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Reaction—diffusion equations in the half-space
Henri Berestycki and Cole Graham

Abstract. We study reaction—diffusion equations of various types in the half-space. For bistable
reactions with Dirichlet boundary conditions, we prove conditional uniqueness: there is a unique
nonzero bounded steady state which exceeds the bistable threshold on large balls. Moreover, solu-
tions starting from sufficiently large initial data converge to this steady state as ¢ — oo. For com-
pactly supported initial data, the asymptotic speed of this propagation agrees with the unique speed
c« of the one-dimensional traveling wave. We furthermore construct a traveling wave in the half-
plane of speed cx.

In parallel, we show analogous results for ignition reactions under both Dirichlet and Robin
boundary conditions. Using our ignition construction, we obtain stronger results for monostable
reactions with the same boundary conditions. For such reactions, we show in general that there is
a unique nonzero bounded steady state. Furthermore, monostable reactions exhibit the hair-trigger
effect: every solution with nontrivial initial data converges to this steady state as ¢ — oo. Given
compactly supported initial data, this disturbance propagates at a speed cx equal to the minimal
speed of one-dimensional traveling waves. We also construct monostable traveling waves in the
Dirichlet or Robin half-plane with any speed ¢ > cx.

1. Introduction

We are interested in the long-time behavior of reaction—diffusion equations in the half-
space. We work in d + 1 spatial dimensions with d > 1. We denote positions in R?*+! by
x = (x/,y) € R? x R, and define the upper half-space H := R? x R,. We study solu-
tions u: [0, 00) x H — R to the following reaction—diffusion equation with Dirichlet
(0 = 0) or Robin (o > 0) boundary conditions:

0w = Au+ f(u) inH, (L
dyu =0 lu on 9H. '
When ¢ = 0, we interpret the boundary condition as u = ¢d,u = 0 on dH. The boundary
dH makes (1.1) anisotropic, in contrast to the equation in the whole space. We view this
asymmetry as a form of inhomogeneity.
The nonlinearity f in (1.1) is known as the “reaction”. In this work, we consider three
classical reaction types: monostable, ignition, and bistable. Before defining these classes,
we discuss the relationship between (1.1) and prior work.
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Reaction—diffusion equations are widely used to model the spread of a population
in an environment. We decompose this spread into three interlocking phenomena: inva-
sion, propagation, and traveling waves. Invasion refers to the qualitative behavior of the
solution as ¢t — oo: Does the population eventually inhabit its entire environment? Such
ecological dominance is not guaranteed — it depends on the reaction and initial condition.
When a population does invade, we are interested in quantitative aspects of its propaga-
tion. How large a region does the population occupy at a particular time? On the whole
space, an invading solution u propagates asymptotically linearly in time. That is, the level
sets of u(t, -) expand in space at a nearly constant rate, known as the asymptotic speed
of propagation. Since the propagation eventually approaches this constant speed, we also
search for traveling waves: solutions that move at precisely constant speed. These three
spreading phenomena are well understood in homogeneous media in the whole space, and
they guide our study of (1.1).

Invasion, propagation, and traveling waves were first systematically studied in pio-
neering works of Aronson and Weinberger ([1]) and Fife and McLeod ([19]) in the homo-
geneous setting. These fundamental results inspired a vast literature, to which we cannot
do justice. We instead highlight a selection of works; for a wider view of the field, we
direct the reader to the references therein.

Aronson and Weinberger proved the hair-trigger effect for monostable reactions: non-
trivial initial data always invade the whole space. Moreover, all nontrivial solutions with
localized initial data eventually propagate at a common asymptotic speed. The set of
monostable reactions includes a special subclass, the so-called Fisher—KPP reactions,
which are particularly amenable to linearized analysis. When f is Fisher—KPP, Bramson
([13, 14]) used probabilistic techniques to determine the position of level sets of solutions
with great precision; for further results in this direction, see also [12,18,21,23,37].

Ignition and bistable reactions behave differently. In these cases, f < 0 when u is
small. It follows that the population will go extinct as ¢ — oo if ug is sufficiently small.
On the other hand, sufficiently large initial data do invade. The precise nature of the
threshold between extinction and invasion was a longstanding problem, first resolved by
Zlato§ ([46]) for square initial data. This result has been extended to wider classes of
reactions and initial data by Du and Matano ([16]) and Matano and Polacik ([32,33]).

We emphasize that these results all hold in the homogeneous setting. However, appli-
cations clearly motivate the study of inhomogeneous media. The most immediate model
of inhomogeneity is a spatially dependent evolution equation. Although pure traveling
waves do not exist in typical inhomogeneous media, periodic equations admit generaliza-
tions known as pulsating fronts. In the whole space, Freidlin and Gértner ([20, 22]) and
Hamel and the first author ([3]) have studied invasion, propagation, and pulsating fronts
in periodic media; for more refined results in the Fisher—KPP case, see Hamel et al. ([26])
and Shabani ([42]). In the aperiodic setting, traveling waves must be further generalized
to transition fronts: entire solutions that asymptotically resemble traveling waves. For a
variety of results on the existence of transition fronts, see Mellet, Roquejoffre, and Sire
([34]) and works of Nolen, Roquejoffre, Ryzhik, and Zlatos ([38,39,47]).
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There is a second important approach to inhomogeneity: we can work in a general
domain rather than the whole space. For instance, an impermeable inclusion in a material
can be represented by a domain with a Neumann boundary. Hamel, Matano, Weinberger,
and the first author have investigated propagation and pulsating fronts in periodic domains
([3,4,31,45]). For Fisher—KPP reactions, Hamel, Nadirashvili, and the first author have
characterized the spreading speed in both periodic and more general domains ([5-7]).

Invasion can be a delicate matter in general domains. For instance, bistable reac-
tions exhibit a phenomenon known as blocking: solutions may propagate initially, only to
become obstructed by certain geometries. Bouhours, Chapuisat and the first author ([2])
and Ducasse and Rossi ([17]) have studied blocking in channels and periodic domains,
respectively. In the opposite direction, Rossi has recently established the hair-trigger effect
for monostable reactions in quite general domains ([41]).

Most of the above works confront a common difficulty: their systems vary along the
direction of propagation. To isolate the effects of boundary, it is helpful to remove this
complication. A significant body of work studies reaction—diffusion equations in cylinders
R x § with compact cross-sections & C R<. Then the problem is translation invariant in
the first coordinate, and solutions only propagate in this direction. In fact, the equation
itself can depend on the transverse coordinates without complicating the analysis. Niren-
berg and the first author ([8]), Mallordy and Roquejoffre ([30, 40]), and Muratov and
Novaga ([35, 36]) have all considered traveling waves and propagation in such cylindrical
problems.

One can view the present work as an extension of these results to a cylinder with non-
compact cross-section. Indeed, (1.1) is invariant under translations parallel to the boundary
9H, and our domain may be viewed as the cylinder R x (R?~! x R ). Our problem thus
combines the challenges of the cylindrical and multivariate free settings: inhomogene-
ity and transverse noncompactness. We study the simplest example with both features:
the half-space with a homogeneous equation. The lack of transverse compactness greatly
complicates our analysis of propagation and our construction of traveling waves. In this
sense, our approach to the former has much in common with a recent work of Lou and
Lu, who study invasion and propagation for certain Fisher—KPP reactions in cones with
Dirichlet conditions ([29]). We will discuss their work in greater detail after Theorem 1.3.

As mentioned above, it is common to work with a Neumann boundary. However, in
the half-space, Neumann conditions reduce to the homogeneous problem. Indeed, they are
equivalent to a free evolution in the whole space that is even in one coordinate. Here, we
consider Dirichlet and Robin conditions. The boundary thus absorbs mass, and may be
viewed as a hostile inhomogeneity that destroys a fraction of the population upon contact.
Much less is understood about the effects of such absorbing boundary conditions.

In our study of the half-space, we are further motivated by “road-field” models, which
include more general interactions between populations in a half-plane and on a line.
These systems were introduced by Roquejoffre, Rossi, and the first author in [9-11]. They
describe individuals moving back and forth between a two-dimensional “field” and its
one-dimensional boundary, the “road”. We can interpret (1.1) as a degenerate case of this
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model, in which individuals that hop on the road never leave it. With the feedback between
road and field broken, we are free to solely consider the population in the field, which suf-
fers steady attrition at the boundary.

We now precisely define the monostable, ignition, and bistable reaction classes. We
always assume that the reaction f is continuous and piecewise €. In addition, our monos-
table reactions satisfy the following hypotheses:

M1) f(0) = f(1) =0and fl@,1) > 0;
M2) f/(07) > 0and f'(17) < 0.
Ignition reactions obey
(1) flio,eyuq1y = 0 and fs,1) > 0 for some 6 € (0, 1);
(I12) f/(8*)>0and f'(17) <O.
Finally, bistable reactions satisfy
Bl) f(0)= f(1) =0, flw,6 <0,and f|p,1) > 0 for some 6 € (0, 1);
(B2) f'(07) <0and f'(17) < 0.

Additionally, we will always assume

1
B3) /o f(r)ydr > 0.

That is, state 1 is “more stable” than state 0. This ensures that the one-dimensional wave
speed of f is positive. This assumption is not part of the traditional definition of bistability,
but for simplicity we always use “bistable” to mean (B1)—(B3).

Our endpoint assumptions on f” can likely be relaxed somewhat, but we do not pursue
the matter here. For the sake of clarity, we extend f by zeroon R \ [0, 1].

We now consider the phenomenon of invasion in (1.1). We typically work with com-
pactly supported initial data u(0, -) = ug satisfying 0 < ug < 1 and ug # 0. In the
remainder of the paper, we write these two conditions as 0 = uo < 1. In the whole space,
monostable reactions exhibit the hair-trigger effect ([1]): any solution with initial data
0 = ug < 1 converges locally uniformly to 1, the stable zero of f, as t — oo. In contrast,
ignition and bistable reactions cause solutions with small u¢ to converge uniformly to 0.
Nonetheless, sufficiently large u still invade in these cases ([ 1, 19,28]).

We prove the analogue of these results in Hl. However, the constant function 1 does not
satisfy our boundary conditions on dH. Rather, when solutions invade, we expect them to
converge to a nonconstant steady state ¢ in H that is independent of x'. That is, ¢ = ¢(y)
should satisfy

9"+ f(@) =0 and ¢'(0) = 0 '9(0). (1.2)

We show that this ODE has a unique nonzero bounded solution if f is monostable or
ignition. However, when f is bistable, uniqueness is only guaranteed under Dirichlet
boundary conditions. For this reason, we confine our study of bistable reactions to the
Dirichlet case. The long-time behavior of (1.1) for f bistable and o > 0 remains an inter-
esting open question.
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When f is monostable, we show that ¢ is also the unique nonzero bounded steady
state in H. This uniqueness is less clear for ignition and bistable reactions, but ¢ is the
only bounded steady state that exceeds 6 on large balls.

Theorem 1.1. (A) Let f be monostable with ¢ € [0,00). Then ¢ = ¢(y) is the unique
nonzero bounded steady state of (1.1).

(B) Let f beignition with ¢ € [0, 00) or bistable with 0 =0. Then for all § € (0, 1 — 0),
there exists Rgeaay(8) > 0 such that ¢ = ¢(y) is the unique bounded steady state
of (1.1) satisfying ¢|p > 6 + & for some ball B C H of radius Ricady(8).

We study the uniqueness of steady states in greater depth and in other domains in a
forthcoming work.

Next we consider propagation in (1.1). We recall the fundamental result in the whole
space, which we state informally.

Theorem 1.2 (Aronson and Weinberger [1]). Let f be monostable, ignition, or bistable.
Let u solve 3;u = Au + f(u) in R? with sufficiently large initial data. Then u — 1 locally
uniformly in space as t — o0o. Moreover, the transition u — 1 propagates asymptotically
linearly in time at a speed cx > 0 depending only on f.

The speed c. plays a key role in the present work. We show that the dynamics of the
transition ¥ — ¢ in H closely resemble the behavior in Theorem 1.2. In particular, the
asymptotic speed of propagation is c.

