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Cahn–Hilliard equations governed by weakly nonlocal
conservation laws and weakly nonlocal

particle interactions

Ciprian G. Gal and Joseph L. Shomberg

Abstract. We consider a doubly nonlocal nonlinear parabolic equation which describes phase seg-
regation of a binary system subject to weak-to-weak interactions [Gal, Ann. Inst. H. Poincaré Anal.
Non Linéaire 35 (2018)]. The proposed model reduces to the classical Cahn–Hilliard equation under
certain conditions. We establish well-posedness results (based on regular and nonregular mild solu-
tions) along with regularity and long-time results in terms of finite-dimensional attractors. Then we
also establish the convergence of (certain) mild solutions to single steady states as time goes to
infinity. These results are also supplemented by a handful of (two-dimensional) numerical experi-
ments displaying phase-segregation phenomena with interesting interface morphologies, depending
on various choices of the interaction kernels (i.e., Gaussian, logarithmic, Riesz and bimodal poten-
tials). We develop a stable numerical scheme which is able to control the computations under the
effect of the double nonlinear convolutions.
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1. Introduction

The classical Cahn–Hilliard equation (cCHE) was proposed in the late 1950s as a fun-
damental model for (isothermal) phase-segregation phenomena in a binary alloy system.
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Since then, it has become equally important not only to material scientists, but also to
many other areas of science, describing spinodal decomposition, microstructure forma-
tion in materials, image inpainting, multiphase fluid flows, biological aggregations and
tumor growth, and the list goes on (see, for instance, [7]). Although the classical form can
be formally derived as the conserved dynamics generated by the variational derivative of
a (purely local) Ginzburg–Landau free energy, its range of physical applicability is quite
limited to only a number of applications, in particular when the particle interactions are
assumed to be only short ranged. Some recent proposals have further widened the appli-
cation of these models to other (possibly, yet undiscovered) areas of science. We refer the
reader to [17, 18] for a complete discussion of these issues. Among new models of phase
segregation, allowing additional flexibility in the choice of particle interaction ([20, 26])
and (general) laws of mass conservation, one can mention both the nonlocal Cahn–Hilliard
equation (nCHE) (see [1, 5, 14, 15, 18, 19] for the analytic theory and [23] for analysis of
numerical schemes in periodic domains) and the doubly nonlocal Cahn–Hilliard equation
(dnCHE) (see [2, 8, 16, 17] for analytic theory). In fact, according to the analysis in [16],
the two nonlocal versions of the Cahn–Hilliard equation are very much related since both
can be unified into one fundamental equation, in the form

@t� D A�; � D �B� C F 0.�/ in .0;1/ ��: (1.1)

The set� is bounded and open in RN , � 2 Œ�1; 1� represents the relative difference of the
two (material) phases, with ˙1 denoting the pure phases and � 2 .�1; 1/ capturing the
phase transition in the interfacial regions. Furthermore, A, B are self-adjoint operators in
L2.�/, with �B � 0 describing the particle interaction (at the discrete level, either in the
short range or long range, or even both), while the conservation law in (1.1) is found to be
determined by either classical transport (e.g., A D ��;N ) or anomalous transport (e.g.,
A D LJ ). For the latter, this is better reflected in the choice of LJ , defined as a nonlocal
operator,

LJ .�/.x/ D P:V:
Z
�

J.x � y/.�.y/ � �.x// dy (1.2)

D lim
"!0C

Z
�nB".x/

J.x � y/.�.y/ � �.x// dy;

provided that the limit exists,1 whenever � is a measurable function and the probability
density J WRN ! R is measurable and symmetric. Also, F is the density of potential
energy which features two local minima at the pure phases˙1.

