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Asymptotic analysis of the linearized Boltzmann collision
operator from angular cutoff to non-cutoff

Ling-Bing He and Yu-Long Zhou

Abstract. We give quantitative estimates on the asymptotics of the linearized Boltzmann collision
operator and its associated equation from angular cutoff to non-cutoff. On one hand, the results
disclose the link between the hyperbolic property resulting from Grad’s cutoff assumption and the
smoothing property due to the long-range interaction. On the other hand, with the help of localiza-
tion techniques in phase space, we observe some new phenomena in the asymptotic limit process.
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1. Introduction

Let £° and £° be linearized Boltzmann collision operators with and without angular
cutoff respectively. Here, ¢ is the threshold of the angular cutoff 6 > &. The definitions of
&£¢ and £ are given in (1.8) based on the Boltzmann collision operator Q¢ in (1.4). The
present work aims to find quantitative estimates for the asymptotic behavior of the operator
£¢ and its associated equation from angular cutoff to non-cutoff, which corresponds to the
limit as &€ — 0. Our main motivation comes from the fact that the following properties of
the collision operator are totally changed in the limit process:

(1) For fixed ¢ > 0, £° behaves like a damping term for the Boltzmann equation
with angular cutoff, while £° behaves like a fractional Laplace operator for the
equation without cutoff.
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(2) For moderate soft potentials (y € [—2s,0)), the operator £° has no spectral gap
for fixed £ > 0 but the limiting point £° of {£}.-¢ does.

Another motivation arises from the approximation problem of the non-cutoff Boltzmann
equation by the cutoff equations. It is of great importance to find some asymptotic formula
to quantify the approximation accuracy.

1.1. Boltzmann operator and its linearized version

We first recall the Boltzmann collision operator and the linearized Boltzmann collision
operator.

1.1.1. Boltzmann collision operator. The Boltzmann collision operator Q is a bilinear
operator defined by

0(g, () := /]1;3 LZ B — vy, 0)(glh — g«h) dvs do.

Here we use the usual shorthand & = h(v), g« = g(v«), i’ = h(V'), gi = g(v}) where
v/, vl are given by

, UV Ve |U— vk , UVH Vx|V — vk
v = o, v, = — o

, UL , oeS%
2 2 2 2

The nonnegative function B(v — v«, 0) in the collision operator is called the Boltz-
mann collision kernel. It is always assumed to depend only on |v — v| and 2= - . It

[v—v4]
is convenient to introduce the angle variable 6 through cos 6 = |3:51\ - 0. Without loss
of generality, we may assume that B(v — v, 0) is supported in the set 0 < 0 < 7, i.e,,

cosf > 0.
We now state some physically relevant assumptions on the collision kernel. The kernel
B(v — vy, 0) satisfies

(A1) The cross-section B(v — v, 0) takes the product form
B(v — v4,0) = |v — v4|"b(cos ),
where —3 < y < 1 and b is a nonnegative function satisfying

K~ lgin™27% g < b(cosh) < K sin 272 % forany0 <6 <7, (L.1)

where 0 < s < 1, K > 1. The parameters y and s verify y + 25 > —1.

Assumption (A1) covers inverse power law interactions. For inverse repulsive poten-
tialsr—?, p > 1,onehas y = ij4 and s = %. Usually, y > 0, y = 0and y < 0 are called
hard, Maxwellian and soft potentials respectively.

The Cauchy problem of the inhomogeneous Boltzmann equation without cutoff reads

(1.2)

0,F +v-ViF = OQ(F,F), t>0,xeT3 veR3,
Fli=o = Fp.
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Here F (¢, x,v) > 0 is the density function of collision particles which move with velocity
v € R3 at time ¢ > 0, position x € T3 := [, 7]°.
Let us denote by B®(v — v, o) the cutoff Boltzmann collision kernel.

(A2) ForO0 <e < %, the angular cutoff kernel B®(v — v, o) is defined by

b®(cos 0) := b(cos O)(1 — p(sin § /¢)),

e ey (1.3)
B (v — vx,0) := |v — vi|"b®(cos 0),

where ¢ is a smooth function defined in (1.19).
Note that ¢ has support in [0, %] and equals 1 in [0, %] As a result, B6(v — vy, 0) is

supported in sin % > %8 and thus satisfies the famous Grad angular cutoff assumption.

Note that as e — 0, we have b®* — b pointwise. For convenience, let b%:=b, BY:= B.
For ¢ > 0, let Q¢ be the Boltzmann operator with kernel B®. That is,

0%(g, h)(v) := / / B (v — v«, 0)(gLh — g«h) dvy do. (1.4)
R3 JS?
The Cauchy problem of the Boltzmann equation with the Boltzmann operator Q¢ is then

given by

{a,F+v-VxF:Q€(F,F), t>0,x €T3 veR?, 15)

Fli=o0 = Fo.

Note that when ¢ = 0, Q° = Q and equation (1.5) is the same as (1.2).
We remark that the solutions to (1.2) and (1.5) have the fundamental physical proper-
ties of conserving total mass, momentum and kinetic energy, that is, for all # > 0,

/ [1,v1,v2,v3, |[v]*]F(t, x, v) dx dv
T3xR3
Z/ [1.v1, v2, v3, [v]*] Fo(x, v) dx dv. (1.6)
T3xR3

Without loss of generality, we assume Fy(x, v) has the same mass, momentum and energy
12

as the Maxwellian p(v) := (2n)_%e_ 2. By (1.6), one has for any ¢ > 0,

/T3 R3[1,U1,U2,v3,|v|2](F(t,x,v)—,u(v))dxdv =0. 1.7

1.1.2. Linearized Boltzmann collision operator. For the cutoff case £ > 0 or the non-
cutoff case ¢ = 0, the operators based on Q¢ are defined by

_1 1 1
(g, h) :=pn 20%(uz2g,u2h),
L5g = -T(ud,g), £5g:=-To(g.u?). £g:=Lig+ L3

We recall that the null space N (£f) of £° reads

(1.8)

N(ELE) =N = span{,u%,u%vl,u%vz,u%v3,u%|v|2}.
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With the expansion F' = u + /ﬁ f, the two problems (1.5) and (1.2) reduce to

0 f +v-Vif +25f=T5ff), t>0,xeT3veR3,
(1.9)
f|t=0 = fO,
and
i f+v-Vif +2°f =T%f f), t>0,xeT3veR3, (L.10)
f|1‘=0 = f()? '
where fo = ,u_%(FO — ) verifies
[ oo Pl @) fotr. vy drdo =0, (111
T3xR3

1.2. Problems and difficulties

The main purpose of the paper is to understand what happens to the linear operator £°
and the nonlinear equation (1.9) in the limit as ¢ — 0. More concretely, we are concerned
with the following three problems.

Problem 1. What is the behavior change of the operator £° in the limit process?

We recall that £° behaves like a damping term for equation (1.9) while £° behaves
like a fractional Laplace operator for equation (1.10). The motivation of Problem 1 is to
see clearly the kind of link between these two different properties in the limit process.
Obviously, it is a fundamental but challenging problem.

To explain the main difficulty of the problem, we focus on the Maxwellian molecules
(y = 0), which is simpler than the other cases. Previous works [3,4,7,8, 10] show that for
y = 0, there holds

(LS o+ 1172 ~ 1 f 72 + 1 Togs + 1(=Ag2)2 £ 175 (1.12)

Here (f, g)» denotes the inner product for the v variable. On the right-hand side of the
equivalence (1.12), there are three parts, which correspond to gain of weight | f| 12}’ gain
of Sobolev regularity | /|2, and gain of tangential derivative on the sphere |(—Ag2 )% f |22
respectively. Observe that (1.12) can be rewritten as

(0L, fho+ 1 f 22 ~ W 122+ WD) 2+ We((—Ag2) ) f 22, (113)

where W (x) := (1 + |x|?)2. Here, W;(D) is the pseudo-differential operator with symbol
W; and the operator W ((—ASZ)%) is defined in (1.23). As W; serves as a common weight
function in the three parts, we call W the characteristic function of £0.

Considering (£8 £, )y — (£°f. f)v as e — 0, we guess that (£ £, f), has the same
structure as the right-hand side of (1.13). If so, what is the characteristic function of £¢
when ¢ > 0? To find a good candidate, we go back to the original proof of the coercivity



Asymptotics of the linearized Boltzmann operator 1101

estimate for the collision operator in [1]. Following the computation used there, we can
derive that

—(Q%(g. ). flv + | f L2 = CeW*(D) fI . (1.14)
where W¥ is defined by

We() = Wi (ev) + e °(1 — ¢ (ev)). (1.15)

Here, ¢ € Cg°(B %) is the smooth compactly supported function in (1.19). Note that as

e — 0, we have W*# — W at least pointwise. For convenience, let WO := W,. We con-
jecture that W¢ is the characteristic function of &£¢ in the following sense:

(L5, fho+ 1 f 12 ~ IWES L2+ WED) f 122 + IWE(—As2)2) f 25, (1.16)

The operator Ws((—Agz)%) is defined in (1.23).

Let us give some comments on conjecture (1.16). Firstly, it is easy to see that when
& goes to zero, (1.16) will coincide with (1.13). This shows that the characteristic func-
tion W€ connects the cutoff case and the non-cutoff case. Secondly, on the right-hand
side of (1.16), gain of weight only happens in the region |v| < % in phase space, gain
of Sobolev regularity only happens in the region |§| < % in frequency space and gain
of tangential derivative only happens in the region that the eigenvalue A of the operator
(—Agz)% verifies A < % These properties are consistent with the fact that the operator £°
has a hyperbolic structure due to the angular cutoff, that is, 8 = . Thirdly, because of the
hyperbolic structure of £°, it is unclear how to derive |W€((—AS2)%) flp2 and |We f|2
in (1.16) using the methods in the previous works [2—4,7,8, 10, 14, 17]. Therefore we need
some new ideas to prove the conjecture.

Problem 2. What is the longtime behavior of e=£* f with f € N1 for moderate soft
potentials in the limit process as ¢ — 0? Here, e £? is the semigroup generated by £°.

As we know, for y € [-2s, 0), the operator &£° has no spectral gap for any fixed ¢ > 0
but the limiting point £° of {£*},~o does. It seems that there is a jump. Rather than
investigating the spectrum of the operator, which looks extremely difficult, we instead
turn to consider the longtime behavior of e~ f because the spectrum information of an
operator has a strong connection with the corresponding semigroup.

Thanks to spectral gap of £°, it is easy to see that for any f € N1,

—£0 —
le™ fllzz < e[ fllze-

As for the operator £¢, by imposing the additional assumption that f € L?, we can derive
that e£%* f will decay to zero with polynomial rate. However, we have no idea about the
explicit rate of this relaxation for f € N1 if we only impose f € L2. By an approximation
argument, we can only prove that

lim [e= £ f|2 = 0.
=00
Therefore, from these two estimates, it is hard to find the link between these two different

longtime behaviors. We emphasize that this difficulty matches the fact that £¢ does not
have a spectral gap but £° does.
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Problem 3. Which kind of asymptotic formula describes the limit as ¢ — 0 for the solu-
tions of the nonlinear equations (1.9) and (1.10)?

Formally, when & goes to zero, the solution ¢ to (1.9) will converge to the solution
f9 to (1.10). To answer Problem 3 is to justify the convergence and find an asymptotic
formula.

To guess the relation between f¢ and f°, we first take a look at the stationary case.
By Taylor expansion, we can prove that for any smooth compactly supported functions f,

10°(f. 1) = Q°(f. )l ~ O(7>). (1.17)

Thus, it is natural to conjecture

fE— f0=0(@2%). (1.18)

Obviously, the main difficulty in establishing (1.18) lies in bringing the error order
(1.17) from operator level to solution level. To this end, we need some uniform (with
respect to &) estimates of £¢ and I'?, and also estimates of the differences £° — £° and
re—ro.

1.3. Notation
We list the function spaces and notation that will be used throughout the paper.

1.3.1. Basic notation. We denote a multi-index by o = (', o2, @3) € N3 with |a| =
al + a? + o3. We write ¢ < b to indicate that there is a universal constant C, which may
be different on different lines, such that a < Cbh. We use the notation a ~ b whenever
a < b and b < a. The notation [a] denotes the maximum integer which does not exceed a.
The bracket () is defined by (v) := (1 + |v|2)%. Then the weight function W is defined
by Wi (v) := (v)!. We denote by C(A1,As,...,A,) or Ciyrs,...,4, @ constant depend-
ing on parameters A1, Az, ..., A,. The notation (f, g)y = [z f(v)g(v) dv, (f. g)x :=
Jps f(x)g(x)dx and (f, g) := [psugs f(x,v)g(x,v)dx dv is used to denote the inner
products in L?(R3), L2(T3) and L?(T3 x R3) respectively. As usual, 14 is the charac-
teristic function of a set A. If A, B are two operators, then their commutator [4, B] :=
AB — BA. Recall that | f|L 102 1= [g3 | f(v)]log(1 + | f(v)]) dv.

1.3.2. Function spaces. Several spaces are introduced, as follows.

» Forn,l € R, we define the weighted Sobolev space on R3 by
Hi' = {f ) [If i = Jaa | (Wa(DIW, ) ()] dv < o0}

For any symbol a:R® — R, recall that @ (D) is the pseudo-differential operator defined
by

1 .
@D N0 = o [ [ @) sy
e For p > 1,1 € R, we introduce the Lf space on R3 as

LY = {FO) 1715y = foa L F@IP(0)'7 dv < oo},
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» Form € N, we denote the Sobolev space on T3 by

H" = {f) | 1 [op = Liajem Jps 105/ ()7 dx < oo}

» For a function f(x,v), we define the following weighted Sobolev spaces with weight
on velocity variable v. For m,n € N, [ € R, the weighted (in v) Sobolev space on
T3 x R3 is defined by

HIH = {00 |1 Vg sy = Tiatem pren fra 10508 £ (6. ) dv < o).

For simplicity, we write || f |z 12 = L/ lspup if n = 0 and || £z == £ oo
if m = n = 0. We can define the homogeneous space H)’C" Hl” if we replace |«| < m,
|B] < n with |¢| = m, |B| = n. Similarly, we can introduce the partial homogeneous
spaces H;”Hl" and H;”Hl”

1.3.3. Dyadic decompositions. We will now recall dyadic decomposition. Let
B% :={veR3||v|§§}, C::{v€R3|%§|v|§§}.
Then one may introduce two radial functions ¢ € C§°(B %) and ¥ € C§°(C) which satisfy
0<¢,¥y <1 and ¢(v)+ZW(27jv)= 1 forallv e R3. (1.19)
Jj=0

Since ¢ is a radial function, we can interchangeably use ¢ (v) and ¢(|v|). Now define
¢-1(v) := ¢(v) and ¢; (v) := ¥(2~/v) for any v € R3 and j > 0. Let (P; f)(v) :=
@;j (v) f(v); then one has the following dyadic decomposition:

o o0
f=2%r= of
j=—1 j=—1
for any function f defined on R3. We will use the notation

fo=¢ED)f. fPi=0—-¢ED)f fli=¢E)f fM=0—-¢(@)f (1.20)

1.3.4. Projection on the null space. Recalling that & = span{;ﬁ , u% V1. 20, /ﬁ U3,
/ﬁ |v|?}, the projection operator P on .V is defined by

Pf:= (a+b-v+c|v|2),u%, (1.21)

where for 1 <i < 3,

(1.22)
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1.3.5. Anisotropic function spaces. Let ¥;” with / € N, —/ < m <[ be real spherical
harmonics verifying that (—Ag2)Y,™ = [(I + 1)Y;". Then the operator WS((—Agz)%) for
& > 01s defined as follows: if v = ro, then

o) !
(WE(=As)D) f) ) =Y D WU+ 1)2)Y"(0) fi" (). (1.23)

=0 m=—I

where f"(r) = [q. ¥/"(0) f(ro) do. We recall that when & > 0, W is defined in (1.15).
When ¢ = 0, Wo(v) = (v)*.
Now we introduce several anisotropic function spaces induced by £°.

e The space L2, with [ € R. For functions on R?, the space L2 is defined by
Ly ={fQ) | If1Z =W W f1. + W (DYWL f 72
+IWE(—Ae) Wi f ], < oo} (124)

* Thespace H"H", withm,n € N, | € R. For functions on T3 x R3, the space H" H”,
is defined by

HIHZ = {100 |1 By pn, 1= S agmprn s 10298 £, )2, dx < oo

For simplicity. we set |/ 12, = I/ g, i1 = 0and /12, := 11/ ey,

if m = n = 0. Similarly we can introduce the spaces H" HE"I, H" H! and H"H,.

*  Functionals related to £°. We introduce

REV(f) = / b¥(cos 0)|v — val” gu( £/ — £)? do dvs dv, (1.25)
SZxR3xR3

RE(f) = / bE(cos 0) (v — vx)Y gu(f' — f)? do dvs dv, (1.26)
’ SZxR3xR3

MEY(f) = / b®(cos B)|v — v*|”f*2((/ﬁ)’ - ;ﬁ)z dodv.dv. (1.27)
SZxR3xR3

As we will show in Section 2,
(5L fho + Iflii/2 2 RE(S)+ M)

The quantities Rg” (f) and M7 (f) correspond to gain of regularity and gain of weight
respectively. In contrast to Rg? (f), when y < 0, Ri% (f) contains no singularity in the
relative velocity v — v, near the origin.

1.4. Main results

Now we are ready to state our main results. The first one is a uniform coercivity estimate
for &£¢, which fully solves Problem 1.
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Theorem 1.1. There exists a constant g9 > 0 such that for 0 < ¢ < g9 and any suitable
function f,

(L L o+ 1 fIp2 ~ 1y (1.28)
Here the norm | - |4, is defined in (1.24).
Some remarks are in order.

Remark 1.1. Through the characteristic function W¢, the coercivity estimate (1.28) dis-
closes the link between the hyperbolic structure due to the cutoff assumption (¢ > 0) and
the smoothing property due to the long-range interaction (¢ = 0).

Remark 1.2. Recall £/ and £ in (1.20); then
we 2 ~ 112 =25 £h|2 )
IWefl 12, |.f |L;2//2+s + e 7 f7 12,

Let us consider the moderate soft potentials, i.e., y € [—2s,0). In the region |v| < % of
phase space, the operator &£° produces some weight since y + 2s > 0, while in the region
lv| Z % the operator £° loses some weight since y < 0. This observation is consistent
with the fact that £° has no spectral gap for any fixed & > 0 but £° does.

Our second result is on the diversity of the longtime behavior of e~% f; with
fo € N+ for moderate soft potentials, which solves Problem 2.

Theorem 1.2. Suppose 0 < & < g9, =25 <y <0and fy € NL. There is a universal
constant ¢ > 0 such that

e fol2, < e fL12, + 11212, + €% fol2a, (1.29)

where fol and th are given by (1.20). Furthermore, the following statements are valid:

(1) Let ¢ > 0 and —yq/2 > 2. Suppose fy € Liyq/z' Depending on the relation

between | fo|r2 and €%Y| fo|; 2 L We have two estimates:
—vq

@ If|fole2 > 2C§ €% fol 2 p» then
—vq

|e_$st* f0|iz
(1+Aog~' (1 —1:))7

e fol2, < | fol2 27" 1y, + s, (1.30)

where t is the time verifying

| folr2

—Ltx q.sq -1
e 2 =2C, ¢ 2, <2 In—s——"——.
| folo 0 |f0|L*M/2 * 0 2C(§18sq|f0|L3yq/z

Here Cy, Ay are the constants given in (3.34).
(b) If] folr2 < 2C§ &% foly2 | then
—vq

—5t 12 |f0|22
Jolp> = a (1.31)

l T CUont
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where

C(fo) = c14—;q—1($)q8_2s

vq/2

and C1 is the constant given in (3.34).

(2) Let 0 < n < 1. Let j € N be large enough such that 27 > =1, Let fy verify
| folr2 = 1 and |=7)_,-f0|i2 = 1—1n. Then fort € [0,C~'n2777&25], it holds that

ol 2 19l = 1=, (3

where C is a universal constant.

As a consequence, for any fixed sufficiently small ¢ > 0, the estimate

lim |€7$€tf0|L2 =0

—>00
is sharp.
We have some remarks on Theorem 1.2.