Theorem 1.3. Throughout, let u solve (1.1) with 0 = uo < 1 compactly supported.
(A) Let f be monostable with ¢ € [0, 00). Then

lim sup[ sup |u(t,x,y) — (p(y)|] =0 forallc €[0,c4) (1.3)

=00 |(,y)|<ct
and
lim sup[ sup u(t,x',y)] =0 forallc > cs. (1.4
=00 *|(,y)|=ct

(B) Let f be ignition with ¢ € [0, 00) or bistable with ¢ = 0. If ug < 0, then
u(t, -) — 0 uniformly in H as t — oo. On the other hand, suppose that
uolp = 60 + 8 for some § € (0,1 — 0) and some ball B C H of radius Rcagy(5).
Then u satisfies (1.3) and (1.4).

Lou and Lu recently established the asymptotic speed of propagation in general convex
cones for certain Fisher—KPP reactions with Dirichlet boundary conditions ([29]). They
thus handle domains that are significantly more general than the half-space. However,
their results seem confined to so-called “strong-KPP” reactions with Dirichlet conditions.
The question of propagation in cones with Robin conditions and more general reactions
remains open. More broadly, the nature of invasion and propagation in general domains is
an important open problem.
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We now turn to traveling waves. We say ®: H — [0, 1] is a traveling wave of speed
¢ > 0 and direction e € S9 if it is a function of e - X’ and y alone, ®(e-x’' — ct, y) solves
(1.1), and

®(—00,y) =¢(y) and P(+o0,y) =0 (1.5)

locally uniformly in y € [0, co). That is, the wave moves parallel to dH at speed ¢ in
direction e, and connects the steady states ¢ and 0. Its level sets are affine subspaces
of codimension 2, as ® only depends on two spatial coordinates. We may thus restrict
our study of traveling waves to the half-plane. Then d = 1 and we denote position by
x = (x,y).

In one dimension, monostable reactions admit traveling waves precisely when ¢ > ¢y,
where ¢ is speed in Theorem 1.2 ([1]). In contrast, ignition and bistable reactions admit
one-dimensional traveling waves precisely at speed c« ([1, 19,27]). We show nearly the
same behavior in the absorbing half-plane.

Theorem 1.4. Let d = 1. No traveling wave has speed ¢ € [0, cx). Furthermore, the
following hold:

(A) Let f be monostable with ¢ € [0, 00). Then there exists a traveling wave ® of
speed ¢ for each ¢ > cx.

(B) Let f be ignition with o € [0, 00) or bistable with 0 = 0. Then there exists a
traveling wave ® of speed cx.

In each case, ® satisfies 0 < ® < 1, 9,P <0, and 9,® > 0 in H.

Significantly, we are unable to rule out ignition or bistable waves whose speeds exceed
c«. In fact, we expect that so-called “conical” waves of higher speed do exist. This has
been confirmed in the whole space; see, for instance, works of Hamel, Monneau, and
Roquejoffre ([24,25]) and Wang and Bu ([44]).

As is clear from the theorem statements above, our results and methods vary between
the monostable and ignition/bistable cases. Although our monostable results are easier
to state, their proofs rely on the ignition theory. We therefore prove part (B) of each of
our main theorems first. We study ignition and bistable steady states and prove Theo-
rem 1.1 (B) in Section 2. In Section 3 we develop the theory of traveling waves in strips
of bounded width. Using waves in strips, we prove Theorems 1.3 (B) and 1.4 (B) in Sec-
tions 4 and 5, respectively.

We then pivot to monostable reactions. We prove Theorem 1.1 (A) for monostable
steady states in Section 6. Using ignition waves in strips, we prove Theorem 1.3 (A) in
Section 7. We close with monostable traveling waves and establish Theorem 1.4 (A) in
Section 8.

2. Ignition and bistable steady states

To begin, we let f be ignition or bistable and consider the steady states of (1.1) in var-
ious domains. The simplest case is the half-line, which reduces to the ODE (1.2). Since
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H = R? x R, we can transfer states in the half-line to the half-space. We then show that
the half-space has no other steady states that exceed 8 on large balls. In Section 3 we will
construct traveling waves in strips R x [0, L]. We must therefore understand steady states
in bounded intervals [0, L]. This matter is quite delicate, and takes up the majority of this
section.

2.1. Steady states in the half-line

Lemma 2.1. Let f be ignition with ¢ € [0, 00) or bistable with o = 0. Then ODE (1.2)
has a unique nonzero bounded solution ¢. Furthermore, ¢ satisfies 0 < ¢ < 1, ¢’ > 0, and
@(400) = 1.

Proof. Suppose ¢ is a nonzero bounded solution of (1.2). Since f vanishes outside [0, 1],
¢ becomes affine linear if it exits this interval. Then |¢| would grow without bound,
a contradiction. As a consequence of the boundary condition, ¢(0) € [0, 1). Therefore,
¢([0,00)) C [0, 1). Define

ye = inf{y € [0,00) | p(y) > 6},

recalling that 6 is the smallest number for which f|g,1) > 0.

Suppose f is ignition. Then ¢ is affine linear on [0, yg). We claim that ¢’ > 0 on
(yg, 00). Otherwise, ¢ attains a local maximum. By concavity, it will bend back down
until it reaches the value 6 with a negative slope. Thereafter, ¢ will affine linearly decrease
to —oo, contradicting boundedness. So indeed ¢’ > 0 on (yg, 00) and @((yg,00)) C (0, 1).
It follows that ¢ monotonically increases towards a zero of f. This zero can only be 1, so
0<¢<l1,¢ >0, and p(+00) = 1.

Next, suppose f is bistable and o = 0, so ¢(0) = 0. Again, ¢ increases on [0, yg]. If
it attains a local maximum in (yg, 00), uniqueness will force it to later hit 0. Again, it will
affine linearly decrease without bound, a contradiction. So ¢’ > 0 and ¢((yg, o0)) C (6, 1).
Arguing as in the ignition case, we obtain 0 < ¢ < 1, ¢’ > 0, and ¢(+00) = 1.

We next prove uniqueness. Multiplying (1.2) by ¢’ and integrating over R, we find

1

<1 N2 , . 1,
0=/0 {5[@ 1+ fle)e }dy =3¢ (0)2+/ f(s)ds. 2.1)

©(0)

Now suppose ¢ = 0. Then we can rearrange (2.1) to obtain

1
(0 =2 /0 £(r)dr.

Thus the initial condition (0, ¢’(0)) is determined, and ¢ is unique.
Suppose instead that f is ignition and ¢ > 0. Using the boundary condition, (2.1)

yields
2 1
Q_2 = W/ f(S) ds. (22)

©(0)
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For s € (0, 1], we define the function

1
A(s) := s%/ f(r)dr, 2.3)

so that (2.2) reads 02 = A(¢(0)).

Now s% is strictly decreasing while |, Sl f(r)dr is decreasing and nonzero, so their
product A is strictly decreasing. Furthermore, A(0") = +o0 and A(1) = 0. Thus there
exists a unique s, € (0, 1) such that 0=2 = A(sp). By (2.2), the values ¢(0) = s, and
¢'(0) = o~ Ls, are determined. So again ¢ is unique.

Finally, in each case we have produced a candidate initial condition (¢(0), ¢’(0)). This
immediately yields a nonzero bounded solution, so we have existence. ]

We note that the Dirichlet assumption is crucial when f is bistable. After all, (1.2)
may also admit oscillatory solutions when ¢ > 0. In fact, the problem runs deeper. Even
if we restrict to the set of monotone solutions, ¢ need not be unique. Indeed, by (2.2),
these solution are in bijective correspondence with the solutions to 0~2 = A(s). When
f is bistable, A need not be monotone decreasing, so multiple values of s may satisfy
02 = A(s). These constitute multiple initial conditions for bounded nonzero monotone
solutions of (1.2). This stronger form of nonuniqueness is the principal reason we only
study bistable reactions with Dirichlet boundary conditions.

2.2. Steady states in the half-space

The extra degrees of freedom in H make the classification of steady states more complex.
For instance, steady states in H that are monotone in y converge to steady states in R¥
as y — oo. The classification of such solutions under additional assumptions is known
as De Giorgi’s problem, and we anticipate exotic solutions in dimensions d > 8 ([15]).
Nonetheless, we can classify steady states that exceed 6 on large balls.

First, we introduce one piece of notation. Define the threshold

9 :=sup{s € [0.1] | [5 f(r)dr <0}.

Then ¢ = 6 when f is ignition, while (B3) implies that % € (6, 1) when f is bistable. It
is straightforward to classify steady states that exceed ¥ on large balls.

Proposition 2.2. Let f be ignition with ¢ € [0, 00) or bistable with 0 = 0. Then for all
8 € (0,1 — ), there exists Ry (8) > 0 such that ¢ = @(y) is the unique bounded steady
state of (1.1) satisfying ¢|p > © + & for some ball B C H of radius Ry (8).

Proof. First, let ¢ be a bounded steady state. We claim that 0 < ¢ < ¢. To see this, define
M_ = min{infgb, 0} and M, = max{sup¢, 1},

which are both finite. Then f(M1) = 0, so M_ and M are respectively sub- and super-
solutions to (6.1). If we evolve both under (1.1), they converge to bounded solutions of
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(1.2) as t — oo. By Lemma 2.1, they must converge to 0 and ¢, respectively. Thus by
comparison, 0 < ¢ < ¢.

Now fix § € (0,1 — o). To prove uniqueness, we construct a nonzero compactly sup-
ported subsolution. Letqz solve

¢+ f($)=0, $0)=0+5 ¢©0) =0. 2.4)

As in the proof of Lemma 2.1, we multiply by ¢°>’ and integrate to obtain

B+6

¢'()? =2 ., @ fory =0

(6
Crucially, § > 0 prevents the right-hand side from vanishing. Since f() > 0, 4(; initially
bends down. Then, ¢c;’ is uniformly negative away from y = 0. Therefore, q(; inevitably hits
Zero at some position K>o0. Solving (2.4) on R_ as well, we obtain an even function that
is positive precisely on (—Ig , K ). Hence ¢(;+ is a compactly supported subsolution to the
ODE ¢" + f(¢) = 0.

We now adapt this construction to higher dimensions. By the stability of ODEs, there
exists Ry > K such that the solution to

d
Ro+y

¢" + ¢+ f(@) =0, ¢0)=0+8 ¢'(0)=0
also hits 0 at some position Ky > 0. Furthermore, z/;’ < 0on (0, Kp).

Using ¢, we construct a radial subsolution v. Let r := |x| denote the radial coordinate
and define

O +6 ifr <Ry,
v(r) = { ¢(r — Ry) ifr € (Ro. Ro + Ko), (2.5)
0 if r > Ry + Kp.

Let Ry (8) := Ro + Ko. Writing the Laplacian in polar coordinates, we see that v is a
nonzero subsolution of (1.1) supported in a ball of radius Ry, and v < % + 6.

Now suppose that ¢ is a bounded steady state of (1.1) such that ¢|p > ¥ + § for some
ball B C H of radius Ryy. Since ¢p > 0, we have ¢ > (I + §)1p.

Now let Xo = (X, yo) denote the center of B, and let

TV == V(- —Xo)
denote the translation of v by x¢. Then
¢ > (U +8)1p > 150

We now use the sliding method of [8]. If we continuously vary x;, the strong maximum

principle implies that the subsolution 7x,v can never touch the solution ¢ from below.
]

Since Ry > K, it follows that

PR )= 0+ D1 g /(v —y0) = Tyeds () forall (¥, y) € H.
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By construction, 7, <Z+ is a subsolution of the one-dimensional problem. If we solve
the one-dimensional parabolic problem with initial data 7, <?>+, the solution is thus
increasing in time. On the other hand, 7, <Z+ lies beneath the bounded supersolution 1, so
its long-time limit is also bounded. Hence, the parabolic solution converges to a bounded
nonzero steady state in R as # — oo. By Lemma 2.1, this steady state is ¢. Applying the
comparison principle, we obtain ¢ > ¢. We showed above thatp < ¢,soinfactp =¢. =

If f is ignition, ¥ = 6, and the conclusion of Theorem 1.1 (B) follows from Propo-
sition 2.2. When f if bistable, however, we must work harder to lower the uniqueness
threshold to 6. To do so, we study extinction and invasion in (1.1).

