed by Assumption (H0

ı
), with parabolic domains delimited by dotted lines.

Figure 2. The figure displays examples of configurations of close particles that are forbidden by
Assumption (H0

ı
) as their boundaries are osculating to infinite order.

Before we actually state relevant geometric conditions, we need to introduce some
further notation. First, we construct neighborhoods ¹ICn ºn of the particles ¹Inºn in the
form of truncated Voronoi cells,

ICn WD .In C Bı/ \
®
x 2 Rd W dist.x; In/ < infmWm¤n dist.x; Im/

¯
: (2.1)

In view of the uniformC 2 regularity of the particles, cf. (Hı
ı
), it is easily checked that these

neighborhoods ¹ICn ºn are uniformly Lipschitz (with Lipschitz constant bounded by C=ı).
Next, we define “model” parabolic domains that are enclosed by close paraboloids with
different radii: given a distance � � 0 and radii a2 > a1 > 0, we set

�Ca1;a2.�/ WD Bı \
®
.x1; x

0/ 2 R �Rd�1 W ��C 1
a2
jx0j2 < x1 <

1
a1
jx0j2

¯
;

��a1;a2.�/ WD Bı \
®
.x1; x

0/ 2 R �Rd�1 W �� � 1
a1
jx0j2 < x1 < �

1
a2
jx0j2

¯
;

(2.2)
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In these terms, we formulate the following geometric condition, for some deterministic
constant ı > 0. It states that such parabolic domains can be included in the interparticle
spacing ICn n In in the neighborhood of quasi-contact points, and the condition 1

a1
�
1
a2
� ı

means that paraboloids can be chosen to be ı-uniformly not osculating; see Figures 1–2.

Assumption (H0
ı
) – Uniform nondegeneracy of contact points. For all n, for all x 2

@In, there exists 0 � � � ı, there exist radii a2 > a1 � ı with 1
a1
�

1
a2
� ı, and there

exists a rotation Q 2 O.d/, such that the rotated parabolic domain x CQ�Ca1;a2.�/ or
x CQ��a1;a2.�/ is contained in ICn n In.

Finally, we turn to assumptions on interparticle distances. For all n, the (half) interpar-
ticle distance from In is given by

�ın WD min
mWm¤n

1
2

dist.In; Im/: (2.3)

While previous works on the Stokes model (1.1)–(1.5) have focused on the convenient
case of uniformly separated particles, that is, infn �ın > 0, the present contribution aims
at showing that this can be substantially weakened in the form of mild inverse moment
bounds. For that purpose, under Assumption (H0

ı
), we first need to introduce a better

suited notion of interparticle distance �n � �ın: for all x 2 @In, we let �n.x/ denote the
supremum of the admissible choices of � in (H0

ı
), and we then define

�n WD inf
x2@In

�n.x/: (2.4)

2.2. Construction of correctors

We start with the definition of correctors for the Stokes problem (1.1)–(1.5), thus adapt-
ing [7, Proposition 2.1] to the present setting without uniform particle separation. The
proof relies on the construction of a suitable admissible test function for the variational
problem (2.6) below, and we believe that the moment condition (2.5) is optimal in gen-
eral. As is shown in the proof, existence and uniqueness of the corrector  E also hold
under (2.5) with � D 0, but existence of a stationary pressure field is based on a weak
compactness argument in L1C.�/ and therefore requires � > 0. Contacts between parti-
cles are allowed in dimension d > 5 as no moment condition is required in that case.

Theorem 1 (Correctors). Let d > 2. On top of Assumptions (Hı
ı
) and (H0

ı
), assume

that interparticle distances ¹�nºn, cf. (2.4), satisfy the following moment condition, for
some � > 0:

for d < 5 W
X
n

EŒ�
� 5�d2 ��
n 102In � <1;

for d D 5 W
X
n

EŒjlog �nj1C�102In � <1;
(2.5)

while no moment condition is required in dimension d > 5.Then, for all E 2Msym
0 , there
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exists a unique minimizer D. E / of the variational problem

inf
®
EŒjD. /CEj2� W  2 L2.�IH 1

loc.R
d /d /; r stationary;

div. / D 0; .D. /CE/j	 D 0; EŒD. /� D 0
¯
; (2.6)

and the minimum value defines a positive-definite symmetric linear map xB on Msym
0 , which

is the so-called effective viscosity,

EW xBE WD EŒjD. E /CEj2�: (2.7)

Moreover, the minimizer D. E / can be characterized by the following PDE: there exist a
unique random vector field  E 2 L2.�IH 1

loc.R
d /d /, with anchoring

R
B
 E D 0, and a

unique associated pressure field †E 2 L1.�IL1loc.R
d n 	//, such that

• the following equations are almost surely satisfied in the strong sense:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�4 E Cr†E D 0 in Rd n 	;

div. E / D 0 in Rd ;

D. E CEx/ D 0 in 	;−
@In

�. E CEx;†E /� D 0 8n;−
@In

‚.x � xn/ � �. E CEx;†E /� D 0 8n; 8‚ 2Mskew
I

(2.8)

• r E and †E1Rd n	 are stationary, with the following estimates, for some � > 0:

EŒjr E j
2� . jEj2; EŒr E � D 0;

EŒj†E j
1C�1Rd n	� . jEj1C�; EŒ†E1Rd n	� D 0:

In particular, the following convergences hold almost surely as " # 0:

.r E /.
�

"
/ * 0 weakly in L2loc.R

d /;

.†E1Rd n	/.
�

"
/ * 0 weakly in L1C�loc .Rd /;

" E .
�

"
/! 0 strongly in Lqloc.R

d /, for all q < 2d
d�2

.

(2.9)

In contrast with the case of uniformly separated particles, cf. [7, Proposition 2.1], we
emphasize that under the moment condition (2.5) the pressure field †E above is only
defined in L1C�.�/ for some � > 0, and not in L2.�/. Improving on this integrability
naturally requires a stronger moment condition, as shown in the following.

Proposition 2 (Integrability of the pressure). Let d > 2 and let 
 WD 2d.dC1/

d2C5d�2
for abbre-

viation. On top of Assumptions (Hı
ı
) and (H0

ı
), given 1 < ˛ < 2, let one of the following

conditions hold for interparticle distances ¹�nºn:
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• in the case ˛ � d
d�1

with d � 5, assume that

for d < 5 W
X
n

EŒ�
� ˛
2�˛

5�d
2

n 102In � <1;

for d D 5 W
X
n

EŒjlog �nj
˛
2�˛ 102In � <1;

• in the case ˛ < 
 with d > 5, no moment condition is required;

• in the case d
d�1
_ 
 < ˛ < 2, with ˛ ¤ d

d�2
, assume thatX

n

EŒ�
� ˛
2�˛ .

1

 �

1
˛ /.dC1/

n 102In � <1:

Then for all E 2Msym
0 the pressure field †E constructed in Theorem 1 satisfies

EŒj†E j
˛1Rd n	� . jEj˛;

and there holds almost surely .†E1Rd n	/.
�

"
/ * 0 weakly in L˛loc.R

d / as " # 0.

2.3. Homogenization result

We turn to the homogenization result for the Stokes problem (1.1)–(1.5). For that purpose,
we first define admissible random ensembles of particles in a given bounded Lipschitz
domain U � Rd : the proof indeed requires controlling the distances of particles to the
boundary @U similarly to interparticle distances. We let N".U / � N denote a random
subset of indices such that®

n W In �
1
"
U; dist.In; @1"U/ � ı

¯
� N".U / �

®
n W In �

1
"
U
¯
;

and we define the associated random ensemble of particles in U ,

	".U / WD
[

n2N".U /

"In: (2.10)

In this setting we consider corresponding neighborhoods ¹ICnIU;"ºn of the particles ¹Inºn,

ICnIU;" WD I
C
n \

1
"
U;

we assume that Assumption (H0
ı
) holds with neighborhoods ¹ICn ºn replaced by ¹ICnIU;"ºn,

and we define the corresponding distances ¹�nIU;"ºn as in (2.4).
With this notation we may now formulate the homogenization result for (1.1)–(1.5).

The proof is based on a div-curl argument together with an extension result for fluxes as
inspired by the work of Jikov ([24, 25]). Due to nonuniform particle separation, extended
fluxes are only controlled in L˛ for some integrability ˛ < 2 depending on the moment
condition on interparticle distances; see Theorem 4. In view of the Sobolev embedding,
Jikov’s div-curl argument can then be performed provided ˛ � 2d

dC2
. This restriction leads
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to the moment condition (2.11) below, which is expected to be optimal in general and
coincides with the one in Proposition 2 with ˛ D 2d

dC2
. We emphasize that this condition

becomes more stringent in large dimensions as the Sobolev exponent 2d
dC2

increases to 2.
Not surprisingly, the condition is stronger than the one for the existence of the corrector in
Theorem 1 since defining correctors only requires constructing an admissible test function
for the variational problem (2.6).

Theorem 3 (Homogenization result). Let d > 2. On top of Assumption (Hı
ı
), given a

bounded Lipschitz domain U � Rd , let Assumption (H0
ı
) hold for ¹ICnIU;"ºn, and assume

that interparticle distances ¹�nIU;"ºn satisfy, almost surely,

for d D 3 W lim sup
"#0

"d
X

n2N".U /

.�nIU;"/
� 32 <1;

for d � 4 W lim sup
"#0

"d
X

n2N".U /

.�nIU;"/
�. d2�1/ <1;

(2.11)

where in the case d D 6 the exponent d
2
� 1 D 2 must be replaced by some exponent > 2.

Denote by � WD EŒ1	� the volume fraction of the suspension, let  , †, xB be defined as in
Theorem 1, and define the following effective constant Nb 2Msym

0 : for all E 2Msym
0 ,

NbWE WD
1

d
E

�X
n

1In
jInj

Z
@In

.x � xn/ � �. E CEx;†E /�

�
: (2.12)

Given an internal force f 2 L2.U /d , let the velocity field u" 2 L2.�IH 1
0 .U /

d / and the
associated pressure field S" 2 L1.�I L1.U n 	".U ///, with anchoring

R
Un	".U /

S" D 0,
be almost surely the unique solutions of the Stokes problem (1.1)–(1.5), that is,8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�4u" CrS" D f in U n 	".U /;

div.u"/ D 0 in U ;

D.u"/ D 0 in 	".U /;Z
"@In

�.u"; S"/� D 0 8n;Z
"@In

‚.x � "xn/ � �.u"; S"/� D 0 8n; 8‚ 2Mskew:

(2.13)

Then we have almost surely, as " # 0,

u" � Nu * 0 weakly in H 1
0 .U /;

.S" � xS � Nb W D. Nu//1Un	".U / * 0 weakly in L
2d
dC2 .U /;

where the limiting velocity field Nu 2H 1
0 .U /

d and the associated pressure field xS 2 L2.U /,
with anchoring

R
U
xS D 0, are the unique solutions of the homogenized equation´
� div.2 xB D. Nu//Cr xS D .1 � �/f in U ;

div. Nu/ D 0 in U :
(2.14)
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In addition, provided that f 2 Lp.U /d for some p > d , the following corrector results
hold almost surely, as " # 0: 



u" � Nu �X

E2E

" E

�
�

"

�
rE Nu






H1.U /

! 0;

inf
c2R





S" � xS � Nb W D. Nu/ �X
E2E

†E

�
�

"

�
rE Nu � c






L
2d
dC2 .Un"	/

! 0;

(2.15)

where E stands for an orthonormal basis of Msym
0 .

2.4. Further technical tools

On top of the definition of the effective viscosity and the above qualitative homogenization
result, we wish to further extend more advanced results such as the validity of Einstein’s
formula for the effective viscosity at low density ([6, 18]), optimal quantitative error esti-
mates for homogenization ([8]), and the analysis of sedimentation ([10]). For these aims,
we provide a couple of technical tools for the analysis of suspensions without uniform
separation. These tools are used in [6, Section 2] and [18, Section 5] for the validity of
Einstein’s formula.