Remark 1.3. We have three comments on estimate (1.29). Firstly, (1.29) shows that the
longtime behavior of e £ f;, depends heavily on the energy distribution of f;. Secondly,
the estimate is sharp for general data fy € N1 thanks to estimates (1.30) and (1.32), which
deal with the case that the energy of fj is concentrated in the ball By, and the case that
the energy of f is concentrated far away from the ball B;,. Thirdly, by passing to the
limit ¢ — 0, we recover from (1.29) that for all > 0,

_ 0 _
le™ 2% o2, < e fol2,. (1.33)

This demonstrates that there is no jump for the fact that the operator £¢ does not have a
spectral gap for fixed ¢ > 0 but £° does.

Remark 1.4. Estimates (1.30) and (1.33) show that up to a critical time 7, = O(|In¢g|),
in terms of decay pattern, there is no difference between e £ f and e X’ fo- The dif-
ference appears only after the critical time #4. In fact, after 7, the hyperbolic structure
will take over the behavior of the semigroup e ~£"?, which corresponds to the polynomial
decay in (1.30). To the best of our knowledge, this phenomenon is being observed for the
first time.

Remark 1.5. We have two remarks on (1.32). Firstly, by taking 7 sufficiently small and j
sufficiently large, the total energy of f; can be almost conserved in e~£"? £, in any given
time interval. Such a datum prevents the formation of a spectral gap for &£¢, no matter
how small ¢ > 0 is. Secondly, we want to show there are extensive data fy verifying all
the assumptions. Take an arbitrary function f € L? with | f|;2 = 1 and the support of f
belonging to the ring {v € R* | $ x 2/ <|v| < 3 x 2/}. Let fo = f — P f. Then fy verifies

1

foe N |P folpe > 1 — O(e_8X22j). Then fo/| folz 2 fulfills all the assumptions.
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Remark 1.6. The sharpness of the estimate lim; oo |e™ %" fo|,2 = 0 directly follows
from (1.30)—(1.32). On one hand, the estimate can be derived thanks to (1.30) and (1.31).
On the other hand, due to (1.32), it is impossible to get an explicit and uniform decay
rate for the above relaxation. These two facts reveal the diversity of the longtime behavior
of e=£%* £, Our results are comparable to the results for the homogeneous Boltzmann
equation with moderate soft potentials. As is shown in [5], the rate of convergence to
equilibrium can be very slow if we only assume that a solution conserves mass, momentum
and energy.

Remark 1.7. Let us comment on the connection between the constant A¢ in (1.30) and the
spectral gap A of the operator £°. Obviously, A < A. It is interesting but challenging to see
the dependence of A on A¢. By Lemma 4.3, there holds |(£f — £°) f|;2 < 82_2S|f|H3+2.
Therefore if fy € Hf 12 besides (1.30), it also holds that

—FE — —
™ folfa S €M folfa + &7 | folfga

Our third result is on global well-posedness, propagation of regularity and global
dynamics of equation (1.9). Based on propagation of regularity, we derive an asymptotic
formula for solutions to (1.9) and (1.10), which solves Problem 3.

Let y < 0. For N € N with N > 2, we introduce a sequence of weight functions
{Wi; }o<j<n with [; € R verifying

IN=22, =l —y. (1.34)

We remark that /; is the weight order for the v derivative of order j. Note that (1.34)
means that the weight order increases by —y (y < 0) if the v derivative order decreases
by 1. This type of weight sequence is designed to control the term v - Vi f and is used in
[9] in the angular cutoff case.

Let 8% = 3%8’3. ForO0 <k <N —1,0 <J < N, we define energy and dissipation
functionals

E™I(f)y = D W05 17

o loe|=m,|Bl=Jj (1.35)
D™ (fy= D WSl
lal=nn,[BI=J !
k k
EX(f) =Y €M), DR =) D, (1.36)
Jj=0 Jj=0
N_l . J . . .
eNI(f) =Y EX (N + D€V,
k=0 /=0 (1.37)

N—-1 J

DN (f) = 3 D) + YDV ().

k=0 Jj=0



L.-B. He and Y.-L. Zhou 1108

Here €™/ contains all x derivatives of order m and v derivatives of order j . The func-
tional X contains all mixed x and v derivatives of total order k, i.e., |a| + |8] = k. The
functional &V-7 contains derivatives 9% witheither || + [ < N — lor|a| + B = N,

|B| < J. The functionals D™J | D¥ and DNV are the corresponding dissipations. If
J = N, we simplify the notation to EV(f) := VN (f), DV(f) := DVN(f). The
energy functional V-7 is introduced to prove the propagation of full regularity of the
solution.

We are ready to present our last main result.

Theorem 1.3. Let 0 < ¢ < g, Yy € (—%, 0) N [-2s,0). There is a constant &y > 0
independent of € such that the following statements are valid. Let fo verify (1.11) and

I follgz22 < do.
(1) (Global well-posedness and propagation of regularity) The Cauchy problem (1.9)
(which is problem (1.10) if ¢ = 0) admits a unique and global solution f ¢ verifying

suprzo L/ llmzr2 < 1 follaz 2

() If, additionally, fo H;Vle with N,1 > 2, then
o0
2 2 2
fgg Ilfs(t)llHXNle +/0 llfs(f)lngLiHy/z dr < C(Ilfolngle). (1.38)
(i) If, additionally, EN-7 (fy) < cowith N >2,0<J < N, then
o0
sulgé”N”(fE(t)) +/ DY (fE(0) dr = C(EM (fo)). (1.39)
1> 0

Here C(-) is a continuous increasing function verifying C(0) = 0.
(2) (Global dynamics) There are two results.

@) If fo € H)%Liqy/z with ¢ > 0, —qy/2 > 2, then, depending on the relation

between & p(fo) and Mezsq||f0||12L12L2 , we have two estimates. Here,
X =—yq/2
the functional &, p () is defined in (4.3) and verifies
1
EM” . <&.m() =2M]|- ||12LI§L2

I%
H2L?
for some universal constant M.

(a) Ing,M(fO) > Mcqusq”fO”iIsz /2’ then
X —yq

Eam (fE(1) < Eam(fo)e 21,y

Ea,m (f°(14))
(1+dog™"(r = 12))4

| PR (1.40)

where ty is the time such that 8 pr(f6(tx)) = Manszsq||f0||12qu2
and verifies T
&
e zzﬁw f(ﬁoz) .
& 0
1 H)%Liyq/Z
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Here Cy, Ao are given in (4.24).
(b) If €2,m (fo) < MCye®| foll3,,, o then
X"—-yq/2

Eam(fE(1) < a S2. (fo) (1.41)

+ C(fo)t)?’
where C( fo) is given in (4.24) and verifies

Il foll 2.2 )% o5
I follz2z2

Cfo) ~ (

/2
(ii) Let 0 < < 1. Let j € N be large enough such that 27 > &~'. Then for

t €0, C_an_jyszs], it holds that
125 £5 172 = 175 foll72 — nSo — Ce*'8o, (1.42)

where C is a universal constant.
(3) (Global asymptotic formula) If ¥ +2:2(fy) < oo with N > 2, then

sup | (1) — FOONgx 2 = CEVT22(fo))et ™. (1.43)
>

Some comments are in order.

Remark 1.8. Theorem 1.3 gives global well-posedness of (1.9) for all 0 < ¢ < gg. The
non-cutoff case (¢ = 0) is established in [4] and [7], and the cutoff case (somehow can be
considered as € = &) is proved in [9]. We get global well-posedness of (1.9) uniformly in
the whole range 0 < ¢ < gy.

Remark 1.9. The asymptotic formula (1.43) is global in time. A local-in-time result is
proved in [12] for solutions to (1.5) and (1.2).

Remark 1.10. Estimates (1.40)—(1.42) show that the diversity of semigroup e L in
Theorem 1.2 can also be observed at the nonlinear level. In other words, even in the
perturbation framework, the solution F of the original problem (1.5) converges to the
equilibrium without any explicit rate. That is, we can only derive

. _1
Am w72 (F() = w2 = 0.
o
However, by the energy—entropy method introduced in [11], it holds that
Jim | F() = pll2 = 0@™).
—>00

Remark 1.11. To the best of our knowledge, the results in Theorem 1.3 are new for mod-
erate soft potentials. To keep the paper to a reasonable size, we refrain from generalizing
the results to other potentials, but this can be done by noticing that all the estimates involv-
ing £ and I'? in this article are valid for y > —3. Using the estimates in this article, very
soft potentials —3 < y < —2s are considered in [13].



L.-B. He and Y.-L. Zhou 1110

1.5. Ideas and novelties

Let us illustrate the ideas and novelties of the proofs of our main results.

1.5.1. Proof of Theorem 1.1. We illustrate our strategy in the Maxwellian molecules
case y = 0. It is not difficult to see (in the proof of Theorem 2.1) that the coercivity
estimate of (£° f. f), can be reduced to the control of quantities M*°( f) and ngo( ),
which correspond to gain of weight and gain of regularity respectively.

Instead of using the Carleman representation of the collision operator, in Lemma 2.1
we introduce a new coordinate system that enables us to make full use of the cancella-
tion and the law of sines to estimate M®°( f). The method is elementary but effective
in catching the hyperbolic structure of £¢ uniformly in &.

To give a precise description of {RZ’O( f), we develop some new techniques. The first
new idea is to apply the geometric decomposition to ﬁﬁo( f) in frequency space rather
than phase space. More precisely, by Bobylev’s equality, we have

REO(S) = b (i ) (RO € ~ fEDP

1
(27[)3 /;{3sz )
+2R((10) — (E7)) £ (ED) £(£))) dE do
() 2
= (27[)311 + (27_[)3I2a

where £t = % and §~ = % It is not difficult to prove that

12| SIWED) fIs SALS S o + 1S 1Eas

where the latter < is given by (1.14). Therefore, we only need to consider the estimate
of I;. By the geometric decomposition introduced in [10],

F©& = FEH = 7@ - FUElED + FUElED - FE).
we have

L= [ Foli©- fEldd

1 . X .
= E/RW’? (& oI/ — (el &P de do
—/ b o) f (£ — FEDPdt do
R3xS2?
= %Il,l — I

Thanks to the fact that the Fourier transform is commutative with Ws((—Agz)%),
we obtain the anisotropic regularity from Iy ; (see Proposition 2.3 and Lemma 2.3
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for detalls) Now it remains to estimate I » from above. The key observation is that
f (= i $+|) and f (§™) can be localized in the same region in both frequency space and
phase space, which enables us to derive that I » can be bounded by |W¢(D) f|? 72t
We £,

To get the < direction of (1.28), we have to give some upper bounds for (Q%(g,h), f)v

and (I'¢(g, h), f)y. To this end, our new idea is to separate the integration domain into
two regions |v — v| < 1 and |v — v«| > 1 to manifest the hyperbolic structure and the
smoothing property of the operator.

In the region |v — v,«| < 1, the hyperbolic structure prevails over the anisotropic struc-
ture, which can be checked from the proof of the sharp bounds for the operator in
weighted Sobolev spaces (see [10] for details). It suggests that Sobolev regularity is
enough to bound the inner product. See Proposition 2.5 for more details.

In the region |[v — v«| > 1, the operator is dominated by the anisotropic structure. We
resort to a geometric decomposition in phase space. In particular, we make full use
of the symmetric property of the structure inside the operator and also the dissipation
:‘Ri’é (f) obtained from the lower bound of the operator. See Proposition 2.6 for more
details.

1.5.2. Proof of Theorem 1.2. We have two novelties in the proof.

The first one lies in the localization techniques in phase space which are totally new
and important considering that the Boltzmann equation is a nonlocal equation. It shows
that the linear or even nonlinear Boltzmann equations can be almost localized thanks
to the commutator estimates (in Lemma 3.1) between £¢ and the localization function.
This fact enables us to consider the evolution of the local energy which is the key to
proving diversity of longtime behavior of e £ f.

We reduce longtime behavior of e £ f to some special ODE system. Based on a
technical argument, we obtain a sharp estimate (in Proposition 3.1) for the ODE sys-
tem, which in turn gives the precise behavior of the semigroup. The result shows that
there exists a critical time 7, such that the decay rate is totally different before and
after 7, which matches the complex property of £°.

1.5.3. Proof of Theorem 1.3. The proof has some new features.

Since we only impose the smallness assumption on || f'[| 22, we have to find a new
way to prove propagation of full regularity ((1.38) and (1.39)). To this end, we first
close energy estimates for pure spatial regularity. Thanks to the well-designed weight
functions in (1.34), propagation of gN-i-Li+1 (f) can be obtained after propagation
of ENTLI(f).

To prove the global error estimate (1.43), the key idea is to regard the error equation
as a linear equation since we already have high-order energy estimates (1.39) of the
solutions to (1.9) and (1.10).
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1.6. Plan of the article

In Section 2 we endeavor to prove Theorem 1.1 and some upper bound estimates for the
nonlinear term I'. Theorems 1.2 and 1.3 are proved in Sections 3 and 4 respectively. In
the appendix we give some necessary results for the sake of completeness.

2. Bounds of the linearized Boltzmann operator and the nonlinear
term

In this section we will prove Theorem 1.1. To this end, we separate the proof into two
parts: the lower bound of (£? f, /), and the upper bound of (I'*(g, &), f),. Moreover,
we give an estimate of the commutator between the collision operator I'®(g, -) and the
weight function ;. The commutator estimate will be used in the proofs of Theorems 1.2
and 1.3.

Throughout the article we assume 0 < ¢ < g¢ with g9 > 0 sufficiently small. Recall
that —3 < y < 1 unless otherwise specified. Since many variables are used frequently,
we will sometimes omit their range in integrals. Usually, 0, 7, ¢ € S?, v, v4, u, £ € R3,
k € [0,1], r € R4. For instance,

[( -)do —/ (- /(---)dodv*dv = /SZXR3XR3(---)dUdv*dv.

2.1. Lower bound of the linearized operator

Our strategy for the proof can be summarized as follows. We first give the estimates of
R (f) and MY (f). Then the lower bound of £¢ is obtained by proving (£ 1, /)y +
|f|i2 > RV (f) + MEY(f) and the fact that (£5 f, f)y is a lower-order term.

v/2

2.1.1. Estimate of A% (f). Recall (1.27) for the definition of MY ( f). We derive the
weight W€ in phase space from the functional M?Y ( f') in the following result.

Proposition 2.1. There exists &g > 0 such that for any 0 < ¢ < g,
MY (f)+ 117, ~IWEfIT, .
v/2 y/2

Proof. We only consider the case ¢ > 0. Note that with slight modification, our method
also works for the case ¢ = 0. We divide the proof into two steps.

1 1
Step 1: Lower bound of M®Y(f). Note that V,u% = —%v and Vzu% = %(—213 +
v ® v), where I3 is the 3 x 3 identity matrix. By Taylor expansion, we have

112 (v)

pr (o) — i (v) = — v (v —v)

1
+ / (1= (Va0 : (0 - ) ® (0 — v) d.
0
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where v(k) = v + (v’ — v). Using the inequality (@ — b)? > % — b2, we have

u()

1
W) — ) = B - /0 (Vi) )P — of* de.

Step 1.1: vy < % Here 0 < 1 < 1 is a constant to be determined later. Set r=4y2
and A(e,n,r) = {(vx,v,0) | 2r < |vu| < L, 0] <, 2 < sinQ < }. Recall

[V—vs] Iv v |

MEY (f) defined in (1.27). For simplicity, let B%Y := b*(cos 0)|v — v*|” then

MY (f) = / B 1A(s,n,r)f*2((//#%)/ - /’“%)2 do dvy dv

1

= 3 / B 1 gy (v)|v - ' - v)|2f*2 do dvy dv

[ B e (V2B @GDPIY = o] £2 dor dv. o e

1
= M) = M7 (). @1
Estimate of M5 (n). For fixed v, v, we introduce an orthonormal basis (h) vas h? o
|$_z:|) such that do = sin 6 d6 dg. Then one has
ﬁ :cosgcosgoh] —i—cosgsin(phﬁ, Sln§|5 z*l’
ﬁ: hUU*+czhvv +c3|11: z*l’

— U, U=Us
where c3 = W To=vi]

and ¢y, ¢, are constants independent of 6 and ¢. Then we have

v'—v |2

[} 0 o in 012
|W =] |c1 cos 3 cos ¢ + ¢ cos 5 sing — ¢3 sin 5|

_ 26 26 26
= ¢ cos® & cos® ¢ + ¢3 cos® & sin® ¢ + 5 sin® &

+ 2c¢jcp cos %cosqi sing — 2¢3 cos % sin 5((31 cos @ + ¢ sing).

Integrating with respect to o we have
[bs(cos ) aennlv- @ —v)*do
/2 p2m
= / [ b*(cos ) sin 014 |V - (v — v)|* dO dg
0 0
/2
> (i + )| lv— |2/ b®(cos 0) sin  cos? & sm —IA(E,, ndf. (2.2)
0
If (v, v,0) € A(g,n,7), then |v — vi| > |vx| — |v| > r and thus 4n|v — v*|_1 <4r7l <

V2/2. Suppose & < 1/2r; then |v — vs| < |v| + |v«|] < r + n/e < 3n/2¢ and thus
2n|v — v«| 7! > 4&/3. Recall ¢ in (1.19) and b® in (1.3) to see

b®(cos 9)143/35sm25ﬁ/2 = b(cos 9)148/35sin§5ﬁ/2’ (2.3)
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which gives
/2
/ b*(cos 0) sin 0 cos® & sin? § 14 5 ) dO
0

/2
= /(; b(cos ) sin 6 cos> Q sin’ lA(g’n,r) dé
4nlv—v,|!
2 lB(s,n,r) / [1—2s dr 2 772_2S|v - v*lzs_le(s,n,r)s (2-4)
2n|v—vx |71
where we use (1.1) and the change of variable ¢t = sin %. Here B(e, n,r) = {(v«, v) |

2r < |vs| < I, |v] < r}. Plugging (2.2) and (2.4) into the definition of M77 (1) we have

MY () 2 P /(cf + e = a2 0P g 1 (0) £ dv o

2 [0 e B2l Plo = 0220 L (0)£2 do o,

where in the last line we use the fact that 012 + c% + c% = 1 and the law of sines

(1_(v| |v*|) ) 1|U_v*|2—(1_c )_1|U*|2'

Note that in the region B(e, 1, r), one has |v — v*| ~ |vi| and thus [v — v, |V 2572 ~
v |V +2572. Recalling r = 4+/2, then [(1 — (o7 1o ‘)2)| v|? (V)1 <4zdv 2 1 and the
value of the integral is independent of v.. Therefore, we have

MY () 2 P / a2 Lo <jva)<nye [ dvx

2P (/(U*)Y+2S1v*5n/sf*2 dvy — (1 + (8~/§)2)S|f|25/2)~ 2.5

v(K)=vx
[v(1)—v«]

Estimate of M5” (n). By the change of variable v — v(«), let cos 6 (k) =
then % < 0(x) < 6 and it is not difficult to check

8n|v—v«|7! .
wrw = [ ( / 32 dr) [0 = Va4 e f20E do o,
n

[v—vy |1

_ 1
S0t [ o= o by 20 dvdv,
S 7]4_2S /(U*>y+zsllv*|5n/af*2 dv*, (26)

where we use the following estimate (see [4]): fora > —3, b > 0, there holds

[t ey a < Coplo. @)
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Plugging (2.5) and (2.6) into (2.1), for some universal constant C > 1, we have
M) 2250 = ) [0 Uy f 2 o = O U
v/2

Choosing 7 such that Cn? = % we have

M) 417 2 [0 U f2 o, @8
Step 1.2: |vi| > R/e. Here R > 1. By direct computation we have
MEY(f) = f B®Y f2((n?) — p1?)* do dvy dv
> /Bs’yhv*\zR/sffudadv*dv

- 2/ B 1y 2 rye f2(13) 13 do dvy dv
Y, R .V, R
= MEPR — M5V,

0

Recalling (2.3) and (1.1), using the change of variable = sin 3, we have
R V2/2
M 2 (/ / o dt) / [ = Vs 1y, = Rye S 1 dv dvs
4¢e/3

> g2 / (02)7 Lo, s /e f2 dva,

where we use [ [v — v«|"udv 2 (v)? and fg;z 17254t > £725 when 0 < ¢ < &L

10°
Recallmg that the support of b¢ belongs to sin & g > 3¢, there holds [v/| + [v] > [v —v| =
sin 2|v — Vy| > Ze|v — Vy| > 48(|U*| — |v]) and thus |[v| + (1 + Ze)|v > 3¢eva| > %R.
Then R?/2 < 4(|v'| + |[v])? < 8(|v'|* + |v|?) and so

[v/|2+]v]? b2 _R?