Lemma 2.3. Let f be ignition with o € [0, 00) or bistable with 0 = 0. If 0 < ug < 6
is compactly supported, then u(t, -) — 0 uniformly as t — oo. On the other hand,
for any § € (0,1 — 0), there exists Rycaay(8) > O such that the following holds. If
(0 +8)1p < ug <1 for some ball B C H of radius Rgeaay(3), then

lim u(t, -) =¢ (2.6)
t—>00
locally uniformly in H.

Proof. First suppose that 0 < u¢ < 6 is compactly supported. By the comparison principle,
u < 6 for all time. Since f < 0 on [0, 6], we can use the heat evolution in the whole space
as a supersolution. But u¢ is compactly supported, so e/®
Thus the same holds for u (¢, -).

Next, suppose ug < 1. Let u! denote the solution of (1.1) with initial data 1. Since 1 is
a supersolution of (1.1), u! is decreasing in time towards a bounded solution of (1.2). By
Lemma 2.1 and the comparison principle, this solution is ¢. Since # < u! by comparison,
it follows that

uo — 0 uniformly as t — oo.

limsupu(z, -) < lim u'(z, ) = ¢. 2.7
t—00 =00
Now consider § € (0, 1 — ). We use the compactly supported radial subsolution v
defined in (2.5). It satisfies v < ¢ + § and is supported on a ball of radius Rg,(8) > 0.
If 4" denotes the solution to (1.1) with initial data v, then u" increases in time towards a
bounded steady state of (1.1) that exceeds v. As shown in the proof of Proposition 2.2, the
only such state is ¢. So

liminfu(s, -) > lim u®(z, -) = ¢. (2.8)
1—>00 100

Combining this with (2.7), we obtain (2.6). Moreover, the convergence is locally uniform
by Dini’s theorem. Since # = ¢ when f is ignition, this concludes the ignition case with
Rsteady((g) = Rsub((g)-

Now suppose f is bistable and fix § € (0, 1 — #). We wish to show that initial data
above 6 + § on large balls also survive and eventually converge to ¢. This is more subtle,
because we may not be able to fit v under uo. Let S(7) solve S = f(S) with S(0) = 6 + 6.
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Then S(¢) agrees with the whole space evolution from the constant 6 + § and converges
to 1 as ¢ — oo. In particular, if we fix §' € (0,1 — ), S will exceed & + & at some fixed
time 7 > 0. Now suppose that ug = 6 + § on an enormous ball B. Then u will resemble
the free space evolution near the center of B, at least on a bounded time interval. This is
enough to push u above (¢ + §")1p: for some ball B’ of radius Ry (8'), allowing us to
apply the previous argument.

To make this reasoning rigorous, let B(k) denote the ball of radius k centered at
(0, k) € R4+1 5o that B(k) C H. Let uy solve (1.1) with initial data (6 + 8)1p), and
let

(X, y) = ur(x',y + k)

denote its shift to the origin. Let B’(k) denote the shifted ball of radius k, which is centered
at the origin. In this shifted frame, the boundary of H is moving away to infinity as k — oo,
and 7 (0,X) — 6 + §. Thus on the compact set B’ (Ryu(8")) x [0, T], fix converges to S
uniformly as k — oo. Since S(T') > ¢ + &', there exists K € N such that

g (T,x) = (% + 8) 1Ry (57) (%)

By our preceding argument, u g satisfies (2.8).

Finally, suppose ug > (6 + §)1p for some other ball B C H of radius K. Then we can
move the boundary of H to touch B and solve to obtain a subsolution. This subsolution
will be a shift of ug, so u exceeds a shift of ug. Since ug satisfies (2.8), u will eventually
be close to 1 on a large ball. Then we can argue as in the ignition case, and u also satisfies
(2.8). In combination with (2.7), we obtain (2.6) with Rgcaay () := K. [ ]

We can now complete our analysis of ignition and bistable steady states on H.

Proof of Theorem 1.1 (B). If f is ignition, ¥ = 6, so the conclusion of Theorem 1.1 (B)
follows from Proposition 2.2 with Rgeady := Rsup-

Therefore, suppose f is bistable and fix § € (0,1 — ). Let ¢ be a bounded steady state
of (1.1) such that ¢|p > 6 4 6 on a ball B C H of the radius Rycady(8) from Lemma 2.3.
As shown in the proof of Proposition 2.2, 0 < ¢ < ¢.So ¢ > (6 + §)1p. Let u solve (1.1)
with ug := (6 4+ §)15. Then by Lemma 2.3, u(, - ) — ¢ locally uniformly as t — co. On
the other hand, the comparison principle implies that ¢ > u(t, -) for all # > 0. Therefore,
¢ < ¢ < g, as desired. [

2.3. Steady states in bounded intervals

To constrain the asymptotic speed of propagation and construct traveling waves, we will
consistently use waves in the strips R x [0, L] as subsolutions. As x — £00, these waves
converge to solutions of

o] + flgr) =0. ¢1(0)=0"¢(0), ¢r(L)=0. (2.9)

For general L, this equation may have no solutions or many. However, the situation sim-
plifies when L is large. Then (2.9) admits precisely two nonzero steady states.
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Lemma 2.4. Let f be ignition with o € [0, 00) or bistable with 0 = 0. Then there exists
Aopg > 0 such that for all L > Aopg, (2.9) admits precisely two nonzero solutions ¢r,
and yry,. These are strictly ordered: 0 < Y, < ¢, < ¢ in (0, L). Moreover,

limsup sup |pr(y) —¢(y)| =0 (2.10)
L—oo ye€[0,L/2]
and
lim sup ¥r(y)=0. (2.11)
L_)OOyG[O,L]

Proof. Let ¢ be a nonzero solution to (2.9). By arguments similar to those in the proof of
Lemma 2.1, ¢((0, L)) C (0, 1).

We use the shooting method. It is thus convenient to view ¢ as a function of its initial
slope rather than of L. Let ¢ denote the solution of the initial value problem

@*)" + f(¢*) =0. ¢*(0)=ce, and ($*)'(0) =« (2.12)

for @ € R. We can discard o < 0, for then ¢ is affine linear and nonpositive.

Suppose a > 0. Then (¢*)’ is initially positive. Let K% denote the location of its first
zero, if it exists. Otherwise let K% = +o0. Multiplying (2.12) by (¢%)" and integrating,
we obtain

[(09)]? —a® = =2 f(s)ds on][0, K¥]. (2.13)

Now let & := ¢’(0). By (2.1), & satisfies

1
a? = 2/ f(s)ds.
ox
We claim that ¢“ hits the value 1 with positive slope, and thus exits the range (0, 1),
when « > &. Such solutions will never satisfy the second boundary condition in (2.9), so
we can confine our attention to @ € (0, &). To see this, first suppose ¢ = 0 and « > &.
Then (2.13) implies

[(¢)]? = ? —2[01 f(s)ds > &> —2/01 F(s)ds = 0.

So indeed ¢“ still has positive slope when it attains the value 1.

Now suppose ¢ > 0, so that f is ignition. We recall A defined in (2.3). In the proof of
Lemma 2.1, we showed that A is strictly decreasing and A (o&) = o~ 2. Assuming « > @,
(2.13) yields /

o
[P0 2 02— Atow) > 07 — Atoi) = 0.
ou
This proves the claim, and we may assume that o € (0, ).

For such «, the solution ¢“ rises initially, attains its maximum at position K% € (0, 00),
and then falls back to 0 at some position L* € (0, co). Let s* denote its maximal value,
so that

$*(K*) =s* and (¢%)(K%¥) = 0.
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Step 1. We will show that K¢ increases monotonically with o when « is sufficiently close
to . We define

F%(s) = s f(r)dr,

so that (2.13) reads
[(0%)]? = a® —2F%($*) on [0, K*].

Separating variables, we obtain an implicit equation for ¢“:

() ds
y = ——— fory € [0,K*]. (2.14)
ou \/012 —2F¢ (S)
In particular,
s¢ ds
K* = / _ (2.15)
o +JaZ —2F%(s)

In the following, we use the notation G := d,G and G’ := 9, G for any function G depend-
ingona ors.

We first consider the dependence of the maximal value s* on «. Evaluating (2.13) at
y = K%, we find

a? = 2F%(s%). (2.16)
Differentiating with respect to «,
§¢ = M > 0. (2.17)
S(s%)

Significantly, this derivative tends to co as « ' &, for then f(s%) — f(1) = 0.

We now study (2.15) in detail. Notice that (2.16) implies that the integral in (2.15) is
improper at its right endpoint s%. Furthermore, (F%*) (1) = f(1) = 0, so a? — 2F%(s)
has a double root at s = s = 1 when o« = . Thus the integrand of (2.15) becomes
logarithmically nonintegrable at « = @. That is, K5z = oo. Of course, this agrees with the
definition of &: it is the initial slope of ¢, which approaches its supremum at y = +o0.
Since K* — oo as @ /' @, it is natural to expect that K% increases monotonically in o
when « is sufficiently close to @. We verify this through direct calculation.

The ignition and bistable cases require slightly different treatments, so suppose for
the moment that f is ignition. The principal difficulty in the analysis of (2.15) is the
singularity of the integrand at the moving endpoint s*. To fix this, we change variables:

o _ /Q d
0 \/aZ—ZF“(s“—z)'

Then the definition of F* implies

_§%—g | [T f(s* —z) —of(0®) —a
o +/0 [@2 —2F%(s* — £)]3/2

dz. (2.18)
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By (2.17),
oo

ST —Q

- o0 asa S a.

Therefore, K will be positive for o near & unless the second term in (2.18) becomes
negatively divergent. Divergence can come from two sources in the integral: s¢ and the
singularity at z = 0. But §% is paired with f(s* — z) > 0, and thus can only contribute a
positive divergence. So, it suffices to analyze the integrand in (2.18) around z = 0.

First, note that (2.17) implies that the numerator in the integrand vanishes at z = 0.
Differentiating in z, we find

0;[5% f(s* —2) —of (o) —a] = =% f'(s% — 2). (2.19)

Now, (I1) implies that f” is negative near 1. By (2.19), the integrand in (2.18) is positive
when a & @ and z ~ 0. Thus, the integrand in (2.18) is bounded from below when o ~ .
Since the first term in (2.18) diverges to +o0, there exists «; € (0, @) such that

K% >0 foralla € oy, ).

Now suppose f is bistable and ¢ = 0. We write (2.15) as
dz

Ka _/‘9 dS +/Sa—9
o Vaz —2F(s) 0 Va2 Z2F(s* —z)

Note that we are free to write F rather than F*, because the antiderivative is independent
of o« when ¢ = 0. The first term in (2.20) varies smoothly in o away from & = 0, and we
can treat the second term as in the ignition case because f|(g,1) > 0.

(2.20)

Step 2. Next we show that the positive root L* of ¢¢ is also monotone in &« when o ~ &.
ODE uniqueness implies that L% = 2K“ when ¢ = 0, so we need only consider the Robin
case o > 0.

Define 8 := —(¢%)’(L%). Then ¢g (x) := ¢%(L* — x) solves (2.12) with § in place
of o and o = 0. Thus ¢« is a Robin solution ¢* or a Dirichlet solution qbg , depending on
our point of view.

Let ¢o denote the unique nonzero bounded solution to (1.2) with ¢ = 0, and let Kg
and sg denote the Dirichlet analogues of K* and s®. Then, by Step 1, there exists an
interval of initial slopes 8 close to B = ¢4 (0) for which K(’)3 and sg vary monotonically
in B. Furthermore, we can turn things on their head and instead view our parameters as
functions of the maximal value s, which, by (2.17), varies monotonically with 8. Thus,
there is an interval [s, 1) on which Ky and 8 vary monotonically with s.

In the original problem, we vary the slope « at the Robin boundary y = 0 within
the interval [o1, &@). Then K% > 1 and s% &~ 1 vary monotonically with «. Increasing o
if need be, we can assume that s* > s. Then s* monotonically determines 8 and the
Dirichlet length K(’f . It follows that L* = K + Kg is the sum of two functions that are
increasing in «. We have thus shown that

L*>0 fora € [og,@).
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Step 3. We must now study o € (0, 1]. If « is bounded away from the endpoints 0 and &,
(2.15) shows that L is uniformly bounded. It thus suffices to understand the regime o & 0.
We show that L* also diverges to oo when « “\ 0, and that it does so monotonically once
« is sufficiently small. We handle the ignition and bistable cases separately.