In fact, a complete classification of equation (1.1), depending on a proper abstraction
of .A;B/, is completely given in [16], allowing one to recover even the most popularized
form (cCHE) when A D B D ��;N . Although the study of (1.1) in [16] also recaptures

1The principal value is only necessary when J … L1.RN /. If J 2 L1.RN /, it can be dropped since in
that case LJ is a bounded mapping from Lp.�/! Lp.�/.
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the nonlocal equations investigated by [2,8] when both A and B are related to a fractional
version of ��;N , it also extends beyond these cases when, more generally, either A D
LJ or B D LK (for a measurable symmetric function KWRN ! R) is associated with
definition (1.2).2 Therefore, in the context of (1.1) when A D LJ , B D LK , we observe
the following cases of physical interest:

(a) The strong-to-weak interaction case when J … L1.RN / and K 2 L1.RN /. We
refer to [17] for a complete analysis when F is a polynomial potential, where we
establish well-posedness results along with some regularity and long-time results
in terms of finite-dimensional attractors and convergence of solutions to (single)
steady states.

(b) The weak-to-strong interaction case when J 2 L1.RN / and K … L1.RN /.

(c) The strong-to-strong interaction case when J;K … L1.RN /. We refer to [16] for
a complete analysis when F is a polynomial potential (in some special cases, see
also [2, 8].3) We refer to the preceding references for precise statements of well-
posedness along with some regularity and long-time results in terms of finite-
dimensional attractors, and convergence of solutions to (single) steady states.

(d) The weak-to-weak interaction case when J;K 2 L1.RN /.

So far, both cases (b) and (d) appear to be completely open for study, whereas in this
contribution we aim to close this gap in case (d). To this end, we consider the following
doubly nonlocal system:

@t�.t; x/ D LJ�.t; x/; (1.3)

�.t; x/ D �LK�.t; x/C F
0.�.t; x//; (1.4)

for .t; x/ 2 .0;1/ ��, with

�.0; x/ D �0.x/; x 2 �: (1.5)

The operator LH is bounded, as a mapping from Lp.�/! Lp.�/, provided that H 2
L1.RN /, and is defined4 by

LH .�/.x/ WD

Z
�

H.x � y/.�.y/ � �.x// dy:

For the sake of convenience, we also set

.H � v/.x/ WD

Z
�

H.x � y/v.y/ dy

2The (nCHE) is merely a special case of (1.1) when A D ��;N and B D LK .
3Briefly speaking, in that case K.x/ D CK jxj

�N�2s and J.x/ D CJ jxj
�N�2l for x ¤ 0, for some

s; l 2 .0; 1/.
4H is either J or K.
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and

aH .x/ D

Z
�

H.x � y/ dy D .H � 1/.x/:

The existence theory for (1.3)–(1.5) follows a different approach from the analytic
theories of [16, 17] and no longer can rely on a Galerkin scheme for construction of the
approximate solutions. For this reason, the above rigorous gradient flow theories are not
directly applicable; however, certain aspects may be recovered, such as when F is gen-
erated by a quadratic perturbation of a convex function. This is further complicated by
the presence of singular kernels J;K 2 L1.RN / (as the fundamental solutions of a PDE)
and a nonlinear polynomial function F (including the double well, �s4 � �cs2), which
prevent the regularization of Lp-solutions on any time frame. We develop a solution the-
ory of L1-integral/mild solutions on any time frame, since it is naturally expected that
�0 2 L

1.�/ from a physical point of view. This approach also allows us to prove the
uniqueness of L1.�/-mild solutions, along with the validity of the energy identity, in the
same class, without any further (essential) assumptions of regularity on J , K. We based
it on [17], which provides for refined L1-estimates to handle the low spatial regularity of
solutions, the presence of the “nonlinear” convolution LJ .F

0.�// and the double interac-
tion LJ .LK.�//, in (1.3)–(1.4).