(u3)ps = Qu) 2”4 Sem v e,

From this, together with (2.7), we have
&,%,R &2 -2 2
Mz’y’ Se 27¢ g /(U*>yllv*|zR/sf* dvs.
Patching together the above estimates of M57"% and M5V, we arrive at

2
MEV(f) = (Cr — Cze_%)??_zs /(U*)ylwv*\zR/sf*z dv (2.9

for some universal constants C; and C,.
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Step 1.3: |vs| > n/e. Here n is the fixed constant in Step 1.1. Note that estimate (2.9) is
valid for any R > 1 and2£ < —=. We choose R = N, Where N > n~ 1 is large enough
N

Nn)
such that C; — Cre™ 2 > C21 . Then by (2.9), when ¢ < we have

ION’

N
MV (f) 2 MV (f) = (Cr = Cre™ T ) (Ney™ / (0l U mnye 2 dvs
C
> TIN_ZSS_ZS/(v*>yl|v*|2n/gf*2 dvy.

From this, together with (2.8), taking &g := min{%, ﬁ}, when & < g¢, we arrive at

M) 417 Bs 2 [0 e f2 00,
7 [ Yoo f 2o 2 WO
Y.

Step 2: Upper bound of M*Y(f). Since ((112)'—p2)> <2((us) —pu#)>((2) +p?),
we have

S5 [ B 2 = Py do dosao
b [ B 2 - 2t do dv,dvi= () + M ().
By Taylor expansion, one has
((p,%)’ - ,u%)z < min{1, [v —vy|?sin? &} ~ min{1, [v" — v.|?sin? &}.
By Proposition A.1, we have
/b"’"(cos ) min{1, [v — vy |?sin® &} do < (W)2(v — v4).

After checking
(W2 (W —va) (W2 )W) (v, (2.10)

we have
/bs(cos 0) min{1, [v — vy |?sin® &} do < (W)2(0)(W¥)*(vs).
Thus we have
M5V (f) 5 / L2 = v/ (WO )W) ()2 dvdvy, < [WEF2,
v/2

where (2.7) is used.
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The term M7”(f) can be similarly estimated by the change of variable v — v’
Indeed, one has M5 (f) S [ b¥(cos(20))|v’ — va|” f2((1#) — p5)2(2) do dv’ dvs,
where 6’ is the angle between v’ — v, and o. With the fact that 8’ = g, we also have

/ b®(cos(26)) min{1, |v" — vy|? sin’ g} do < (W2 (WE)2(v4).
Thus, by exactly the same argument as that for M5 (), we have M7 (f) < |W8f|i2 .
v/2

The proof is complete.

2.1.2. Estimate of R,” (f). We recall from [1] that for g > 0 with |g|;1 > § > 0 and

glLinLiogr = A5
[b(cos 0)g«(f' — f)?dodvadv + | f|7, = C@S. M)|a(D) f132.

where a(§) := fb(é—‘ - o) min{|£|? sin? %, 1} do + 1. As an application, recalling (1.25)
and using Proposition A.1, we get the following proposition:

Proposition 2.2. It holds that

RS+ 172 2 WD) [

Proposition 2.2 provides Sobolev regularity. We also need to derive the anisotropic
regularity |W6((—Asz)%)W),/2f|i2 from the lower bound of R;;”(f). To this end, we
first give three technical lemmas.

Lemma 2.1. Ir holds that
/4
A ;=/ / 071725 f(v) — f(v/cosO)|*dvdd < |WED)f 7, + [W* fl7s.
R3 Je

Proof. Applying dyadic decomposition in phase space, since % <cosf <1 for 0 €

[0, 7], we have
D (e H) = > (@ )/ cosb)

/4
AI/ / 9—1—23
R Je k=-1 k=—1

R /4 -
% Z/ f 0717 (@ ))(©) = (g )0/ cos O)P dvdd := 3 Ay
k=—1 R3 Je

k=—1

2
dv dé

It is easy to check Y s/ Ax < [W® 7, since f;“ 6~1725 df < £725. For the case
2% < 1/¢, by Plancherel’s theorem and dyadic decomposition in frequency space, we have

/4 - _

Ay = 071728 | o — cos® Oy f (£ cos 0)|? dE do
// o] (€) on (€ cos O)[2 d
R3 Je

A

/4 /\ —
L[ o @ - o €eos0)P dgad + e 1 1
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Z (@1 )(E) — Z (@191 /) (& cos 0) ds do + |ox 17

I=—1 I=—1

— / / 9—1 —2s
R3 Je

o0 /4 o o
S [ 0w © - @i Ecos O d a6 + o f 1

A

o0
= > s+ o S22

I=—1

Note that Y 1o /o Akt S WD) f 172, thus Ar S D iy /e Ars + IWE(D)or f17, +
lor f12,. Using Y22 1 g /17, S | /17, and (A1), we have

AZS Y A+ WED) ST+ IWEf I

2k <1/e,
2l<1/e

For each k and [ such that 2% < 1/¢, 2! < 1/e, using f;/,jz_,/z 172549 < 250H0) we
have

o—k/2-1/2

ma= [ [ e — G cos ) s ds

/4 o o
+ / / 07125 (1 (&) — (@rr ) (€ cos 0)|? & dB
R3 Jo—k/2-1/2
k/2 1/2

< [ 0O — i e cos )P A 06 + 7O T
= Bea + 2 POloigi f17. (2.11)

By Taylor expansion,

— —_— 1 —
(0191 f)(E) — (@ror f)(E cos ) = (1 —0089)/0 (Voroe )€ () - § di,

where £(k) = (1 — k)& cos 0 4 «&. Thus we obtain

o—k/2-1/2

1 —_—
sux [ [ [ 0PI aeh e s as.

By the change of variable § — n = £(k), we have

o—k/2-1/2

2
Bry = 632 I Vorgr f) ()2 dic dn d6
w=["[ T e Ve P dedy
o—k/2-1/2
s e mE are

< 2+ /R PV PP d, (2.12)
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Note that

(Voo /)) = (Vo) e f (1) + @1 () (Ve £)(n)

=27 (Vo) (57 ) S () = iCgrver ().
which gives
n21(Veree £YDI? S [Vl @oe Y + 22 [(@roge P (2.13)

where @; := Zkz—l,\k—l\54 ¢ - Plugging (2.13) into (2.12), we have

Bry < 2R g F12, + 22002 gy 712, (2.14)
Recalling (2.11), we arrive at

A < 27 G0 £12, + 250K gy 12, + 250TR g0 12,
= g1+ Ak + Az

The first term is estimated by sz<1/8 2l<1/e Pkl S | f |iz For the second term A 1 2,
we have

3 3
D Akias Y. Y. 2 Hewia fl+ ) Y 2252 Hewie [

2k<1/e, J=12k<q/e, J=12k<1/e,
2l<1/e 2l<1/e 2l<1/e
3 3
—2k T2 25k n—2k 2
SY D 27 W fl Y D 222 e 17
J=12k<1/e J=12k<1/e

3
S WD Sl + WS I

Jj=1l2k<1/e
SIWED) fI72 + IWEfI7a

In the last inequality we apply Lemma A.1 to get
(WED)vjpr [ 172 S 10jx WD) f 172+ f G151

thanks to W* € 87 o, vk € Sll,0 (see Definition A.1 for S77;). As for the last term Ay s 3,
we have

Y Aiss Y, ae S+ Y, 2Mee f13.

2k<1/e, 2k<1/e, 2k<1/e,
2l<1/e 2l<1/e 2l<1/e
S Y IWEDer f172 + Y 22Kl [ 17 S IWED) f1F2 + IWE 7.
2k<1/e 2k<1/e

Patching together the above estimates, we finish the proof. ]



L.-B. He and Y.-L. Zhou 1120

Remark 2.1. If we change the integral range |, sﬂ/ * in Lemma 2.1 to /- /% the estimate

3¢/4°
still holds true.

Lemma 2.2. Let
ZEV(f) = /ba(fﬁ'0)(M)ylf(lu|%)—f(u+)|2d0du
withut = % Then

ZEY(f) S IWEDYWy o f 12, + [WEWy 2 122

Proof. We divide the proof into two steps.

Step 1: y = 0. By the change of variable (u,0) — (r,7,¢) withu = rrand¢ = ﬁ
we have
Z%(f) = 4/ b*(2(t-6)* = DIf(re) = f((z - )re)*(z - §)r? drdr ds.
R4+ xS2xS2

Let n = r¢ and 6 be the angle between t and ¢. Recalling assumption (1.1) and b®
in (1.3), we have b*(2(t - §)? — 1) = b®(cos 20) < 07272513, /4<g<r/a. Observing that
r2dr drdc = sin 6 dndé dp, we have

/4
2005 [ e~ reosP anas

/4
s [ e - r cos)P anae
R3 J3¢/4
SIWED) fl72 + IWEf7a, (2.15)
where the last inequality is given by Lemma 2.1 and Remark 2.1.

Step 2: y # 0. We reduce the general case y # 0 to the special case y = 0. For simplicity,
denote w = |u|%; then W, (1) = W, (w). Then we have

W) f(w) — fu™)]?
= [(Wyp2 )W) = Wyp2 @) + Wy o ) @H) (A = Wy (w)Wy 2 (u™ )P
<2|(Wy 2 /)W) — Wy 2 @)+ 2|(Wy 2 @D P11 = Wy pa(w)Woy 2 (™).
Thus we have

257 (f) £ Z5°(Wy ) f) + 8.

B = / B (24 - )| Wy )P = Wy a )Wy 2 (a2 dut do

By noticing that |Wy 2 (w)W_, n(ut) — 1| < sin? %, and using the change of variable
u — u™, we have | 8| < |Wy/2f|i2. The desired result follows by utilizing (2.15) for
250 (W f). .
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Next we want to show the following lemma.

Lemma 2.3. Let ¢ > 0 be small enough. For a suitable function f defined on S?, there
holds

|f(0) - f(O 1
Wha—z\zs do dr + |f|iz(§2) ~ |W£((—AS2)2)f|i2(sz) + |f|1242(§2)-

As a direct result, for a suitable function f defined on R3, there holds

/ |f(ro) — f(rD)]?
S2xS2xR 4

lo — 7[2t2s

lig—e|zer> dodrdr + | f7,

~ WE(=As2)) f 120 + | f 132 (2.16)

Proof. We only prove the case ¢ > 0 since the case ¢ = 0 is already proved in [10]. By
[10, Lemma 5.4], we have

2 Ym ) Ym 2
|f|(00—)—‘l:|{—i(-2| ljg— r|>£dadr_z Z(fl )2/| - |2+2ET)| lig—¢|z¢ dodz,

I=0m=—I

m m o e YN0 @)P
where f"" = [, fY/" do. For simplicity, let A7 = fwl\g_ﬂza do dr. Now

we will analyze 7.
Case 1: 21(I + 1) < n. We have

Y™ (o) — Y (1)|? Y™ (o) = Y™ (1)|?
1Y (o) = Y,"(7)] dor di — [Y/™ (o) l()|1|a—r|5gd0df-

[
Ay = lo — [2+2s lo — 7|2+2s

From [10, Lemma 5.5] we get
s _ 1
|(_ASZ)2 Y1m|i2(§2) - |Ylm|22(§2) —& 2S|(_AS2)2 Ylmﬁz(gz)
S A S (=AY oy + 1V oy + 8 1862 V" 22,
For ! > 1and ¢2I(I 4+ 1) < 5, we have
[T+ DPA =27 =) < [0+ DPA - [+ D] = [1A + D]'™)
=[I1+ D —1—e221(1 +1)
<A< Q2+ + D
By taking 7 small enough, we have A7 ~ [[(I + 1)]°.

Case 2: 21(I + 1) > R?. Let ¢ be a smooth function with compact support verifying that
0<¢<1,¢(x)=1if|x| >2and ¢{(x) = 0if |x| < 1. We have

/ Y/ (@) + 1Y (D) = 2Y" (0)¥}" (v)

-1
e (e

—t|)dodr

> 728 /m§(8_1|0—f|)d0df = - B

| |2+2S
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Since (—Ag2)Y;" = I(Il + 1)Y;", we have

By =[I(l + 1)]_1/ (_AT;)}_GY:'(;T_B;ZZm(T)§(8_1|0 —1|)dodr

_ 1 3
< Cl(+ DI (=As2)2 Y |22 Y] 1252 [ o — 7|77 1jg—c|ze do
< Ce 21+ 1)] 2.
Thus we have A7 2 e725(1 - C[e?1( + 1)]_%) > &72%(1 — C/R). Since A7 < 4e725,
we obtain that A7 ~ €725 as long as R is large enough.

Case 3: €21(I + 1) > n. Here 7 is the fixed constant in Case 1. Note that (N&)2[(l + 1) >
N2n. Applying the lower bound estimate in Case 2 with & := Ne, R := N /7, we obtain
that

S (S Niﬁ)

Choosing N large enough, for ¢2/(I + 1) > n, we have Af > ,A;V & > 725 Notice that
there still holds 4¢ < 29 in this case. Thus we get A¢ ~ 25
Combining Cases 1 and 3, we finally obtain the desired result. ]

Remark 2.2. If the truncation |0 — 7| > ¢ in Lemma 2.3 is replaced by |0 — | > ae for
some % < a < 3, the results still hold true.

Now we are in a position to derive the anisotropic regularity from R;” (/) defined in
(1.25). Our key strategy is to apply geometric decomposition in frequency space.

Proposition 2.3. The following two estimates are valid:
1
ROS)+IWE ST ~ IWo((=As2)2) f |72 + WD) f 72 + WO f 72, (2.17)
1
R (f) + |W6f|§§/2 2 IWE(=As2) )Wy o f 172 + IWE(DYWy 2 f17.. (2.18)

Proof. The proof is split into two steps.

Step 1: (2.17) and (2.18) with y = 0. By Bobylev’s formula, we have

R = G [ B ROLF© - FEDP
2RO — AE) fE) ©) de do
_ 2
= (27_[)3I1 + (27[)3127

where £+ = % and £~ = % Thanks to the fact that

A0) — A7) = / (1 - cos(v - £7))a(v) dv.
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we have
12| = ‘ [ by - o) (1 = cos(v - ENpR(SE) () dord do
< ([ o010 - costo- £ D F 6 Pav s av)
x ( / b (g - 0) (1 = cos(v - §)u(v)]./ (§) do d dv)i.
Observe that

1—cos(u-£7) S [lPlE 1> = v PlE)? ||g\ —o> ~ It ||g+| — o,
thus
1 —cos(v-£&~ )<m1n{|v| H| |% al?, 1}~m1n{| [2|1e? |IE+| —Ulz,l}.

Noting that % -0 = 2(@:—:| -0)? — 1, by the change of variable § — £, Proposition A.1
and the fact that We(|v||€|) < We(Jv|)WE(|€]), we have

|112] [ W2l 1ED]S )P p(v) d& dv
SIWE R ZLIWE (D) 122 S WD) f 2.
Now we will estimate ;. By the geometric decomposition
F& - FE = F® - FOElED + fUElED - FED),
we have

I

[5Gl i@ - FEhP o
> 5 [P0l © - sl dao
- [ v ol lel ) - 76N o

:=—I —TI15.
TR 1,2

Leté =rrand¢ = |T+U‘,then o= 2(r-¢)? —1and |§| |E+| = r¢. For the change of
variable (£,0) — (7, 7,¢), one has d§ do = 4(z - ¢)r?dr dr dc. Let 6 be the angle between
7 and o; then Zsmg |r al, |t —¢| =2(1 —cos g) and thus sin £ = %|r —o| <

2
[t —¢|<|t—0o| = 251n— Therefore,

|t — g|_2_2S1|t_§‘2§6 < b*(cosf) < |t — g|—2—231|,_§|2%8. (2.19)
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By (2.16) in Lemma 2.3 and Remark 2.2, we have

T+ 1fPs = 4[b8<z<r-g>2 DI - )P (e o) drdrds + |12

/ /D)= f o)

|t — c|2t2s

1|r—g\z8e/3r2 drdrdg + |f|22

~ IWE(=As2) D) 122 + 1/ 22 ~ IWE(—As2) ) f 22 + |/ 2. (2.20)

Here we use Lemma A.3 and Plancherel’s theorem in the last line. Similarly, by (2.19),
(2.16) in Lemma 2.3 and Remark 2.2, we have

I +1f132 S WE(=As)) f I} + 1/ 7.
By Lemma 2.2, there holds
Tia SIWAD) flza + W f 7o (2.21)
Patching together (2.20), (2.21) and Proposition 2.2, we get the 2 direction of (2.17), i.e.,
RECS) + IWEf 122 2 IWH(—Ag) D) f 22 + WED) f 122 + IWEf 2, (222)
The < direction of (2.17) follows easily from R5°(f) < I1.1 + L12 + | Lal.
Step 2: (2.18) with y # 0. Thanks to [10, Lemma 3.4] which reads
RYV(f)+ Iflii/2 2 R Wyp2f),
we obtain the desired result by using (2.22). The proof is complete. ]

2.1.3. Lower bound of (£° f, f),. We are ready to derive the following lower bound
estimate for (£ f, f)y.

Theorem 2.1. It holds that
(5L o + Iflii/2 21 f12,2

Proof. We proceed in the spirit of [4]. Recalling (1.8) and (a + b)? > a?/2 — b?, there
holds

2L S f)y = / BE(ud f — (1Y, £)? dv dvs do
- / BEA(f — £+ (ud — (u)) ') dv dvs do
= SR ()~ M), @23)
Note that

LE S f)y = REV(f) + MV (f) +2 f BE(ui — () ud (f — £)f" dvdv, do
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From this, together with the fact that 2(a — b)b = a®> — b?> — (a — b)?, one gets
212 — (Wi (f = £ f
= U= 1P (= 1t = e (2 = (a3
= SO e ) = 50 = Sk~ e
F U S0 = G = 3 e — )
= A1+ Az + A3 + Ay

By the change of variable (v, v«) — (V’, v},), the cancellation lemma in [1] and (2.7), it
holds that

‘/ B?A;dvdv,do

_ ‘/Bm*(fz—f’z)dvdv* do| < CIfE; .
/ BfA;dvdvsdo = / BfA,dvdvydo = 0.
Note that
/BEA2 dv dvs do = —[Bm*(f — f)?dv dv, do
+ [ Bd G - 12 dvedo =~ (),

Patching together the above estimates, we infer that 2(£5 £, f)» = M>Y () — C| f]
from which, together with (2.23), we have

2
2 s
Ly/2

SCLLA Do 2 RGN+ 3MT () = 3CI e 2 1SRy = CU s

where in the last inequality we use Proposition 2.1 and (2.18). By a similar proof to that
of [4, Lemma 2.15], it holds that

3 3
(5. Iyl < 11 glralu! ! ez < 1glez 1B,z . (2.24)

Recalling that £° = £§ + £5, we finish the proof. |

We give the coercivity estimate of £¢ on the perpendicular space N 1 in the following
proposition.

Proposition 2.4. It holds that

(Ef [l 2 IA=P) 2.

Here 1 stands for the identity operator.
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Proof. By [15,16], there holds (£° f, f), = |(I — IE”)f|i2 . By the definition of P> and
v/2

Theorem 2.1, we have
(Lf flo ={LA=P)LA=P)f)o ZIA=P)f7,, — (T - P)fliz/2~
Y
Making a suitable combination of the two estimates, we get the desired result. ]

2.2. Upper bound of the nonlinear term

In this subsection we will estimate the following inner product:

1
(Té(g.h). flv = (Q°(n2g.h). f)v+ I(g.h. f), (2.25)
1
I(g.h, f):= /bs(cos 0)|v — v*|y((/ﬁ)'* — n2)gs«hf’ do dvs do. (2.26)
We will estimate Q¢ in Section 2.2.1 and I (g, /4, f) in Section 2.2.2. Using relation (2.25),

the upper bounds of (I"*(g, 1), f), will be summarized in Theorem 2.3 in Section 2.2.3.
At the end of Section 2.2, we will finish the proof of Theorem 1.1.

2.2.1. Upper bounds for the collision operator Q€. We perform the decomposition

(Qa(gvh)’ f)v = (Qil(g»h)v f)v + (Q;O(gsh)9 f)v» (227)

where

(0%,(g,h), v = /b8(0059)|v — V[P (v — vi) g (f' — ) do dvy dv,
(0%0(g. 1), f)o = / b (c0s 0)[v — val? (1 = $(v = v2))guh(f' — f) do dv, dv.