Suppose f is ignition. By (2.16), s* — ¢ = 6 as @ — 0. When « < £, our initial value
o« lies below the ignition temperature 6. Since f vanishes below 6, ¢¢ is affine linear
on the initial interval [0, 8/« — p]. After, it enters the range (6, 1), where f is positive. In
fact, by (I1) and (I12), f is monostable when viewed on the restricted interval [0, 1]. Let
f(s) ‘= f(s + 0), and analogously define K%, 5%, etc. Then

La=(g—Q+K~a)+<K~a+g)=?+2K~Q—Q,

SO

. 20 3
L% = -—— + 2K“. (2.21)
o
We will show that .
K% =0(@@™"). (2.22)

By (2.21), this implies that L — 0o as @ — 0 and L% < 0 when & € (0, ag] for some
o € (0,(11).

Since our solution ¢* enters the range (6, 1) from below, we are effectively consid-
ering Dirichlet solutions for the monostable reaction f . By (I2) we have f "(0%) > 0. So
F(s) ~ f'(0)s and F(s) ~ %];/(O)s2 as s N\, 0. By (2.16) and (2.17) we have

5% ~ (0 2a and 5% ~ f/(0)"2.

Hence, the first term in (2.18) is @ (a~'). For the second term in (2.18), we recall that the
numerator of the integrand vanishes at z = 0 and has derivative

=5 f'(s* — 2) ~ =/ £1(0).

IS f(G*—z)—a| < Cz

So,

for some C > 1 that may change from expression to expression, but is independent of «
and z. In the denominator we have

@ —2F (% —z) ~a* = f(O0)(f'(0) Za —2)?
~2 f’(O)ozz — 272> C laz.

It follows that
& 1 Co 2 1
o _ _

This confirms (2.22).
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Now consider a bistable reaction with o = 0. Again, we show that L* — +o00 as
a N\ 0, monotonically when « is small. Since we have Dirichlet conditions, L* = 2K?.
By (2.16), s* \( ¥ as N\ 0. Hence we can rewrite (2.15) as

v ds s* ds
K% = —_— +/ _—. 2.23
/0 VoaZz2 —2F(s) 8 JaZ—2F(s) (223
Now, (B1) and (B2) imply
F5)~ 31105 = 31 /Ol ass 0.
F(s) ~ f(O)(s—10) ass— 0. (2.24)

Since F vanishes to second order at s = 0, the first term in (2.23) diverges as « \ 0. So
indeed K¢ — oc.
We now show monotonicity. Differentiating the first term in (2.23), we can compute

4
— / [@2 —2F(s)] "2 ds ~ —Coa™! (2.25)
0

d [? ds

@/0 JaZ —2F(s)
for some constant Cy > 0 depending on f. On the other hand,

d ds d [~ dz
wh G wlh e

a s¢—19 " a_ o
i + / Ff"—z)—a dz.
o 0 [@2 —2F(s* — 2)]3/2

Again, the numerator of the integrand is bounded by C z, and the denominator involves
a? —2F(s% —z) ~ 2f(9)z.
Also, (2.16), (2.17), and (2.24) imply that

2

o o
s =0 ~ and §% ~ ——.
2f(®) S@)
Therefore,
d 5% d Ca?
a4 / — 8 _|<ct+ce| E<c
da Jy (/a2 —2F(s) oz

By (2.25), we have K* < 0 provided « is sufficiently small, as desired.

In each case, we have shown that there exist 0 < ®g < o1 < & such that L% is monotone
on (0, «p) and (a1, @). Moreover, L% diverges to +oo at 0 and &, while L“ is bounded on
[@o, or1]. Thus if we define

AODE = sup L” s
a€fag,o1]
then ODE (2.9) admits precisely two nonzero solutions, which we call ¢7, and Y1, when
L > Aopg. Their initial slopes are close to & and 0, respectively. Adjusting oo and o if
need be, we can thus arrange that ¢r > ¥, in (0, L).
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Step 4. We now turn to (2.10). To prove the existence of a limit, we show that ¢z, increases
in L when L > Agpg. That is,

o > @ on(0,L) (2.26)

when L’ > L > Aopg. Let &’ > @ > o denote the corresponding initial slopes, and let
K’ > K and s’ > s denote the maximal positions and values for ¢/ and ¢ , respectively.
Differentiating (2.14) with respect to ¢, we find
¢ () 0 +/¢a(” @+ of (o)
0

——————dr > 0.
« 2P PP

Vo2 —2Fe(ge(y) @
We have used the fact that o = 0 when f is bistable, so the term o f (o) is always non-
negative. Thus, ¢*(y) is increasing in « for all y € (0, K%). It follows that ¢/ > ¢y, in
(0, K'). If we view these profiles in reverse from their endpoints, the same reasoning (with
o = 0) implies

op(L' —y)> @ (L—y) forally € (0,L" — K'). (2.27)
Finally, ¢y is decreasing in (K’, L’), so (2.27) implies
o () > ¢ (y +L'=L) > gr(y) forally € [K', L].

This completes the proof of (2.26).

Using this monotonicity, we can establish an a priori lower bound for ¢r.. Let o, 1.
denote the solution to (2.9) with o = 0, and let Bopg denote the Dirichlet analogue of
Aopg.- Define v := ¢o, p,,:- By extending ¢y, on the left until it reaches zero, we see that
it is simply a shift of ¢ ;- for some L’ > L. Then (2.26) and symmetry in y imply that
¢r, > v for all L > max{Aopg, Bopg}. Furthermore, if we slide v along (0, L), ODE
uniqueness implies that ¢7 and v cannot touch in the interior, for at the point of first
contact they would agree to first order. Therefore,

¢L > maxv on (%, L— %). (2.28)

Note that max v € (3, 1).

Step 5. We can finally prove that ¢, /" ¢. Since the family (¢1.)1> 4ops 1S increasing in
L, it must have a positive limit. By standard elliptic estimates, the convergence is locally
uniform and the limit satisfies (1.2). Thus by Lemma 2.1, ¢;, — ¢ locally uniformly. We
prove uniform convergence by contradiction, so suppose there exist £ > 0 and sequences
L, /" oo and y, € [0, L,/2] such that

oL, (Vn) < @(yn) —e. (2.29)

Then (y;) cannot have a finite limit point, since g7, — ¢ locally uniformly. Thus y, — oo,
and there exists & € [0, oo] such that L,/2 — y,, — h (perhaps after extracting a sub-
sequence). Using elliptic estimates and Arzela—Ascoli, ¢z, (- — y») converges locally
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uniformly (along a subsequence) to some ¢: (—oo, ] — R. Combining (2.28) and (2.29),
we see that
U <maxv <¢p<l—-g<l.

However, ¢ solves ¢” + f(¢) = 0 and is thus uniformly concave, a contradiction.
Also, since s* — ¥ as @ \ 0, we have

sup ¥ — ¥
[0,L]

as L — oo. This completes the proof of the lemma. ]

Although we do not use the steady states of monostable reactions in bounded intervals,
we describe them for completeness. The monostable case is simpler: there is a unique
nonzero steady state in large intervals.

Lemma 2.5. Let f be monostable with ¢ € [0, 00). Then there exists Aopg > 0 such that
for all L > Aopg, (2.9) admits precisely one nonzero solution ¢r. Furthermore, o1, < ¢
and @1, satisfies (2.10).

Proof. We retain the notation of the previous proof. The analysis of ¢y for ignition and
bistable reactions extends to the monostable case. The only difference is the behavior of
the solutions ¢* when o« “\ 0. For ignition and bistable reactions, these “shallow” solu-
tions extend over arbitrarily large intervals, and form the second solution ;. However,
when f is monostable, we have ¢ = 0, so s* N\ 0 as & \ 0. Since ¢* is uniformly small,
it is controlled by the linearization of (2.9) about 0. By (M2), ¢* resembles a sine wave
of bounded width. That is, L* remains uniformly bounded as « \, 0. We can thus define

Aopg := sup L% < oco.
a€(0,01]
Any nonzero solution in [0, L] for L > Agpg must be ¢y, proving the lemma. [

‘We now return to the ignition and bistable setting. Since (2.9) has multiple solutions,
we are interested in their relative stability. Following [43], we define the energy

L s
H($) = /0 (/P —2F(@)]dy for F(s) == /O £(r)dr. (2.30)

and note that the ODE ¢” + f(¢) = 0 is the Euler-Lagrange equation for J¢.

Lemma 2.6. Let | be ignition with ¢ € [0, 00) or bistable with ¢ = 0. Then there exists
Age > Aopg such that H (pr) < H(0) < H (Yr) forall L > Ag.

Thus, as measured by J, ¢r, is the most stable solution of (2.9) and Y. is the least.
In the next section we use this stability to establish the uniqueness of traveling waves in
strips.
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Proof of Lemma 2.6. Suppose L > Aope. By Lemma 2.4, ¢r, 0, and v, are the only
solutions to (2.9). When L is large, ¢; ~ 1 and ¢; ~ 0 on nearly the entire domain.
By (I1) or (B3), F(1) > 0. It follows that #(¢r) < 0 when L > 1. Also, we trivially
have #(0) = 0. This leaves only # (). We consider the ignition and bistable cases
separately.

First, suppose f is ignition. As shown in the proof of Lemma 2.4, 1 is affine linear
outside the interval [y1, y2] := ¥ '([6,1)). On [y1. y2], the function ¥z, — 6 is a Dirichlet
solution to (2.9) with reaction f(- + 6), which is monostable on the interval [0, 1 — 6].
By (12), Y1, — 6 resembles a small sine wave of bounded width when L is large. Precisely,

0
VL) =0~ 2 sinl VTN~ 3] on [y, v

as L — oo. Now, F(s —6) ~ %f’(@"’)s2 ass \( 0, so

y2
| Fanoney <L
y1
for some constant C > 1 that may change from line to line. Now, F (1) vanishes outside
[y1. y2], where |y} | ~ 26L~". Therefore,

Y2
) = | Y R
[0,L1\[y1,¥2] »1
It follows that ¢ (1) > 0 once L is sufficiently large.

Now, suppose f is bistable. Then F' is negative below ¥ and positive above it. We
view Y7, about its maximum at y = L /2. As L — oo, it converges uniformly to a positive
soliton in R solving

v+ fy)=0, ¥(0) =9, v'(0)=0.

Since 0 < ¢ < ¥, ¢ has positive energy. Clearly J (1) converges to this energy, so
H(Yr) > 0 for L sufficiently large.

Thus in each case, there exists Az > Aopg such that # (¢r) < K (0) < H (Y1) when
L > Agg. ]

3. Traveling waves in strips
In this section we construct and control traveling waves in strips R x [0, L]. We thus work

solely in two dimensions. We will always assume that L > Agpg, so that Lemma 2.4
classifies the steady-state solutions of (2.9).
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3.1. Construction

We wish to construct solutions to the elliptic boundary-value problem

A®p 4 c10,P + f(PL) =0 inRx(0,L),

3y ®L(x,0) = o' PL(x,0),

&p(x, L) =0, 3.1
@ (—00,y) = ¢L(y),

®r(4+00,y) =0

for some speed c¢; € R to be determined. The wave @7 satisfies our usual absorbing
boundary condition on the lower boundary R x {0} and a Dirichlet condition on the upper
boundary R x {L}. Moreover, it connects the steady states ¢y and 0 from left to right.

To begin, we construct approximate traveling waves in the rectangle

Qg = (—a,a) x(0,L)
for a > 0. We study ®%¢ in Q,, satisfying

APa:€ +caxq)a,c + f(cpaaC) =0 in Qa,
@@ (x, 0) = 7' B (x, 0),

®4¢(x,L) =0, (3.2)
®4C(—a,y) = gL (y),
®%C(a,y) = 0.

For the moment, we treat a > 0 and ¢ € R as fixed. Of course, ®?-¢ also depends on L,
but we suppress this dependence for the sake of legibility.

Lemma 3.1. Let f be ignition with ¢ € [0, 00) or bistable with 0 = 0. Let L > Aopg
and a > 0. Then for each ¢ € R, there exists a unique solution ®%< to (3.2). Moreover,
0 < %€ < ¢ and 0, D% < 0in Q4. If 0 = 0, P*€ is even in y about y = L/2 and
0y @4 > 0on (—a,a) x (0,L/2).