There are several notions of criticality associated with the general problem (1.1), (1.5).
One is a natural dissipation property,5 which roughly translates to whether any energy
(nonregular, Lp-) solution of (1.3)–(1.5), in any of the cases (a)–(d), regularizes to a
smooth solution on the time frame .0; T �, for any T > 0. The energy identity plays a
major role in such schemes. For problem (1.3)–(1.5), in cases (a), (c), the refined analysis
of [16, 17] (see also [2, 8]) suggests this happens naturally due to the smoothing property
provided by either one of the diffusion operators A, B (associated with a strongly singu-
lar kernel), providing for the desired compactness of energy solutions. In this sense, case
(d) appears supercritical with respect to cases (a), (c), since we cannot claim any com-
pactness for the operators A D LJ and B D LK , as in the latter cases. This difficulty is
further amplified by the growth (at infinity) of the function F , which can no longer be
controlled by either one of the nonsmoothing operators A, B in case (d). This brings us
to the second notion of criticality for our problem, as a function of the spatial dimension
N � 1, for any arbitrary set��RN . It roughly corresponds to finding the correct balance
between the (singular) diffusion and the nonlinear behavior of F.s/ as jsj !1. If the ini-
tial datum �0 2 W

1;p.�/, with p > N , while the domain� satisfies the cone condition,6

problem (1.3)–(1.5) in case (d) is subcritical in dimension N D 1, is critical in dimension
N D 2, but the dissipation property holds naturally, providing for some Hölder continu-
ity of energy solutions in C ˛.RC � x�/ for some ˛ 2 .0; 1/ (and therefore the desired

5We say that a problem is dissipative in some subset V � Y , where Y is a topological space, endowed
with a given metric, if trajectories corresponding to bounded sets of initial data in V will enter V after a
certain time, and will stay there forever.

6See for instance, the paper by Adams and Fournier [J. Math. Anal. Appl. 61 (1977)].
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compactness in L1 holds). It is worth emphasizing that such a property is ensured, for
instance, by weakly singular kernels J;K 2 W 1;1.RN /. On the other hand, the problem
becomes supercritical in dimension N � 3 as the behavior of the nonlinearity F.s/, as
jsj !1, is dominant. We extend the above dissipative and smoothing property in dimen-
sion N � 3, by relying instead on refined energy estimates using weak Lp-type spaces,
in order to balance the strength of the nonlinearity against that of the singularity (near
the origin) of J 2 W 1;1.RN /. Interestingly, our analysis uncovers that a natural maximal
regularity theory in Lp-spaces holds for the aforementioned problem. It appears that such
a property has not been observed before for our (nonlinear) nonlocal equation.

Our problem is also formally a gradient flow with respect to the L2-distance for the
free energy

E.t/ WD
1

4

Z
�

Z
�

K.x � y/.�.t; x/ � �.t; y//2 dx dy C

Z
�

F�.t; x/ dx:

As a general scheme to deal with the above issues, we use the free energy as an impor-
tant dissipative quantity in our analytical arguments, leading to the existence of finite-
dimensional attractors for the problem and the convergence to (single) steady states as
time goes to infinity. The Hölder continuity of solutions plays a crucial role in these
arguments. We also point out that the free energy has been used by many authors for
the same purpose7. Our conclusion is that, under suitable assumptions8 on the problem
parameters, our case study (d) and the other nonlocal (nCHE) (see [1,5,14,15,18,19]) and
(dnCHE) equations (see (a), (c)), are equivalent from a long-term perspective in that their
corresponding steady state behavior is the same.9 Thus, under those assumptions, these
phase-segregation models appear only different in their transient (temporal) behaviors and
corresponding interfacial morphologies in the binary system, as these systems evolve with
time. In this contribution, we also only consider initial data in L1.�/, for which the free
energy turns out to be finite on any time frame, although our arguments may hold in more
generality. In the future, it may be possible to further relax the regularity assumptions on
J , K, in order to produce the critical properties just described above. The problem of a
singular potential F , which satisfies F 0.˙1/D˙1 and F 00.˙1/D1, is clearly equally
as important (see, for instance, [18] for the case of (nCHE)). It remains unclear to what
extent the assumptions on F , and the interaction kernels J , K, single out the doubly non-
local Cahn–Hilliard equation from other possible equations describing phase-separation
phenomena (see also Remark 3.8).