Here ¢ is given in (1.19).
To give an estimate for Q¢ ;, we begin with two lemmas.
Lemma 24. Let A = [ |v — vi|V¢p(v — vs)gshf dvs dv, B := & [ b¥(cos 0)|v —
V|V @ (v — vi)gshf’ do dvs dv. The following statements are valid:
© Ify>—3, then|A| +|B| < |glr2|hl2| f L2

e Ify = —%, for any n > 0, there exists a constant Cy, such that
C h ,
Al 18] < | Colglan oz 1
Cy(lgler + 1gle2) ] f Lz

e If-3 <y <=2 foranyn > 0, there exists a constant C, such that

Colgl -3 1112l f L2,

|4l +|B| < {
gl [hlms | faes.

Here the constants sy, 52,53 > 0 verify s; + 5 + 53 = —y — % sy + 853 > 0.
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Proof. We first handle the term A. If y > —3 the desired result comes from the inequality

/|v 070 — va) gl dve < [glpa.

Ify = —%, the first result follows from Hardy’s inequality,

3 _ 2
[ o=t vl av. scn(f|v—v*| 2"|g*|2dv*) < Cylglin.

The second result follows from the Hardy—Littlewood—Sobolev inequality, the Sobolev
embedding theorem and the interpolation inequality. Indeed, we have

|A] < |glLr[hlLe2| flr2 S Cplglr + 1glL2)|hlEn] f L2,

Where%+z=1,%=%—lwithp2>2 1<p <2

f-3<y<—5 the first result follows from Hardy’s inequality,

2
/|U_U*|y¢(v_v*)|g*|dv* 5Cn(/|v—v*|27+3_2”|g*|2dv*) 5Cn|g|an%*y'

The second result follows from the Hardy-Littlewood—Sobolev inequality and the Sobolev
embedding theorem,

|Al S [gleorlhlLea] flLes < I8last |hlEs2 | f1H5s

where%”+ﬁ+ﬁ+%=2,pi22 +—<1 é:i—p—andthuss1+sz+S3—
—é—)/,S2+S3 > 0.

Now we point out how to derive the same estimates for B. From the above proof for
A, thanks to the change of variable v — v’ and the estimate g2s f bé(cosf)do < 1, we
only need to prove that the Hardy—Littlewood Sobolev inequality is still valid for B. To

this end, we observe that for —=- + + < =2and l + =1

r9

< 2s & _ V4 _ 22 P2
|IB| < (e b®(cos O)|v — v«|VPp(v — vi)|g«| || 7 do dvk dv

r

2s £ y " 73
x|e b*(cos O)|v — v« | P(v — vs)|g«| | f'] 7 dodvsdv
< |gleed|blpez | fLes-
Then we conclude the results for B by copying the same argument used for A. ]

Lemma 2.5. Set
A= / [v —vi|¥ g«hf dvsdv, B := 823/b8(0039)|v —vi|Vgshf' do dv, dv.

The following statements are valid:
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. <
Ify =20, then |A] + [B| < lglpylhlez 11,2 -
. _2 <
If=5 <y <0 then |A| +|B| < (Igly +1gle2 Mhlzz [f1r2 -

e Ify= —%, for any n > 0, there exists a constant Cy, such that

Collgloy, + 18la Az 112, .

A1+1B1 =y \
a(lgley, + Iglez Dhley 1122,

e If3<y< —%,for any n > 0, there exists a constant C;, such that

Collglpy + 181 -3 Ihlg2 | flez .
|A| + |B| s Iyl HM 2 y/2 y/2
h .
(|g|L|‘y| + |g|H‘Sy1|)| |H;%2|f|H;?2
Here 51,52, 53 > 0 are constants verifying s1 + S + §3 = —y — %, s> + 853 > 0.

Proof. Let G = gW,y|, H = hW, 5, F = f W, /,. Then we have
|A| = ‘/ [ — vs]” (V) (V)Y G HF dvy dv
< /(1 + 1y<0lv — v&|" @ (v — V1)) |G HF | dvs dv.
Then the estimates for A follow from Lemma 2.4. Since |v — v«| ~ |v" — v4|, by a similar
argument, we can conclude the results for B. ]

Now we are ready to give the following upper bounds for Q¢ ,.

Proposition 2.5. For any n > 0, the following estimates are valid:

o Iy > =3 then (0 (8. ). )l S Iglia WD)l WD) S 2

oIy =3 then [{Q% (g1 /)l 5 (Igluy + Ielys ) IW (DYl WE(D) f 2,
Here, (s1,52) = (0,7) or (n,0).

©If=3<y <=3 then (Q%,(8.h). £ 1ol S gl gy WD)l [WE(D) [ . Here,

81, 82,83 > 0 are constants verifying either s1 + §» + §3 = —y — % Sy + s3> 0or
§1=— —%+H,S2=S3=0.
Ify = —% or -3 <y< —%, the < could produce a constant depending on n on the

right-hand sides.

Proof. We divide the proof into two steps.

Step 1: Estimates without weight. Following [10, proof of Theorem 1.1], we conclude
that

102,(g.h), flol < Igle2lhlaal flgs. (2.28)
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where a + b = 25 with a, b € [0, 2s]. Recalling (1.20), we have the decomposition
(0%1(g.h). o = (021(8.hg). foo + {021 (8. hg). [?)u
+(0%,(g.h?), fo)o + (0%, (8. h®), [ ).
Using (2.28), we have
(Q21(8.he). fo)vl < IglL2lhglms| folms.

| S|
{021 (g o). £2)ol < IglL2lhglras] /102,
{021 (8. h?), fo)ol < lgle2h®| 2] fluas.

Thanks to |hg|g2s < e ¥ |hg|ms and | fg|g2s < e7°| fo|ms, we have
{Q21(8. ), fo)ol + (0%, (8. 1), [2)ol + Q2 (g, h?). f3)o]
S 1812 IWE(D)h|2|WE (D) £ L2
From this, together with Lemma 2.4 to deal with (Q® (g, h?), /?),, we conclude that
y> =31 HOL (. h). f)ol < 1gle2lWE(D)hlL2|W(D) flp2,
y=—3 H0%i(g.h), fol < (gl + |glas) W (D)h|as2 [W(D) f 12,
30 Q%1 (gh), ol < 1glas WS (D)hlas|WE (D) f s

That is, the results in the proposition are valid if we take y = 0 on the right-hand sides. In
the next step, we recover the weights by using some commutator estimates.

=3 <y <—3:

Step 2: Estimates with weight. We recall that

(0%, (). flo = S A0S (@8- Fh). 3 f)v + D (0% (1. Ush). Us f),

Jj=3 Jj=2
= A1 + Ao,

where @ = Y ps 1 k—jj<a Pk @and Uz 1= D | ;3 ¢x. We only consider the most
difficult case -3 <y < —%. In this case, by Step | we have

A1) £ D 1D 95812 (D)2 W (D)Gihl 2 (DY WD), f 112 1= ) vy
Jj=3 j=3
For simplicity we write /4, ; = B8;€;D;, where
Bj =27 (DY 2T ) g () gl
€ 1= 277 |(D) WD) DT ()G () 2 1,
Dj = 27 D) WD)EE () TV ()2 f | a.
Thanks to 27 +DJ ()7 ¢, € S{oand (-)*' € S7!), Lemma A.1 yields

B; < e (DY () gl + 270 1() 7V gl
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Similarly, Lemma A.1 yields
€ < 15(D)2 WD)V 2hlg2 + 277 ()2l sz,
Dj S 18DV WD) flL2 + 277 1) flggsseet.
Thus, it is not difficult to conclude that
[A1] S (D) ()77 gl (D)2 WD) () 2hl 12 [Py WE(D) ()2 f 2.
The term A, is much easier since it has only finite terms. Finally, we have
(021 (8. ). f)ul S 1(D) ()7 gl12 | (DY W (D) () 2kl 2|( DY W (D) ()2 £ 2.

For the case y > —32, we can repeat the above procedure to get the desired results. We
finish the proof with the help of Lemma A.2. ]

To give the upper bound for Q¢ , we need the next two lemmas.
Lemma 2.6. Let Y5V (h, f) := fb“’(l’;—l o))" h(u)(fut) — f(|u|%)) du do; then
Y5V (h, I S AW Wy p2hlp2 + [WE(D)Wy2h|L2)
X ((WEWypa flrz + [WEDYWy 2 fL2).
Proof. We divide the proof into two steps.

Step 1: y = 0. The proof is similar to that of Lemma 2.1. First, applying dyadic decom-
position in phase space we have

YOoh f)= ) /bs(ﬁ'0)(§5kh)(u)((<pkf)(u+)—(@kf)(lulﬁ))duda

k=—1

o0
= Z :yk,

k=—1

IA

where @k = 3 /5y |1_k|<a ¢1- We separately consider the two cases: 2k > 1/¢ and 2¥
1/e.1f 2K > 1/e, we have

el = ([ 0 @ audo

([ 2l e 0P + 0 )P )

A

By the changes of variable ¥ — ut and u — w = |u|% respectively, we have |Yy|

e725|@rh| 2 |@x f |12 Taking the sum over 2K > 1/¢, we get

> u

2k>1/e

< D0 e FIGkhl e fle S IWPhl2|WE L2,

2k>1/e
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If 2K < 1/¢, by Proposition A.2 and dyadic decomposition in frequency space, we have

Y= [ 0y V@) — bl e () dé do
S [ o (@@ ED) — @) (1§15 Gror /) (&) dE do
[E+]

I=-—1

o0
= Z Yr.
I=—1

If2! > 1/e, we have | Yy ;| < 8_25|¢1<§1{71|Lz|¢'1g@|y and thus

D%l S Y e P la@rhle|@ign e S IWED)Frh|L2|WE(D)gx f L2

2l>1/¢ 2l>1/¢
Then by (A.1) we have D ok /e oi51/6 Ykl S IWE(D)R|L2|[WE(D) f L2 If 2h <1/,

we have
Y = / DG ks (@iBeED) — (@ufeh) (€1 £57) G ))(©) d do
+ [ B, (@FRNED) ~ (B (6 7)) G 6 e do

=Yki1 + Yrio.
Since [ b*(cos6)1gso-k/2-1/2do < 254D we have |Yy 11| < 2S(k+l)|<pl<§k\l’z|Lz|@g@|Lz

1
2

and thus
1
— 2 —
) |yk,l,1|s( > 225’|¢1¢kh|iz) ( 3 zzskwwkﬂzz)

2k<1/e, 2k<1/e, 2k<1/e,
2l<1/e 2l<1/e 2l<1/e
1 1
2
s( ) |W€(D)¢kh|zz) ( ) 22Sk|¢kf|iz)
2k<1/e 2k<l1/e

< IWED)h|L2|WE f L2,
where we use (A.1) in the last inequality. Recalling that £+ = %, by Taylor expansion

we have
=\ (et = £t 1 ' =7+ +
(@) (™) = (@) ([l =) = (1 - COS%)/O (Vor o) (™ (1)) - §7 dk,

- 0, from which we get

where £t (k) = (1 —IC)|S||§_—:_—‘ + k€T and cos § = I’i_l
¢ 1 - =
Go(i-— g)lg_z_kzﬂ(wlfﬂkf)(s)

|Yri2| = ‘/ b®
[0,1]xR3xS?2
x (Vor@rh) (67 (k) - 1 dic d& do
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([
<(f

1
— e 2
< 250021500 12 (2—@—“(“” / |n|2|(wz¢kh>(n>|2dn) ,

f o1~ 2s|(<ﬂl€0kf)(§)|2d‘9d§)

+
272 1

[P adimPawan)

where we use the change of variable § — 1 = £ (k) and the fact that |1 — —9| < 62
Recalling (2.12) and (2.14), we have

Y2l S 2075110 Fli2|@i@ichl Lz + 22 €D | Brgr £z lorv@ihl.
By the Cauchy—Schwarz inequality and (A.1) we get

D 1¥kaal S AWPhlp2 + [WED)A|L2) (W f 2 + [WE(D) f|L2).
2k<1/e,
2l<1/e
Patching together all the above results, we conclude that

Y20, )] £ (Weh|gz + WO (D)h|2)(IWE flL2 + [WE(D) f2). (2.29)

Step 2: y # 0. For simplicity, denote w = |u||Z—L; then W, /2(u) = W, 2(w). Note the
identity

) h) (f@™) = fW) = (Wyah) ) (Wy 2 )W) = (Wy2 ) (w))
+ (Wyp2h) @) (Wy 2 )WY Wy 2 (WIW_y 2 (u™) — 1)

thus
YoV (h, ) = YO Wy oh, Wypa f) + A,

A= / b (24 - ) (Wyy2h) @) Wy 2 ) ) (W2 () Wy 2 (u™) — 1) du do

+

Using [ Wy, 2 (W)W_,p(u™) — 1| < sin? % and the change of variable u — u™, we have

A = ([ 5 10, 2 0PI 20 20 =1 )
([ 55t I, £GP 20 ) = 1)
< |Wy/2h|L2|Wy/2f|L2'

We then use (2.29) to handle Zys’O(Wy/zh, W, /2 f) and finish the proof. [ ]
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Remark 2.3. Denote

ut

XV (h, f) = /bs(fﬁ ~0)|ul” (1 = @) (f (™) — f(lulfz)) dudo:
then
X7 (h, I S (IWEWyp2hl L2 + [WE(D)Wy bl 2)
X (WWy 2 flrz + IWH(DYWy 2 f12).

Indeed, since

ul” (1= @) = () ([ul” ()™ = DA = ) + ()" (1 — p(u)),
we have

XV (h, f) = Y2717 = DA =@k, ) + ¥ (1 = @), f).
Then the result follows from Lemma 2.6 and (A.2).

Lemma 2.7. Recall R%(h) = [ b(cos 0)(v — vs)? g« (h' — h)? do dvs dv defined in
(1.26). If g > 0, then

R (1) S Ry (Wypah) + 181

h?, .
8 |y+2|| lLf,/z

Proof. Let H = W, »h; then
(W —h)? = (H'W',,, —HW_y;5)> S W/ (H' — H)> + (W', , —W_,2)*H?.
Observing that (v/)™7 < (v — vs) 7Y (V) ~ (v — V)77 (V4) 7], we have
R (1) < Ry (Wy2h)

+ /bs(cos 0) (v — i)Y (V)% = ()72 g, H? do dv, dv.

. 1 e .
By Taylor expansion, one has (W', — W_,/2)* < [y (v()) ™" 7> {v — v4)? sin? & d.

Note that (v — v4)? 12 ~ (v(k) — v4)" T2 < (V(K))? T2 (v,) 7 +2. Then we have
REL () < Ry (Wyah) + [ (o3 0)6%(0.) g H2 dor du o,

which yields the desired result. ]
Now we are in a position to prove the following upper bound for Q%,.

Proposition 2.6. It holds that

(QL0(8. 1. F)ol S Igley, Whlewys2l f Lo
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Proof. Define the translation operator Ty, by (Ty, f)(u) = f (v« + u) for v, u € R3.
By the change of variable v — u = v — v, and geometric decomposition, we have
(0%0(g. 1), f)v = D1 + Da, where

D1i= [ Bl (1 - g (T ) )
X (To, £)WF) = (Ty, £)(Jul757)) do dv.. du,
Dsi= [0 -l (1 = pag.
X (Ty, ) ) (T, £) (] 57) = (To. £)(w) do dv du.
Step 1: Estimate of ;. By Remark 2.3 we have
D11 % [ lgu (W Wy aToublia + W (D)W, T, hl12)
X (\WEWy 2 To, [ o2 + IWHD)Wy 2T, fr2) dvs.
It is easy to check that
IWEW, 2Ty, b2 S WEW )Wy 2(0) IWEW,, 202 (2.30)
By Lemma A.1 we have
|W6(D)W)//2Tv*h|L2 s |W)//2W8(D)Tv*h|L2 + |Tv*h|H;721_1
< Wiytj2 @) (Wy s WE(DIIg2 + Bz )
< Wiyi2() IWE(D)YWyah 2. (2.31)
Thus we get the following estimate of D :

[D1] < Iglp

Iyl+2
x (|WE(DYWy 2 flrz + IWEWy 2 flL2).
Step 2: Estimate of £,. Let u = rt and ¢ = then i 0 =2(t-¢)>—1 and

|r+cr| ; Ju]

(WEDYWyy2hlp2 + IWEW,y 2k 12)

|u|% = r¢. In the change of variable (u,0) — (r, 7, ¢), it holds that du do = 4(z -
¢)r?dr dr dc. Then

D=4 [ (1= g -5 = D(T)ro)
X (To f)76) = (Ty. YD)z - )1 dr dr d dv,
=2 [ (1= 0DE (0 = DI - (T h)5)
% ((Ty, 1)) = (Tu YD)z - )7 dr dr dg o,
— =3 [ G- ol (1= ) (Tl ) = (T )

X (T, f)(Jul |u+|) (Tv, f)(u)) do dvs du.
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Then by the Cauchy—Schwarz inequality and the fact that |u|" (1 — ¢ (u)) < (u)?, we have

D] ( / Do - 0) () | | (T, ) (lul 2557) — (Tv*hxu))zdodv*du)

([ G e £l ) () 02 0 v
= (Da)? (D2, ).

Note that D, 5 and D, r have exactly the same structure. It suffices to focus on D, .
Since

(T, )l 25) = (T, /Y)Y < 2((To, )l 257) = (T, £)™))?
+2((To, /)W) = (Ty, /W)Y,

we have
sy % [ DG )0} el (Tun £l 5 = (T £ dor v i

+ /bs(\z_| - 0) () | g« | (To, £) ) = (To, £)(u))* do dvy du
=Dy 51+ D2, 10

By Lemma 2.2 and the facts (2.30) and (2.31), we have

Dsga = [ 1641297 (T )b < lgly (W DIWypaf s + W Wy f ).
Thanks to Lemma 2.7 we have

Ds f2 =R, (f) < ‘ngg(\)W\ Wy ) + gl |f|i§/2-

lyl+2

Thanks to the estimate fRz,’O(f) < |g|L1<Rij(f) + |g|L%|W‘?(D)f|i2 (see [10, Lemma
3.3D), using (2.17) to get RE°(f) < [We(~As2)2) [ 12, + WD) f 12, + [We [ 2,

we have

1
D12 S glpy  (IWE(=As2)2 )Wy pa 172 + IWHDYWy 2 f 172+ IWEWy 2 f172)-

lvl+2

Therefore we have D, r < |g|1 |f|§ V)20 which yields

lyl+2
D2l S 1gles hlecys2 f ez
We finish the proof by patching together the estimates for £, and D5. ]

Recalling (2.27), by Propositions 2.5 and 2.6, we are led to the following theorem.
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Theorem 2.2. For any n > 0, the following estimates are valid:

Iy > =3 then [{0%(g. 1), £l 5 (182 +1gle ileysal flegso

Ify = —%, then

Q% (&), £)ul 5 gliy + 18l ) W (DIl | fleat 181y Whlecyial e
Here (s1,52) = (0,n) or (n,0).

If-3 <y <=3, then

Q%@ ). £l S Iglyey WE DIl yes IWE(D) Fligsy + 1812y | Wlesal Fleyso

Here the constants s1, 53,53 > 0 verify either s| + 55 + 53 = —y — % sy + 53 > 0or
3
s1=—-y—5+ns52=s53=0.

2.2.2. Upper bounds of I'(g,h, f). For ease of notation, we abbreviate I (g, 4, f)as I.
We first do some rearranging. Noting that

(n2), —Mé = ((n), +Mi)((,u%)’* —Mé)

1 1 1 1 1 1 1
= (U5 + w2 ((18), — nd)* +2pd (u*)y — i),

and h = (h — h') + I, recalling (2.26) we have

I=I0+1I+ I3, (2.32)
Tim [ 5 osO)lo = val (Ve + w2 (eb), = g f o dusdv, 239
I,:= 2/ b®(cos 0)|v — vﬂ”((;ﬁ)fk - ui)([ﬁg)*(h — 1) £ do dvy dv, (2.34)

1
I3:= 2/ b®(cos 0)|v — v*|y((;ﬁ):k - ;L,ﬁ)(u%g)*h’f’da dvy do. (2.35)

We derive some upper bounds for I(g, &, f) in the following proposition.