We start with the following extension result for fluxes in the presence of rigid particles,
which constitutes the main technical tool in our proof of Theorem 3. Starting from a notion
of flux q that accounts for the behavior outside rigid particles, we construct an extension Qq
that is defined nontrivially inside the particles in such a way that the continuity equation
holds globally; cf. (2.18). For that purpose, one views the suspension of rigid particles as
the limit of a suspension of droplets with diverging shear viscosity, and extended fluxes are
then naturally defined as limits of corresponding fluxes; see Remark 4.2. This construction
is inspired by a corresponding scalar result by Jikov ([24, 25]) in the context of scalar
elliptic equations with stiff inclusions (see also [20, Section 3.5]), but additional care is
needed here to deal with the incompressibility constraint.

Theorem 4 (Extension of fluxes). Let d > 2, let Assumptions (Hı
ı
) and (H0

ı
) hold, and

let a realization of the random set 	 be fixed. Given ˇ 2 .1;1/ and f 2 Lˇloc.R
d /d ,

let q 2 Lˇloc.R
d /d�dsym with tr.q/ D 0 satisfy

2

Z
Rd

D.g/ W q D
Z

Rd

g � f 8g 2 C 1c .R
d /d W div.g/ D 0; D.g/j	 D 0: (2.16)

Then, for all ˛, r chosen as

r �
ˇ

ˇ � 1
;

1 < ˛ � ˇ ^
drˇ

r.d � ˇ/C dˇ
;

with

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

r <
dˇ

ˇ � d
if ˇ > d;

r ¤
dˇ

dˇ � d � ˇ
if ˇ > d

d�1
;

˛ <
d

d � 1
if r D ˇ

ˇ�1
;

(2.17)



Effective viscosity of random suspensions without uniform separation 1019

there exists an extension Qq 2L˛loc.R
d /d�dsym with tr. Qq/D 0, as well as an associated pressure

field zS 2 L˛loc.R
d /, such that

QqjRd n	 D qjRd n	; and � div.2 Qq � zS Id/ D f in Rd ; (2.18)

and such that, for all R � 1, the estimate

k QqkL˛.BR/ C





 zS � −
BR

zS






L˛.BR/

.˛;ˇ;r ƒ.BRI r; ˇ˛ˇ�˛ /.kf k
L
dˇ
dCˇ . yBR/

C kqkLˇ . yBRn	/
/ (2.19)

holds, where we have set yBR WD BR [
S
nWIn\BR¤¿ I

C
n and

ƒ.DI r; p/ WD

�
jDj C

X
nWIn\D¤¿

�r .�n/
p

� 1
p

; (2.20)

in terms of

�r .�/ WD

8̂̂<̂
:̂
�
dC1
2r �

3
2 W r > dC1

3
;

jlog �j
1
r W r D dC1

3
;

1 W r < dC1
3
:

(2.21)

As applications of this extension result, we establish a trace estimate at particle bound-
aries and a version of Caccioppoli’s inequality.

Corollary 5 (Trace estimate). Let d > 2, let Assumptions (Hı
ı
) and (H0

ı
) hold, and let

a realization of the random set 	 be fixed. Let the velocity field u 2 H 1
loc.R

d /d and the
associated pressure field S 2 L1loc.R

d n 	/ satisfy the homogeneous Stokes problem8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�4uCrS D 0 in Rd n 	;

div.u/ D 0 in Rd ;

D.u/ D 0 in 	;Z
@In

�.u; S/� D 0 8n;Z
@In

‚.x � xn/ � �.u; S/� D 0 8n; 8‚ 2Mskew:

(2.22)

Then for all n and g 2 W 1;1.ICn /
d we have for all � > 0,ˇ̌̌̌Z

@In

g � �.u; S/�

ˇ̌̌̌
.� kgkW 1;1.ICn nIn/

�Z
ICn nIn

jD.u/j2
� 1
2

�

´
�
1
4d
.dC1/.dC2/� 52��

n W d � 6;

1 W d > 6:
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Corollary 6 (Caccioppoli’s inequality). Let d > 2, let Assumptions (Hı
ı
) and (H0

ı
) hold,

and let a realization of the random set 	 be fixed. Then, for all � > 0, there exists s < 2d
d�2

such that any solution .u; S/ of the homogeneous Stokes problem (2.22) satisfies, for all
R � 5 and K � 1,�−

BR

jruj2
� 1
2

.s;�
�
KR�1

�−
B2R

ˇ̌̌̌
u �

−
B2R

u

ˇ̌̌̌s� 1
s

C .K�1 CR�
d
2 .

1
s �

d�2
2d
//

�−
B2R

jruj2
� 1
2
�

�

8̂̂̂̂
<̂
ˆ̂̂:
1CR�d

X
nWIn\B2R¤¿

�
1
4 .dC1/.dC2/�

5
2d��

n W d � 5;

1CR�d
X

nWIn\B2R¤¿

�
1� d2��
n W d > 5:

3. Extension of fluxes

This section is devoted to the proof of Theorem 4. The argument relies on the following
local extension result for incompressible fields, which is of independent interest.

Proposition 3.1. Let d > 2, let Assumptions (Hı
ı
) and (H0

ı
) hold, and let a realization

of the random set 	 be fixed. Let 1 < s � r < 1, with r ¤ ds
d�s

if s < d , and with
r < ds

dCs�ds
if s < d

d�1
. Then, for all n, there exists an extension operator Pn such that

for all g 2 C 1
b
.In/

d with div.g/ D 0 the extension Png 2 W
1;s
0 .ICn /

d satisfies

D.Png/jIn D D.g/; and div.Png/ D 0 in ICn ; (3.1)

and for all p � s _ drs
d.r�s/Crs

, with p > d if r D s,

krPngkLs.ICn /
.p;r;s �r .�n/kD.g/kLp.In/; (3.2)

where we recall the notation (2.21) for �r .

For future reference, we also highlight the following key tool for pressure estimates. It
follows from the above local extension result combined with a standard use of the Bogov-
skii operator. Note that the restriction on the geometry of the domainD and the associated
constant K.D/ can be refined as e.g. in [13, Lemma III.3.2 and Theorem III.3.1].

Lemma 3.2. Let d > 2, let Assumptions (Hı
ı
) and (H0

ı
) hold, and let a realization of

the random set 	 be fixed. Let D � Rd be a bounded Lipschitz domain that is star-like
with respect to every point in some ball of radius R0, and set K.D/ WD 1

R0
diam.D/.

Let 1 < s � r <1, with r ¤ ds
d�s

if s < d , and with r < ds
dCs�ds

if s < d
d�1

. Then, for
all h 2 Cb.D/ with

R
Dn	

h D 0, there exists z 2 W 1;s
0 .D/d such that

D.z/j	 D 0; and div.z/ D h1Dn	 in D;
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and for all p � s _ drs
d.r�s/Crs

, with p > d if r D s,

krzkLs.D/ .p;r;s K.D/dC1ƒ.DI r; psp�s /khkLp.Dn	/; (3.3)

where we recall the definition (2.20)–(2.21) of ƒ.

3.1. Cutoff functions

We start with the construction of suitable cutoff functions for the inclusions ¹Inºn in their
neighborhoods ¹ICn ºn. The open subsets ¹J jn ºj in the statement below are neighborhoods
of quasi-contact points, that is, neighborhoods where @In and @ICn are very close; see Fig-
ure 3. The proof is inspired by the work of Jikov on homogenization problems with stiff
inclusions, e.g. [20, Section 3.2], and is also analogous to computations by Gérard-Varet
and Hillairet in [16] for the drag force on a sphere close to a wall. This result is easily
adapted beyond Assumption (H0

ı
) to cover higher-order quasi-contacts between the parti-

cles, then leading to a worse dependence on the distance �n.

Figure 3. This displays a configuration of close particles. Disjoint neighborhoods ¹ICn ºn are repre-
sented around the particles, and suitable neighborhoods ¹J jn ºj of quasi-contact points are drawn in
light gray.

Lemma 3.3 (Cutoff functions). Let Assumptions (Hı
ı
) and (H0

ı
) hold, and let a realization

of the random set 	 be fixed. For all n, there exists a function wn 2W
1;1
0 .ICn I Œ0; 1�/ with

wnjIn D 1 such that for all r � 1,

krwnkLr .ICn /
.r

8̂̂<̂
:̂
�
dC1
2r �1
n W r > dC1

2
;

jlog �nj
1
r W r D dC1

2
;

1 W r < dC1
2
;

(3.4)

and

kr
2wnkLr .ICn /

.r

8̂̂<̂
:̂
�
dC1
2r �2
n W r > dC1

4
;

jlog �nj
1
r W r D dC1

4
;

1 W r < dC1
4
:

(3.5)
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In addition, there is a collection ¹J jn º
Mn

jD1 of open subsets of the form J
j
n D B.x

j
n ;

1
C
ı/ \

ICn , with Mn . 1 and dist.J jn ; J kn / �
1
C
ı for all j ¤ k, such that

kwnkW 2;1.ICn n
SMn
jD1 J

j
n /

. 1;

and for all r � 1,

max
1�j�Mn

kj� � xjn jr
2wnkLr .J jn /

.r

8̂̂<̂
:̂
�
dC1
2r �

3
2

n W r > dC1
3
;

jlog �nj
1
r W r D dC1

3
;

1 W r < dC1
3
:

(3.6)

Proof. Under Assumption (H0
ı
), the construction of the neighborhoods ¹J jn º

Mn

jD1 is trans-
parent, cf. Figure 3, and we only need to construct wn in one of those sets. In view of
the definition of the parabolic domains �˙a1;a2.�/, cf. (2.2), it suffices to construct a cut-
off function w�a1;a2 in Bı � R � Rd�1 such that w�a1;a2 D 0 for x1 < �� C 1

a2
jx0j2 and

w
�
a1;a2 D 1 for x1 > 1

a1
jx0j2. By assumption we consider a2 > a1 � ı with 1

a1
�

1
a2
� ı,

and by scaling it suffices to consider a1 D 1. More precisely, we consider the set

E D
®
.x1; x

0/ 2 R �Rd�1 W x1 � �1; jx
0
j �

1
2

¯
;

and, given � > 0 and a > 1 with 1� 1
a
� ı, we construct a cutoff function w�a 2 C

1;1
b
.E/

such that w�a D 0 for x1 < �� C 1
a
jx0j2 and w�a D 1 for x1 > jx0j2, and such that for

all r � 1,

krw�akLr .E/ .r

8̂̂<̂
:̂
�
dC1
2r �1 W r > dC1

2
;

jlog �j
1
r W r D dC1

2
;

1 W r < dC1
2
;

(3.7)

kr
2w�akLr .E/ .r

8̂̂<̂
:̂
�
dC1
2r �2 W r > dC1

4
;

jlog �j
1
r W r D dC1

4
;

1 W r < dC1
4
;

(3.8)

k j�jr
2w�akLr .E/ .r

8̂̂<̂
:̂
�
dC1
2r �

3
2 W r > dC1

3
;

jlog �j
1
r W r D dC1

3
;

1 W r < dC1
3
:

(3.9)

In other words, we need to construct a suitable interpolation between 1 and 0 in the domain
enclosed by the two parabolas,®

.x1; x
0/ 2 R �Rd�1 W ��C 1

a
jx0j2 < x1 < jx

0
j
2; jx0j � 1

2

¯
:

As we aim to construct a C 1;1 test function, we cannot use linear interpolation: instead of
the linear function h0.t/ D t with h0.0/ D 0 and h0.1/ D 1, we rather consider as in [16]
the cubic function

h.t/ WD t2.3 � 2t/;
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with h.0/ D 0, h.1/ D 1, and h0.0/ D h0.1/ D 0. We then define

w�a.x/ WD w
�
a.x1; x

0/ WD

8̂̂̂<̂
ˆ̂:
0 W x1 � ��C

1
a
jx0j2;

h
� 1

�
�
a .x0/

.�C x1 �
1

a
jx0j2/

�
W ��C 1

a
jx0j2 � x1 � jx

0
j
2;

1 W x1 � jx
0
j
2;

where for abbreviation we denote by ��a the horizontal distance between the two parabolas,

��a .x
0/ WD �C .1 � 1

a
/jx0j2:

We check that w�a belongs to C 1;1.E/ and it remains to establish the estimates (3.7)–
(3.9). Recalling the assumption 1 � 1

a
� ı, a direct computation shows that there holds

for ��C 1
a
jx0j2 � x1 � jx

0j2,

jrw�a.x/j . .�C jx0j2/�1; jr2w�a.x/j . .�C jx0j2/�2: (3.10)

We start with the proof of (3.7). Using (3.10), evaluating the integral over x1, and using
radial coordinates, we findZ

E

jrw�aj
r .r

Z
jx0j� 12

.�C jx0j2/1�r dx0 .
Z 1

2

0

sd�2

.�C s2/r�1
ds;

which proves (3.7) after evaluating the integral. The proof of (3.8) follows the same lines
and is skipped.