Perhaps a complete study of the interface motions, obtained from these equations in
the sharp interface limit, can shed light in further classifying these problems and estab-
lish their strong connection to other (yet undiscovered) theories of phase segregation. On
that front, it then also becomes a simple fundamental question of whether the classical

7We refer the reader to [16] and [18] for additional discussions.
8Such as initial conditions and the horizons of the interaction kernels J , K.
9We also expect this to hold in case (b). Steady states satisfy �LK.��/C F

0.��/ D const, N�� D N�0.
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Cahn–Hilliard equation (cCHE) arises as a suitable approximation of the doubly nonlo-
cal Cahn–Hilliard equations under certain conditions on the problem parameters. This is
relevant in particular for the (standard) sharp interface limit problem ([21]) associated10

with the (cCHE) and (nCHE), which can then be seen as a limit of suitable sharp interface
problems, associated with the late stages of the coarsening process in doubly nonlocal
Cahn–Hilliard equations. In the future, it would be interesting to investigate the power
laws which govern the evolution of the dominant length scale, for each separate model
from (a)–(d). Namely, find appropriate upper bounds for coarsening rates and describe
how these bounds depend on the parameters of the system, such as temperature, the mean
concentration and the choice of interaction kernels J , K.

For a proper nonlinear (approximation, outside the interval Œ�1; 1�) function F , pos-
sessing double-well features (i.e., .˙1; F.˙1// are the two local minima), consider the
nonlocal problem (1.1), (1.5), withADB DLKı , for a suitable smooth family of (radially
symmetric) kernels

¹Kıºı>0 � C.R
N / \ L1loc.R

N /:

More precisely, we let

Kı.x/ D CKı
�NK.xı�1/ with C�1K D

1
2

R
B.0;r/

K.x/jxN j
2 dx for some r > 0:

Assuming sufficiently smooth initial data �0 and a domain � of class C 4Cˇ , we estab-
lish the convergence of the corresponding (unique) mild solution, satisfying �ı.0/ D
 .0/ D �0,

k�ı �  kC.Œ0;T �IL2.�// ! 0 as ı ! 0C, for all T > 0; (1.6)

where  is a (unique) C 4Cˇ -solution of the (classical) Cahn–Hilliard equation (cCHE)
(i.e., (1.1) with A D B D ��;N ). We note that similar convergence results have also
been established between the (cCHE) and the standard nonlocal Cahn–Hilliard equation
(nCHE) (forAD��;N ,B DLKı , albeit with different assumptions on the kernel and the
sequence of initial data11), for periodic �-domains ([25]) and for other general domains
([9, 10]). The same question of convergence remains open for the binary system in the
remaining cases (a)–(c).

A study of a numerical representation of the doubly nonlocal problem is given for
bounded two-dimensional domains. Our motivation for this is to illustrate case (d) and to
extract some further interesting features about this doubly nonlocal problem. One numeri-
cal study, on which we partially base ours, is [4], whereby a difference scheme is presented
to examine a weakly nonlocal variant of the Allen–Cahn equation. In [4] the convolution

10The sharp (interface) evolution laws for (nCHE) coincide with the ones which can be obtained in
analogous limits from the classical CHE (i.e., (cCHE)).