Proposition 2.7. For any n > 0, the following estimates are valid:

Ify > =3 then|I(g,h, )| < \gle2ltley /2l WE flpz -
Ify = —%, then
1
1 Z(g. 1, I < 1t glas (W (DYl yoa, 4 [ley )W f 2
+lgle2lhley2lWE flpz2 .

where (s1,52) = (0,n) or (1,0).
If-3 <y <—3 then

1
121 OIS |t gl WD)kl + Vhley/2) WSz

+ I8l eyl W f 112,
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where s1, 52 > 0 are constants verifying either s1 + 25, = —y — %, so > 0o0rs; =
—y—%+n,sz=0.
Proof. In the proof, we will constantly use the following fact:
1
((u%); — 1$)* < min{1, [v — vs|? sin” %} ~ min{1, |v" — vy|? sin g}
~ min{1, |v — v}|?sin® g} (2.36)

We estimate 11, I, and I3 one by one.

Step 1: Estimate of I,. Recalling (2.33), we use ¢ defined in (1.19) to separate the relative
velocity into two parts:

1 1
I = /bs(cosenv—v*va — ¢ —v)) (B, + mH2(), — uk)?
X g«hf’ do dvy dv
1 1
+ / b*(cos 0)|v — va|" B (0 — Vi) (F )y + )2 ((F), — )2 guhf’ do dvs dv
= Il,l + Il,z.

Estimate of I1,;. Note that |[v — v«| ~ (v — v4) in I} ;. By the Cauchy—Schwarz
inequality we have

1 1 2
11l < ( / b¥(cos ) (v — va)? () + )2 ((1F), — ) ?g2h? do dvs d”)
1 1 %
) (/ b®(cos ) (v — va) (1), + uE)2 (¥, — u$)2(f?) do dus d”)
= (11,1,1)%(11,1,2)%-
‘We claim that
1 1
A= /bs(cos 0){v — v*)y((,u%); + )2((11«%); —ui)’do
< (W92 (v)(v)”, (2.37)
which yields Il,l,l < |g|22|W6/’l|i2 .
/2
To prove (2.37), we notice that ’
1 1
A< [bs(cos 0) (v — va)" i (u3), — ud)? do

+ / b*(cos B) (v — va) (AL ((ub), — p¥)? do
= A1 + Ao
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1
By Proposition A.1 and the fact (2.10), we get #b; < (v — vi)” 1ud (WE)2(v — v4)
(W#)2(v)(v)?. As for Ay, thanks to |[v — v«| ~ |[v — v} | and thus (v — v«)? < (v —vL)?
(v)Y (VL) we have

N
N

a5 (0} [ 5 Gos6)uby, minf1 v — v sin? §} do

If | — vi| = 10]v[, then [v| = [V, —v 4+ v| = |} —v| —|v| = (1/+/2 = 1/10)|v — v4| >
é|v — V4| and thus (/L%); < uﬁ(v — v4), which yields

A2 S (0)7 3 (0 — v ) (W) (0 = vs) 5 (1)
If |[v — v«| < 10|v]|, by Proposition A.1 we have
Ay < (v)”/bs(cos 0) min{1, [v]?sin® £} do < (W9)?(v)(v)?.

We have finished the proof of (2.37). We now consider I ;5. By the change of variable
(v, vs) = (V', v},) we have

1 1
T = f b¥(c0s 0) (v — va)? (F), + )2 (F), — n3)? £ do dvy dv

IA

2 [ bcos et — o) (Y, — 2 dor o o
* 2[ b (cos ) (v — va)! (uAY((ub ), — i) 2 do doy dv
=TI1121+ L1122

With the help of (2.36), Proposition A.l and (2.10), we have

I1101 5 /bg(cos 0) (v — v*)”ué min{1, [v — v,|* sin? %}f2 do dvy dv

< [y @i v R P wand £ dv.do 5 WS
By the fact that |[v — v«| ~ |v — v, | and the change of variable v, — v/, we have
I1122 5 [b“’(cos 0){v — v;)y(u%); min{1, v — v}, |* sin? g}f2 do dvl, dv
SIWESE, .

Therefore we have 11,1, < |[Wef |1242 . Patching together the estimates of I;,;,; and

11,1,2, we have v/
1,1 < gl W |z§/2|w f|z§/2 ( )
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Estimate of 11 ,. By the Cauchy—Schwarz inequality we have

D1l 5 ([ 6 os Ol = vl g = v b PG, = by

X |g«|h? do dvs dv)
x (/ b¥(c0s 0)|v — val? (v — va)(ud), + 12 (ubY, — pud)?

1
2
x |g«|(f?) do dvs dv)

= (11,2,1)%(11,2,2)%-

Note that the support of function ¢ is B%. When |[v—vy| < %, it holds that |v.| > |1v|—§

and [v,] = [v] = [v—v,| = [v] = [v = ve| = [v] — £, which imply that ((1¥),, + 11£)? S
u%. By (2.36), Proposition A.1, the Cauchy—Schwarz inequality and the assumption
y +2 > —1, one has

1 il
Ii121 2 / v — U*|y+2¢(v - U*)ﬂ8|g*|h2 do dvsxdv < |g|L2|M16h|12‘2~

By the change of variable v — v/, we can similarly derive that I1,2 < |glz2 |uf?f|i2.
Patching together the estimates of 12,1 and I 5 2, we arrive at

L L
| T12l S IglL2lpwiehl z|pnte L.
From this, together with estimate (2.38) of 11,1, we obtain
< & &
[ Z1] < |gle2|W h|L§/2|W f|L§/2~

Step 2. Estimate of 1. Recalling (2.34), by the Cauchy—Schwarz inequality we have

I, < (fbe(cose)lv—v*|V|wig)*|(h—hﬁzdadv* d”)

1
2

1
§ (/ b* (c0s 0)[v — vl () — )| (1+ 8)x1(f)' do dv d”)
= (12,1)%(12,2)%~
Estimate of I5,1. Noticing that (h — h')? = (h?)’ — h* — 2h(K’ — h), we have
Iog = Loy —2(Q(ngl ). h),
Ioq1:= /bg(cos v — v*|”|(/1,%g)*|((h2)’ — h?)do dvy dv.

By the cancellation lemma in [1], one has 151,17 = C(e) [ |v — v*I”I(,ujg)*Ih2 dvy dv
with |C(g)| < 1. Thus, by Lemma 2.5 and Theorem 2.2,

. 1
« ify > =3, then|I5| S |usglralhl? ),
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2

ey/2 where

. 1 1

ify = =3 then [ To,1| 5 |u3glmos [W (DYl |hleiyja + 13 glozlhl

(s1,52) = (0,7) or (1, 0);

it =3 <y <=3 then |To.| < [psglun WD), + |usglizlhl2,, . where
/2 ’

81,82 > 0 verify either 51 + 25, = —y—%,sz >0ors; = —y—%+17,sz =0.

Estimate of I,,. We separate the relative velocity |v — v«| into two regions by intro-

ducing the cutoff function ¢. If [v — v«| = 1, by the change of variable v — v/, the estimate
is the same as that for Iy 1,1. If [v — v«| < 1, the estimate is exactly the same as that for

1 . .
T1,2,2. We conclude that T 5 < |/L§g|]_z|W8f|22 . Patching together the estimates of
v/2

I>,1and I, 5, we get

3 1
y >3 [ 12| < |M8g|L2|h|s,y/2|W8f|L§/2,

3 1
3 <y=—3t Dl Iutglna (W (D)hlgs + |hley2) W flz

Step 3: Estimate of I3. Recalling (2.35), by the change of variables (v, vi) — (v, V)
and (v, v«,0) = (v, v, —0), we have

I3=2 f b*(cos 0)[v — va|” (1w — (u4)) (1 €)' B fix do dvyc dv.

For ease of notation, let

Er = {(v.vs,0) | [v—vi] = 1},
E, = {(v,v*,o) | [v— v < % sing > |v—v*|_1},
E; = {(v,v*,o) | [v— v < % sing < |v—v*|_1}

Then I3 can be decomposed into three parts I3, I3 and I3 3 which correspond to
Eq, E; and E; respectively.

Estimate of I3,;. By the change of variable v — v and the fact that |v' — v.| >

|v — v4|/ /2, we have

1
L0l 5 [ B @03 O = vl oo ) £l do v a0

_ 1
Se » / |U/ - U*|y1|v’—v*|2(~/§s)*l |(H4g)/h*f*| dv, dv'.

On one hand, by the Cauchy—Schwarz inequality, we have

_ 1
e / v — v"‘ly1|v’—v*|2(«/58)71 (e g)'|dv’

1

1 — 1
< |usglL2e » (/ v — v*|2yl|v’—v*|2(ﬁs)_] (2 dv/)

S s glae (v, (2.39)
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where we use the fact that (v'—v4)?” < (v/)1?"/(v,)2”. On the other hand, using
£~ < |v'—v«], by the Cauchy—Schwarz inequality, we have

_ 1
e / v — v*lyllv’—v*lz(x/fe)_1 (et g)'ldv’

< [ = o @ igderian < belus ([ 10— wdya)
< b gloa(va)7 42, (2.40)
where we use (2.7). With estimates (2.39) and (2.40) in hand, we have

1
I < |u® W<eh we .
[Z3,1] < |uBglrzl |L§/2| f|L§/2

Estimate of I3,. Thanks to ‘/7§|v — Vg| < v/ — v4| < |v — vi| and the change of
variable v — v/, we get

T3l < [ B0 0) 1y 02 (3110 = Vel Nyrvui 176l (23 @) s fil dor v d'
< / 0 = a2 L <176l (107 €) s Sl dvs . (2.41)
On one hand, similar to the argument in (2.40), we have
/ [V = 0 Ny gl (i g) [V S (gl (072 (242)

On the other hand, if [v«| > 2 /¢, then |v| > |vs| — |0 — v«| > |v|/2 > 1/&, which implies
1

L
w < i S e 2:2. Then we deduce that

1
llv*IZ% / |U/ - U*|y+zs1|v’—v*|§l/8|(ﬂ4g)/| dv’

A

1
1 1 2
]v*|2§|ﬂsg|L2(/ 0" = 0y <1 (14 dv’)

1 L 3 1 1 1
L2 13 glrepd (€)Y P2 e ™02 Sy, alusglapd®.  (243)

A

With estimates (2.42) and (2.43) in hand, we have
1
< ? & &
| Z32] < [n3glrz|W h|L§/2|W f|L§/2-
Estimate of I3 3. By Taylor expansion, one has
1 1 1
pr = (us) = (Vp)')- (v -2

1
+ K/O ((Vzu%)(v(/c)) =) ® (v—1"))dk. (2.44)
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Given a Boltzmann kernel B(v — v, 0) = B(Jv — v«|, cos 8) and a suitable function
F:R3 — R3, for any fixed v, € R3, it holds that

/B(lv—v*|,cos9)(v—v’)-F(v’)dadv = 0. (2.45)
By (2.44) and (2.45), we have

[ I33] =

/ b*(cos O)|v — U*|y1|v—v*|<l,sin 8 <lv—vy|~!
E3x[0,1] s 2=
X K((V2M%)(U(K)) v=v)® - v’))(;ﬁg)'h*f* dk do dvs dv

2020 1
5/b6(0050)|v’—v*|7+ sin 51\v’—v*|§%,sin%S\v’—v*l’l|(M4g)/

X hy fx| do dvy dv’

1
< [ = ol g v, v

Copying the argument applied to (2.41), we have |13 3| < |M%g|Lz|W8h|Lz/2|W€f|Lz/2.
Y Y
Patching together the above estimates of I3 1, I3 and I3 3, we have

1
< g & &
[ L3 < [ gle2lWohl2 WSS L2 -

Recalling (2.32), the proposition follows from the above estimates of 71, I, and I3. =

2.2.3. Upper bounds for the nonlinear term I'(g, ). We are ready to give estimates
of the inner product (I'*(g, k), f ).

Theorem 2.3. For any n > 0, the following estimates are valid:

o Ify>—3, then |(T%(g.h), ol < I8lr2lhleys2| fleys2-
o Ify= —%, then
1
(T ) ol < 11eglas (W (DAl sz 4 [hleyi2)| f Loy
+1gle21hley 2| f ey 2s
where (s1,52) = (0,n) or (,0).
e If-3<y<-—3 then
1
(DG} f ol 5 1 glazn (W (DYl + [hlsy2)| flewys2
+ 1812 |hleys2| fley/2,

where the constants sy, s» > 0 verify either s; + sp = —y — % Sy >0o0rsy =—y—
% + 1,52 =0.
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As a direct application we have

1
(T2 (w2, ). ol SIFIZ, 0 (2.46)
Proof. Recalling (2.25), the estimates of |(I"®(g, h), f )| follow directly from Theo-
rem 2.2 and Proposition 2.7. By taking s, = 0, we get (2.46). ]

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. On one hand, by Theorem 2.1, we derived that (£°f, ), +
|f|iz z |f|§y/2. On the other hand, recalling (1.8), by (2.24) and (2.46), we have
(e f7f ) < | f1Z,,/2> which ends the proof. -
2.3. Upper bound of commutator between weight function and the nonlinear term

In this subsection we want to prove the following lemma.

Lemma 2.8. Let [ > 2. The following commutator estimates are valid:
* Ify = =2 then |(T*(g. Wih) = WiT*(g. h). f)ol < 18le2lhlrz,
e If-3<y <=2 then

(T (g Wil) = Wi (8. ). £l % Iglealhlzz | fleya

L L
+ w32 glas w32 hlgsz| fley2.

| fley/2:

where the constants 51,5, > 0 verify s1 + s = —y/2 — 1.

This lemma is a consequence of Lemmas 2.9 and 2.10 by recalling (2.25). We first
prove the commutator estimate for Q°.

Lemma 2.9. Let [ > 2. The following commutator estimates are valid:
1 1 1
© Uy =2 then |(Q°(n2g. Wih) = W Q% (n2g.h). fol < |n32gle2lhlrz 1S ley/2-
e If-3<y <=2 then
1 1
(Q°(u>g. Wih) = W Q%(n>g. h). f)ol

L L L
S (u2glealhlpz  +In2gls w2 hlas)| fley 2.

/2
where the constants s1, 5y > 0 verify s; + s, = —y/2 — 1.

Proof. Recall that B®Y = |v — v,|"b®(cos 6) and note that
1
(Q%(ub . Wih) = Wi Q* et .. £ = [ B Wi = Wik guhf"do dv. o
1
= [ B = W g(s = frdo dv.ao

1
+ / B*Y(W; — W/ i g«hf do dvy dv

= A + As.
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Step 1: Estimate of #4,. By the Cauchy—Schwarz inequality, we have

1
1 2
|| < (/Ba’yui(f’—f)zdo dv. dv) (/BW(W, — Wl’)z,u*g*hzda dvs dv)
= (A1,1)2 (A12)7.

By the estimate of I, ; in the proof of Proposition 2.7, we have #4;,1 < | f|? Since

|VW;| < Wj_1, we derive

e,y/2"

/BW(W, —W/)?do < /bs(cosé) sin? £Jv — va [P P2 (1) 2 (0,) 2 do
S o= v "2 ()7 2 (0a) 2, (2.47)

which gives
1
A2 < / v — v*|”+2(v)ﬂ_z(v*)zl_zuigih2 dv, dv.

If y 42 > 0, then [v — v |"*2 < (V)7 T2(v,)? 2 and thus 4, < |u16g[?

2,0k, I

I+y/2
y 4+ 2 < 0, we make the following decomposition: ’

A1 S /|v—v*|”+21|v_v*\51(v)21_2( )21 2# gihzdv* dv

1
b [ 1= 0 (002 02 202 o
=Aio1 + A

When |v — v4| < 1, there holds |vi| > |v| — 1, thus |v4|? > % —land pu« < M%.There—

21—2(0*)21—2 % << )21—2<U*>21—2

1 1
fore we get (v) i < (v ,ujf,u% < /L}f,ull?, which yields

1

A121 s/lv—v*ly“l.v_v*\sm* 16621 dvy dv < |32 g5 |02 h sy, (248)

where in the last inequality we use the Hardy-Littlewood—Sobolev inequality and the
Sobolev embedding theorem if 51 € (0, —(y + 2)/2) and Hardy’s inequality if s; = O or
s1=—(y +2)/2

When |v — vy| > 1, there holds |v — v4 [V T2 ~ (v — v4)Y T2 < ()72 (v,) 72l which
yields

- 1 1
AI,Z,Z 5 /(v>21+1/(v*)2[ 2+W+2|Iui gth dU* dv 5 |M32g|22|h|i12 ’
+v/2

Patching together the above estimates,

. 1
© ify +220 then |Ai| S [uteglralhlez 1 ley/2:

. L L L
© ify +2 <0, then A1 S (I glun w2 hlase + n»2glealhlez S ley/2:
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Step 2: Estimate of #,. By Taylor expansion, one has

1
W/ =W = (VW) () - (v —v) +/0 1= (VW) () : (v =) ® (V' —v)) dk.

Thus we have
1
Ay = — / BHY (VW) (v) - (v — v)pi g«hf do dvs dv

B / B (1= ) (VPWD((6) : (v~ ) ® (= )1 guhf dic dor v do

= :Az,l + Az,z.

Estimate of A,,1. Thanks to the fact that there exists a constant C(g) with |[C(g)| < 1
such that

/be(cos (v —v)do = —(v — v«) / bé(cos 6) sin® % do = —(v —v4)C(g). (2.49)
From this, together with |VW;| < W;_;, we have

|A2,1]

A

1
/ v — v (U)l_lﬂi |g«hf | dvs dv

A

1
[ 10— o e (0 kg o

1
[ 10— o e g dv. o

= oAy 11 + A1

1L

6 /Lﬁ. Thus, by the

* =

1 1
When |v — v4| < 1, as before, one has (v)/~1uZ < (v)l_lu,ﬁ,ué <u
Cauchy—Schwarz inequality we have

1

1
Asit < / 10— 0l Ly <1 25 T g f | s

=

2

1
< ([ o= v sl g av.an

1
([ o= vl tompeandias 2 av. )
1 )
5( [ 10— 0l il s g2 v, dv) W e

If y > -2, we directly get Az 1,1 < |p,31*2g|L2|,u§h|Lz|uif|Lz.If—3<y< — 2, recalling
1 1 1 .
(2.48), we have Az 1.1 S |32 g s |32 hlgs |32 2. Using v — U*|y+11\v—v*|zl <

|f|L§/2-

1
()7 (a) 71, we have Ao 12 S I glralhly,
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Estimate of 4, 5. Since [(V2W))(v(k))| < (v(k))! 72 < (v)! 72 (vs) "2 and v/ —v|? =
sin? §|v — v*|2, we have

1
|Aza| < /bs(cose)sinz 8o — a2 (0) 72 (i) T2 |guhi f | do dvy dv
1
< [ o= vyl jg.ns | dv.
Thanks to y 4+ 2 > —1, using the Cauchy—Schwarz inequality and (2.7), we have
1

J 10— val 2 gal vy < ()7 2|t glrz and thus | A2 2| S lpieglialhly, 112
Patching together the estimates of #5 1,1, #2,1,2 and #45 2, we conclude as follows:

. 1
© ify =z =2 then|Az| S lunglialhlzz  If1L2

. 1 1 e
© if =3 <y <=2 then Ay S (In2glast[uszhlms +|ns2glealhlz IS 1Lz -
The lemma follows by patching together the estimates of 4 and 4. ]

The next lemma gives the commutator estimate for I (g, &, f).

Lemma 2.10. Let [ > 1, there holds

&
[(L(g. Wih. ) = L(g. h. Wi )l < 8lezlhlpz W SlLz .

1 1

Proof. By the definition of I(g,/, f) and the fact that (,u%)/* —ui = ((u%)’* —uH)?+
1 1

25 ((;ﬁ); — iy), we have

L(g. Wih, f)—I(g.h. W f)

1
/ B ((u3Y, — w2 YWy — W)guh " do dvs dv

1
[ Bt = w00 = g do dv.ao
1 1

2B = W = W)gahs do do. o
= Ay + 24;.