Proof. For existence, we observe that 0 and g7 form an ordered pair of sub- and superso-
lutions, respectively, for (3.2). Hence if we solve the parabolic version of (3.2) with initial
data ¢y , the solution will converge monotonically to a steady state @ between 0 and ¢y, as
t — o0. Also, the parabolic evolution from constant initial data shows that any solution is
confined between the maximal and minimal solutions of (2.9), namely ¢y, and 0.

In our uniqueness argument, Robin and Dirichlet boundaries require superficially dif-
ferent treatments. We thus first suppose that o > 0. We claim that

® >0 in[—a,a)x]0,L), (3.3)
0,® <0 on[—a,a)x{L}. (3.4
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Since ¢z, > 0on [0, L), (3.3) holds on the left boundary. By the strong maximum principle,
it extends to the interior (—a, a) x (0, L). Then the Hopf lemma implies that ® and d, ®
cannot simultaneously vanish on (—a, a) x {0}. By the Robin condition, ® > 0 there;
(3.3) follows. Of course, we cannot extend (3.3) to the upper boundary, but the Hopf
lemma yields (3.4). By identical reasoning, we obtain

d < g, in (—a,a] x [0, L), (3.5)
dy,® > ¢ (L) on(—a,a] x {L}. (3.6)

We employ these bounds in the sliding method to establish umqueness and mono-
tonicity. Suppose ® is another solution to (3.2). As argued above, 0 < P < or. Also, )
satisfies (3.3)—(3.6). For £ € [0, 2a], consider the shifted function

Dy(x, y) = B(x + L. y)
in Qﬁ = Q, — ley and let
DY =Q,NQl = (—a.a—€)x(0,L).

Define
= inf{ﬁ €[0,2a] | &y < CD}

noting that ®y4 < © because o1, > 0,500 € [0,2a]. Suppose for the sake of contradiction
that o > 0. By continuity, ®, < ®in D?. We claim that

<® on[—a,a—o] x[0,L), 3.7

o,
®y > 3,® on[—a,a—o]x{L)}. (3.8)

dy
Since & satisfies (3.3) and ® satisfies (3.5), we automatically have CT)U < ® on the
vertical sides of D?. The strong maximum principle extends strict inequality to the interior
D? . Then the Robin condition and the Hopf lemma force ®, < @ on the lower side, and
we obtain (3.7). Again, the Hopf lemma implies (3.8).
By elliptic estimates, our solutions are €. It follows that (3.7) and (3.8) are open
conditions on ¢. That is, (3.7) and (3.8) imply

Oy < @ on[—a,a—{]x][0,L),
3,®; > d,® on[—a,a—1L]x{L},

for all £ sufficiently close to o. This contradicts the definition of ¢, so in fact ¢ = 0.

We have shown that ® < ®. Reversing the roles of ® and ®, we see that P is unique.
Furthermore, ®; < ® for all £ € [0, 2a], so d,® < 0. Since ® is not constant in x, the
strong maximum principle implies that 0, ® < 0 in .

We now turn to the Dirichlet case ¢ = 0. Then, 0, ¢;,, and ® agree on the lower
boundary, so we must include derivative conditions there as well. The proof is otherwise
identical, so we do not repeat it. We do, however, study the y-dependence of ®. Since the
upper and lower boundary conditions agree, ®(x, L — y) is also a solution. By uniqueness,
®d(x, L —y) = ®(x, y), as claimed.



H. Berestycki and C. Graham 1074

If we restrict our solution to [—a, a] x [0, L /2], symmetry implies that d,® = 0 on
[—a,a] x {L/2}. That is, ® satisfies a Neumann condition on this new upper boundary.
The sliding argument above works with Neumann conditions as well, so there is no other
solution in the lower half-box. Since ¢y, is increasing on [0, L/2] (by ODE uniqueness),
the boundary conditions are monotone in y. As the limit of the parabolic evolution from 0
in the half-box, ® is nondecreasing in y when y < L /2. By the strong maximum principle,
d,® > 0on (—a,a) x (0,L/2).

This concludes the proof of the lemma. In the remainder of the paper, we denote the
unique solution ® by ®%-°. |

We are interested in the dependence of ®%>¢ on c. From the previous lemma, we imme-
diately obtain the following corollary:

Corollary 3.2. For each L > Aopg and a > 0, the solution ®%° to (3.2) is continuous
and decreasing in c.

Proof. Continuity follows from standard elliptic estimates. Suppose ¢; < ¢». By Lem-
ma 3.1, (c3 — ¢1)9x P%2 < 0. Hence ®%-°2 is a subsolution to (3.2) for ¢ = c;. Since the
solutions are unique, 42 < 4“1, [

Presumably,

lim ®*° =¢; and lim ®*° =0

cC—>—00 c—>00
locally uniformly in £2,. We do not prove this — weaker bounds suffice for our purposes.
Recall that the speed ¢« in Theorem 1.2 is the unique speed of one-dimensional waves for
f connecting 1 to 0 ([1, 19,27]).

Lemma 3.3. For every s € (0,1) and L > Aopg, there exists Aupper(s) > 0 such that
®4(0,L/2) < s foralla > Aypper.

Proof. Let U denote the one-dimensional traveling wave, so that
U'4+c U + f(U)=0, U(—o0)=1, and U(+o0)=0.

Of course, this only determines U up to translation, so we further assume that U(0) = 9.
Let B := U '(max ¢z) € R. Then U(- + a + B) is a supersolution to (3.2) when
¢ = cx. Since the solution to (3.2) is unique, this implies that

O (x,y) <U(x +a+ B) forall (x,y) € Q.

In particular,
®4(0,L/2) < U(a + B).

Now U(+00) = 0, so for each s € (0, 1) there exists Aypper(s) > 0 such that
U(Aupper + B) <s.

Then ®%+(0, L/2) < s forall @ > Aypper, as U is monotone decreasing. [ ]
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Lemma 3.4. For all s € (0, 1), there exist Ajpwer(s) > Aopg and y(s) > 0 such that the
following holds. For all a, L > Ajgyer, we have ®%Y (0, L/2) > s.

Proof. We wish to construct a compactly supported subsolution that attains the value s. It
thus suffices to consider the Dirichlet case ¢ = 0 and 5 € (¢, 1).
We follow the construction of subsolutions in the proof of Theorem 1.1 (B). There, we
used q‘; solving . . B 3
"+ f(@) =0, ¢(0)=s, ¢'(0)=0,
which hits zero at some position K>0.To adapt this to two dimensions with a small drift,
we consider

1
Ro +y

¥+ (r+ )+ F@ =0, §O =5 FO=0.
By the stability of ODEs, there exist ¥, Rg > 0 such that gz’3 still hits O at some position
KO > 0.

Using ¢, we construct a radial subsolution v. Let r := |x — Le, /2| denote the radial
coordinate centered at (0, L/2), and define

K} forr < R,
v(r) =13 ¢(r — Ry) forr € (Ro, Ro + Ko),
0 forr > Ry + Kp.

Let Ajower := max{2(Ro + Ko), Aope}- Then v is a compactly supported subsolution
to (3.2) when a, L > Ajgwer and ¢ € [0, y]. Since ®%€ is the unique solution to (3.2), we
have ®%¢ > v. In particular, ®*Y (0, L/2) > v(0, L/2) = s. |

Now fix 6y € (¢, 1) and define y := y(6p) and
Apin = max{Aupper(60). Arower(60)}.
Then Lemmas 3.3 and 3.4 imply that
D4+ (0,L/2) < Gp < ®*7(0,L/2)

for all a, L > Ap,. By Corollary 3.2, ®4¢(0, L/2) is monotone and continuous in c.
Hence, there exists ¢? € (Y, c«) such that

®%¢ (0, L/2) = 6. (3.9)

We now take a — oo. By standard elliptic estimates, there exists a locally uniform
subsequential limit (®y,, c¢r) of (d%<*, ¢?) for each L > Apin.

Proposition 3.5. Let [ be ignition with o € [0, 00) or bistable with 0 = 0. Then there
exists Arw > max{Apin, Age } such that for all L > Arw, the subsequential limit (®r,cr)
solves (3.1) and satisfies 0, P, < 0 and cp € [y, cx]. Moreover, if o0 = 0, then O is
symmetric in'y about y = L/2 and 9,®r > 0on R x (0, L/2).
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Proof. By elliptic regularity and Lemma 3.1, the only question is the limiting behavior as
x — Fo00. The wave ®; is monotone decreasing in x, so these limits exist and solve the
steady-state equation (2.9). The choice (3.9) ensures that (0, L/2) = 6. Furthermore,
by Lemma 2.4, there exists Atw > max{Apin, Ag } such that ¥z (L/2) < 6y < ¢r(L/2)
for all L > Arw. It follows that @1 (—o0, -) = ¢r. However, the right limit is still in
doubt: &7 (+00, -) = Y or 0. This is one of the most delicate issues in the paper.

Before grappling with the question directly, we define a reduced reaction f . Let
n = max y¥r — ¥ > 0. By Lemma 2.4, we can make 7 arbitrarily small by taking L large.
Increasing Atw if need be, we can assume that 0:=19+ 2n < 1. Now set f = f on
[0, 6—n /3] and let f smoothly connect to 0 on [é —n/3, GN] while remaining below f.
Then f < f is an ignition or bistable reaction (in accordance with f) on the restricted
interval [0, A]. Let ¢ denote its one-dimensional wave speed with wave U connecting
0 to 0, so that

U'+¢U0 + f(U)=0, U(-o00)=6, and U(+00)=0.
We are free to fix the translation of U so that

U(O) = max ¥, + 2—)7 zé—ﬁ.
3 3
We wish to use U as a supersolution to force ®; to converge to 0 as x — +oo.
However, traveling waves are only supersolutions when viewed in a faster frame. We
must therefore arrange ¢ < c¢r. To do so, recall that f ,0,and U depend implicitly on L
through the small parameter n = max ¥, — . By Lemma 2.4, n — 0 as L — oo. Then
6 — 9 and

F(5) = 11.91(5) f(s) foralls € [0,1].

Recall that f(;9 f = 0. This implies that the “traveling wave” with reaction 1[¢ s] f con-
necting ¢ to O is actually stationary. By the continuity of one-dimensional waves, we
obtain ¢ — 0 as L — oo. In particular, increasing Arw if need be, we can assume that
c<y=cL

We can now control our traveling wave ®p. As shown earlier, the right limit
@7 (400, +) is Y or 0. By Dini’s theorem, the convergence is uniform. Hence, there
exists B € R such that

sup [@1(B.y) = y1(»)] < 3. (3.10)
y€[o,L]

Now, the convergence ®*¢“ — ®; as a — oo is locally uniform (along a subsequence,
which we suppress for clarity). Thus, there exists A > B such that
sup &< (B, y) — ®L(B,y)| < 2 (3.11)
velo.L] 3

when a > A. Combining (3.10) and (3.11), the triangle inequality yields

a 2 ~
sup ®*° (B, y) < max ¢y + ?77 = U(0).

y€[o,L]
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Since 9, ®%¢* < 0, this implies that

sup  d¢" < U(0). (3.12)
[B,alx[0,L]

By construction, f = f on the interval [0, U (0)]. Thus, the approximate wave ®%<*

satisfies .
AP + 49, D% + F(®*“) =0 in(B,a)x (0,L).

Moreover, ¢ <y < c“ and U <0 imply that Uisa supersolution to this equation.
Since U’ is decreasing, (3.12) implies that

U(x —xg) > ®*“(x,y) forall (x,y) € [B.,a] x [0, L] (3.13)

and each x;, > a > A. We now use the sliding method to continuously reduce the shift
Xq to B. When x, > B, (3.12) and the Hopf lemma imply that U(- — x,) cannot touch
®%< on the boundary of [B, a] x [0, L]. Moreover, the sliding supersolution cannot touch
the solution in the interior, by the strong maximum principle. Hence (3.13) holds for all
Xq > B. In particular,

U(x — B) > ®>“(x,y) forall (x,y) € [B,a] x [0, L]
whenever a > A. We emphasize that the left-hand side is independent of a. It follows that

U(x—B)> ®r(x,y) = lim ®%¢“(x,y) forall (x,y) € [B,oo) x [0, L].
a o
Of course, U (+-00) = 0, s0 D7 (400, -) = 0 as desired. [

3.2. Properties
Now that we have a traveling wave, results of Vega ([43]) imply uniqueness.

Lemma 3.6. Let [ be ignition with o € [0, co) or bistable with ¢ = 0. Then for all
L > Arw, there is a unique speed cy, such that (3.1) admits a solution ®y that is monotone
in x. Furthermore, @, is unique up to translation.