11For instance, in [25], �ı .0/ 2 H 1.�/, with (uniformly) bounded E-energy, is such that �ı .0/ !
�0 D  .0/ weakly, whereas in our case �ı .0/ D �0, but the double-well potential F is truncated outside
the interval Œ�1; 1�, such that F has at most quadratic growth at˙1.
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is expressed naturally as a literal double sum of products communicating the probability
of interaction between various elements. It seems that our numerical study is novel to the
literature in that case (d) of the doubly nonlocal CHE contains an iteration of (weakly non-
local) convolution terms. One of the main difficulties with the numerical problem is how
to control the computations under the effect of the double convolution. This is described
in detail for various different interaction kernels. Indeed, we entertain the Gaussian ker-
nel, a Newtonian (logarithmic) potential, and a Riesz potential, as well as (what we term)
a bimodal kernel (a bimodal kernel is similar to a Gaussian, but with two peaks). We
achieve stability over the numerical procedure by finding a control over the first iterate of
the solution. This is then used to (heuristically) find control constants on each kernel. To
not distance our numerical scheme from the assumptions of the principal existence result,
we only work with initial data that are faithful to the existence result (cf. Theorems 2.3
and 2.5). Here we have generated initial data with the properties that at each mesh point
we assume the value of 1 or �1, and the sum over all such points is zero. Obviously, we
are using locally integrable L1-kernels and L1-data. In the four different simulations, the
kernel K is fixed as a Gaussian but J varies over the kernels mentioned above. When J
and K are Gaussian we also observe how the phase morphology behaves as a function of
the interaction (length) scale 0 � ı � 1. Each simulation is initiated using the same initial
data so we can see the effect of the different possible long-range interactions being per-
formed in various stages of the calculations. It should be mentioned that due to the very
nature of the rough data and (weakly) singular kernels, no further approximations nor fast
numerical solvers are employed. This means one convolution is computed with the oper-
ational order of O.M 2/ for each iterate, M being the number of spatial one-dimensional
subintervals. With N iterations in time, the double convolutions, and the simulations pro-
vided here, are on the order of O.NM 4/. The final statement on the results from our
numerical study concerns an experiment that represents a departure from the theoretical
result in (1.6). Although the result in (1.6) holds for sufficiently smooth data, we devise
a suitably rescaled problem (in the case when both kernels are the same Gaussian) and
measure the L2-norm between the solution of the classical CHE and the solutions of the
various rescaled nonlocal CHE, all originating from the same rough data described above.

Outline of the paper. In Section 2 we state the relevant notation and the notion of
mild/integral solutions which can be constructed by the Picard iteration scheme. Further-
more, we give a main summary of the main results and proofs, involving the existence
and uniqueness of L1-mild solutions, along with the existence of a dissipative semigroup
for our problem. In Section 3 we prove additional smoothing estimates for the aforemen-
tioned solutions, implying the desired Hölder continuity of the semigroup. Consequently,
in Section 4 we give a complete characterization of the omega-limit sets associated with
W 1;p-data and then, in Section 5, a theorem on the existence of exponential attractors is
proved for the associated semigroup of solutions. In Section 6 we give the precise state-
ment and a proof of the aforementioned convergence result in (1.6). Section 7 implements
the (forward) Euler scheme for our case study in (d), confirming the analysis performed in
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the previous sections. The final section is an appendix that contains a number of technical
results, assisting in the proofs of the main results.

2. Mild solution theory

Let � be a bounded open set in RN , N � 1. No further regularity assumptions on � are
required at this point, but we will add any whenever it is necessary to do so by our proofs.
Assume the following:

(H1) J 2 L1loc.R
N / is nonnegative, K 2 L1loc.R

N /12 and J , K are symmetric13 over
RN .

(H2) F 2 C 2.R;R/ satisfies F.0/ D F 0.0/ D 0, and there exists a constant c0 > 0
such that, for aK.x/ WD

R
�
K.x � y/ dy,

F 00.r/C aK.x/ � c0 for all r 2 R and a.e. x 2 �: (2.1)

Moving forward, we assume (H1)–(H2) hold. We will first look for the existence of a
globally defined mild solution to (1.3)–(1.5) using Picard’s method of successive approxi-
mations for the unknown function � in the variable t ; i.e., we identify �.t; x/D �.t/ 2X ,
where X denotes an appropriate Banach space. The iterates are defined as follows:

�0.t; x/ � �0.x/; (2.2)

�nC1.t; x/ D �0.x/C

Z t

0

..J � �n/.�; x/ � aJ .x/�n.�; x// d� for all n � 0; (2.3)

�n.�; x/ D �.K � �n/.�; x/C aK.x/�n.�; x/C F
0.�n.�; x// for all n � 0: (2.4)

More precisely, our notion of a solution to the system (1.3)–(1.5) is the following.