Step 1: Estimate of #,. By the Cauchy—Schwarz inequality we have
: 2

| A1 < (/ BV (3, — )P (f2) do dvs dv)

1
2

1
([ B by - ke - w2t do v an) = A (A

By the change of variables (v, v«) — (v, v’) and the proof of the upper bound in Propo-
sition 2.1, we have

A1 = / B ((u4) — pu¥)? f2 do dv, dv < |W8f|iz/ .
v/2
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Thanks to
(), = )2 = () 4+ 1D (bY, — 1) = 20 b, + ) (b, — ud)?,
we have
iz s [ B, — iAW - W22 o o do
+ / BEY (uA Y, (Y, — )P Wy — W) g2 dor v du
=k + A2,
Thanks to the facts [v — v, | ~ |v — v«| and
(W = W))* < minfsin® §[v — v, [ (v)* 72 (v,)* 2, sin® § (1) (v))*'}, (2.50)
((ub), — pd)? < minfsin? &Jv — vl 2. 1), 2.51)
we assert
B = / B (), (1), — n82 (W = W2 do < (0217, @52)

which yields #4122 < |g|22|h|]":2 . In fact, by (2.50) and (2.51), on one hand, there
holds oz

B = [bs(cos 6) sin* §|v - v;|1’+4(;,L%);(v)21_2(v;)21_2 do.

When |v _ U*| < 1, there holds |U _ U;| <1, |U _ v;|1’+4 <1 and (U) ~ (U;)7 thus
(v)2=2 < (V)27 (1) 7277 which yields

B = [bs(cos 6) sin* %(u%);(v)ZHV(v;)ﬂ_“_y do
< [bs(cos 6) sin* %(U)ZHV do < (v)#F7.
By (2.50) and (2.51), on the other hand, there holds
B < /bs(cos 6) sin? %lv - v;|y(u%);(v)2l(v;)2l do.
When |v — vy| > 1, there holds [v — v,|” ~ (v —v.)Y < (v)? (vL)7], which yields
B = /bs(cos 6) sin’ %(u%);(v)ZH”(v;)ZHlV‘ do
< /bs(cos 0) sin® £ (v)? 17 do < (v)2F7.

Now estimate (2.52) is proved. Note that (2.50) and (2.51) are still valid if v/, is replaced
by v on the right-hand sides. Then similarly to (2.52), we can prove

1y 1 1
[ By, - b - wpao < el
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which yields A12,1 < |MTlsg|zz |h|il2+ " Patching together the estimates of ;1 and
Y.

A1,2,2, We arrive at Ay S |g|iz|h|il2 " Patching together the estimates of +;,; and
+y/2

Y.
A1,2, we conclude that |A;| < |g|Lz|h|le+ , |W8f|L2/2.
Y.

Step 2: Estimate of #4,. By the Cauchy—Schwarz inequality we have

1
1 1 2
|As| < (/ B jud (uh), — pnd)?|g«|(f2) do dv. dv)
%

1
x (/ B®Y (Wi — W))?|g«|h? do dvs dv) = (Ar1)2 (A22)?.
Estimate of #,1. By the change of variable v — v/, we have

1 1
Ar1 < /bs(COS 0)|v — val” i (13, — 112)?1 | £2 do dvy do.
By (2.36) and Proposition A.1 we get
1
Azl S /(l‘v_v*|<ﬁ|v —0e]? T2 4 (0 — 0)Y (W2 (0 — vs)) e | 2| £2 dvs dv
+2 % L 2 8 2
(I = v " g 16 + () (W)™ (0) ) 18+] f~ dvw dv

< |nisglpa|we f|L;/zv

where we use the fact that ug < ul ,u% when |v — v4| < +/2 and the estimate

1 1
1 2 2
/|U — VU« |y+2ﬂ* |g«| dvs = ( v — va T dv*) (/ nigs dv*)

< ()|t gl (2.53)

=

given by the Cauchy—Schwarz inequality and (2.7).
Estimate of 4, ». Recalling (2.47) we have

Aaa % [ 10— vl 20072020 g o, o
1
< [ 10— o ) 2 g dosdo 5 gl
I+y/2
where we use (2.53). Putting together the estimates of #,1 and 45 », we arrive at

1
< |16 we
A2 S Iwtsglelhlpz, W5 Sz .

Patching together the estimates of #; and #4-,, we finish the proof. ]
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3. Diversity of longtime behavior of the semigroup
In this section we will give the proof of Theorem 1.2. We begin with a technical lemma

for a commutator estimate.

Lemma3.1. Let —25s <y <0, j € N, 2/ > 1/e. Let ypr (v) := y(v/ M) with (y, M) =
(¢, 1/8) or (x. M) = (1 — ¢, 1/g) or (x, M) = (,27). Here ¢ and \ are defined in
(1.19). For any 0 < n < 1, it holds that
ITe (g, ), xnalhs frn)ol < 0~ e (Igl721h1Z o182, ol 1T+l fam | ppe B
(£, xm ) f fam)ol S 07 5\ f 12,0+ 0l famlzy o (3.2)

Proof. In this proof, we denote I(g,h, ) :=([T'%(g,"), xmlh, fxm)o = (L(g, hym) —
am (g, h), fxu)v. Direct calculation gives

I(g.h. f) = / B [(gid)e + g2 ((u3Ye — wIh(F1a0) (—(uar) + za0) do dvs do.

By the Cauchy—Schwarz inequality and the change of variable (v, v«) — (v}, v’), we get
that

1
2

Z(g.h. f)] < ( [ B @212 + (1)) ((ar) — xan)? do s dv)

1
2

x ( f BV ((f )= f 1) + a2 (Y = Y] do dv, dv)

" '/ B*Y (gu2)uhf xar () — xar) do dvy dv

By the estimate of I ; in the proof of Proposition 2.7, it holds that

[ B ) = a0 do,dv < fxul o
By the proof of the upper bound in Proposition 2.1 we have
[ B0y = ) do dvd S W S x| 5 a2y
By these two estimates, we have

[ Z(g.h. OIS 0l famlZ, + 07" F g h) + K (g . . (3.3)

where
1
J(g.h) = /Bg’ygfhz(ui + (1)) (O) — xa)? do dvy dv,

K(g.h, f):= /Bs’y(gu%)*thM((XM)’—XM)dOdv* dv.
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We will now estimate (g, h) and K (g, &, f).

Estimate of $(g,h). We separate the integration domain of (g, /) into three regions:
{lve| < M}, {|ve| = M, |v| < §|vk|} and {Jv«| = M, |v| > §|v«|} where § = T%o
throughout the proof. We first consider the region {|v«| < §M }. By Taylor expansion,

1
() — 1 (v) = /0 (V1) (0()) - (' — ) di.

where v(k) = v + k(v — v). By the support of V y, one has 1Mo <|v(x)| <10M . Therefore
am (V) — yar (v) is supported in |v]| ~ |v (k)| ~ |v — v«| ~ M. In the region {|v.| > §M,
[v] < 8|v«|}, we deduce that [vs| ~ [V — vi| ~ | — V]| ~ |vL]. In the region {|v«| > M,
[u| > 8|v«|}, there holds |v| > §2M. Putting together all the facts, since y < 1 and

[Vam| < M~1, we get
Lt () = )P S Loy <sm Lo~ o—va ot M 2070 — v4]?
+ Qo280 Livs ~fo. I~ o-val Lol <8los]
+ 1y, |=6Mm llvlzﬁzM 1|v|28|v*|) min{l, M_2|v — Vs |292}.
1
From this, together with Proposition A.1 and thanks to the factor u; + (p,% ', we have
for any a > 0,

2 2 —83M2? e 2 2
J(g.h) < |g1\‘|58M|Lga|h1\‘|~M|L)2//2+a +e \w g1|-|28M|L}2'/2+a|h|Lga
+ Mgl zsm 7 |Wgh]|.\282M|iz+ " (3.4)
a a+y
Estimate of X (g,h, ). We decompose the integration domain of KX (g, &, f) into two

regions: {|v«| < M} and {|v«| = M }. Correspondingly, K (g, h, f) = Ki(g, h, ) +
Ka(g. h, f).

We first deal with K1 (g, &, f) whose integration domain is {|v.| < §M }. In this case,
recall that yps(v') — yar(v) is supported in |v| ~ |v — vi| ~ M. By (2.49) and Taylor
expansion,

am (V) = xu (v) = (Vi) () - (v —v')

1
4 [0 1=V : 0 — ) ® (0 —v)de.  (3.5)

we infer that | [ B&Y (xapr (V') — xpm (v)) do| < 1jy, <M 1jp|~Jv—v.|~p (v)?, which yields
that

1
|K1(g.h, ) < g2 1 <smlp |hl|-|~M|L§/2|f}(M|L§/2

< o &€
< ElglealWehlz | amliz (3.6)
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We turn to estimate K»(g, &, f) in which |v«| > M. When (x, M) = (¢, 1/¢), the
support of yps is in the ball Bg-1,,. In this case, we have

Ka(g. h, ) = Kai1+ Kz, (3.7)
1

Ko = /Bs’ylw*\szlsin 8 <o—u, 1 (812 x Lo <s-1ach S a ((rma)' — Xar) do dvwc dv,
1

Kap = /Bs’y1|v*\st15ng|v_v*|—1 (812) sy <s— i hf e ((xm)' — xmr) do dvs dv.

By Taylor expansion (3.5) and (2.49), one has

| K21l S

1 —
/|U—U*|y1|v*|zaM1|v\55—1M|(g,U«2)*thM|(|U—U*|2S+|v—v*lzs ) dvs dv

1
+ lgn* 1 =sm 12 )

—§3M2 1
<e (lgn* 1) =smlpt 2 ytas

1+y+2s

< hly<s-imle2 1 Samlez
<6 W*eh we . .
S e lgle2lWhl2 W faml2 (3.8)

For K5 5, since y + 25 > 0, it is not difficult to check that

—83M?2 1
|K22| Se lgis 1 >sml |h1|~|§8*1M|L;2,/2+s|fXM|L§/2+S

<¢ Weh we . 3.9
< €'lglr2l |L§/2| fXM|L§/2 (3.9

When (y, M) = (1 — ¢, 1/g) or (y, M) = (¥, 27), the support of ya is outside the
ball Bgys and so

Ka(g.h, f) = / Bs’yl\v*ESM1|v|28M(g/L%)*thM((XM)/ — xm) do dvx dv.

When |v — vy| > 1, then |[v — v4|” ~ (V. —vs)” < (V)7 (v4)]. Using J b¥(cos B)do <
725, we get

1
‘/ BV 1o, 12M LivlzsM Lo—v. 21 (81 2) < f xaa (xn)" — xar) do dvs dv
S e‘”e_swz/(v)”1|U*|st1|v\28M|(g/¢L%)*hfo|dv* dv

< S & & X '1
S &°lgl2|W hng/le fXM|L)2//2 (3.10)

L 1 .. ..
When |v — vi| < 1, then i < ud us. We can use decomposition (3.7) and similar argu-
ments to get

1
‘/ BV 1o, 12M LjvlzsM Lo—v. <1 (€12) < f xaa (xn)' — xar) do dvs dv

<égl € € . 11
< &gl | W h|L§/2|W f)(M|Lf,/2 (3.11)
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Patching together (3.8) and (3.9), patching together (3.10) and (3.11), for the three pairs
of (y, M) we conclude that

| Ka(g b I S &'lglealWohlpz W frmly2,- (3.12)
Patching together (3.6) and (3.12) we get
K (g h )] 5 € lglaz I Wohlyz W fralpz G.13)

Plugging (3.4) and (3.13) into (3.3), we get (3.1).
Recalling (1.8), plugging (3.4) and (3.13) into (3.3), by taking (g, h) = (;ﬁ, 1), we
get

LS. 2l fo Faaadol = (T3 £ OIS0 2y p + 0l a2y (B4
Using (2.24) we get
(L3 xm S faaadol = UL5xma £ fxaa)o — (L5 S xma fana )l
= (L5am fo (L= xaa) fam)o — (L5 — xm) £ xma fxma)wl
S b flez Q=) famlrz  + 10 =xm) ez Lxm famlez
SEW Sl W famlpz
S eI, alfamlZ (3.15)
Patching together (3.14) and (3.15), we arrive at (3.2). ]

In the rest of this section, we set f(t) = e~£"* f, with f; € NL. Then f verifies that
f(t) € Nt forany t > 0 and solves

wf+LSf =0, fli=o=fo (3.16)
Now we are in a position to prove (1.29) and (1.32) in Theorem 1.2.

Proof of Theorem 1.2 (part 1: (1.29) and (1.32)). We first prove (1.29). Since f(t) =
oLt foeN L, by Proposition 2.4, there is a universal constant A > 0 such that % | f |iz +
MIf1?,/, = 0and thus for any ¢ > 0,

t
O + A /0 @R, dt < |fol2a. (3.17)

Recall that f%(v) = ¢(sv) f(v) and f* = f — f!. Recalling (3.16) we have

A fh+ Lol =25, 9(e)] f.
fh+ Lo fh =125 1- 9 f
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Thanks to Theorem 1.1, Proposition 2.4 and that |fh|5,),/2 > 5| fh |L2/2, we have
Y
@ LM 2 1 Ry C|f’|2§/2, (3.18)
1
I I 12 12 12 12
(£ f e 2 NA =BV Ry 2 (=PI 2 51" —PS':  (319)
(is‘]ph7 fh> > |fh 22— C82S|fh 2 /2 (3.20)
By (3.18), (3.19) and the identity P(f! + f*) = P f = 0, we derive that
(LS 2y = CIPf L = 1f' 2y = CIP S I

> |12, Ce“|f’1ey/2 (3.21)

Thanks to (3.2) in Lemma 3.1, (3.21) and (3.20), for some universal constant A, > 0 we
get

B4 Aol F1 2 S 2T 2y 41T ) S 217 Ry

Elfh|L2 +A’2|f |gy/2~82s(|f |gy/2+|f| y/2)<82s|f|gy/2

Since y > —2s, then A5 | f/ |8 v = > c|f! |iz for some universal constant ¢ > 0. Recalling
(3.17), we get (1.29) by using Gronwall’s inequality.

Next we want to prove (1.32). Recalling (3.16), applying the operator &; with 2/ >
1/e we have

Pif F LR =Ly TS

Thanks to Theorem 1.1 and Lemma 3.1, for some constant Cy > 0 we obtain

d
1P e+ ColPif 20 2 =6 If 2, o

Observe that |W¢ P f| ~ &2/ P; f|7, and

1 —
IWE(D)Wy/ze‘/’ijiz+|W8((—Asz)2)Wy/z 1132 < 7227795 f1

We are led to

f|L2 ~ _82S|f|g y/2 _2S2Jy| f|L2
From this, together with (3.17), we get |ij(t)|i2 > | P f0|12J2 — Ce™252/7t — C&?,
which yields (1.32) for ¢ € [0, C 12777 2]. |

To complete the proof of Theorem 1.2, we need the following proposition.

Proposition 3.1. Let c, ¢y, c2,q, Yo > 0 be five positive constants. Consider the ordinary
differential inequality

d 142
EY + 1 +6‘2Y2 7 <0, Y|t=() =Y, (3.22)
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where Y < c(Y1 + Y2) and Y, Y1,Y, > 0. Depending on the value of Yy, we have the
following two estimates:
(1) If Yo > 2c(c1/c2)?, let ty be the time such that Y (tx) = 2c¢(c1/c2)4, then for any

t>0, v
Y0 =l Yoow(~500) Hlen e o T O
*

where Yy = Y(tx),C1 = ;qu. Moreover, the critical time verifies ty, < i—lc In %,I—i’.

2) If Yo <2c(c1/c2)?, then for any t > 0,

Yy
Y(t) < T (3.24)
O)I/q

where C, = 2cq 2 (52

Proof. 1t is easy to check that Y(¢) is a strictly decreasing function before it vanishes.
When Yy > 2¢(c1/c2)9, since Y(t«) = 2¢(cq1/c2)?, we have

Y(ts) Y(t)\1+
1 = cz( > ) (3.25)
Since Y < ¢(Y1 + Y>), one has max{Yy, Y} > %Y. Then we deduce
1+ 1+
aY1+ Y, * =max{ciYi.cY, ‘}
Y t t
Y Y 1+1 11—, < I,
> min{cl—,Q(—) "} =] % (3.26)
2c 2c Y \1+7
62(—) , = 1.
2c

Note that the last equality employs (3.25), which is also the reason for our choice of 7.
When ¢t < t, we have

d
¥+ 2—Y <0 = Y(t) <Y, exp(—z—l> (3.27)
On the interval [t, 00), we have
d Y \1+g Y (ty)
—Y <0 = Y(t 3.28
a T 2<2 ) = (1+ C1(t —t,))4° (3-25)

with Cy = 22 MU 5. Patching together (3.27) and (3.28), we conclude (3.23).

Since Y (¢) is a strictly decreasing function before it vanishes, we have
2 Y
2¢(c1/e2)? = Y(ty) < lim Y(t) < Yo exp(—c—ll*) = < Sl
t—>t5 2c 1 Yi
If Yo <2c(c1/c2)?, then for any t > 0,
Y(t) ( Y(t) ) 7
Cl——>0¢2 .
2¢ 2¢
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141 1
Similar to (3.26), we have ¢1Y1 + ¢2Y, ¢ > c2(2Y_C)1+,} on the interval [0, o) and thus

;tY—i-Cz(ZY) *a <0,

which yields (3.24). The proof is complete now. ]

The following example shows that the structure of estimate (3.23) is sharp for (3.22).

Example 3.1. Take ¢ =c¢; = ¢ = Y(0) = 1 and ¢, = £~ 2° in Proposition 3.1. Then (3.22)
reduces to

d
aY + Y1+ Y =0, Y|—o=1,

where Y1 + Y, > Y and Y1, Y5, Y > 0. Here ¢ > 0 is sufficiently small. Let us impose
Y1+ Y, =Yand Y] = s’stzz. Then

6’_6t1t<t* + &2 lise, <Y(@) < e_t/4]t<t* + &2 li>s,. (3.29)

443(t—ty) 44 (t—1ty)

where ¢, is the critical time such that Y (z,) = % $ verifying tx ~ In 57— Y(t 3

Proof. Note that we can solve s 25 Y2 + Y, = Y to get ¥, = —LE1H4e2Y 454 hys

2572x

1 4+2e72Y — /1 + 47257

8—25

Y1+ 5Y) =272V} =
Now let X = ¢~2Y. Then we have the following ODE:
C%XJF 142X —VT+4X =0, Xm0 =& 2.
If we set f(x) = 1 + 2x — /1 + 4x, then one has f/(x) =2 —2(1 + 4x)72, f(x) =

4(1 + 4x)73, fO(x) = —24(1 + 4x)"5/2, f@(x) = 240(1 + 4x)~7/2. By Taylor
expansion, one has

" ®)
10, /20

fx) = f0)+ f(0)x + 3

+—6/0 (x—=1)’ " (t)det
=2x2 —4x3 + —é /(; (x =) fFD()dr.

Since 0 < f®(¢) < 240, we have 2x2 — 4x3 < f(x) <2x? —4x3 + 10x*. If x < 1,
then 4x3 < x? and 10x* < x?2, which gives

x?<1+42x—VT+4x <3x* x<1i (3.30)
Letg(x) = f(x)—x/4;if x > theng (x) =+ —2(1 +4x)_% > %— V2 > 0, which

yields
g) =g =3-V2-L>0= f(x)=x/4
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If x > %, then 1 4+ 2x < 6x. Therefore we have

x/4<1+4+2x—+/1+4x <6x, x=>1. (3.31)
Note that #, is the critical time such that X(.) = 1; then by (3.31) we get

d d d
EX+X/4§d—X+l+2X—v1+4X=0§EX+6X, t <y,

which yields —6 < & d InX < -1 ¢ <1, Integrating over [0, 7] and recalling X(0) =

£725 we have

25 exp(—6t) < X(t) < e > exp(—t/4), 1t <t.. (3.32)

By (3.30), we get

d d d
aX+X2§E}(+1+2X—\/1+4X=05d—t)(+3x2, t > 1,

which indicates

Integrating over [t«, ], we have

1
— < X)) < ———, > 1. 3.33
443(—1y) ()_4+(t—z*) = (333)

Recalling that X = 8_ZSY patching together (3.32) and (3.33), we get (3.29). By (3.32),
recalling X (z.) = 5, we have

—2sln£—ln‘1—‘ 1
— 2 <ty <4(-2slne—In Z)’
6

which yields 4, ~ —2slne ~ In % since ¢ is small enough. ]
We are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 (part 2: (1.30) and (1.31)). By Theorem 1.1, Lemma 2.8 and (2.24),
forl > 2, we get

2
|f|L2 +A’3|f|g y/2+l N |f|L12+y/2’

for some universal constant A3 > 0. Observe that
2 < | £h2 + 12 +C | Fl2
Ul UM+l G

By taklng n small enough, when ¢ > 0 is small enough we infer that | f | 5 | 1 | <

Recalling (3.17), we have | f(z < Lol 2, for any 1 > 0 Recalling that
e y /2 g y g
, + A < 0 and using the mterpolatlon 1nequa11ty
L e y/2

|fle2 = [f1] 7 : 1L a5 R
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since y + 25 > 0, for some universal constants C 1, 62 we get
_ 2+2
S+ G + Gl B U P
Let Y(1) := | f(0)[2,. Y1(1) := | f1 ()12, Ya(2) := | f(¢)[2,. We obtain

d 141
EY + 1Y +C2Y2 4 <0,

where ¢; = Cy, ¢ = C2|f0|_2/q €725 Noting that Y < 2(Y; + Y;), by taking ¢ = 2 in
q/2
Proposition 3.1, we get (1.30) and (1.31) with

Ci/Cs, Ao = Tl’ C, = —=. (3.34)

Now the proof of Theorem 1.2 is complete. ]

4. Nonlinear Boltzmann equation in the perturbation framework

In this section we will prove Theorem 1.3. In Section 4.1 we establish global well-
posedness and propagation of regularity for the Cauchy problem (1.9). In Section 4.2
we derive global dynamics by using Proposition 3.1. Section 4.3 is devoted to the global
asymptotic formula (1.43).