We turn to the proof of (3.9). For ��C 1
a
jx0j2 � x1 � jx

0j2 and jx0j � 1
2

, we find

jxj � jx1j C jx
0
j . �C jx0j:

Combining this with (3.10), evaluating the integral over x1, and using radial coordinates,
we findZ

E

j�j
r
jr
2w�aj

r .r �r
Z
jx0j� 12

.�C jx0j2/1�2r dx0 C

Z
jx0j� 12

jx0jr .�C jx0j2/1�2r dx0

. �r
Z 1

2

0

sd�2

.�C s2/2r�1
ds C

Z 1
2

0

sdCr�2

.�C s2/2r�1
ds;

which proves (3.9) after evaluating the integrals.

3.2. Proof of Proposition 3.1

Starting from a Stein extension of g, the argument relies on the cutoff function constructed
in Lemma 3.3 in order to make this extension vanish on the boundary @ICn . A naive cutoff
would however break the incompressibility property and cause serious trouble, especially
close to quasi-contact points. Instead, in the spirit of [12], taking inspiration from calcu-
lations by Gérard-Varet and Hillairet in [16], we take cutoffs at the level of the vector
potential. We split the proof into three main steps.
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Step 1. Extension to ICn .
Given g 2 C 1

b
.In/

d with div.g/ D 0, we construct an extension P 1n g 2 H
1
0 .In C B/

d

such that
D.P 1n g/jIn D D.g/; and div.P 1n g/ D 0 in In C B; (3.11)

and for all 1 < s <1,

krP 1n gkLs.InCB/ .s kD.g/kLs.In/: (3.12)

For that purpose, let us first choose Vg 2 Rd and ‚g 2Mskew such that Korn’s inequality
yields for all 1 < s <1,

kg � Vg �‚gxkW 1;s.In/ .s kD.g/kLs.In/: (3.13)

Next, in view of the C 2 regularity of In, cf. Assumption (Hı
ı
), we can choose a Stein

extension P 0n g 2 C
1
b
.In C B/

d with P 0n gjIn D g � Vg �‚gx, such that for all s � 1,

kP 0n gkW 1;s.InCB/ .s kg � Vg �‚gxkW 1;s.In/;

and thus, by (3.13), for all 1 < s <1,

kP 0n gkW 1;s.InCB/ .s kD.g/kLs.In/: (3.14)

It remains to apply a cutoff to P 0n g to make it vanish on the boundary @.In C B/

while keeping the properties in (3.11). For that purpose, choose a cutoff function � 2
C1c .In C B/ with �jIn D 1 and k�kW 1;1.InCB/ . 1. By a standard construction based
on the Bogovskii operator, e.g. [13, Theorem III.3.1], since the compatibility relationZ

.InCB/nIn

div.�P 0n g/ D �
Z
@In

g � � D �

Z
In

div.g/ D 0

holds, there exists zn.g/ 2 H 1
0 ..In C B/ n In/

d such that

div.zn.g// D div.�P 0n g/ in .In C B/ n In;

and for all 1 < s <1,

krzn.g/kLs..InCB/nIn/ .s kdiv.�P 0n g/kLs..InCB/nIn/:

Expanding the divergence in the right-hand side of this estimate, and using (3.14), we find
for all 1 < s <1,

krzn.g/kLs..InCB/nIn/ .s kP 0n gkW 1;s.InCB/ .s kD.g/kLs.In/: (3.15)

Now we define
P 1n g WD �P

0
n g � zn.g/ 2 H 1

0 .In C B/
d ;
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which indeed satisfies P 1n gjIn D P 0n gjIn D g � Vg � ‚gx and div.P 1n g/ D 0, hence
(3.11). In addition, combining (3.14) and (3.15) yields for all 1 < s <1,

krP 1n gkLs.InCB/ . kP 0n gkW 1;s.InCB/ C krzn.g/kLs..InCB/nIn/ .s kD.g/kLs.In/;

that is, (3.12).

Step 2. Matrix potential for P 1n g.
We construct a matrix field �ŒP 1n g� 2 C

1.Rd /d�dskew that decays at infinity such that

div.�ŒP 1n g�/jICn D P
1
n gjICn ; (3.16)

and such that for all d
d�1

< s <1 and p > d ,

kr�ŒP 1n g�kLs.Rd / .s kD.g/k
L
ds
dCs .In/

;

kr�ŒP 1n g�kL1.Rd / .p kD.g/kLp.In/:
(3.17)

For that purpose, we extend P 1n g by 0 to Rd , viewing it as a compactly supported element
of H 1.Rd /d , and for all i; j we define r�ij ŒP 1n g� 2 L2.Rd /d as the unique solution of

�4�ij ŒP
1
n g� D @i .P

1
n g/j � @j .P

1
n g/i in Rd : (3.18)

In view of (3.12), Calderón–Zygmund potential theory yields r�ij ŒP 1n g� 2 W
1;s.Rd /d

for all 1 < s < 1. Moreover, as P 1n g is compactly supported, Riesz potential theory
ensures that �ij ŒP 1n g� can itself be uniquely chosen as a decaying element in C 1.Rd /.
Uniqueness and the form of the right-hand side in (3.18) ensure that �ŒP 1n g� is skew-
symmetric. Taking the divergence in (3.18), and using that div.P 1n g/ D 0, we find

�4 div.�ŒP 1n g�/ D �4P
1
n g in Rd ;

which entails
div.�ŒP 1n g�/ D P

1
n g;

that is, (3.16). It remains to check (3.17). First, for all d
d�1
� s < 1 and p > d , the

Sobolev embedding gives

kr�ŒP 1n g�kLs.Rd / .s kr2�ŒP 1n g�k
L
ds
dCs .Rd /

;

kr�ŒP 1n g�kL1.Rd / .p kr�ŒP 1n g�kW 1;p.Rd /:

Second, for all 1 < s <1, Calderón–Zygmund potential theory for (3.18) gives

kr
2�ŒP 1n g�kLs.Rd / .s krP 1n gkLs.Rd /;

kr�ŒP 1n g�kLs.Rd / .s kP 1n gkLs.Rd /:
(3.19)

Combining these two ingredients, appealing to Poincaré’s inequality for P 1n g supported
in In C B , and using (3.12), claim (3.17) follows. For future reference, we note that a
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similar argument also gives, for all d
d�1

< s <1 and p > d ,

kP 1n gkLs.Rd / .s kD.g/k
L
ds
dCs .In/

;

kP 1n gkL1.Rd / .p kD.g/kLp.In/:
(3.20)

Step 3. Conclusion.
Recall the cutoff function wn 2H 1

0 .I
C
n / that we constructed in Lemma 3.3, as well as the

collection of neighborhoods of quasi-contact points J jn D B.x
j
n ;

1
C
ı/\ ICn , 1 � j �Mn.

Recalling that dist.J jn ; J kn / �
1
C
ı for j ¤ k, we further define enlarged neighborhoods

J jn � J j;Cn WD B.xjn ;
6
5C
ı/ \ ICn � J j;CCn WD B.xjn ;

7
5C
ı/ \ ICn ;

which then satisfy dist.J j;CCn ; J
k;CC
n / � 1

5C
ı for j ¤ k, and we abbreviate these as

Jn WD

Mn[
jD1

J jn ; JCn WD

Mn[
jD1

J j;Cn ; JCCn WD

Mn[
jD1

J j;CCn :

We split the proof into two further substeps, first constructing the extension Png close to
quasi-contact points in JCn , and then completing the construction globally.

Substep 3.1. Construction of Png close to quasi-contact points.
Given 1 < s � r < 1 with r ¤ ds

d�s
if s < d , and with r < ds

dCs�ds
if s < d

d�1
, we

construct a vector field P 2n g 2 H
1
0 .I
C
n /

d such that

P 2n gjIn\JCn D P
1
n gjIn\JCn ; and div.P 2n g/ D 0 in ICn ; (3.21)

and for all p � s _ drs
d.r�s/Crs

, with p > d if r D s,

krP 2n gkLs.ICn /
.p;r;s �r .�n/kD.g/kLp.In/; (3.22)

where we recall the notation (2.21) for �r . For all j we first choose a smooth cutoff
function �jn 2 C1.ICn / such that

�jnjJ j;Cn
D 1; �jnjICn nJ

j;CC
n
D 0; k�jnkW 2;1.ICn /

. 1:

Given a collection of matrices ¹‚jnº
Mn

jD1 �Mskew to be fixed later, we then define

P 2n g WD

MnX
jD1

div.wn�jn.�ŒP
1
n g� �‚

j
n//: (3.23)

By definition of wn, this is supported in ICn and satisfies, in view of (3.16),

P 2n gjIn\JCn D div.�ŒP 1n g�/jIn\JCn D P
1
n gjIn\JCn :
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Moreover, since �ŒP 1n g� � ‚
j
n is skew-symmetric, we obviously have div.P 2n g/ D 0. It

remains to estimate the norm of rP 2n g. To this aim, using (3.16) again, we compute

rP 2n g D

MnX
jD1

r.wn�
j
nP

1
n g/C

MnX
jD1

r..�ŒP 1n g� �‚
j
n/r.wn�

j
n//:

Expanding the gradients, smuggling in the weights x 7! jx � xjn j, and using Hölder’s
inequality, we find for all r � s � 1,

krP 2n gkLs.ICn /
. krP 1n gkLs.ICn /

C kr.wn�
j
n/kLr .ICn /

k.P 1n g;r�ŒP
1
n g�/kL

rs
r�s .ICn /

C

MnX
jD1

k j� � xjn jr
2.wn�

j
n/kLr .J j;CCn /

� k j� � xjn j
�1.�ŒP 1n g� �‚

j
n/kL

rs
r�s .J

j;CC
n /

; (3.24)

and thus, inserting the estimates of Lemma 3.3 for norms of the cutoff function wn, and
recalling the definition (2.21) of �r ,

krP 2n gkLs.ICn /
.r �r .�n/

�
krP 1n gkLs.ICn /

C k.P 1n g;r�ŒP
1
n g�/kL

rs
r�s .ICn /

C

MnX
jD1

k j� � xjn j
�1.�ŒP 1n g� �‚

j
n/kL

rs
r�s .J

j;CC
n /

�
: (3.25)

We estimate the right-hand side in two different ways, corresponding to two different
choices of the constants ¹‚jnº

Mn

jD1 and allowing for complementary ranges of exponents.