Definition 2.1. We say that � is a mild solution on the time interval .0;T / if �.0;x/D �0
in the L1.�/-sense, and it satisfies

�.t; x/ D �0.x/C

Z t

0

.J � �/.�; x/ � aJ .x/�.�; x/ d�; (2.5)

�.�; x/ D �.K � �/.�; x/C aK.x/�.�; x/C F
0.�.�; x// a.e. in.0; T / ��:

Moreover, the solution satisfies

� 2 C.Œ0; T �IL1.�//; F 0.�/ 2 C.Œ0; T �IL1.�//:

12Mathematically, the positivity of K is not required. However, in phase separation/aggregation phe-
nomena one has K � 0. This is similar to other instances; refer also to [18, 19].

13A function H is symmetric if H.x/ D H.�x/ for all x 2 RN .
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Remark 2.2. Note that, due to Fubini’s theorem, assumption (H1) and Definition 2.1, the
total mass of � over � is conserved, namelyZ

�

�.t; x/ dx D

Z
�

�.0; x/ dx for all t � 0:

Theorem 2.3. Let the assumptions (H1)–(H2) hold, and let �0 2 L1.�/.

(i) Then system (1.3)–(1.5) has a mild solution, in the sense of Definition 2.1, on
the interval .0; T /, for any T > 0.

(ii) Each mild solution satisfies � 2 W 2;1.0; T IL1.�//, and the following equa-
tions hold:

@t� D LJ .�.t; x//; a.e. x 2 �, for all t 2 .0; T /; (2.6)

�.t; x/ D �LK�.t; x/C F
0.�.t; x//; a.e. x 2 �, for all t 2 .0; T /:

(iii) Moreover, we have

� 2 W 1;1.0; T IL1.�//; F 0.�/ 2 W 1;1.0; T IL1.�//: (2.7)

Proof. For the sake of convenience, the reader can find the local-in-time result in the
appendix (see Theorem A.1). Let ı 2 .0; T

2
/ be an arbitrarily small number and consider

the right-difference

Z.t; h/ WD h�1.�.t C h/ � �.t// for h 2 .0; ı� and 0 � t � T :

Here T > 0 is a fixed time, which is defined by how long the mild C.Œ0; T �IL1.�//-
solution � exists. Notice that Z.t � h; h/ coincides with the left-difference. For every
mild solution �, the continuous functions Z.t; h/ and Z.t � h; h/ then satisfy

Z.t; h/ D h�1
Z tCh

t

LJ .�.s// ds

and, respectively,

Z.t � h; h/ D h�1
Z t

t�h

LJ .�.s// ds:

As in the proof of Theorem A.1, we clearly have´
kZ.t; h/kL1.�/ � Ck�kC.Œ0;T �L1.�// � CT ;

kZ.t � h; h/kL1.�/ � Ck�kC.Œ0;T �L1.�// � CT ;

uniformly in t 2 Œ0; T �. Passing now to the limit as h! 0C in the limsup and liminf sense
above, we deduce that both lower Dini derivatives @C�.t/, @��.t/ and both upper Dini
derivatives @C�.t/, @��.t/ are bounded uniformly (as functions with values in L1.�/)
for all 0 � t � T . Thus, all four Dini derivatives are finite in the range for 0 � t � T .
By application of the celebrated theorem of Denjoy–Young–Saks ([6, Chapter IV, Theo-
rem 4.4]), the continuous mild solution �W Œ0; T �! L1.�/ is differentiable for almost all
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0� t � T , and all four Dini derivatives are equal to @t�.t/ on the set t 2 Œ0;T � nE (where
E is a null set of Lebesgue measure; in fact, E is a set of first category; see [6, Chap-
ter IV, Theorem 4.7]). In particular, this yields the fact that @t� 2 L1.0; T IL1.�//,
so that (2.6) follows. The last regularity (2.7) is an immediate consequence of the regu-
larity for @t� and the (local) Lipschitz continuity of F 0. In fact, on account of formula
(2.5), a similar argument shows that the C.Œ0; T �IL1.�//-norm controls the norm of
@t� 2 L

1.0; T IL1.�// and @t t� 2 L1.0; T IL1.�//. Thus, (iii) follows once again
from the validity of (2.5), whence (ii) is satisfied due to the boundedness of the operators
LJ , LK .