4.1. Global well-posedness and propagation of regularity

The main task is to provide a priori estimates for equation (1.9). We start with the follow-
ing linear equation:

f+v-Vif +&5f =g t>0,xeT3 veR3 4.1)

Here g is given and f is unknown.

4.1.1. Estimate for the linear equation. Suppose f is a solution to (4.1). Recalling
(121),weset f1:=Pf=@+b-v+ c|v|2);ﬁ and f, ;= f — P f. We derive the a
priori estimate for (4.1) in the following proposition.

Proposition 4.1. Let N > 1 and f be a solution to (4.1). Then for M large enough, it
holds that

d 1
EE;N,M(f) + _(|Vx(a»b’c)|i1N—1 + ||f2||§_INL2 s )

Y s Yy | oeenpan @

le|<N le|<N-1 j=1
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where

Enm(f) =M S 2 + In ().

1
SMUS By o < Enan (1) < 2M1f Iy o

Here In(f) is defined in (4.8) and {ej}1<j<13 are defined explicitly by

(4.3)

1 1 1 1

s s s 2 4

ey = (2, ey =7V, ez =7UVUu2, e4="UV3U2, e5=UVjU2,
1 1 1 1
€6 = Uzﬂz, e7 = Ugl“, €g = V1Ua42, €9 = VU342,

1 1 1 1
ero = vsvip2, eqn = [vPuip2, ern = [v]Pvap2, erz = |[v[Pvspz.

The proof of Proposition 4.1 will be postponed a while. We first recall some basics of
macro—micro decomposition. By (1.21) the macro part f; is given by

fit.x.v) = (a(t.x) + b(t. x) - v + c(t, x)[v])u?. (4.4)

which solves
8,f1+v-fo1=—8tf2+l+g, 4.5)

where ] = —v -V, f, — L% f>.

Let A = (a;j)1<i<13,1<j<13 be the 13 x 13 matrix defined by a;; = (e;, e;), and
y be the column vector with 13 components d;a, {3,;b; + 0;a}1<i<3,{0:¢ + 9;b;i }1<i<3,
{0ib; + 0jbi}1<i<j<3, {0ict1<i<3. Let e be the column vector with 13 components
{ej |- Plugging (4.4) into (4.5), we get

e-y=—0:fo+1+g. (4.6)

Define a column vector z = (z;);2, := ({(—9; f> + [ + g, ¢i)y);2 . Taking the inner
product between (4.6) and the column vector e in the space LZ(Rg), one has Ay = z. For
simplicity, we define the following column vectors:

= M ez AP hzizs, {fu Mizicizs A M=) == A7 faueh.
[ = (l(o) {l(l)}1<,<3 {l }1<;<3 {ZU F<i<j<3s {l }15i53)T =AY, e)y,
7= (g hzizs g Nzizs A8 hmic=s 8 1siza)T = A7 (g.e)w.
Here T denotes vector transpose. Then the equation Ay = z is equivalent to
y=ATlz=—-3,f +1+3. (4.7)

Following the notation in [6], let us define the temporal energy functional Iy ( f) as

3
ING) = ), Y TN+ I0 () + I+ I8, @48

le|<N-1 i=1
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where
I6i(f) = @ f 0i0%a)e, I (f) = (0,00, 4.9)
IE8(f) = (8;0%a, 0°bi)sx. '
I8 .(f) == D (@ f P 0;0%1). + > (9 £ 0;07bi)
J#i j#i
+2(0% £, 8;0%;) x. (4.10)

In the following we give a lemma for the dissipation of (a, b, c).

Lemma4.1. Let N > 1. Recall that e = {e;j }]13=1 There exists a constant C > 0 such that

d 1 2 2 2
G+ 5Vab o <C (1A, + X [l Par). @i

|le|<N-—1

The proof of Lemma 4.1 will be given in the appendix. Now we are ready to prove
Proposition 4.1.

Proof of Proposition 4.1. Applying 0% to equation (4.1), taking the inner product with

3% f we have
1d
5 g 10 5+ (LF9° £0°f) = (3g.9° ).

Thanks to Propositlon 2.4, for some constant ¢ > 0 we have

S Sy, teol lfy = 3 I@5.00) @.12)
le|<N

Then (4.2) follows by making a suitable combination of (4.12) and (4.11). More precisely,
one can multiply (4.12) by a large constant and then add the resultant to (4.11). Inequality

(4.3) is a direct result of the fact that |.Tx (f)| < || f1I? |

HNL?

4.1.2. A priori estimate in HN L2. In this subsection we derive the a priori estimate
in H )gv L? for solutions to the Cauchy problem (1.9). We apply Proposition 4.1 by taking
g = T'8(f, f). For ease of notation, let us define the energy and dissipation functionals

EN() =S gn e ON() = ”f”HNLZ

The a priori estimate in H )gv L? can be concluded as follows.

Theorem 4.1. Let —% <y <0, N > 2. There exists 8y > 0 independent of & such that
if a solution f* to the Cauchy problem (1.9) satisfies supy<, <1 E2(f*(1)) < 8o for some
0<T <o0, then

T
sup En (f5(0) + /0 D (f5(5)) ds < C(EN (o)),

t€l0,T]

where C(-) is a continuous increasing function verifying C(0) =0. When N =2, C(x) < x.
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Proof. Let (a®(t, x), b%(t, x), c®(t, x)) be the macroscopic components of f2(¢, x, -)
defined through (1.22). Let ff:=P f°(¢,x,v) =(a®(t,x) +b°(t,x) v +c€(t,x)|v|2);ﬁ,
f5 = f°— ff. Thanks to (1.6) and (1.11), we have [(a®(t,x),b*(,x).c*(t,x)) dx = 0.
By the Poincaré inequality, | (a®, b*, c®)| gy ~ |Vx(a®. b, ¢®)| g y-1 and thus for some uni-
versal constant ¢y > 0,

1
S (Va@ D s 15 e ) Z ol SNy - (4.13)
X X £,y X &,y

By Proposition 4.1, we need to estimate the quantities [(d*T¢(f¢, f¢), 0* f¢)| and
J{*TE(f¢, f¥),e)y|*dx for || < N.In this sequel, we denote by f the Fourier trans-
form of f with respect to the x variable. Observe that

(Té(g.h). f) =Y (T*(&(k).h(m — k). f (m)),.

k,meZ3

From this, together with Theorem 2.3, we get

(T2 @%g.92h). I s D k(™ lm — kB2 (k) 2h(m — ) |ey 2] £ )]y -

k,meZ3
From this, we derive that fora,b > O witha + b > %,
(@ 020). ) % N rva bl pies 2 1z - 4.14)
As aresult, for || < N,
(08 nrl <
(T (@) ] < Nglmzealtlgy ez 102z,
+ vsslglgy by 1flz o @19)

Taking the sum over |a| < N we have

D@ TESE 19, 0% )] S VE(f)DN ()

la|<N

+ 1ns3VEN(f)VON-1(f)VDN(f?). (4.16)

Thanks to Theorem 2.3, estimate (4.14), similar to (4.15) and (4.16), we have for |o| < N,
1<j <13,

/I(aal“e(fs,fs)»ej)ulzdx S E(f)DN () + Inz36n (f*)DN-1(fF). (4.17)

Recall that Ey ar (f°) ~ En(f?) by (4.3). Invoking Proposition 4.1, using (4.13),
(4.16) and (4.17), for any 0 < n < 1 we arrive at

Senm (/) + Dy () S (VETD + E(f) + Inzsn Dy (f)
+ vzan " En (f)DN-1(f7). (4.18)
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For N = 2, if §y is sufficiently small, under the condition supy., 7 E2(f*(¢)) < o
we have

d
—Eau(f) + FDa(f) 0.
(4.19)

T
sup Ex(F5(1)) + /0 Da(f¥(s)) ds < Ex(fo).

t€[0,7T]

For N > 3, taking n small enough, by the smallness assumption supy .,z &2(f (7)) <
8o, (4.18) gives

d c
GENMU) + DN () S EN(S) DN ().
Then we can get the desired result by using mathematical induction. ]

4.1.3. Propagation of the weighted Sobolev regularity H,ﬁv le. We aim to prove the
following proposition.

Proposition 4.2. Let —% <y <0,1>2 N >2. There exists §¢ > 0 independent of ¢
such that if a solution f* to the Cauchy problem (1.9) satisfies supo<, <7 E2(f*(¢)) < o
for some 0 < T < o0, then

sup_1/* Ol 5 + / 175z, ds < Coly,2).
telo0,T

where C(-) is a continuous increasing function verifying C(0) =0. When N =2, C(x) < x.
Proof. We omit the superscript € in f¢ to write
0 f +v-Vof +L5f =T f). (4.20)
Applying W; 9% to both sides of (4.20) we have
W% f + v -V Wid® f + Wi £20% f = Wi d*Te(f. f).

Taking the inner product with W;0% f and taking the sum over |a| < N, we get

Sl g+ X ORESF LW ) = 3 (Wa*To(f ), Wi 1),

le|<N le|<N

By Theorem 1.1, Lemma 2.8 and the condition y/2 4 [ > 0, for some constant ¢y > 0 we
have

> WL LW f) z ol Flgppa, = Clf gz,
le|<N o

Observe that

S (Wi TE(f ) W0 f) = Y (Wid*Te(f. f) = 0°T* (£, Wi f), Wid® f)

la|l<N la|<N

+ Y (T (L WLSf), Wid* f).

le|<N
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With the help of the proof of (4.15), Theorem 2.3 and Lemma 2.8 imply that
> (W0 TE(f. ). Wid® £

le|<N

5\/82(f)||f||§,;v,d§l s + Nz VEN (OIS Il gy-1p2, N lgy .2

Putting together the above results and using the condition supy., 7 E2(f(2)) < do
with §p small enough, we arrive at

&l+y/2 &1+ /2

”f”HNLz +2 ”f”HNLz 5 ||f||i1Nle+ , + 11\/2381\/(f)||fIIi,N_lel+ "
x y x el+y
It is not difficult to check that
1! ez, +||f layez,
577||f ||HJ£VL12+y/2+s+C"”f ||H’€VL12//+ +&°|le” Sf ”H Np2
SO+ e, + DN ).
&Lty

I gz, , =

I+y/2

Taking n small enough, when ¢ is small we derive

”f”HNLz +2 ”f”HNLz e < Ov(f) + 11\/2381\1(1‘)”flllzq)gvflel+ "
LT,

For N = 2 the desired result is easily obtained thanks to Theorem 4.1. For N > 3 we use
mathematical induction to get the desired result. ]

4.1.4. Propagation of full regularity. We first give a useful lemma.

Lemma 4.2. Let [, > [; >0, m >0, ] € R. For any n > 0, there is a constant C;, such
that

B S G+ )WDY [ + Col f By 1f iz, S 1S 1uz,
Proof. Recall (1.20). By the interpolation inequality, it is easy to check that
Pl < 1S g+ Vol S 1S B+ 0l fo s + Gl Fo 2.

Then the first result follows from Lemma A.2. The second result follows from the defini-
tion of | - |L21 in (1.24) and Lemma A.2. |

We are ready to prove propagation of full regularity.

Proposition 4.3. Suppose —% <y <0, N > 2. Recall the weight functions (1.34) and
the functionals (1.35), (1.36), (1.37). There exists 6o > 0 independent of ¢ such that if
a solution f*® to the Cauchy problem (1.9) satisfies supy<, < E2(f*(t)) < 8o for some
0<T <o, then

sup €% (£5(1)) + / DN (£2(2)) dr < CEN (o)),

t€l0,T]

where C(+) is a continuous increasing function verifying C(0) = 0.
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Proof. Since we have the control of E;”””O(f) for 0 < m < N by Proposition 4.2, we will
focus on the estimate of 8¥~/-/ (f)with1 <k < N, 1 < j < k. We denote

P(e.hip)w) i= [ B ve ) Opn)uleih’ — guh) do .
With this notation one has

Wree = D PP egeard @9y g, 05k o).
Bo+B1+B2=8,

a1 tar=u

It is easy to check that for any fixed B, I'®(g, k; B) shares the same upper bound and
commutator estimates as those for I'?(g, /). Recall that £¢g = —FE(M% ,g)—T%(g, /ﬁ).
Thus,

IgLig = L3¢

1 1
— > PP e g ue. 0% g1 Bo) + T(05,8. 95,171 Bo)]. (4.21)
Bo+pB1+B2=8,

2 <

Letl <k < N,1 < j <k.Taking two indexes « and § such that || =k — j, |8| = J,
B = (B!, B2, B?), applying W, 8% to both sides of (4.20), we obtain

3
DeWgdS f + vV WadS £+ > WyB 05E £+ WodS L8 f = Wyd4T(f. f).

i=1

Here e; = (1,0,0), e2 = (0,1,0), e3 = (0,0, 1). Let W; = W}, . Taking the inner product
with W, 8‘; f, one has

3
1d : )
S 108 172 + D2 B OVGOZE L W05 f) + (W03 2” f, Wed f)
i=1

= (anﬁre(f» ) anﬁf)-
Let us give the estimates term by term.
(i) Estimate of (W, 8?_”7 1. Wq0% f). 1tis not difficult to check that

(2]

((WadgTet £ Wad§ ) S I WgWey 25 fllLa | Wa Wy 285 £l
SnDFH(f) + T OIS,
where we use (1.34).

(ii) Estimate of (W, 8% X2 f, W, 8‘; f). Thanks to (4.21), Theorems 1.1 and 2.3 and Lemma
2.8, for some universal constant cg > 0 we have
(W03 L Wgs ) = col O £ =CUfIZ: = CUS Wy

Jj—1
Hs,q+y/2
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By Lemma 4.2 and our assumption for W}, in (1.34), the above inequality can be rewritten
as

Wy gL L Wad5 ) Z ol fli72 =+ ) D" (f)
= CpDFTH(f) = CDT),
(iii) Estimate of (W, 8% et f). wy ag f). Itis easy to check that

(WgdSTE(f. ). W0 f)
= (qua(fv 3%f), an,oéf)

+ Y PR g (W, rs 05 £.052 £ 1 o). Wad% f).
Bo+B1+B2=8,

o) tar=a,
loa|+[B2|<k—1

By Theorem 2.3 and Lemma 2.8, fora,b > 0, a + b = 2, we have

((WeT* (8. ). W I < Niglmer2lhll gz 1Sz

eaty/2

which gives forany 0 < n < 1,

(W Te (05 1), Wadb )] S &2 ()DKHI (f) < (1 + 7 &(f)DE (£).

It remains to estimate A4 := (WqFS(Bgif, Bﬁzf; Bo). Wqd3 f) where || + |B2| <
k — 1. We consider three cases.

Case 1: k = 1. There are only two situations: (|1, |81]) = (0,0) or (0, 1). Then we have

A< (N9p fllez + IS ) fllmzez, 108 122

£q+y/2

S EYNS) + DD (W, £) + (4 07 & () D™ (f).

Case 2: k = 2. We divide the estimate into two subcases: |az| + |82 = 1 and |az| +

|B2| = 0.
Subcase 2.1: |aa| + |B2] = 1. Note that (Joez], |B2]) = (1,0) or (2], |B2]) = (0, 1).
If (Joz], | B2]) = (1,0), we get that j = 1 and (Jae1], |B1]) = (0, 1) or (0, 0). Then we have

Al < 07 & (NIWy £l 2 a T SN g [ Wa S 32,2 BT 085 117
&y X X ey &q

If (lazl, |B2]) = (0.1), then we have (la1. |B1]) = 2—j.j —Dor 2—j.j —2)if
j = 2. These imply that

Al SN E(f) + EXT TN F 12+l L2
Al S 77\ (&) UDIWa Wy A5 N

+v/2

Subcase 2.2: |az| + |B2] = 0. We deduce that (Jo1], [B1]) = (2 —J,j) or (2 — ],
j—Dor(2—j,j—2)if j > 2. Then we arrive at

AL 07 W Wy s+ € UND2Wa /) + OGSz

2 gy
x “HJ
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Case 3: k > 3. We consider four subcases.

Subcase 3.1: |az| + |B2| = k — 1. Note that (Jaz|,|B2]) = (k—j —1,j) or (k — j,
j —1). We derive

AL ST SN WWa W+ Wl Vs )
x £y &Y
-1 2 2 o 2
TS Vg W f Vs + 1051172

S 7'&(f) + MO (f) + 7 DFTL(NER () + 82(N)).
Subcase 3.2: |az| + |B2| = k —2 and |B2| = j. By taking (a,b) = (1, 1), we get
1Al < 7N EX(f) + E2(f)DFTI(S) + n DT ().

Subcase 3.3: |az| + |B2] = k —2 and |B2| < j — 1. Observing that || + |B1] <2
and |Bo| + |B1| > 1, we have

AL S EX () + 21 () + €M2(N)jz2 + EX(fNDFUS) + nDF7I ().
Subcase 3.4: |az| + |B2| < k — 3. Itis not difficult to see that
1Al < M EFTI(f) + L (MNDETI(S) + DR ().
Now we patch together the above estimates to derive that
(1) if k = 1, then
|(Wgd§TE(f. £). Wyd% )
SN EYNS) + DD (Wi, £) + (1 + 07 &N D™ ()
(2) if k = 2, then
|(Wgd§TE(f. £). Wyd% /)
S+ ntea(NDTI(f)
+ 0 EFI(f) + EVN(S) + NN D (Wi, f)
+ 07 (82 (f) + EFITLITLMNDI() + DU(S)):
(3) if k > 3, then
|(Wg05TE(f. f). Wed% f)
S+ nt&(MNDF(f)
+ LD OER () + E30(S) + M2 () ym2 + EFI(S)
+ &I (f)).
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To get the estimate of &1( f), it remains to consider §%!. Taking k = j = 1, by the
above estimates, we have
Ego’l(f) + ECOQO’I(f) S CEXN () + DD(W, )
+ 0+ ¥+ 6 )NDM ().

Taking 1 small enough and since supy,7 &2(f(¢)) < do with 6o small enough, if ¢ is
small enough, by Proposition 4.2 and Gronwall’s inequality, we conclude that

T
sup 81(f(t))Jr/0 D (f(r))de < C(”fO”H}LIZO’gl(fO))' (4.22)

t€[0,T]

To prove the propagation of &2( f), we need to consider the energy 6277+ with j=
1,2. Taking k = 2, j = 1, it is not difficult to conclude that

d

L&+ 260D () £ D)+ (1 + €' (N)Da(Wi, 1) + EX (1) Da(Wi, f).

Then by Gronwall’s inequality, Proposition 4.2 and (4.22), we get
. T .
swp 6V + [ DM (e ar = e (o), @23)
tef0,T 0

Taking k = 2, j = 2, we have

CE02p) 4 Le0d®2(f) 5 DV + D)
+ E%2(f) + V() + NN D Wiy f)
+ (&) + EMUNODVIS) + D).