• Case 1. Choosing ‚jn D 0 for all j , given 1 < s < d and r > ds
d�s

, with r < ds
dCs�ds

if s < d
d�1

, we obtain for all p � s _ drs
d.r�s/Crs

,

krP 2n gkLs.ICn /
.r;s �r .�n/kD.g/kLp.In/: (3.26)

For that purpose, we appeal to Hardy’s inequality in the following form (see e.g. [23,
Sections 1.3 and 12.8]): for all x0 2 Rd and 1 � p < d ,

k j� � x0j
�1�ŒP 1n g�kLp.Rd / .p kr�ŒP 1n g�kLp.Rd /:

Choosing ‚jn D 0, and inserting this estimate into (3.25), we find for all r � s � 1
with rs

r�s
< d ,

krP 2n gkLs.ICn /
.r;s �r .�n/.krP 1n gkLs.Rd / C k.P

1
n g;r�ŒP

1
n g�/kL

rs
r�s .Rd /

/;

and claim (3.26) follows from (3.12), (3.17), and (3.20).

• Case 2. Choosing ‚jn D �ŒP 1n g�.x
j
n / for all j , given 1 < s � r <1, with r < ds

d�s

if s < d , we obtain for all p � s _ drs
d.r�s/Crs

, with p > d if r D s,

krP 2n gkLs.ICn /
.p;r;s �r .�n/kD.g/kLp.In/: (3.27)
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For that purpose, we appeal to Hardy’s inequality in the following form (see e.g. [23,
Sections 1.3 and 12.8]): for all x0 2 ICn and d < p � 1,

k j� � x0j
�1.�ŒP 1n g� � �ŒP

1
n g�.x0//kLp.ICn /

.p kr�ŒP 1n g�kLp.Rd /:

Choosing ‚jn D �ŒP 1n g�.x
j
n /, and inserting this estimate into (3.25), we find for all

r � s � 1 with rs
r�s

> d ,

krP 2n gkLs.ICn /
.r;s �r .�n/.krP 1n gkLs.Rd / C k.P

1
n g;r�ŒP

1
n g�/kL

rs
r�s .Rd /

/;

and claim (3.27) follows from (3.12), (3.17), and (3.20).

Combining (3.26) and (3.27), and choosing the constants ¹‚jnº
Mn

jD1 accordingly in the
definition (3.23) of P 2n g, claim (3.22) follows.

Substep 3.2. Construction of Png away from contact points.
Let 1 < s � r <1 be fixed, with r ¤ ds

d�s
if s < d , and with r < ds

dCs�ds
if s < d

d�1
.

Choosing a cutoff function � 2 C1c .I
C
n n Jn/ with �jInnJCn D 1 and k�kW 1;1.ICn nJn/

. 1,
we consider the vector field

Qng WD �.P
1
n g � P

2
n g/;

and we note that in view of (3.21) it satisfies

QngjIn D .P
1
n g � P

2
n g/jIn ; (3.28)

hence in particular div.Qng/jIn D 0. As this yields the relationZ
ICn n.In[Jn/

div.Qng/ D �
Z
@.InnJn/

.Qng/ � � D �

Z
InnJn

div.Qng/ D 0;

we can appeal to the same construction based on the Bogovskii operator as in Step 1: there
exists tn.g/ 2 H 1

0 .I
C
n n .In [ Jn//

d such that

div.tn.g// D div.Qng/ in ICn n .In [ Jn/,

and
krtn.g/kLs.ICn n.In[Jn//

.s k div.Qng/kLs.ICn nJn/
: (3.29)

Here comes the restriction to d > 2 as the set ICn n .In [ Jn/ is typically not connected
in dimension d D 2; see Remark 3.4 below. In these terms, we finally define

Png WD P
2
n g CQng � tn.g/ 2 H 1

0 .I
C
n /;

which satisfies, in view of (3.28),

PngjIn D P
2
n gjIn C .P

1
n g � P

2
n g/jIn D P

1
n gjIn ;
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and also div.Png/ D 0 by definition of tn.g/. In addition, combining (3.29) with the
definition of Qng, we find

krPngkLs.ICn /
.s krP 2n gkLs.ICn /

C krQngkLs.ICn /
. k.P 1n g; P

2
n g/kW 1;s.ICn /

;

hence, using Poincaré’s inequality and inserting (3.12) and (3.22), for all p � s _
drs

d.r�s/Crs
, with p > d if r D s,

krPngkLs.ICn /
.p;r;s �r .�n/kD.g/kLp.In/:

This concludes the proof.

Remark 3.4 (Two-dimensional case). The restriction to d > 2 is due to the impossibility
of fixing a stream function �ŒP 1n g� that would vanish at all quasi-contact points. More
precisely, in Case 2 of the above proof, we adapt the stream function �ŒP 1n g� locally by
making it vanish at each quasi-contact point (cf. choice of‚jn in (3.23)), and modifications
are then glued together in ICn n Jn while the field must remain divergence-free and keep
the same symmetric gradient in In. In two dimensions this is not possible since ICn n
.In [ Jn/ is not connected whenever In has multiple quasi-contact points. Due to this
geometric rigidity in two dimensions, the above proof is no longer valid: we must abandon
the cancellation of the stream function at quasi-contact points and rather consider the
extension operator

zPg WD div.wn�ŒP 1n g�/:

The bound (3.24) then becomes, for all r � s � 1, with r < 2s
2�s

if s < 2,

kr zPgkLs.ICn /
. krP 1n gkLs.ICn /

C krwnkW 1;r .ICn /
.kP 1n gkL

rs
r�s .R2/

C k�ŒP 1n g�kW 1; rsr�s .R2/
/

.r;s krP 1n gkLs.ICn /
C krwnkW 1;r .ICn /

kP 1n gkL
rs
r�s .InCB/

;

where we used the Sobolev embedding, the bound (3.19) on �ŒP 1n g�, and Jensen’s inequal-
ity. Combining this with (3.5), (3.12), and (3.20), we deduce for all r � s � 1, with r < 2s

2�s

if s < 2, and for all p � s _ 2rs
2.r�s/Crs

, with p > 2 if r D s,

kr zPgkLs.ICn /
.p;r;s �

3
2r �2
n kD.g/kLp.In/:

Replacing Proposition 3.1 by this extension result would lead to corresponding two-
dimensional versions of our main results; we skip the detail for brevity.

3.3. Proof of Lemma 3.2

The starting point is the following standard construction based on the Bogovskii operator,
e.g. [13, Theorem III.3.1]: given a domain D as in the statement, and given h 2 Cb.D/
with

R
Dn	

h D 0, there exists z0 2 H 1
0 .D/

d such that

div.z0/ D h1Dn	 in D;
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and for all 1 < s <1,

krz0kLs.D/ .s K.D/dC1khkLs.Dn	/: (3.30)

Next, given 1 < s � r <1, with r ¤ ds
d�s

if s < d , and with r < ds
dCs�ds

if s < d
d�1

, we
appeal to the extension operator Pn that we constructed in Proposition 3.1, and we define

z WD z0 �
X
n

Pn.z
0
jIn/:

By the properties of Pn, we find

D.z/j	 D 0; and div.z/ D div.z0/ D h1Dnh in D;

and for all p � s _ drs
d.r�s/Crs

, with p > d if r D s,

krzksLs.D/ .s krz0ksLs.D/ C
X

nWIn\D¤¿

krPn.z
0
jIn/k

s

Ls.ICn /

.p;r;s krz0ksLs.D/ C
X

nWIn\D¤¿

�r .�n/
s
kD.z0/ksLp.In/

.
�
jDj C

X
nWIn\D¤¿

�r .�n/
ps
p�s

�1� sp
krz0ksLp.D/;

where the last bound follows from Hölder’s inequality. Combined with (3.30), this yields
the conclusion.

3.4. Proof of Theorem 4

We split the proof into three steps.

Step 1. Given q, S , f as in (2.16), and given 1 < ˇ <1 and ˛, r as in (2.17), we show
that for all n there exists zn 2 W 1;˛.In/

d such that

2

Z
In

D.g/ WD.zn/D
Z
ICn

g � f � 2

Z
ICn nIn

D.g/ W q 8g 2 C 1c .I
C
n /

d
W div.g/D 0 (3.31)

and
kD.zn/kL˛.In/ .˛;ˇ;r �r .�n/.kf kW �1;ˇ .ICn / C kqkLˇ .ICn nIn/

/: (3.32)

While the left-hand side in (3.31) only involves the restriction gjIn 2 C
1
b
.In/

d of the
test function g, the right-hand side involves its extension g 2 C 1c .I

C
n /

d . In view of con-
dition (2.16), the choice of the extension does not matter. Given 1 < s � r < 1, with
r ¤ ds

d�s
if s < d , and with r < ds

dCs�ds
if s < d

d�1
, we recall the extension operator Pn

that we constructed in Proposition 3.1, and problem (3.31) then reads

2

Z
In

D.g/ W D.zn/ D Fn.g/ 8g 2 C
1
b .In/

d
W div.g/ D 0; (3.33)
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where we have abbreviated

Fn.g/ WD

Z
ICn

.Png/ � f � 2

Z
ICn nIn

D.Png/ W q:

By Proposition 3.1, we find for all p � s _ drs
d.r�s/Crs

, with p > d if r D s,

jFn.g/j . .kf kW �1;s0 .ICn / C kqkLs0 .ICn nIn/
/krPngkLs.ICn /

.p;r;s �r .�n/.kf kW �1;s0 .ICn / C kqkLs0 .ICn nIn/
/kD.g/kLp.In/:

Appealing to the Lp
0

theory for the Stokes equation, e.g. [13, Section IV.6], we deduce that
there exists a solution zn 2 W 1;p0.In/

d of problem (3.33) (unique up to a rigid motion),
and that it satisfies

kD.zn/kLp0 .In/
.p;r;s �r .�n/.kf kW �1;s0 .ICn / C kqkLs0 .ICn nIn/

/:

Setting ˛ WD p0 and ˇ WD s0, this yields claim (3.31)–(3.32).

Step 2. Construction of extended flux.
Given 1 < ˇ <1 and ˛, r as in (2.17), define

Qq WD q1Rd n	 C

X
n

D.zn/1In ;

with zn as constructed in Step 1. Given g 2C 1c .R
d /d with div.g/D 0, we may decompose

g D gı C
X
n

gn; gı WD g �
X
n

Png; gn WD Png:

Using (2.16) with test function gı, and using (3.33) with test function gn, we are led to
the following integral identity:

2

Z
Rd

D.g/ W Qq D
Z

Rd

g � f 8g 2 C 1c .R
d /d W div.g/ D 0: (3.34)

Next we prove bound (2.19) for Qq. Given a bounded domain D � Rd , summing (3.32)
over all particles, appealing to Hölder’s inequality, and using the Sobolev embedding
Ldˇ=.dCˇ/ ,! W �1;ˇ , we find

k Qqk˛L˛.D/ � kqk˛L˛.Dn	/ C
X

nWIn\D¤¿

kD.zn/k˛L˛.In/ (3.35)

.˛;ˇ;r kqk˛L˛.Dn	/ C
X

nWIn\D¤¿

�r .�n/
˛.kf k

ˇ

W �1;ˇ .ICn /
C kqk

ˇ

Lˇ .ICn nIn/
/
˛
ˇ

.
�
jDj C

X
nWIn\D¤¿

�r .�n/
ˇ˛
ˇ�˛

�1� ˛
ˇ

.kf k˛

L
dˇ
dCˇ . yD/

C kqk˛
Lˇ . yDn	/

/;

where we recall the notation yD D D [
S
nWIn\D¤¿ I

C
n .