It then suffices to show that � 2C.Œ0;T �IL1.�// for any T > 0; the local solution can
then be continued on every interval by the usual ODE trick. Immediately after, (ii)–(iii)
hold on any interval .0; T /, and not just locally in time. To show the global boundedness,
we follow an argument from [17, Lemma 3.1] in order to deal with the double interaction
in the Cahn–Hilliard equation. This argument requires mainly that J � 0 and the integra-
bility of J and K. We multiply the first equation of (2.6) by j�jp�1�, and then integrate
over �. We obtain

1

p C 1

d

dt

Z
�

j�jpC1 dx

D �

Z
�

Z
�

J.x � y/.�.x/ � �.y//.j�.x/jp�1�.x/ � j�.y/jp�1�.y// dy dx

DW �.J1 C J2 C J3/; (2.8)

where we have set

qF .�/ WD
F 0.�.x// � F 0.�.y//

�.x/ � �.y/

and

J1 WD

Z
�

Z
�

J.x � y/.aK.x/C qF .�//.�.x/ � �.y//

� .j�.x/jp�1�.x/ � j�.y/jp�1�.y// dy dx;

J2 WD

Z
�

Z
�

J.x � y/.aK.x/ � aK.y//�.y/

� .j�.x/jp�1�.x/ � j�.y/jp�1�.y// dy dx

and, finally,

J3 WD

Z
�

Z
�

J.x � y/..K � �/.x/ � .K � �/.y//

� .j�.x/jp�1�.x/ � j�.y/jp�1�.y// dy dx:

We also recall that aK.x/C qF .�/� c0 for all � 2R, a.e. in�, on account of assumption
(H2) and the mean value theorem for F 2 C 2. Then, exploiting [17, Lemma 3.1, (3.5)], it
follows that �J1 � 0 for all t � 0I henceforth (2.8) implies that

k�.t/k
p

LpC1.�/

d

dt
k�.t/kLpC1.�/ � �J2 � J3
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and the uniform estimate

jJ2j � kaKkL1.�/kJ � �kLpC1.�/k�k
p

LpC1.�/

� kKkL1kJ kL1k�k
pC1

LpC1.�/
;

as well as
jJ3j � kKkL1kJ kL1k�k

pC1

LpC1.�/
:

Thus, for all t � 0, it follows that

d

dt
k�.t/kLpC1.�/ � 2kKkL1kJ kL1k�.t/kLpC1.�/:

The Grönwall inequality gives the desired uniform estimate in the LpC1-norm, and the
L1.�/-norm, as usual by passing to the limit as p !1. Namely, we deduce

k�.t/kL1.�/ � k�0kL1.�/e
2kKkL1kJkL1T

for all t 2 Œ0; T �. The proof is now complete.

Remark 2.4. The conclusions of Theorem 2.3 (and, in particular, the global boundedness)
also hold if we replace (2.1) by the condition

F 00.r/C aK.x/ � c0jsj
2q
� Nc0 for all r 2 R, a.e. x 2 �; (2.9)

for some q > 0, c0 > 0, Nc0 � 0. For comparison, we refer the reader to [13], where a
nonlocal Cahn–Hilliard equation is coupled with the Navier–Stokes equation (and, where
(2.9) plays some role in providing additional regularity properties for the velocity compo-
nent).

Each mild solution satisfies an energy identity. To this end, let us also define the energy
functional EW .0;1/! R, along any given mild L1-solution, by

E.t/ WD
1

4

Z
�

Z
�

K.x � y/.�.t; x/ � �.t; y//2 dx dy C

Z
�

F�.t; x/ dx:

Theorem 2.5. Let the assumptions of Theorem 2.3 hold.