Proof. We use the results of [43]. There, the behavior of waves hinges on the stabil-
ity of the limiting steady states, as measured by the energy J¢ defined in (2.30). Since
L > Atw > Aopg, the only solutions of (3.1) are ¢r, ¥, and 0. By Lemma 2.6 and
L > Arw > Ay, they satisfy

H(pr) < H(0) < H(YL).

By [43, Theorems 5.1 and 5.2], (3.1) admits a monotone solution ®;, at a unique speed
cr, and @y is unique up to translation. We note that [43] assumes for convenience that
®p (—00, -) < Op(+00, ). We can easily arrange this by replacing &y by —®; and
f(s) by — f(—s). Also, [43] only handles Dirichlet conditions. However, as Vega notes,
the proofs extend to Robin conditions without change. ]
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Next we show that ¢;, converges to the one-dimensional wave speed ¢4 as L — oo.

Lemma 3.7. Let f be ignition with o € [0, 00) or bistable with 0 = 0. Then ¢, — cx as
L — oco.

Proof. Define the recentered wave

Uy (x,y) = ®L<x,y + %)

Then (3.9) and Proposition 3.5 imply that Wy,(0,0) = 6y, 0 < ¥ < ¢r,(- + L/2), and
0x¥y <0.If o =0, ¥ isalsoevenin y and 9, ¥;, > 0 when y < 0.
Now let Ly — oo be a sequence of lengths such that

cL, —> c— = liminfcg.
L—o0

Note that, by Proposition 3.5, c— € [y, ¢«]. By standard elliptic estimates, there exists a
subsequence (which we also call Ly for simplicity) such that ¥y, has a locally uniform
limit ¥ in R2. Furthermore, W satisfies

AW 4 c_3, ¥ + f(W) =0,

as well as W(0,0) = 0,0 < ¥ < 1, and 0, ¥ < 0. Moreover, if ¢ = 0, ¥ is even in y and
0, ¥ > 0when y <O0.

By the monotonicity in x, the limits (300, -) exist. Moreover, the convergence is
locally uniform and the limits satisfy the steady-state equation ¢” + f(¢) = 0 in R. The
only solutions to this equation are constant or nonconstant periodic, and the latter is only
possible when f is bistable. However, o = 0 when f is bistable. In this case, the limits
W(=£o00, -) are also even and monotone increasing on R_, and thus must be constant.

It follows that W(—oo0, -) = s_ for some s— € [0, 1] such that f(s—) = 0. Furthermore,
s— > W(0,0) = 0y > . The only zero of f above ¢ is 1, so ¥(—oo, -) = 1. Hence for
any R,§ > 0, there exists a radius-R ball B C R2 such that W|p > 1— 6. Now let w solve

d,w = Aw + f(w),
w(0,x) = (1 —8)1p(x)

in R2. Then the comparison principle implies that
w(t,x,y) < WU(x —c_t,y) forall (t,x,y) € [0,00) x R%. (3.14)

However, in the whole space, Aronson and Weinberger ([1]) show that w — 1 locally
uniformly, provided § < 1 and R > 1. Furthermore, this disturbance propagates at the
asymptotic speed cx. Since W = 1, this will contradict (3.14) unless c— > c4. But
c— € [y, c«], soin fact c_ = c4. Now

cx = liminfcy <limsupcrp < c«,
L—oo L—>00

so limy, oo 1 = Cx, as desired. [
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3.3. Modified traveling waves

To close this section, we discuss a few variations on our traveling waves.

Throughout, we have exploited symmetry and monotonicity in y when ¢ = 0. When
f is ignition and o > 0, our waves @y are more complicated, since they involve Robin
conditions on one boundary and Dirichlet conditions on the other. In our proof of The-
orem 1.4 (B), we will need traveling waves for ¢ > 0 that are symmetric in y. This is a
simple matter of changing the upper boundary condition. We therefore consider symmetric
steady states satisfying

sym)// + f(¢sym) — 0,
(@) (0) = Q_lqb“ym(O), @™ (L) = —o~'¢p"(L).

These behave exactly like the asymmetric steady states.

(3.15)

Lemma 3.8. Let f be ignition with 0 > 0. Then there exists Ag]r;E > 0 such that (3.15)
admits precisely two nonzero solutions (pzym > zym when L > AggE. Furthermore, these
solutions satisfy (2.10) and (2.11).

Proof. The proof of Lemma 2.4 extends to this setting. ]

We then need traveling waves ®;™ satisfying

ADY™ + M0, BP" + £(@F™) =0 inRx (0, L),

0,d7™ = o~ 1™ R x {0, L},
@J ¢ onRx {0, L) (3.16)
(—00,y) = ?r ),
”W+wJ0—0

where 0,, denotes the partial derivative with respect to the inward normal on the boundary
R x {0, L}. We collect our traveling wave results into one statement.

Proposition 3.9. Let f be ignition with o > 0. Then there exists ATW > A:)y]IDHE such that for
all L > A}y\;,n the following holds. There exists a monotone solution (dDbLym, czym) to (3.16)
that is unique up to translation. Moreover, ciy ™ e [y, cx], Ox CIDSLym <0, 7 YW i symmetric

in'y about y = L/2, and 3, ;"™ > 0 on R x (0, L/2). Finally, c;"™ — ¢s as L — oo,
Proof. The arguments in the preceding subsections extend to this setting. ]

Now we turn to a different variation on ®;. Given 0 < ¢ < 1, we define an
e-modification f of f.If f isignition, let f = f and simply view f as an ignition reac-
tion on the large_r interval [—e, 1]. If f is bistable, we continuously reduce f on [—e¢, €] so
that f < f, f is bistable on [—¢, 1], and || /' — floc < &2. In particular, we can assume
that (B3) continues to hold for f provided ¢ is sufficiently small.

When we say that f is ignition or bistable on [—e, 1], we mean that f satisfies (I1) and
(I2) or (B1) and (B2) after we apply the transformation s > m . We can thus apply all
our above results to f, provided we interpret them properly. In partlcular we must adjust
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our boundary conditions. For instance, by Lemma 2.1, f has a unique nonzero bounded
steady state ¢ in R satisfying

9"+ fp) =0, ¢'(0)=0""[p(0) +¢].

On sufficiently large intervals, Lemma 2.4 provides two nonzero solutions ¢, > /1, to
the ODE

¢1+ (@) =0, ¢7(0) =0""[¢r(0) +¢l. Pr(L) = —e. (3.17)
Finally, Proposition 3.5 yields a monotone traveling wave ®; and speed ¢y, satisfying

A®r +¢r0xPL + f(P) =0 inRx(0,L),

Iy @r(x,0) = 07! [PL(x,0) + £],

®r(x,L) = —¢, (3.18)
Pr(—00,y) = ¢L(y),

r(+00,y) = —&.

By Lemma 3.6, the speed is unique, as is the wave up to translation. To determine ®;, we
fix

@y (0, g) = bp. (3.19)

In applying our results to f, we must assume that L is sufficiently large. For instance,
Lemma 2.1 classifies the solutions of (3.17) provided L exceeds some constant Aopg.
In general, we let A. denote the analogue of the various lower bounds A.. It is easy to
see that we can let A. vary continuously in ¢. In particular, taking ¢ < 1, we can assume
that the constants A. are bounded uniformly in €. In fact, the wave and speed also vary
continuously in &:

Lemma 3.10. Let f be ignition with o € [0, 00) or bistable with ¢ = 0. Fix L > Atw.
Then ¢ — ¢ and @1 — ¢r uniformly as & \ 0. Moreover, ¢; — ¢ and 1 — @,
uniformly in R x [0, L].

Proof. By standard ODE stability results, ¢ — ¢ and ¢; — ¢, uniformly. This leaves
the wave and speed. - -

Various parameters in our lemmas are continuous in &, including y and c.. Hence the
sequence (cr)se(o0,1] is contained in a compact subset of (0, c0). By (3.19), we can thus
extract a subsequence (suppressed for clarity) of ¢ N\ 0 such that ®; converges locally
uniformly and ¢y, converges. Let CD% and cg € [y, ¢«] denote the corresponding limits.

The monotone traveling wave <1>2 must converge to solutions of (2.9) as x — =£o0.
Our normalization (3.19) implies that CDE (—o0, ) = ¢r. We can handle the right limit as
in the proof of Lemma 3.5. That is, let f denote a modification of f that is cut off slightly
above ¢. By adjusting the cutoff, we can arrange for the correspo?lding one-dimensional
speed ¢ to be small, uniformly in &. Moreover, the one-dimensional wave lz will decay
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to —e uniformly in & as x — +00. We can again show that there exists a half-strip [B, c0) x
[0, L] independent of & on which &7 < lz . Taking & — 0, the uniformity in ¢ of the decay
of (:] implies that CD% (400, -) = 0. So (132 is a solution to (3.1).

By Lemma 3.6, the monotone traveling wave with these limits is unique. Hence
CD% = &7 and cgch. Since the subsequential limit is unique, the entire sequence
(D1, ¢L)ee(0,1] converges to (P, ¢z ). Furthermore, the monotonicity of ®; and @7 in x
implies that the limit ®; — & is actually uniform in R x [0, L]. |

4. Ignition and bistable spreading

We now return to the half-space H c R4*+!. We study the solution u of (1.1) evolving
from compactly supported initial data 1, and prove Theorem 1.3 (B). We break the proof
into several parts.

4.1. The upper bound

Using linear and one-dimensional theory, we can quickly establish the upper bound (1.4).
In fact, the same argument applies to all classes of reactions and all boundary conditions.

Proposition 4.1. Let f be monostable, ignition, or bistable with ¢ € [0, 00]. Let u solve
(1.D) with 0 < ug < 1 compactly supported. Then u satisfies (1.4).

Proof. Since we only need an upper bound, we can assume that o = co, which corre-

sponds to Neumann conditions. Then the evolution in H agrees with a free evolution in

R4+ from an initial condition that is even in y. Let wo denote the even extension of uq
to R+, and let w: [0, 00) x R*! — R satisfy

dw = Aw + f(w),

{ z f(w) @

w(0,x) = wp(x).

Then by our observations above, w = u on H. Also, by the strong maximum principle,
w(t, -) < 1 whent > 0.
Now define

_ S(s)
W= sup .
se€(0,1) ¢

Then the solution to

W = AW + uW,

W(O’ X) = wO(X)7
is a supersolution to (4.1), so w < W. By an explicit computation with the heat kernel, W
decays like a Gaussian as |x| — oo at any fixed positive time.

On the other hand, the one-dimensional wave U of speed c, merely decays exponen-
tially at 400, and satisfies U(—o0) = 1. Since w(l, -) < 1 decays superexponentially,
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there exists a shift B of U such that
w(l,x) <U(e-x—cs«— B)

for all e € S%. Using U(e - X — c«¢ — B) as a supersolution for each e € S¢, we see that
w, and hence u, cannot propagate in any direction faster than c. |

4.2. The lower bound on a slab

The proof of the lower bound (1.4) in Theorem 1.3 (B) is more involved. In this subsection,
we establish it on a slab of bounded width near oHI.

Proposition 4.2. Let f be ignition with o € [0, 00) or bistable with ¢ = 0. Suppose that
(6 +8)1p <up <1 forsome s € (0,1 — 6) and some ball B C H of radius Rycady(8) > 0.
Then for all £ > 0 and ¢ € [0, cx),

limsup sup |u(z,x',y) —@(y)| = 0. 4.2)
=00 |x¥'|<ct
o<y=t
Proof. Fix0 <c¢ < ¢’ <cy, £ > 0,and n > 0. We use the strip traveling waves (®, cy)
from Proposition 3.5. By Lemmas 2.4 and 3.7, there exists L > max{Artw, 2¢} such that
cr, > ¢’ and
(p—g <@L <¢ on0.4]. 4.3)

We now use the e-modification f < f introduced in Section 3. We claim that ¢ < ¢
when ¢ is sufficiently small. By Lemmas 2.4 and 3.10, ¢ < ¢ in (0, L] and ¢L_—> oL
uniformly as ¢ — 0. If o > 0, we in fact have ¢; < ¢ in [0, L], and there is a uniform gap
between the two by compactness. If follows that ¢ < @ once ¢ is sufficiently small.