M. Duerinckx 1032

Step 3. Construction of extended pressure.
In view of e.g. [20, Proposition 12.10], the relation (3.34) for the extension Qq ensures the
existence of an associated pressure field zS 2 L1loc.R

d /, uniquely defined up to a global
additive constant, such thatZ

Rd

D.g/ W .2 Qq � zS Id/ D
Z

Rd

g � f 8g 2 C 1c .R
d /d ; (3.36)

that is,�div.2 Qq � zS Id/D f in Rd . It remains to prove bound (2.19) for zS . For allR � 1,
by a standard use of the Bogovskii operator, e.g. [13, Theorem III.3.1], we can construct
zR 2 W

1;˛0

0 .BR/
d such that

div.zR/ D
�
TRjTRj

˛�2
�

−
BR

TRjTRj
˛�2

�
1BR ; TR WD zS �

−
BR

zS;

and

krzRkL˛0 .BR/
.˛ kTRjTRj˛�2kL˛0 .BR/

.




 zS � −

BR

zS





˛�1
L˛.BR/

:

Testing (3.36) with g D zR, we findZ
Rd

zS div.zR/ D 2
Z

Rd

D.zR/ W Qq �
Z

Rd

zR � f;

and thus, using the properties of zR,



 zS � −
BR

zS






L˛.BR/

. kf kW �1;˛.BR/ C kQqkL˛.BR/:

Combined with (3.35), this yields the conclusion (2.19).

4. Homogenization

This section is devoted to the proofs of Theorems 1 and 3. While Tartar’s oscillating
test function method as used in [7] is not quite appropriate to the present setting without
uniform separation, we provide an alternative argument based on div-curl ideas combined
with the extension result in Theorem 4, as inspired by the work of Jikov ([24, 25]) on
homogenization problems with stiff inclusions (see also [20, Section 3.2]).

4.1. Construction of correctors

We start with the proof of Theorem 1, which we shall deduce from our results in [7]
for uniformly separated particles, via an approximation argument together with suitable a
priori estimates. The improved pressure estimates in Proposition 2 are deduced simulta-
neously.
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Proofs of Theorem 1 and Proposition 2. Given 2� r ¤ 2d
d�2

and 1� ˛ � 2^ 2dr
r.d�2/C2d

,

with ˛ < d
d�1

if r D 2, we assume that interparticle distances satisfyX
n

EŒ�r .�n/
2˛
2�˛ 102In � <1; (4.1)

and we shall then prove Theorem 1, with pressure †E in L˛.�/ provided ˛ > 1. Opti-
mizing in r further yields Proposition 2. We split the proof into two main steps.

Step 1. Approximations with uniformly separated particles.
For 0 < � � ı

2
, we consider the restricted inclusions

I �n WD
®
x 2 In W dist.x; @In/ > �

¯
; 	� WD

[
n

I �n ;

which still satisfy Assumptions (Hı
ı
) and (H0

ı
) with ı replaced by ı

2
and with minimal

interparticle distance �ın � � (cf. (2.3)), that is, .I �n C �B/\ .I
�
mC �B/D¿ for all n¤m.

In this context with uniformly separated particles, we may apply [7, Proposition 2.1],
which ensures the existence and uniqueness of a corrector  �E and of an associated pres-
sure †�E that satisfy the different properties stated in Theorem 1 with 	 replaced by 	� .
In addition, we show that the following moment bounds hold uniformly with respect to
the parameter � > 0: for ˛ as in the moment condition (4.1),

EŒjr �E j
2� . jEj2; (4.2)

EŒj†�E j
˛1Rd n	� � . jEj˛: (4.3)

These two estimates are established in the following two substeps.

Substep 1.1. Proof of (4.2).
In terms of the extension operator Pn that we constructed in Proposition 3.1, we consider
the stationary random vector field

�ıE WD �
X
n

Pn.E.x � xn//;

and we show that it satisfies

.D.�ıE /CE/j	 D 0; div.�ıE / D 0; EŒjD.�ıE /j
2� . jEj2; EŒD.�ıE /� D 0: (4.4)

The first two properties follow from the construction of Pn with D.Pn.E.x � xn///jIn D
E and div.Pn.E.x � xn/// D 0. Next, stationarity allows us to write

EŒjD.�ıE /j
2� D E

�−
B

jD.�ıE /j
2

�
D E

�
1

jBj

X
n

Z
ICn \B

jD.Pn.E.x � xn///j2
�
;

hence, by Proposition 3.1,

EŒjD.�ıE /j
2� . jEj2 E

�
1

jBj

X
nWICn \B¤¿

�2.�n/
2

�
:
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This can then be estimated, by stationarity, as

EŒjD.�ıE /j
2� . jEj2 E

�
1

jBj

Z
B3

X
n

�2.�n/
21In

�
. jEj2 E

�X
n

�2.�n/
2102In

�
;

so that the third property in (4.4) follows from the moment assumption (4.1) with r D 2
and ˛ D 1. Finally, stationarity allows us to write, for all R > 0,

EŒD.�ıE /� D E

�−
BR

D.�ıE /
�
;

hence, inserting the definition of D.�ıE / 2 L2.�/, and letting R " 1 to neglect boundary
terms,

EŒD.�ıE /� D � lim
R"1

E

�
jBRj

�1
X

nWICn �BR

Z
ICn

D.Pn.E.x � xn///
�
:

Combined with the observation that
R
ICn

D.Pn.E.x � xn/// D 0, this concludes the proof
of the last property in (4.4).

With this construction at hand, and noting that 	� � 	, testing the variational prob-
lem (2.6) for  �E with the test function �ıE yields

EŒjD. �E /CEj
2� � EŒjD.�ıE /CEj

2� . jEj2: (4.5)

It remains to turn this into an a priori estimate on the full gradient r �E . For that purpose,
we decompose

jr �E j
2
D 2jD. �E /j

2
� rj . 

�
E /iri . 

�
E /j : (4.6)

For all R � 1, choose a smooth averaging function �R 2 C1c .R
d IRC/ such that �R is

constant in BR, vanishes outside B2R, and satisfies
R

Rd �R D 1 and jr�Rj . R�d�1. An
integration by parts together with the constraint div. �E / D 0 yieldsZ

Rd

�Rrj . 
�
E /iri . 

�
E /j D �

Z
Rd

.r�R ˝  
�
E / W r 

�
E ;

and thus, by definition of �R and by scaling,ˇ̌̌̌Z
Rd

�Rrj . 
�
E /iri . 

�
E /j

ˇ̌̌̌
. kR�1 �E .R�/kL2.B2/kr 

�
E .R�/kL2.B2/:

Passing to the limitR "1 and appealing to the ergodic theorem, in view of the stationarity
of r �E and the sublinearity of  �E , cf. (2.9), we deduce EŒrj . �E /iri . 

�
E /j � D 0, so

that the decomposition (4.6) entails EŒjr �E j
2� D 2EŒjD. �E /j

2� and bound (4.5) yields
claim (4.2).

Substep 1.2. Proof of (4.3).
We appeal to Lemma 3.2 in the following form (with s D 2 and p D ˛0, with ˛, r as in
the moment condition (4.1)): there exists z�R 2 H

1
0 .BR/

d such that D.z�R/j	� D 0 and

div.z�R/ D
�
T �RjT

�
Rj
˛�2
�

−
BRn	�

T �RjT
�
Rj
˛�2

�
1BRn	� ; T �R WD †

�
E �

−
BRn	�

†�E ;
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and such that

krz�RkL2.BR/ .˛;r ƒ.BRI r; 2˛2�˛ /kT
�
RjT

�
Rj
˛�2
kL˛0 .BRn	�/

. ƒ.BRI r;
2˛
2�˛

/





†�E � −
BRn	�

†�E





˛�1
L˛.BRn	�/

:

Testing the corrector equation (2.8) for . �E ; †
�
E / with this test function z�R, we findZ

BR

†�E div.z�R/ D 2
Z
BR

D.z�R/ W D. 
�
E /;

and thus, using the above properties of z�R,



†�E � −
BRn	�

†�E






L˛.BRn	�/

.˛;r ƒ.BRI r; 2˛2�˛ /kD. 
�
E /kL2.BR/: (4.7)

Dividing both sides by Rd=˛ , recalling the definition (2.20)–(2.21) of ƒ, passing to the
limit R " 1, and appealing to the ergodic theorem, recalling that r �E and †�E are sta-
tionary with vanishing expectation, and using (4.2), we deduce

EŒj†�E j
˛1Rd n	� �

1
˛ . jEj

�
1C

X
n

EŒ�r .�n/
2˛
2�˛ 102In �

� 2�˛
2˛

;

and claim (4.3) follows from the moment assumption (4.1).

Step 2. Conclusion.
In view of the uniform bounds (4.2) and (4.3), provided ˛ > 1, we may consider some
weak limit point .r E ; †E1Rd n	/ of ¹.r �E ; †

�
E1Rd n	� /º�>0 in L2.�/d�d � L˛.�/

as � # 0. It follows that r E is stationary with vanishing expectation and finite second
moments, that it satisfies div. E / D 0 and .D. E /C E/j	 D 0, and that D. E / is the
unique solution of the limiting variational problem (2.6). Moreover, passing to the limit in
the weak formulation of (2.8), we find

2

Z
Rd

D.g/ W D. E / D
Z

Rd

†E div.g/ 8g 2 C 1c .R
d /d W D.g/j	 D 0; (4.8)

hence, in particular,
�4 E Cr†E D 0 in Rd n 	: (4.9)

The pressure field †E in this equation is uniquely defined up to a global constant in view
of the almost sure connectedness of Rd n 	, and is thus fully determined by the condi-
tion EŒ†E1Rd n	� D 0. In addition, in view of the regularity of the particle boundaries,
cf. Assumption (Hı

ı
), the regularity theory for the Stokes equation (e.g. [13, Section IV])

entails that . E ; †E / is C 2 smooth in Rd n 	 up to the boundary, and equation (4.9) is
thus satisfied in the strong sense. Next, for all n, for all V 2 Rd and ‚ 2Mskew, in terms
of the cutoff function wn that we constructed in Lemma 3.3, we may test equation (4.8)
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with g D wn.V C‚.x � xn// 2 W
1;˛0

0 .ICn /, which indeed satisfies D.g/j	 D 0, and an
integration by parts then yields

0 D

Z
Rd

D
�
wn.V C‚.x � xn//

�
W �. E CEx;†E /

D �

Z
@In

.V C‚.x � xn// � �. E CEx;†E /�;

showing that the boundary conditions in (2.8) are almost surely satisfied in a pointwise
sense. Finally, the weak convergence of .r E ; †E1Rd n	/.

�

"
/ to 0 in (2.9) follows from

EŒ.r E ; †E1Rd n	/� D 0 by the ergodic theorem, while the sublinearity of  E in form
of the strong convergence of " E . �" / to 0 is a standard result for random fields with
stationary gradient having vanishing expectation, e.g. [20, Section 7].

4.2. Extension of fluxes

Applying Theorem 4 to the corrector  E , cf. (2.8), and to the solution u" of the Stokes
problem (2.13), we obtain the following useful extension result for the fluxes:

qE WD D. E /CE; p" WD D.u"/:

Corollary 4.1. On top of Assumptions (Hı
ı
) and (H0

ı
), given a bounded Lipschitz domain

U � Rd , and given 2 � r ¤ 2d
d�2

and 1 < ˛ � 2 ^ 2dr
r.d�2/C2d

, with ˛ < d
d�1

if r D 2,
assume that interparticle distances satisfy the following moment condition, almost surely:

lim sup
"#0

"d
X

n2N".U /

�r .�nIU;"/
2˛
2�˛ <1: (4.10)

Then the following properties hold:

(i) For allE 2Msym
0 , there exist a stationary element QqE 2 L˛.�IL˛loc.R

d /d�dsym / with
tr. QqE /D 0, and associated stationary pressure field z†E 2 L˛.�IL˛loc.R

d //, such
that almost surely,

. QqE ; z†E /jRd n	 D .qE ; †E /jRd n	;

� div.2 QqE � z†E Id/ D 0 in Rd ;
(4.11)

and
k QqEkL˛.�/ C kz†E � EŒz†E �kL˛.�/ .˛;r jEj:

(ii) There exists Qp" 2 L˛.�IL˛.U /d�dsym / with tr. Qp"/ D 0, and an associated pressure
field zS" 2 L˛.�IL˛.U //, such that almost surely,

. Qp"; zS"/jUn	".U / D .p"; S"/jUn	".U /;

� div.2 Qp" � zS" Id/ D f 1Un	".U / in U ;
(4.12)

and

lim sup
"#0

�
k Qp"kL˛.U / C





 zS" � −
U

zS"






L˛.U /

�
.U;˛;r kf k

L
2d
dC2 .U /

:
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Proof. We split the proof into two steps.