Then by Gronwall’s inequality, Proposition 4.2, (4.22) and (4.23), we get

T
sup E92(£(1)) + /0 DO2(f(2))dr < C(E22(fo).

t€l0,7T]

In other words, for 0 < J <2, we have sup,cjo 71 627 (f (1)) + fOT D (f(r))dr <
C(E>(fo)).

Now we shall use mathematical induction to complete the proof. We assume that the
result in the proposition holds for0 < J < N <nwithn >2.For0<J <N =n+1,
since J = 0 is handled in Proposition 4.2, we begin with the propagation of Em1(f).
From the above inequalities, we have

%8’"’10’) + %Coj)"’l(f) S U+ E() + () +EX() + 21 (MND(S)
+ o{[')n-‘rl,O(f),
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which yields that sup,cpo 7y €" T (f (1)) + fOT D"TLI(f(1)) dr < C(E"TL1(£))
thanks to Gronwall’s inequality. For j > 2 we derive that

ST () 4 Lo ()
S (G IR 167 + E20()) + €21 (1) + €2/ ) D" ()
+ i’)n+2—j,1'—1(f).

Using mathematical induction to index j, we getfor2 < j < J,

T
sup &7F1RT (£(1)) + / DI (f(2)) de < CE™ (fo)).
tel0,T] 0

which completes the inductive argument for n. We end the proof of the proposition. ]

Proof of Theorem 1.3 (part 1: global well-posedness and propagation of regularity). By a
standard continuity argument, the global well-posedness in H2L? follows from the a pri-
ori estimate in Theorem 4.1 and the local well-posedness result (see [9] for instance). The
propagation results (1.38) and (1.39) follow directly from Propositions 4.2 and 4.3. ]

4.2. Global dynamics

We now give the proof of the second part of Theorem 1.3.

Proof of Theorem 1.3 (part 2: global dynamics). We first prove (1.42). It is easy to check
that &; 1 verifies

0: P fE4+v- VP fo+ LEP; € =[5, Pi1f8 + PTe(fC, f°).
Thanks to Theorem 1.1, Lemma 3.1 and (4.14), for some Cy > 0 one has
d &2 e12 2s £112 2s &2 e112
all?z‘f 72 = =Co(llP; f ”Liy/z +e7 | f IIL;W2 + e gz 2 IS ”Lim
+ 1/ Nz 195 £2117 2 /2)-
&Y,

By Theorem 4.1 for the case N = 2, we have

sup E5(14(1)) + /0 Da(f5(5)) ds < Ex(fo) < So.

t>0
Recalling that || P; f’9||i2 < eV || P; fE ||z2 < £7252/7§,, we have
&y/2

127 FEON72 = 195 foll 7> — Ce2°277 801 — Coe™,

which yields (1.42).
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We will now prove (1.40) and (1.41). By the interpolation inequality

|fle S 11172 a4 : 12 7

and the facts sup».o | /()| g2z < ||fo||H;le from Proposition 4.2 and &5 » (/) +

%"i)z( f€) <0 from (4.19), for some universal constants C 1, 52 > 0, we obtain

d ~ ~ — _ 2(1+1 )
G &MU+ Gl e + Gl bIES a1 ey =

Let Y(1) = &2, (/50). Vi (1) = | f (D2 Ya(0) = | /4032, ,: then

d 141
EY‘FCIYI"}‘CZYZ 7 <0,

where ¢ = C1,¢3 = é:2||f0||;122/]:12 /28_25- By (4.3), sM(Y, + Y2) <Y <4M(Y; + Y2).
*T—qy
By taking ¢ = 4M and applying Proposition 3.1, we can define
_ &,
Cq =8(C1/C)?, Ao =,
! 8M (4.24)

C(fo) = g7 BM) ™70 (€21 (f6))7 Coe™ I o,/ T
to get (1.40) and (1.41). [

4.3. Global asymptotic formula

In this subsection we want to prove (1.43). Let f¢ and f 0 be the solutions to (1.9) and
(1.10) respectively with the same initial data fo. Let F§ := e2725(f¢ — f©), which solves

0 Fp+v-VeFp+£0Fp =¥ 2((&° = &5 f* + (T =T/ /%)
+ Te(f, F5) + TOFE, £9). (4.25)

We first derive an estimate on the operator difference I'® — I'¢.

Lemma 4.3. Let y > —3. It holds that

(0 =T, ), ol S & lglealblyz 1f iz

Proof. By direct calculation we have
(T®=T°)(g.h). o = A1 + Ay + A3 + Aq,

where
Ay 1= /(b —b®)(cos 0)|v — v*|”((p,%); - /Jé)g*h'f’do dvy dv,

Az = f<b —b¥)(cos O)|v — val? (), — 112) g (h — ') f' do duy du,
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1
A3 = /(b —b%)(cos 0)|v — v«|* 2 gu(h — 1) f' do dvy dv,

Ay = /(b — b®)(cos 0)|v —v*|”uég*(h’f’—hf)d0dv* dv.

Note that b — b? is supported for sin % < %5 and so

4¢/3
/ (b — b¥)(cos ) sin> & do < / 11725 dr < 2728, (4.26)
0

Estimate of 4;. By the change of variable (v, v«) — (v,, v’) we have

AL = /(b — b)(cos 0)[v — v |? (12 — (12))g'hy fi do dvy dv.

By Taylor expansion one has
1
w2 =(u2) =(Vp2)(©)-(v-v)+ /O (1= ((V2u2) (k) : (v =) ® (v —v")) di,
where v(k) = v’ + k(v — v’). Recalling (2.45), we have
Al = ' [ 6= peos Ol — 0. (1 = (V2B : (0 =) @ (0 =)

X g'hy fi dic do dvy dv

1
2
5 82_2S (/(U*>y+4(g2)/hi dvy dvl)
1

x (/ (k) — v]? 1 ¥ (0(K)) £2 dic dus dv(K))z
|f|L§/2s

where we use the changes of variable v — v’ and v — v(k), and estimate (4.26).

2—-2
< lglealhle,

Estimate of A;. By the Cauchy—Schwarz inequality and the change of variables (v, vx) —
(v', v}), we have

1
| 2| < ( f (b — b)(cos O)]v — v [ 2g2(h — W)X (u}), + pd)? dor du, d”)

x (/ (b — b°)(cos O)[v — va|2((u¥), — )2 2 do dus d”)
= (A21)? X (A22)?.

By Taylor expansion, h —h' = fOI(Vh)(v(K)) - (v —v")dk where v(k) = v' + k(v — V).
By the change of variable v — v (k) and (4.26), we get

a5 6572 [0y TR W0 dvw bt e < g lhly,
Y.
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1 1
Using (u#), — pnd)? < ((u¥), + pul)sin? % 1v — v4]?, the change of variable v, — v,
and (4.26), we have

1
Ay S 27 / [v— v |” e f2dvsedv < 82_2S|f|i2/ .
y/2

Patching together the estimates of /5 ; and A, », we have

|f|L§/2-

Aol < 2—-2s h
[Aal < e Iglialhly

Estimate of #A3. By Taylor expansion, one has

1

h—h =(VhHO) (v-21")+ / (1 =) ((V*h)(v(k)) : (v —0") ® (v —v)) dk,
0
where v(k) = v’ + k(v — v’). From this, together with (2.45), we have
s | = ‘ / (b — b*)(cos O)[v — v, ? 2 a1 — ) (V2R)(0(6)) : (v — ') ® (v — V)

x f'dk do dvs dv

< 272 (/ [u(k) — vs |y+4ﬂég§|(v2h)(v(/<))|2 dk dvy dv(/c)) 2

1 2
x([ Iv’—v*lyuilf’lzdv*dv’) S lelalhly [ z2

y/2+2

Estimate of #44. By the cancellation lemma and Lemma 2.5, we have

1
sl 2272 [ o= wal7ud lgus 1 dv. v < 2 lglualblyg, |/ 1s2
The lemma then follows by patching together the above estimates. ]

We are ready to prove (1.43).

Proof of Theorem 1.3 (part 3: asymptotic formula). Recalling (4.25) we set
g =L = L) f°+ (T =T fO) + T°(f°, Fp) + T°(F. /).

By applying Proposition 4.1 with the previous nonlinear term g, using (4.13) for F5, we
have

d
_8 FE‘ FE‘ 2
dt NaM( R) + CO” R ||H)€VLg,y/2

13
< Y e Y Y [1osePax

la|<N le|<N-1 j=1
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By Theorem 2.3 with ¢ = 0 and (4.15), we have
|(0*TO(Fg, £°), 0¥ FR)| + |(3*T°(f*, Fg), 8* Fg)|
< (IFRllgy 21 f° lezyrz 1 a2z Frllgy

+ Inzsll /¢ ||H){VL2||1':R||11rx1\’*1L2 )”FR”H VLY

0/2

By Lemma 4.3 we have
22|00 = TO)(f%, ), 6 FR)l + e 2|(0%(£° — £°) £, 0 Fp)|
< ("fEHH){VLZ”fO”H,{VHf/Z 1 Ny ez, N ERIEY L2 -
Recalling (4.17), for any |a| < N we have

/(I(a"‘l“g(fa, FR).ej)ol> + [(°T°(Fg. f°).e)u]?) dx
< 112 Fé‘ 2 1 g2 F&‘ 2
S I gz 2l R”HNLz/ RV EE] PAd PO RIIHXN_IL(% N
5V,
+ ”f ||HNL2 ”FR”HNLZ
By Lemma 4.3 we get
72 [ = T 70 e dx 6572 [ 107 - 2%, ), P v
SV AN T Ve e

Patching together the above results, since sup, - ||f€(t) lm2r2 < I follgzre < 8o with
8o small enough, we arrive at

d &
_ < £112 112
o (FR) + DNl S sl Wl P s
012 2
+||f ”HNL2 ||F£”HNL2
+s00 Lz”f ”HNHZ JHIse ”HNHZ

By (4.3), recall that &7 () ~ || - ||? Thanks to Proposition 4.3, we derive that

||H)€VL2'
* 2 0 2 0 2 N+2,2
é(r + T + T dr<CEN*> ,
/(; (”f ( )||H)€VH)%/2+2 ”f ( )||H;£VH3/2+2 ”f ( )”H)éng’y/z) —= ( (fo))
which yields when N = 2,
o0

sup | FR(O)I7,2; > +/ IFR(ONI2,.  dr < C(E*(fo)).

>0 * 0 *Toy/2
From this, together with mathematical induction, for N > 3 we will get

o0
sup | F&(O)I, 5 + / IFS@I2y . dr < CENT2(fy)),
t>0 * 0 * Toy/2

which ends the proof of (1.43) and completes the proof of Theorem 1.3. ]
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A. Appendix

We first give the definition of the symbol class ST%.

Definition A.1. A smooth function a(v, §) is said to be a symbol of type S’y if a(v, §)
verifies for any a, B € N3,

(0208 a) (v, £)| < Cop (&)™,

where C, g is a constant depending only on « and S.

The following result is an estimate of the commutator between a pseudo-differential
operator M (D) and a multiplication operator ®.

Lemma A1 ([10]). Letl,s,r e R, M = M(§) € Sy and ® = ®(§) € S{,0~ Then there
exists a constant C such that

[M(D). @] f s < C|f |pypseet.

As an application of Lemma A.1, since W* = W*(§) € S{ . 2k =2k (8) € Sll,o
with 0 < 5 < 1, we have

o0 o0
Y WD) f17. = Y 27K IWED) 2 er £ 12,
k>—1 k>—1
o0

S 272 WED) [ + | f o)
k>—1

S|WED) f7. (A.1)

Lemma A.2 ([12]). Let Wj(v) := ¢(ev)(v)? + e79(1 — p(ev)). Let ]l € R, m,q > 0. It
holds that

Flay ~ Pl + Sl IWEDYWflam ~ [WED) S lap-

Let ® = ®(§) € S{,o' Assume that B*(§) verifies |B*(§)| < W/ (§) and [0* B*(§)| <
we (&) for any index o € N3; then

(g—leD*
|®B*(D) f|gm + |BS(D)Df [am < |WS (D)W, f | (A2)
Proposition A.1. Let A°(£) := [ b*(if; - o) min{|£[? sin® §, 1} do; then
A8 ~ [EP T e g5 + Ligs s (W) £ (WS
Proof. Recalling (1.3) we first get

/2
AS() =27r/0 sin 0b(cos ) (1 — ¢(sin § /¢)) min{|&|* sin® &, 1} d6.
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By the change of variable ¢ = sin % we have

3

A© ~ [ B g/ minflg 1) o
0

L2 el

GlE

2

- |g|2f/ 17172 (1— (e 'e|€7Y)) min{s?, 1} dr.
0

By the definition of ¢ we have

Ll Zig]
|g|25/ (7' min{e?, 1} dr < A°(§) < 6% 1717 min{¢?, 1} dr.
Selgl 3elgl
. o 1e|2s (V20812 105 . 2
Now we focus on the quantity 7(§) := |&| fcelél t min{z“, 1} d¢ for a constant

% <c< % and small ¢. For instance, we assume & < 10

(1) It [¢] < V2, then 1(€) = | [Y2EV2 =20 ar ~ (1 — )7 g2,
() If V2 < |§] < (ce)™!, then

2 g

o=t ([ s [T )

~ (1= )T EP (1 = (csl€)> ™) + [E°(1 = (V2[E[7H).

(3) I [E] = ()", then 1(§) = |20 [YV2EV2 =120 gy w20,

The desired result follows from the above estimates. [

Proposition A.2. Let h, f be real-valued functions. It holds that
[ G ) = £l do
S2xR3
= / b - 0)h(EY) — h({ELEN)) £(§) do dé.
S2xR3
Hereu™ = _u+|2u|6, £ = _S+|25|0‘
Proof. Let F(u) := [, b(r - O)f(%uﬂ do. By Plancherel’s equality we have
/ b -o)h(u)f(%u*’) do du = / h(u)F(u) du = / h(E) (&) .
S2xR3 R3 R3

Next we compute the Fourier transform Fof F. By definition, we have

~ —iu-§ ik iMqu.n A
F@ = [ eirau=— [ T b 0) f o do dp,
R3 SZxR3xR3

()3
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Noticing that ‘l'ﬂl -n = 2((‘u| o+ 1)/2)_5(u n+ lul|nlL - 0) and the fact that
Js2 b1(k - 0)ba (- 0)do = [g2 by (t - 0)ba(k - 0) do, one has

1
(2m)?
1
en?

~ . ilnfu A
Fo = —— [ e o) o do dpa
SZxR3xR3

/ b(E-0) f(8(E = f2hn™) do dn,
S2xR3
which yields

L om0/t ydodu = [ (- 0)iEhe) o) do e

A similar argument can be applied to the remainder term and then we get the desired
result. ]

Lemma A.3. Let ¥ be the Fourier transform; then ¥ WE((—Agz)%) = Ws((—ASz)%)?.

Proof. By definition in (1.23), if £ = pt, we have

[es) 1
FWE(=2s2)) f)E) =Y > WU+ 1D)2)F (X" f")()

=0 m=—1
[} I .
=D > WU+ 1)) @W(p),
I=0m=—1
where we use the fact that (Y, f;")(§) = Y™ (x)W;" (p) for some function W;™. Note
that (F £)(§) = X1, Zi,,:_l Y™ (r)W/™(p), which yields

0o [
We(~As2))(F HE =D 3 WU+ D)) Y @O W (p)

=0 m=-1
1
= F (W (-Ls2)2) ) (©).
and ends the proof of the lemma. ]

In the rest of this appendix, we aim to prove Lemma 4.1. For some of the details, [6]
is a good reference. Note that (4.7) is equivalent to

da=—3,fO+10 4O
3:bi + dia = =0, [V +10 +gW 1<i<3,
e+ 0ibi =0, [P +1®P + @ 1<i<3, (A.3)
8ibj + b = —0, [ +1P + ¢, 1<i<j<3, (A.4)
dic = =0, P +1P + ¢ 1<i<3

Based on equations (A.3) and (A.4), it is easy to derive the following proposition.



Asymptotics of the linearized Boltzmann operator 1175

Proposition A.3. For j = 1,2,3, the macroscopic component b; satisfies
xbj = sz-bj = Z dj (_affi(Z) + li(Z) + gi(Z)) - Z i (—8;]‘;;2) + ltSJ'Z) T th))
i#]j i#j
—20; (=3, £ + 1P +g?). (A.5)
The functions f s ] , & can be controlled as follows.

Proposition A.4. It holds that

DNl S blyyge o D 10IE S 1Al

le|<N le|<N—1
> opee s > [lesenlax
le|<N-1 la|<N—-1

Proof. The first one easily follows by recalling f = A7Y(f>,e)y, and using |(3% f5,e)y| <
|/ﬁ8"‘f2|Lz. Recalling [ = —A"Yv -V, fo + £8 f>,¢€)y, noting |a| < N — 1, using the
upper bound in Theorem 1.1, we get the second inequality. The third one is obvious by
recalling g = A7 (g, e),. L]

The next lemma gives macroscopic conservation laws.

Lemma A.4. The macroscopic components (a, b, ¢) satisfy the following system of equa-
tions:

1 1
d1a — 3V - (2 oo, fo)y = 3((5 = vz, g).
0 + V(@ +50) + V- (120 ® v, o)y = (V17 g)o.
1 1
B+ IVa b+ LV b0, fo)y = H(Iol? = 3t g,
Proof. Multiply both sides of equation (4.1) by the collision invariants /ﬁ {1, v;, |v]?},

then integrate over R3 to get equations for the inner products (/ﬁ, v, (/ﬁvi, v,
( ;ﬁ |v|2, f)v. Recalling (1.22), make suitable combinations to get the desired equations.

(]
The previous lemma yields the following one.
Lemma A.5. The following two estimates are valid:
> Bbaly 1y, + Y [I0enPar
le|<N—1 la|<N—1
> 00 S Ve b OB + ks + 2 [ 1 ehPa

le|<N-1 la|<N-—1

Now we are ready to prove Lemma 4.1.
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Proof of Lemma 4.1. For |a| <N — 1, by applying 0 to equation (A.5) for b;, then taking
the inner product with d%b;, one has

IVx0b; 125 +10;0%b;12, = <Zaja“(—atf,.(2) +12 + ). 0% >
i#j .

[Sarca i)
i#j .
—2(9;0%(=3, 2 + 1P + gf)) 3°b;)x.

By integration by parts, the time derivative can be transferred to 0%b;; recalling (4.10),
one has

d
[Vx0%b; |7, +10;07b;17, = —afg,j(f)

+ <Zaja“ﬁ.(2),a,a“bj> <Za £ 0,9b; >
X X

i#j i#j
—2(8;9% 2, 8,0%; <Za (1> + g). 07D >
i#] x
- < 3 80712 + g, 8“b,->
i#] x

—2(9;0°(1 + g2, 9%b))x.

By the Cauchy—-Schwarz inequality one has

(o) o

> 007 fP.0,0%; > —2(0;0% £ 0,0b;)x
i#j

i) *
<n Y. 18%(a.bo)}; + 22|Wﬂﬁ

le|<N-1 |(x\<N

Via integrating by parts, by the Cauchy—Schwarz inequality, one has

<Zajaot(li(2) +gi(2)),3abj> _<Zai8a(li(j2) +g,2)) “b >
x x

i#j i#j
- 2(3;0% (7 + 8. 9%b;)x
- _<Zaa(1}2> +g%).9;0% > +<Za°‘(1,-(,-2’ +g2).9;9%b; >
i#j T Ni#) x
+ 231 + g7). 00y
alVa@b ol Y 0T Y

le|<N—-1 le|<N—-1
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Taking the sum over 1 < j < 3, by Proposition A.4 and Lemma A.5 we get

3
d
Vad*bl7a + 2 D Ta,; (/) < nlVala,b,o)lfy-
Jj=1

C
F (1l ¢ 2 [0t P )

la|<N-1

Similar techniques can be used to deal with |Vx8°‘c|i)26 and |Vx3°‘a|i%. Recalling (4.9)
we have

d < d <
Ved®elfs + 3 > 26, () +[Ved®ally + = 3 (TG, (1) + 155(f)
j=1 j=1

C
e e+ (1 + X [l e par).
' |

a|<N-1

Patching together the above estimates and taking the sum over |o| < N — 1, we have
d
SINC) + V@b, o)y = 0l V@, b, o) e

dr
C o
+;(||fz||§ﬂsz > /|<a g,e>u|zdx).
&Y

le|<N-1

Taking n = % the lemma then follows. |
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