Now suppose o = 0. Then the ordering is onlS/ in doubt when y < ¢, where ¢y, and ¢
become close. If f is ignition, we have f = f', and ODE stability results imply that the
—e boundary condition for ¢ reduces (p_L by order ¢ in a fixed neighborhood of y = 0.
Thus ¢, < ¢. For bistable reactions, we recall that | f = flloo < €2. Hence the change of
reaction only changes ¢ by order £? < e. Therefore, the boundary condition beats the
adjustment of /', and we still have ¢z < @.

By Lemma 3.10, there exists ¢ > 0 such that oL < @, cp > ¢, and

n
lor = erllzeqo.Ly < 3- (4.4)
Now define
d—1
R = / 4.5)
cL—¢

and let B denote the d-dimensional ball of radius R centered at the origin in R?. By
Lemma 2.3, u(t, -) — ¢ locally uniformly as ¢ — co. We claim that there exists a time
T > 0 such that

u(t,x',y) > ¢r(y) forall (z,x', y) € [T, 00) x B x[0,L]. (4.6)
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After all, ¢;, < ¢ in the compact interval [0, L], so there is a uniform gap between ¢
and @1 . Hence the locally uniform convergence u(¢, - ) — ¢ implies (4.6) for sufficiently
large_T.

We now define a radial subsolution on the region

A={0t.xX.y)|[t>T. R<|X|<R+c't-T),0<y<L}
Since @y, (400, ) = —e, there exists x > 0 such that

sup @r(x,y) =0.
y€lo,L]

We then define
w(t,x,y)=QL(X|—c'(t =T) =R+ x,y) for(t,x,y) € 4.

Using the spherical representation of the Laplacian in R?, we find

dw—Aw — f(w) < dw—Aw — f(w) = (QL —c - ?)Brw,

where r := |x'|. Now 0, @7, <0, so 3,w < 0. Furthermore, our choice of R in (4.5) implies

that

d—l> , d—1 0
cp, —¢c ——— =0.
r = &L R

QL—C/—

Therefore, 0, w — Aw — f(w) < 0 in #A, as desired.

We wish to apply the comparison principle to conclude that ¥ > w in 4. We must
thus check various boundary conditions. For fixed t > T, let 4, denote the ¢ time-slice
of 4. Then +; is an annular cylinder with inner radius R, outer radius R + ¢’(t — T'), and
height L. Its boundary has four pieces, corresponding to [x'| = R, |X'| = R+ 't — T),
y=0,andy = L.

When |x'| = R, (4.6) implies that u > ¢y, > w. When [X'| =R+’ (t —T)ory =1L,
u > 0 > w. Finally, u satisfies a “larger” Boundary condition than w when y = 0. Since
A1 = 0, there is no initial condition to check. Therefore, the comparison principle implies
U > win A.

Finally, consider points in # with |x'| < ct. Then

X|=c'(t—=T)—R+x - —0c0 ast — oo,

so in the definition of w we are evaluating ®;, on the far left. Since ®,(—o0, ) = ¢r,
there exists C > 0 such that oL — Dr(x,-) < % for all x < —C. Thus, there exists 7"’ Z_ T
such that

u(t.X.y) > gL() - 3

forallt > T/, R < |X'| < ct,and y € [0, L]. Furthermore, (4.6) allows us to extend this
bound to |x'| < R. By (4.3) and (4.4), we obtain

limsup sup [p(y) —u(t,X,y)] <.
t—>00 |x'|<ct
o<y=<t
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But n > 0 was arbitrary, so in fact

limsup sup [p(y) —u(t,x,y)] <0. 4.7
t—>00 |X’|§Ct
0<y<t

To control u — ¢ from above, consider the solution u! to (1.1) with uy = 1. It depends
only on y and decreases locally uniformly to ¢. In fact, ¢ < u! < 1 and ¢(+o00) = 1
imply that u' (¢, -) — @ uniformly. Since u < u', we find

lim sup sup[u(, -) — ¢] < 0.
t—>00 H
In light of (4.7), we obtain (4.2). [

4.3. The full lower bound

With control on slabs, we can extend the propagation into the interior of H. The following
argument applies to all reactions.

Proposition 4.3. Let f be monostable or ignition with o € [0, 00) or bistable with ¢ = 0.
Let u solve (1.1) with ug < 1, and suppose that (4.2) holds for all £ > 0 and ¢ € [0, cx).
Then u satisfies (1.3).

Proof. Fix0<c¢ < ¢’ <cyandn> 0. Given ¢ > 0, we define a new reaction f; < f < f.
We set f1 = f on[—¢e, 1 —2¢], and let f; smoothly connect to 0 at 1 — & while rerﬁaining
below f. Then /1 is an ignition or bistable reaction on the interval [—¢, 1 — ] with unique
one-dimensional speed c1. As € \ 0, it is well known that ¢; — c«. Thus, there exists
¢ € (0,n) such that ¢; > ¢’. Let U; denote the unique one-dimensional monotone traveling
wave for fi connecting 1 — & to —e such that U; (0) = 0.

Now fix Ry = %. As in the proof of Proposition 4.2, we can check that

w(t,x) = Uy (|x| — ¢'t)

is a subsolution to the equation 9, w = Aw + f(w) on RZ+1\ Bpg,, where Bg, denotes
the (d + 1)-dimensional ball of radius R; centered at the origin. We use w to push u
towards 1 — ¢ out to radius c?.
Since p(4-00) = 1, there exists £ > R; such that 1 —¢ < £ in [£, 00). Also, by hypoth-
esis, u satisfies (4.2) with ¢’ in place of ¢. Hence, there exists 77 > 0 such that
inf u(t,x',)>1—¢ forallt > Tj. (4.8)
[x|<c’t
Now let Hy := {(x/, y) € R¥*! | y > £} denote the ¢-shifted half-space. Since w < 1 — ¢,
(4.8) ensures that w < u on dHy; N B.; when t > T;. Moreover, w < 0 < u on
oH, N (]Rd+1 \ B¢t), so in fact w < u on the entire boundary dH; when ¢ > Tj. Also,
w(0, -) <0 < u(Ty, -) in H. Thus by the comparison principle,

u(t + T1,x) > w(t,x) forall (z,x) € [0, 00) x Hy.
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Finally, we are interested in x such that |x| < ct. For such x,
w(t,x) > Up(—(c'—c)t) > 1—¢ ast — 0.

Since ¢ < nand 1 — ¢ < ¢ < 1 in this region, there exists 7, > 77 such that

sup sup [p(y) —u(.x,y)] <n. 4.9)
t1>T, |(¥,y)|<ct
y=t

In fact, this can be extended to y € [0, £], since u satisfies (4.2). An upper bound follows
as in the proof of Proposition 4.2. Since n > 0 in (4.9) was arbitrary, we obtain (1.3). m

Finally, Theorem 1.3 (B) follows from Lemma 2.3 and Propositions 4.1-4.3.

5. Ignition and bistable traveling waves

We are now in a position to construct traveling waves for ignition and bistable reactions.
As noted in the introduction, it suffices to consider waves in two spatial dimensions, so
we assume d = 1 and denote position by x = (x, y) € R2.

Proof of Theorem 1.4 (B). First, let f be ignition or bistable with o = 0. Define

0, = %(p(l) € (0,1).

Recall Aty and the traveling waves (®r, ¢z ) from Proposition 3.5. By Lemma 2.4, there
exists A > Aoppg such that ¢z (1) > 6, for all L > A. Then define xz, by

&y (xz,1) =04, (5.1
which exists because
@L(—OO, 1) = @L(l) >0;>0= q)L(-i—OO, 1).

We consider the sequence (®r(- + xz, ), crL)r>4 as L — co. We have (5.1) and
cr € [y, c«]. It follows from elliptic estimates and Lemma 3.7 that there exists a locally
uniform subsequential limit (P, c4) satisfying

AD + c0xd + f(P) =0 inH,
=0 on JH.

Furthermore, 0 < ® < 1, 9,® < 0, and (0, 1) = 0;. Since 9, Pz > 0on R x (0, L/2),
we also have 9, > 0.

Now, the monotonicity in x ensures that the limits ®(+o00, -) exist and satisfy ODE
(1.2). Furthermore, the limits are bounded and satisfy

®(—00,1) > %(p(l) > ®(+00, 1). (5.2)
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By Lemma 2.1, the only bounded solutions to (1.2) are 0 and ¢. By (5.2), we must have
P(—00,-)=¢ and P(4o0,-)=0.

Therefore, ® is a traveling wave of speed cx. Moreover, the strong maximum principle
implies that 0 < & < 1, 3,P < 0, and 9, P > 0in H.

If f is ignition and ¢ > 0, we instead use the symmetric Robin waves (@}, ¢;™)
from Section 3. By Proposition 3.9, the argument goes through as above. This establishes
existence in Theorem 1.4 (B) at the speed cx.

For nonexistence at slower speeds, we appeal to Theorem 1.3 (B). Suppose for the sake
of contradiction that W is a traveling wave of speed ¢ € [0, cx), and fix ¢’ € (c, c«). Since
W(—00, -) = ¢ and ¢(+00) = 1, the wave is arbitrarily close to 1 on arbitrarily large
balls. Hence, given § € (0, 1 — ), there exists a ball B C H of the radius Rycaay(5) > 0
from Theorem 1.1 (B) such that ¥ > (6 + §)1p. Let u solve (1.1) with ug = (6 + §)15.
Then Theorem 1.3 (B) shows that u eventually approaches ¢ in balls of radius ¢’¢. So
u overtakes the traveling wave solution W(x — ct, y), which connects to 0 and travels
slower. That is, there exists (7, x, y) € [0, 00) x H such that u(7T, x, y) > ¥(x —cT, y),
contradicting the comparison principle. Thus, there do not exist waves slower than cx. =

This concludes our analysis of ignition and bistable reactions.

6. Monostable steady states

In the remaining sections we study monostable reactions. We begin by proving the exis-
tence and uniqueness of a nonzero bounded steady state in R.

Lemma 6.1. Let f be monostable with ¢ € [0, 00). Then there exists a unique nonzero
bounded solution ¢ to ODE (1.2). Furthermore, ¢ satisfies 0 < ¢ < 1, ¢’ > 0, and
@(+00) = 1.

Proof. Suppose ¢ is a nonzero bounded solution. Since f vanishes outside [0, 1], ¢
becomes affine linear if it exits this interval. Then |¢| would grow without bound, so
necessarily ¢(J0, oo]) C [0, 1]. As a consequence of the boundary condition, we obtain
¢’ (0) > 0. By (M1), ¢ is concave in Ry. Hence, ¢ increases towards a zero of f. This
zerocanonlybe 1,500 < ¢ < 1, ¢’ > 0, and p(+00) = 1.

Existence and uniqueness follow as in the proof of Lemma 2.1. ]

We now use the sliding method to extend uniqueness to the half-space H ¢ R4+1,

Proof of Theorem 1.1 (A). The one-dimensional solution ¢ from Lemma 6.1 is a nonzero
bounded steady state, so we need only establish uniqueness.
Let ¢ be some nonzero bounded solution of the steady state equation

{Aqs + f(¢) =0 inH, 6.

Ay =0 1¢ on oH.
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Arguing as in the proof of Proposition 2.2, the comparison principle implies that
0=¢ =0
We now define

e SO
p:= inf .
s€(0,1/2] S

By (M1) and (M2), p > 0. Therefore, there exists R > 0 such that p is the principal
Dirichlet eigenvalue of —A in the (d + 1)-dimensional ball B of radius R. Let v denote
the corresponding positive eigenfunction, normalized by ||v]e = 1. We extend v by 0
outside B, and define its translation xv := v(- — x) for

x € Hg = {(x,y) e R9T! | y > R}.

By the strong maximum principle, ¢ > 0 in H. Thus, there exist xo € Hpg and
€ € (0,1/2] such that e7y,v < ¢. By the normalization of v and the definition of p, £y, v is
a subsolution to (6.1). Hence, e14,v < ¢ by the strong maximum principle. If we slide Xq
around within H g, the strong maximum principle further implies that 7y, v cannot touch
¢ from below. So, in fact,

V=g sup 15V < ¢.
xo€H g
Note that V' is independent of X’ and positive in H. Furthermore, as a supremum of sub-
solutions, V itself is a subsolution to (6.1).