Step 1. Proof of (i)
The corrector equation (2.8) ensures that the flux qE DD. E /CE 2L2.�IL2loc.R

d /d�dsym /

satisfies tr.qE / D 0 andZ
Rd

D.g/ W qE D 0 8g 2 C 1c .R
d /d W div.g/ D 0; D.g/j	 D 0:

Given ˛, r as in (4.10), Theorem 4 provides an extension QqE 2 L˛.�IL˛loc.R
d /d�dsym / with

tr. QqE / D 0, and an associated pressure field z†E 2 L˛.�IL˛loc.R
d //, such that

QqE jRd n	 D qE jRd n	; and � div.2 QqE � z†E Id/ D 0 in Rd ; (4.13)

and such that the following estimate holds, for all R � 1:

k QqEkL˛.BR/ C





z†E � −
BR

z†E






L˛.BR/

.˛;r ƒ.BRI r; 2˛2�˛ /kqEkL2. yBRn	/
: (4.14)

In addition, the construction in the proof of Theorem 4 ensures that QqE can be chosen
stationary. Since QqE coincides with qE DD. E /CE on Rd n	, we deduce from (4.13),
in particular,

�4 E Cr z†E D 0 in Rd n 	:

In view of (2.8), recalling that Rd n 	 is almost surely connected, we deduce that the
pressure z†E must coincide with †E in Rd n 	 up to a global constant. Therefore, z†E is
uniquely determined for instance by the choice z†E jRd n	 D †E jRd n	 . For this choice, as
QqE and †E1Rd n	 are stationary, uniqueness entails that z†E is also stationary.

Dividing both sides of (4.14) by Rd=˛ , recalling definition (2.20) of ƒ, passing to the
limit R " 1, appealing to the ergodic theorem, in view of the stationarity of QqE , z†E , and
using the energy bound EŒjqE j2� . jEj2, we obtain

k QqEkL˛.�/ C kz†E � EŒz†E �kL˛.�/ .˛;r jEj
�
1C

X
n

EŒ�r .�n/
2˛
2�˛ 102In �

� 2�˛
2˛

:

Combined with the moment condition (4.10), with �r .�n/ � �r .�nIU;"/, this yields the
conclusion.

Step 2. Proof of (ii).
Equation (2.13) ensures that the flux p" D D.u"/ 2 L2.�IL2.U /d�dsym / satisfies tr.p"/D 0
and

2

Z
U

D.g/ W p" D
Z
Un	".U /

g � f 8g 2 C 1c .U /
d
W div.g/ D 0; D.g/j	".U / D 0:

Given ˛, r as in (4.10), Theorem 4 provides an extension Qp" 2 L˛.�I L˛.U /d�dsym / with
tr. Qp"/ D 0, and an associated pressure field zS" 2 L˛.�IL˛.U //, such that

Qp"jUn	".U / D p"jUn	".U /; and � div.2 Qp" � zS" Id/ D f 1Un	".U / in U ;
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and by scaling, the estimate (2.19) takes on the following guise:

k Qp"kL˛.U / C





 zS" � −
U

zS"






L˛.U /

.U;˛;r
�
jU j C "d

X
n2N".U /

�r .�nIU;"/
2˛
2�˛

� 2�˛
2˛

� .kf k
L
2d
dC2 .U /

C kp"kL2.Un	".U ///:

Combined with the energy bound kp"kL2.Un	".U // . kf kL2d=.dC2/.U /, and with the
moment condition (4.10), this yields the conclusion.

Remark 4.2. In view of the construction in the proof of Theorem 4, it is easily checked
that the above-constructed extended fluxes QqE , Qp" can be viewed as limiting fluxes for cor-
responding Stokes problems with a suspension of droplets with diverging shear viscosity.
More precisely, for all � > 0, we consider the following corrector problem:´

� div
�
2.1Rd n	 C �1	/.D. �E /CE/

�
Cr†�E D 0 in Rd ,

div. �E / D 0 in Rd .

Under the assumptions of Corollary 4.1, in the limit � "1, there holds D. �E / * D. E /
in L2.�/ and corresponding fluxes converge,

2.1Rd n	 C �1	/.D. �E /CE/ �†
�
E Id * QqE in L˛.�/;

and a similar result holds for Qp". We skip the detail for brevity.

Next we compute EŒ QqE � and EŒz†E �, which happen to provide alternative definitions
of the effective constants xB, Nb. Note in particular that these ensemble averages do not
depend on the actual choice of the extension QqE in Corollary 4.1 (i).

Lemma 4.3 (Effective constants). On top of Assumptions (Hı
ı
) and (H0

ı
), let . QqE ; z†E / be

defined as in Corollary 4.1 (i) for some ˛ > 1. Then we have almost surely, as " # 0,

QqE .
�

"
/ * EŒ QqE � D xBE; z†E .

�

"
/ * EŒz†E � D �Nb W E; weakly in L˛loc.R

d /: (4.15)

In addition, provided ˛ � 2d
dC2

, these convergences are almost surely strong inH�1loc .R
d /.

Proof. We split the proof into two steps.

Step 1. Proof of weak convergences (4.15).
As QqE and z†E are stationary, the ergodic theorem implies almost surely the weak con-
vergences QqE . �" / * EŒ QqE � and z†E . �" / * EŒz†E � in L˛loc.R

d /, and it remains to compute
these two expectations. For that purpose, up to an approximation argument as in the proof
of Theorem 1, we may assume without loss of generality ˛ > 2d

dC2
. We split the proof into

two further substeps.

Substep 1.1. Proof that xBE D EŒ QqE �.
For all R � 1, we set �R WD R�d�. 1

R
�/, for some smooth averaging function � 2
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C1c .R
d IRC/ such that � is constant in B , vanishes outside B2, and satisfies

R
Rd � D 1.

GivenE 0 2Msym
0 , as qE DD. E /CE is stationary, definition (2.7) of xB and the ergodic

theorem yield almost surely,

E 0 W xBE D EŒqE 0 W qE � D lim
R"1

Z
Rd

�RqE 0 W qE : (4.16)

Since qE 0 vanishes in 	, cf. (2.8), and since qE coincides with its extension QqE in Rd n	,
we find

qE 0 W qE D qE 0 W QqE D E
0
W QqE C D. E 0/ W QqE :

Inserting this identity into (4.16), and noting that the ergodic theorem implies the almost
sure convergence

R
Rd �R QqE ! EŒ QqE �, we find

E 0 W xBE D E 0 W EŒ QqE �C lim
R"1

Z
Rd

�R D. E 0/ W QqE : (4.17)

In order to prove the claim xBE D EŒ QqE �, it remains to show that the last limit vanishes:

lim
R"1

Z
Rd

�R D. E 0/ W QqE D 0: (4.18)

Integrating by parts, using properties (4.11) of the extensions . QqE ; Q†E /, and using the
constraint div. E 0/ D 0, we findZ

Rd

�R D. E 0/ W QqE D
Z

Rd

D.�R E 0/ W QqE �
Z

Rd

.r�R ˝  E 0/ W QqE

D
1

2

Z
Rd

z†E div.�R E 0/ �
Z

Rd

.r�R ˝  E 0/ W QqE

D �
1

2

Z
Rd

.r�R ˝  E 0/ W .2 QqE � z†E Id/:

The relation div. E 0/ D 0 entails
R

Rd r�R �  E 0 D 0, which allows us to add any con-
stant to the pressure z†E in the right-hand side. In view of the properties of the averaging
function �R, Hölder’s inequality leads toˇ̌̌̌Z

Rd

�R D. E 0/ W QqE

ˇ̌̌̌
.
Z
B2

ˇ̌̌̌
1

R
 E 0.R�/

ˇ̌̌̌�
j QqE .R�/j C

ˇ̌̌̌
z†E .R�/ �

−
B2

z†E .R�/

ˇ̌̌̌�
(4.19)

.




 1R E 0.R�/






L˛0 .B2/

�
k QqE .R�/kL˛.B2/ C





z†E .R�/ � −
B2

z†E .R�/






L˛.B2/

�
:

As the choice ˛ > 2d
dC2

entails ˛0 < 2d
d�2

, we can use the sublinearity of  E 0 in L˛
0

,
cf. (2.9), together with the boundedness of ¹. QqE ; z†E .R�/ �

¬
B2
z†E .R�//ºR in L˛.B2/,

cf. Corollary 4.1 (i), and claim (4.18) follows.
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Substep 1.2. Proof that Nb W E D �EŒz†E �.
In terms of the cutoff function wn that we constructed in Lemma 3.3, integrating by
parts, and recalling that the corrector equation (2.8) yields div.�. E CEx;†E // D 0 in
ICn n In, the definition (2.12) of Nb becomes

Nb W E D
1

d
E

�X
n

1In
jInj

Z
@In

.x � xn/ � �. E CEx;†E /�

�
D �

1

d
E

�X
n

1In
jInj

Z
ICn nIn

div.wn�. E CEx;†E /.x � xn//
�

D �
1

d
E

�X
n

1In
jInj

Z
ICn nIn

D..x � xn/wn/ W �. E CEx;†E /
�
:

Writing �. E C Ex;†E / D 2qE �†E Id in ICn n In, and using the extensions QqE and
z†E as in (4.11), we are led to

Nb W E D
1

d
E

�X
n

1In
jInj

Z
In

D..x � xn/wn/ W .2 QqE � z†E Id/
�
:

Since D..x � xn/wn/ D Id in In and since tr. QqE / D 0, we deduce

Nb W E D �E

�X
n

1In
jInj

Z
In

z†E

�
;

and the claim Nb W E D �EŒz†E � easily follows by stationarity.

Step 2. Proof of strong convergences in H�1loc .R
d /.

For ˛ > 2d
dC2

, strong convergences in H�1loc .R
d / follow from (4.15) and the compact Rel-

lich embedding. It remains to consider the critical case ˛ D 2d
dC2

, for which we appeal to
a two-scale argument inspired by [21, Lemma 1.15]. By stationarity, it suffices to prove
QqE .

�

"
/! xBE and z†E . �" /! �Nb W E strongly in H�1.B/ almost surely as " # 0. As the

argument is the same for QqE and for z†E , we may focus on the former.
Let h 2 H 1.B/ be momentarily fixed. Given � > 0, we choose a partition ¹Qiºi of B

into Lipschitz subsets with jQi j ' �d . In these terms, we can decomposeZ
B

h. QqE .
�

"
/ � xBE/ D

X
i

�Z
Qi

h

�−
Qi

. QqE .
�

"
/ � xBE/

C

X
i

Z
Qi

�
h �

−
Qi

h

�
. QqE .

�

"
/ � xBE/: (4.20)

On the one hand, for all s 2 .1;1/, noting that 1Qi belongs to W
1
s ;s.B/, we can boundˇ̌̌̌−

Qi

. QqE .
�

"
/ � xBE/

ˇ̌̌̌
�




 1Qi
jQi j





W

1
s ;s.B/

k QqE .
�

"
/ � xBEk

W �
1
s ;s
0
.B/
;
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and thus, further using the Sobolev embedding in the form of khkL1.B/ . khkH1.B/, we
deduce for the first right-hand-side term in (4.20),ˇ̌̌̌X

i

�Z
Qi

h

�−
Qi

. QqE .
�

"
/ � xBE/

ˇ̌̌̌
. khkH1.B/

�
sup
i




 1Qi
jQi j





W

1
s ;s.B/

�
k QqE .