Again, V evolves under (1.1) towards a bounded solution of (1.2). But as a subsolution,
V increases under the evolution (1.1). Since V > 0, its long-time limit cannot be 0. By
Lemma 6.1, this limit is ¢. Thus by the comparison principle, ¢ < ¢ < ¢. |

7. Monostable spreading

‘We now consider the evolution of # under (1.1) from compactly supported initial data. By
Proposition 4.1, we need only prove the lower bound (1.3). We begin by establishing the
hair-trigger effect.

Lemma 7.1. Let f be monostable with o € [0,00). If 0 = ug < 1, then
lim u(t,-) =¢
t—>00

locally uniformly in H.

Proof. In the proof of Theorem 1.1 (A), we used the principal Dirichlet Laplacian eigen-
function v on a ball of radius R. By construction, &7, v is a subsolution to (1.1) for all
e €[0,1/2] and x¢ € Hr.

By the Harnack inequality, u(1, -) > 0 in H. Thus it lies above ey, v for some ¢ > 0
and xo € Hg. If we evolve (1.1) from initial data etx,v and 1, we sandwich u between
solutions that converge locally uniformly to nonzero bounded steady states. By Theo-
rem 1.1 (A), ¢ is the unique such state. Thus, u(¢, -) — ¢ locally uniformly ast — co. m
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We wish to upgrade this convergence to the quantitative lower bound (1.3). By Propo-
sition 4.3, it suffices to show convergence on a slab near dH. We again use a “reduced”
reaction f and its corresponding steady states and traveling waves. We let f = f, but
we view the reaction on the larger interval [—eg, 1], where it is ignition. B

Lemma 7.2. Foreache >0, ¢ <¢.

Proof. We first note that ¢ is increasing in the Robin parameter o. Indeed, if o) < o®
correspond to solutions ¢ and 9@ of (1.2), respectively, then ¢V is a subsolution to
the 0@ equation. By Lemma 6.1, ¢® is the unique nonzero bounded solution to the o
equation. It follows that 9@ > @),

Now suppose that ¢(0) > 0. Then we can write

_,90) +¢

() =0 2(0)

9(0) = g7 'p(0)
for some o < p. That is, ¢ is the steady state for a smaller Robin parameter g. Since ¢ is
increasing_ ing, o > @. Tgking o \\ 0, the same holds when ¢(0) = 0. )

We are left with the case (p((_)) < 0. Then there exists y > 0 such that ¢(y) = 0. Since
f=f,0(-+y)isa Dirichlet solution to (1.2). By the_ordering in o and _monotonicity
iny,

p=9(-+y) >0 m

We can now show propagation near dH.

Proposition 7.3. Let u solve (1.1) with 0 = ug < 1. Then for all £ > 0 and c € [0,cx), u
satisfies (4.2).

Proof. Fix0<c¢ <c’ <cx,£>0,and > 0. By ODE stability, ¢ — ¢ as ¢ — 0. Recall that
¢ denotes the speed of the one-dimensional wave for f conne;:ting 1 to —e. By standard
results from reaction—diffusion theory, ¢ — cx as ¢ — 0. We can thus choose & > 0 such
that ¢ > ¢’ and

Ui
o —¢lloo < 3 (7.1)

Now recall the monotone traveling wave (P, ¢y ) satisfying (3.18) for L > Arw. By
Lemmas 3.6 and 3.7, it is unique up to translation and ¢; — ¢ as L — oo. Using the
uniform convergence in Lemma 2.4, we can thus choose L > max{Arw, 2£} such that
¢y > ¢ and

n
lor — @llLe(o,) < 3 (7.2)

Moreover, Lemmas 2.4 and 7.2 imply

oL <@ <g. (7.3)

Using Lemma 7.1 and (7.3), we may now proceed as in the proof of Proposition 4.2.
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We can construct a radial subsolution from ®; moving outward at speed ¢’, and use it to
push u up close to ¢y,. In particular, there exists 7" such that

u(t.xX.y) = gr() - 3 (7.4)

forallt > T, |x'| <ct,and y € [0, L]. For details, see the proof of Proposition 4.2.
Combining (7.1), (7.2), and (7.4), we find

limsup sup [p(y) —u(, X, y)] <n.
t—>00 |x|<ct
o<y<t

Recalling that n > 0 was arbitrary, we in fact have

limsup sup [p(y) —u(t,x,y)] <0. (7.5)
t—>00 |X’|§Ct
0<y<t
To control u — ¢ from above, we use the uniform convergence of 1 to ¢ under the
evolution (1.1), as in the proof of Proposition 4.2. This implies

lim sup sup[u(z, -) — ¢] < 0.

t—>00 H

In combination with (7.5), we obtain (4.2). [

Now, Theorem 1.3 (A) follows from Propositions 4.1, 4.3, and 7.3.

8. Monostable traveling waves

Finally, we construct monostable traveling waves. Throughout, we assume that f is mono-
stable, o € [0, 00), and d = 1. With the results of the preceding section, we can immedi-
ately prove half of Theorem 1.4 (A).

Proof of nonexistence in Theorem 1.4 (A). Suppose for the sake of contradiction that W is
a traveling wave of speed ¢ € [0, c«), and take ¢’ € (¢, ¢4). Since ¥ > 0, ¥ > §1p for
some § € (0, 1) and some nonempty open ball B C H. By Theorem 1.3 (A), the solution u
to (1.1) beginning from uo = §1p eventually approaches ¢ in balls of radius ¢’z. This nec-
essarily overtakes the traveling wave solution W(x — ct, y), contradicting the comparison
principle. So W does not exist. ]

Now fix ¢ > c«. We follow the approach of [11] to construct a traveling wave @ of

speed c¢. By definition, ® is a steady solution to (1.1) in the c-moving frame:

{Ad) +¢3;®+ f(®) =0 onH, a1

,®=0"1® on OH.

Moreover, @ satisfies (1.5).
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We first construct a family of subsolutions. As in the proof of Theorem 1.1 (A), define

p:= inf & > 0,
s€(0,1/2] 8
as well as |
b1
Lo ;= —arctan(p./p) and £y = —— —{,.
7P 200
Then let

sin[\/p(y + £o)] for0 <y <{y,
v(y) =
1 fory > £;.

By construction, v is €! and satisfies the absorbing boundary condition at y = 0. More-
over, kv is a subsolution to (8.1) for all k € [0, 1/2]. As a consequence,

1
Ev <¢ inRj. (8.2)

Indeed, %v is a subsolution to (1.2). Since it is not a solution, its evolution under the
parabolic version of (1.2) is strictly increasing in time. Moreover, %v lies under the
bounded supersolution 1, so its parabolic evolution converges to a nonzero bounded steady
state. By Lemma 6.1, this state is ¢. Since the evolution of %v is strictly increasing in time,
(8.2) follows.

Next we need a corresponding supersolution.

Lemma 8.1. There exists a supersolution ¥ of (8.1) with the following properties:
¥ = ,Q_llIJ on 0H, 0,V < 0 and d,¥ > 0 in H, W(+o0, -) = 0, and there exists
B € R such that

v > %v on (—oo, B] x [0, 00). (8.3)

Proof. Since f is monostable, there exists a one-dimensional wave U¢ of speed ¢ con-
necting 1 to 0. Let u solve the parabolic form of (8.1) with ug = U€, and let

Y(x,y):=u(l,x,y).

Since dyug < 0, we have 0, ¥ < 0. Similarly, u is independent of y, so the absorb-
ing boundary condition and the strong maximum principle yield 9, ¥ > 0. Now, ug is
a supersolution of (8.1), so u is decreasing in ¢. Since U°(400) = 0, it follows that
W(4o00, ) =0.

We must now grapple with the behavior of W on the far left. We recall that
U¢(—o0) = 1. By parabolic regularity, it follows that u(z, —oco, y) solves the one-
dimensional parabolic problem

dw = R+ f(w) inR,

dyo(t,0) = o~ lw(t,0), (8.4)
w(0,y) =1.
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That is, ¥(—00, y) = w(l, y). By Dini’s theorem, the convergence
\I-’()C, y) - ‘-IJ(—OO, y)

is locally uniform in y. In fact, boundedness and monotonicity in y imply that the conver-
gence is uniform.

Next, note that %v is a subsolution of (8.4). Since %v < 1= w(0, -), we have
W(—00,y) > %v( ¥). Suppose o > 0. Then Hopf and the strong maximum principle imply
strict inequality: W (—o0, -) > %v. Since %v(—i—oo) = %, the uniform convergence of ¥ on
the left implies the existence of B € R such that (8.3) holds. If o = 0, we must contend
with the behavior of our limit near y = 0. The Hopf lemma implies that

1
9y W (—00,0) > Ev’(O).

Moreover, parabolic regularity implies that the limit x — —oo commutes with d,. Hence,
the convergence W(x, y) — W(—o0, y) holds in ‘€y1. It follows that there exists ¢ > 0 and
By € R such that

1
v > Ev on (—oo, By] x [0, ¢].

With the behavior near the boundary taken care of, we can argue as before to produce B
satisfying (8.3). ]

For each & € R, let U"(x, y) := W(x + h, y) denote the leftward shift of ¥ by A.

Given a, b > 0, we define the bounded box
Qup = (—a,a) x (0,b)

and the multiple

v(y) 2

Then k € (0, 1/2] by the strong maximum principle and the Hopf lemma. Hence kv is a
subsolution and kv < W” in Qg (since W is decreasing in x). We use this ordered pair of
sub- and supersolutions to construct a solution to

.- h
k= mm{lnfye(o,b) ¥ (a,y) 1}.

ADg + ¢, P+ f(Pg) =0 on Qg,p,
8yCI>D = Q_ICI)D on BQab N BH, (85)

a—x a
Oy(x,y) = T\Dh(x,y) +

X
+ kv(y) ondQg, NH.
2a
Lemma 8.2. There exists a unique solution to (8.5) satisfying kv < &gy < W". Further-
more, 0Py < 0 and 9, Py > 0in Qgp.

Proof. By construction, kv < W are sub- and supersolution to (8.5), respectively. Thus
the parabolic evolution of (8.5) from either kv or W” will be monotone in time, and will
converge to a solution ®, between kv and W" as t — oo.
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We took some care in the construction of v and W so that they satisfy the absorbing
boundary condition at y = 0. This ensures that ®, is €. With this regularity, uniqueness
and monotonicity follow from the sliding arguments in the proof of Lemma 3.1. |

We use the solutions ® as approximations of traveling waves in the half-plane.

Proof of existence in Theorem 1.4 (A). We exploit the dependence of &g on £, the trans-
lation of . We therefore write k* and @g for clarity. (Note that CDZ is not simply a shift
of ®5.) Recall £; from the construction of v. For each a, b > £;, Lemma 8.1 implies the
existence of 4 € R such that k# = % for all A < h. It follows that

@4(0.01) > sv(E) = 5.
Furthermore, elliptic estimates imply that @’; is continuous in 4. Since W(+o0, ) = 0, it
follows that there exists /5 > h such that k#* < % and CIDZ* 0,¢1) = %
For each a, b > £, we have selected a shift h.(a, b) € R. We now take a, b — oo.
By elliptic regularity, @’5* converges locally uniformly along a subsequence to a solution
® to (8.1) satisfying 0xP < 0,9, >0,0 <P < 1,and ¢(0,¢;) = %
We must now verify the limiting behavior (1.5). Monotonicity in x implies that the
limits ®(+oo, -) exist and satisfy

1
®(—00,l1) = @(0,4y) = 5z ®(+00,41).
In light of (8.2), this implies that
®d(—00,£1) >0 and D(4o00,£1) < p(£y). (8.6)

On the other hand, elliptic estimates show that the limits ®(£o0, -) are bounded solutions
of (1.2). By Lemma 6.1, the only such solutions are 0 and ¢. From (8.6), we obtain (1.5).
Therefore, @ is a traveling wave. The strong maximum principle and the Hopf lemma now
imply that 0 < ® < 1, 9,P < 0,and 9, $ > 0in H. n
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