�

"
/ � xBEk

W �
1
s ;s
0
.B/
: (4.21)

On the other hand, using Hölder’s inequality and the Poincaré–Sobolev embedding, the
second right-hand-side term in (4.20) can be estimated asˇ̌̌̌X
i

Z
Qi

�
h�

−
Qi

h

�
. QqE .

�

"
/ � xBE/

ˇ̌̌̌
�

X
i





h � −
Qi

h






L
2d
d�2 .Qi /

k QqE .
�

"
/ � xBEk

L
2d
dC2 .Qi /

.
X
i

krhkL2.Qi /k QqE .
�

"
/ � xBEk

L
2d
dC2 .Qi /

� krhkL2.B/

�X
i

k QqE .
�

"
/ � xBEk2

L
2d
dC2 .Qi /

� 1
2

:

Combining this with (4.20) and (4.21), and taking the supremum over test functions
h 2 H 1.B/, we conclude for all s 2 .1;1/,

k QqE .
�

"
/ � xBEkH�1.B/ .

�
sup
i




 1Qi
jQi j





W

1
s ;s.B/

�
k QqE .

�

"
/ � xBEk

W �
1
s ;s
0
.B/

C

�X
i

k QqE .
�

"
/ � xBEk2

L
2d
dC2 .Qi /

� 1
2

:

We now pass to the limit " # 0 in this estimate. Choosing 2d�1
d�2

< s <1, the compact Rel-

lich embedding ensures that L
2d
dC2 .B/ is compactly embedded in W �

1
s ;s
0

.B/. Therefore,
in view of (4.15) with ˛ D 2d

dC2
, we deduce QqE . �" /! xBE strongly in W �

1
s ;s
0

.B/ almost
surely as " # 0. Further using the stationarity and the boundedness of QqE . �" / � 2 xBE in

L
2d
dC2 .�/, cf. Corollary 4.1 (i), we get almost surely,

lim sup
"#0

k QqE .
�

"
/ � xBEkH�1.B/ .

�X
i

jQi j
dC2
d

� 1
2

:

Using that
P
i jQi j . 1 and jQi j . �d , this turns into

lim sup
"#0

k QqE .
�

"
/ � xBEkH�1.B/ . �:

Finally, letting the mesh � of the partition ¹Qiºi tend to 0, the conclusion follows.
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4.3. Proof of Theorem 3

The moment condition (2.11) amounts to the following: for some 2� r ¤ 2d
d�2

and 2d
dC2
�

˛� 2^ 2dr
r.d�2/C2d

, with ˛ < d
d�1

if r D 2, the interparticle distances satisfy almost surely,

lim sup
"#0

"d
X

n2N".U /

�r .�nIU;"/
2˛
2�˛ <1: (4.22)

We split the proof into two steps. First, we establish the convergence of the velocity field
by a direct div-curl argument inspired by the work of Jikov ([24, 25]) on homogeniza-
tion problems with stiff inclusions (see also [20, Section 3.2]), and then we turn to the
convergence of the pressure.

Step 1. Div-curl argument: we prove that almost surely, as " # 0,

u" * Nu weakly in H 1
0 .U /;

Qp" * xB D. Nu/ weakly in L˛.U /;

zS" �

−
U

zS" * xS weakly in L˛.U /;

(4.23)

where . Nu; xS/ is the solution of the homogenized equation (2.14). By a standard energy
argument as e.g. in [7, Step 8.1 of the proof of Proposition 2.1], provided that f 2 Lp.U /
for some p > d , this weak convergence result easily implies the following corresponding
corrector result, almost surely:

p" �
X
E2E

qE .
�

"
/rE Nu! 0 strongly in L2.U /;

u" � Nu �
X
E2E

" E .
�

"
/rE Nu! 0 strongly in H 1

0 .U /;
(4.24)

where we recall the shorthand notation rE Nu D E W D. Nu/ and where E stands for an
orthonormal basis of Msym

0 . We omit the proof of this standard consequence (4.24) and
rather focus on the proof of (4.23).

For � > 0 we set for abbreviation U � WD ¹x 2 U W dist.x; @U / > �º. Since qE j	 D 0
and p"j	".U / D 0, since QqE and qE coincide on Rd n 	, since Qp" and p" coincide on U n
	".U /, and since definition (2.10) of 	".U / entails 	".U /\ U

� D ."	/\ U � whenever
" < �

2
, we deduce the following identity on U � for " < �

2
:

QqE .
�

"
/ W p" D qE .

�

"
/ W Qp"; (4.25)

and we aim at passing to the limit in both sides. Since the energy bound entails that .u"/" is
almost surely bounded in H 1

0 .U /, since Corollary 4.1 (ii) ensures that . Qp"; zS"/" is almost
surely bounded in L˛.U /, further recalling (2.9) and Lemma 4.3, we find almost surely,
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up to extraction of a subsequence as " # 0,

qE .
�

"
/ * E weakly in L2.U /;

QqE .
�

"
/ * xBE weakly in L˛.U /;

z†E .
�

"
/ * �Nb W E weakly in L˛.U /;

p" * D.u0/ weakly in L2.U /;

Qp" * Qp0 weakly in L˛.U /;

zS" * zS0 weakly in L˛.U /;

(4.26)

for some u0 2 H 1
0 .U /

d , Qp0 2 L˛.U /d�dsym , and zS0 2 L˛.U /. In the case ˛ > 2d
dC2

(hence
˛0 < 2d

d�2
), further appealing to the compact Rellich embedding and to the sublinearity of

 �E , cf. (2.9), we further deduce almost surely, up to extraction of a subsequence,

" E .
�

"
/! 0 strongly in L˛

0

.U /;

u" ! u0 strongly in L˛
0

.U /:
(4.27)

If the inclusions ¹Inºn were uniformly separated as assumed in [7], then we could choose
˛ D 2, cf. (4.22), so that a standard div-curl argument in form of e.g. [20, Lemma 12.12]
would allow us to use (4.26) and pass to the limit on both sides of identity (4.25) (along
the subsequence), to the effect that

xBE W D.u0/ D E W Qp0 in U : (4.28)

In the present situation, with ˛ < 2, we need to repeat the proof of the div-curl lemma and
show that this identity (4.28) still holds. Once this is proven, the conclusion (4.23) easily
follows: passing to the weak limit in (4.12) (along the subsequence) yields

� div.2 Qp0 � zS0 Id/ D .1 � �/f in U ;

and thus, inserting (4.28) in form Qp0 D xB D.u0/, we deduce that .u0; zS0 �
¬
U
zS0/ coin-

cides with the unique solution . Nu; xS/ of the homogenized equation (2.14). With this
characterization of the limit, the conclusion (4.23) now follows from (4.26).

It remains to prove (4.28), and we split the proof into two further substeps. We start
with the case 2d

dC2
< ˛ < 2, and next we discuss the critical case ˛ D 2d

dC2
.

Substep 1.1. Proof of (4.28) in the case 2d
dC2

< ˛ < 2.
We shall pass to the limit on both sides of (4.25) and we start with the analysis of the
left-hand side. Given a test function h 2 C 1c .U / supported in U � for some fixed � >
2", integrating by parts, using property (4.11) of the extension . QqE ; z†E /, and using the
constraint div.u"/ D 0, we findZ

U

h QqE .
�

"
/ W p" D

Z
U

h QqE .
�

"
/ W D.u"/

D

Z
U

D.hu"/ W QqE . �" / �
Z
U

.rh˝ u"/ W QqE .
�

"
/
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D
1

2

Z
U

z†E .
�

"
/ div.hu"/ �

Z
U

.rh˝ u"/ W QqE .
�

"
/

D �
1

2

Z
U

.rh˝ u"/ W .2 QqE � z†E Id/. �
"
/: (4.29)

Note that the relation div.u"/ D 0 entails
R
U
rh � u" D 0, which allows us to add any

constant to the pressure z†E , for instance replacing it by z†E � EŒz†E �. In view of (4.26)
and (4.27), we may now pass to the limit in the above, to the effect that

lim
"#0

Z
U

h QqE .
�

"
/ W p" D �

Z
U

.rh˝ u0/ W xBE D

Z
U

h xBE W D.u0/: (4.30)

We turn to the analysis of the right-hand side of (4.25). Integrating by parts, using prop-
erty (4.12) of the extension . Qp"; zS"/, and using the constraint div. E / D 0, we findZ

U

hqE .
�

"
/ W Qp" D E W

Z
U

h Qp" C

Z
U

hD. E /. �" / W Qp"

D E W

Z
U

h Qp" C

Z
U

D.h" E . �" // W Qp" �
Z
U

.rh˝ " E .
�

"
// W Qp"

D E W

Z
U

h Qp" C
1

2

Z
Un	".U /

h" E .
�

"
/ � f

�
1

2

Z
U

.rh˝ " E .
�

"
// W .2 Qp" � zS" Id/: (4.31)

In view of (4.26) and (4.27), we may now pass to the limit in the above, to the effect that

lim
"#0

Z
U

hqE .
�

"
/ W Qp" D E W

Z
U

h Qp0: (4.32)

Combining this with (4.25) and (4.30) and choosing an arbitrary test function h 2C1c .U /,
this proves claim (4.28).

Substep 1.2. Proof of (4.28) in the critical case ˛ D 2d
dC2

.
It suffices to prove that (4.30) and (4.32) still hold in this case. Due to the failure of the
compact Rellich embedding (4.27), we can no longer pass to the limit directly in (4.29)
and (4.31), so a finer analysis is needed. We appeal again to a two-scale argument as
inspired by [21, Lemma 1.15].

We start with the proof of (4.30). Given � > 0, we choose a partition ¹Qiºi of U into
measurable subsets with jQi j ' �d . In these terms, we can decompose (4.29) asZ

U

h QqE .
�

"
/ W p" D �

1

2

X
i

�−
Qi

u"

�
�

Z
Qi

.2 QqE � z†E Id/. �
"
/rh

�
1

2

X
i

Z
Qi

rh˝

�
u" �

−
Qi

u"

�
W .2 QqE � z†E Id/. �

"
/: (4.33)
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On the one hand, using the compact Rellich embedding in the form of the almost sure
strong convergence u" ! u0 in L1.U /, and using Lemma 4.3, we find

lim
"#0

1

2

X
i

�−
Qi

u"

�
�

Z
Qi

rh � .2 QqE � z†E Id/. �
"
/

D
1

2

X
i

�Z
Qi

rh

�
˝

�−
Qi

u0

�
W .2 xBE C . Nb W E/ Id/;

hence, letting the mesh � of the partition ¹Qiºi tend to 0, using that the constraint
div.u"/ D 0 entails

R
U
rh � u0 D 0, and integrating by parts,

lim
�#0

lim
"#0

1

2

X
i

�−
Qi

u"

�
�

Z
Qi

rh � .2 QqE � z†E Id/. �
"
/

D
1

2

�Z
U

rh˝ u0

�
W .2 xBE C . Nb W E/ Id/ D �

Z
U

h xBE W D.u0/: (4.34)

On the other hand, using Hölder’s inequality and the Poincaré–Sobolev embedding, the
second right-hand side term in (4.33) can be estimated asˇ̌̌̌X

i

Z
Qi

rh˝

�
u" �

−
Qi

u"

�
W .2 QqE � z†E Id/. �

"
/

ˇ̌̌̌
� krhkL1.U /

X
i





u" � −
Qi

u"






L
2d
d�2 .Qi /

k. QqE ; z†E /.
�

"
/k

L
2d
dC2 .Qi /

. krhkL1.U /

X
i

kru"kL2.Qi /k. QqE ;
z†E /.

�

"
/k

L
2d
dC2 .Qi /

� krhkL1.U /kru"kL2.U /

�X
i

k. QqE ; z†E /.
�

"
/k2

L
2d
dC2 .Qi /

� 1
2

;

hence, passing to the limit " # 0, using the boundedness of ru" in L2.U /, and using the
stationarity and the boundedness of . QqE ; z†E / in L

2d
dC2 .�/, cf. Corollary 4.1 (i),

lim sup
"#0

ˇ̌̌̌X
i

Z
Qi

rh˝

�
u" �

−
Qi

u"

�
W .2 QqE � z†E Id/. �

"
/

ˇ̌̌̌
.f krhkL1.U /

�X
i

jQi j
dC2
d

� 1
2

. �krhkL1.U /:

Now letting the mesh � of the partition ¹Qiºi tend to 0, and combining this with (4.33)
and (4.34), we deduce (4.30).

We turn to the proof of (4.32). Given � > 0, we consider as above a partition ¹Qiºi
of U into measurable subsets with jQi j ' �d . The starting point is the Poincaré–Sobolev
embedding in the form

k" E .
�

"
/k

L
2d
d�2 .Qi /

. kr E . �" /kL2.Qi / C jQi j
d�2
2d

−
Qi

j" E .
�

"
/j:
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By the stationarity and the boundedness of r E in L2.�/, and by the sublinearity of  E
in L1, cf. (2.9), we deduce almost surely,

lim sup
"#0

k" E .
�

"
/k

L
2d
d�2 .Qi /

. jQi j
1
2 kr EkL2.�/ . jQi j

1
2 :

Summing over i , this yields

lim sup
"#0

k" E .
�

"
/k

L
2d
d�2 .U /

.
�X

i

jQi j
d
d�2

� d�2
2d

. �;

and thus, letting the mesh � of the partition ¹Qiºi tend to 0,

lim
"#0
k" E .

�

"
/k

L
2d
d�2 .U /

D 0; (4.35)

which proves that  E is in fact still sublinear in L˛
0

D L
2d
d�2 . This allows us to pass to the

limit in (4.31), and claim (4.32) follows.

Step 2. Convergence of the pressure.
While it is already shown in Step 1, cf. (4.23), that almost surely zS" �

¬
U
zS"* xS weakly

in L˛.U /, we turn to the weak convergence of the restricted pressure S"1Un	".U / D
zS"1Un	".U /, and we establish at the same time the corrector result for the pressure,
cf. (2.15). For this purpose, we start by examining the two-scale expansion errors

w" WD u" � Nu �
X
E2E

" E .
�

"
/rE Nu;

Q" WD S"1Un	".U / � xS � Nb W D. Nu/ �
X
E2E

.†E1Rd n	/.
�

"
/rE Nu:

Without loss of generality, we may assume that f 2 W 1;1.U /d and Nu 2 W 3;1
0 .U /d ,

while the general case easily follows by an approximation argument as in [7, Step 8.4 of
the proof of Proposition 2.1].

Consider a test function g 2C1c .U /
d with D.g/j"	 D 0. Inserting the above definition

of .w";Q"/ and reorganizing the terms, we computeZ
U

D.g/ W .2D.w"/ �Q" Id/ D
Z
U

D.g/ W .2p" � S" Id/ �
Z
U

D.g/ W .2 xB D. Nu/ � xS Id/

�

X
E2E

Z
U

D.g/ W .2qE �†E1Rd n	 Id/. �
"
/rE Nu

C

X
E2E

Z
U

D.g/ W .2 xBE C . Nb W E/ Id/rE Nu

� 2
X
E2E

Z
U

D.g/ W .rrE Nu˝ " E . �" //:
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Since D.g/ vanishes in "	, recalling that .qE ; †E /. �" / and .p"; S"/ coincide with
. QqE ; z†E /.

�

"
/ and . Qp"; zS"/ in U n "	 � U n 	".U /, and appealing to (4.11) and (4.12),

and to the homogenized equation (2.14), we easily findZ
U

D.g/ W .2D.w"/ �Q" Id/ D F".g/; (4.36)

in terms of

F".g/ WD �

Z
U

g � .1	.
�

"
/ � �/f � 2

X
E2E

Z
U

D.g/ W .rrE Nu˝ " E . �" //

C

X
E2E

Z
U

.rrE Nu˝ g/ W
�
.2 QqE � z†E Id/. �

"
/ � .2 xBE C . Nb W E/ Id/

�
: (4.37)

We now appeal to Lemma 3.2 in the following form: there exists z" 2 H 1
0 .U /

d with
D.z"/j"	 D 0, such that

div.z"/ D
�
T"jT"j

˛�2
�

−
Un"	

T"jT"j
˛�2

�
1Un"	; T" WD Q" �

−
Un"	

Q";

and

krz"kL2.U / .U;˛;r ƒ".U I r; 2˛2�˛ /kT"jT"j
˛�2
kL˛0 .Un"	/

. ƒ".U I r;
2˛
2�˛

/





Q" � −
Un"	

Q"





˛�1
L˛.Un"	/

; (4.38)

where we have set

ƒ".U I r; p/ WD

�
jU j C "d

X
nW"In\U¤¿

�r .�nIU;"/
p

� 1
p

:

Testing (4.36) with g D z", and using the properties of z", we find



Q" � −
Un"	

Q"





˛
L˛.Un"	/

D �F".z"/C 2

Z
U

D.z"/ W D.w"/: (4.39)

Noting that definition (4.37) of F" yields

jF".g/j . kgkH1.U /.kf kW 1;1.U / C kr NukW 2;1.U //

� sup
E2E

�
k" E .

�

"
/kL2.U / C k1	.

�

"
/ � �kH�1.U /

C kQqE .
�

"
/ � xBEkH�1.U / C kz†E .

�

"
/C Nb W EkH�1.U /

�
;
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inserting this into (4.39), and using (4.38), we deduce



Q" � −
Un"	

Q"






L˛.Un"	/

.U;˛;r ƒ".U I r; 2˛2�˛ /kw"kH1.U /

Cƒ".U I r;
2˛
2�˛

/.kf kW 1;1.U / C kr NukW 2;1.U //

� sup
E2E

�
k" E .

�

"
/kL2.U / C k1	.

�

"
/ � �kH�1.U /

C kQqE .
�

"
/ � xBEkH�1.U / C kz†E .

�

"
/C Nb W EkH�1.U /

�
:

Noting that the moment condition (4.22) entails lim sup"#0ƒ".U I r;
2˛
2�˛

/ <1, and using
(2.9), (4.24), and Lemma 4.3, together with the ergodic theorem in the form of the almost
sure weak convergence 1	.

�

"
/*� in L2loc.R

d /, the above right-hand side tends to 0 almost
surely as " # 0. This concludes the proof of (2.15).

5. Further technical tools

This last section is devoted to the proofs of Corollaries 5 and 6, which are further technical
tools for the analysis of particle suspensions without uniform separation.

Proof of Corollary 5. Note that the Stokes equation (2.22) entails div.�.u; S// D 0 in
Rd n 	. For all n, in terms of the cutoff function wn 2 H 1

0 .I
C
n / with wnjIn D 1 that we

constructed in Lemma 3.3, an integration by parts then yieldsZ
@In

g � �.u; S/� D �

Z
ICn nIn

div.wn�.u; S/g/ D �
Z
ICn nIn

D.wng/ W �.u; S/: (5.1)

In order to reformulate the right-hand side, we appeal to the extension result of Theorem 4.
More precisely, given ˇ 2 .1;1/ and ˛, r as in (2.17), since the Stokes equation (2.22)
ensures that the flux p D D.u/ 2 L2loc.R

d /d�dsym satisfies tr.p/ D 0 andZ
Rd

D.g/ W p D 0 8g 2 C 1c .R
d /d W div.g/ D 0; D.g/j	 D 0;

Theorem 4 provides an extension Qp 2 L˛.ICn /
d�d
sym with tr. Qp/D 0, and an associated pres-

sure field zS 2 L˛loc.R
d /, such that

. Qp; zS/jRd n	 D .p; S/jRd n	; and div.2 Qp � zS Id/ D 0 in Rd ;

and such that the following estimate holds, for all n:

k. Qp; zS/kL˛.ICn /
.˛;ˇ;r �r .�n/kD.u/kLˇ .ICn nIn/

:
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Writing �.u; S/ D 2p � S Id in (5.1), and using these extensions, we findZ
@In

g � �.u; S/� D �

Z
ICn nIn

D.wng/ W .2p � S Id/ D
Z
In

D.wng/ W .2 Qp � zS Id/;

and we may then estimateˇ̌̌̌Z
@In

g � �.u; S/�

ˇ̌̌̌
. kwnkW 1;˛0 .ICn /

kgkW 1;1.ICn /
k. Qp; zS/kL˛.In/

.˛;ˇ;r �r .�n/kwnkW 1;˛0 .ICn /
kgkW 1;1.ICn /

kD.u/kLˇ .ICn nIn/
:

Combining this with the bound on norms of wn in Lemma 3.3, choosing ˇ D 2, and
optimizing the choice of ˛, r , the conclusion follows.

Proof of Corollary 6. For R � 5, choose �R 2 C1c .B2R�4IR
C/ with �RjBR D 1 and

with jr�Rj . R�1. For any V 2 Rd and c 2 R, testing the Stokes equation (2.22) with
�R.u � V /, and replacing the pressure S by S � c, we findZ

Rd

�Rjruj
2
D �

Z
Rd

..u � V /˝r�R/ W .ru � .S � c/ Id 1Rd n	/

�

X
nWICn �B2R

Z
@In

�R.u � V / � �.u; S � c/�:

Since D.u/ D 0 in In, we may write u D Vn C‚n.x � xn/ in In for some Vn 2 Rd and
‚n 2Mskew. The boundary conditions for u then allow us to add any constant to the test
function �R in the last right-hand-side term, and we obtainZ

Rd

�Rjruj
2
D �

Z
Rd

..u � V /˝r�R/ W .ru � .S � c/ Id 1Rd n	/

�

X
nWICn �B2R

Z
@In

�
�R �

−
In

�R

�
.Vn � V C‚n.x � xn// � �.u; S � c/�:

Hence, using the properties of �R, Hölder’s inequality, and appealing to the trace estimate
of Corollary 5 to bound the last right-hand-side term, we deduce for all s � 1,

kruk2L2.BR/
. R�1ku � V kLs.B2R/.krukLs0 .B2R/

C kS � ckLs0 .B2Rn	/
/

CR�1
� X
nWICn �B2R

�0.�n/
2.jVn � V j

2
C j‚nj

2/

� 1
2

krukL2.B2R/;

where we have set for abbreviation,

�0.�n/ WD

´
�
1
4d
.dC1/.dC2/� 52

n W d � 6;

1 W d > 6:
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Choosing c D
¬
B2Rn	

S and appealing to a pressure estimate as in (4.7) (with ˛ D s0), this

becomes, for all 2 � r ¤ 2d
d�2

and 2 _ 2dr
d.r�2/C2r

� s <1, with s > d if r D 2,

kruk2L2.BR/
. R�1

�
jBRj C

X
nWICn �B2R

�r .�n/
2s
s�2

� s�2
2s

ku � V kLs.B2R/krukL2.B2R/

CR�1
� X
nWICn �B2R

�0.�n/
2.jVn � V j

2
C j‚nj

2/

� 1
2

krukL2.B2R/:

Noting that

jVn � V j
2 .

Z
In

ju � V j2; j‚nj
2 .

Z
In

jruj2;

Hölder’s inequality yieldsX
nWICn �B2R

�0.�n/
2.jVn � V j

2
C j‚nj

2/

.
� X
nWICn �B2R

�0.�n/
2s
s�2

� s�2
s

ku � V k2Ls.B2R/ C
�

sup
nWICn �B2R

�0.�n/
2
�
kruk2L2.B2R/

.
� X
nWICn �B2R

�0.�n/
2s
s�2

� s�2
s

.ku � V k2Ls.B2R/ C kruk
2
L2.B2R/

/:

Inserting this into the above, choosing V WD
¬
B2R

u, and optimizing in r , the conclusion
follows.
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