(i) E 2 AC.0; T IR/ (i.e., E is absolutely continuous on .0; T /) and the energy
identity

d

dt
E.t/C

1

2

Z
�

Z
�

J.x � y/.�.t; x/ � �.t; y//2 dx dy D 0 (2.10)

holds for almost all t 2 .0; T /.

(ii) Moreover, if �1 and �2 are two mild solutions, subject to the initial conditions
�1.0/ D �10, �2.0/ D �20, the following estimate also holds:

k�1.t/ � �2.t/kL1.�/ � k�10 � �20kL1.�/e
Ct for all t 2 Œ0; T � (2.11)

for some C > 0 independent of t and �i (i D 1; 2).
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Proof. The proof of (i) follows easily (on account of the regularity of �), by multiplying
the first equation of (2.6) by �, the second by @t�, and then combining the resulting
equations to conclude with (2.10).

For the Lipschitz estimate (and uniqueness), we consider two mild solutions �1, �2
subject to the initial conditions �1.0/ D �10, �2.0/ D �20. We then set v.t/ WD �1.t/ �
�2.t/, t 2 Œ0; T �, and observe that v satisfies

v.t/ D v.0/C

Z t

0

..J � N�/.�; x/ � aJ .x/ N�.�; x// d�;

N�.�; x/ D �.K � v/.�; x/C aK.x/v.�; x/C F
0.�1.�; x// � F

0.�2.�; x//:

Following the standard existence argument, we then find

kv.t/kL1.�/ � kv.0/kL1.�/ C CT

Z t

0

kv.�/kL1.�/ d�

for some C > 0 independent of v, t . The Grönwall inequality immediately yields the final
claim (2.11) of the theorem. The proof is finished.

In what follows, we also set

L
p

.m/
.�/ D

®
� 2 Lp.�/ W N� WD 1

j�j

R
�
�.x/ dx D m

¯
; 1 � p � 1;

which we endow with the metric Lp-topology. We remark that problem (1.3)–(1.5) gen-
erates a (strongly) continuous semigroup

S.t/WL1.m/.�/! L1.m/.�/

given by
S.t/�0 D �.t/; t � 0;

where � is the unique mild solution in the sense of Definition 2.1.
For additional (physical) properties of the solution (and/or semigroup), we will also

need the following assumptions.

(H3) Given J and �, there exists a constant �1 D �1;J .�/ > 0 such that, for all
v 2 L2

.0/
.�/, the Poincaré inequality holds:

�1kvk
2
L2.�/

�
1

2

Z
�

Z
�

J.x � y/.v.t; x/ � v.t; y//2 dx dy:

(H4) There exist c1 > 0, c2 � 0 such that F.r/ � c1jr j2qC2 � c2 for some q > 0, for
all r 2 R.

Remark 2.6. • (H3) is satisfied for instance by any integrable kernel J � 0 whose sup-
port contains the ball B.0; �/ for some � > 0. In that case, LJ WL

2
.0/
.�/! L2

.0/
.�/

is a positive (self-adjoint) bounded operator. We remark that

�1;J D inf
v2L2

.0/
.�/

1
2

R
�

R
�
J.x � y/.v.t; x/ � v.t; y//2 dx dy

kvk2
L2

:
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The Fredholm alternative implies that �1 D �1;J > 0.

• By (H3), LJ is a linear homeomorphism (or topological isomorphism) as a map-
ping from L2

.0/
.�/! L2

.0/
.�/ (and so is L�1J ). Consequently, there exist constants

mi ; Mi > 0 (i D 1; 2) such that mik�kL2.�/ � kTi�kL2.�/ � Mik�kL2.�/ for all
� 2 L2

.0/
.�/, where T1 D LJ , T2 D L�1J .

• The double-well potential F.r/ D � r4 � �cr2, 0 < � < �c , satisfies (2.9) and (H4)
with q D 1.

Theorem 2.7. Let the assumptions of Theorem 2.5 be satisfied and further assume
(H3)–(H4).

(a) Then the following dissipative estimate holds:

E.t/ � E.0/e�t C L1 for all t � 0; (2.12)

where L1 D L1.m/ > 0 is a constant which is independent of the initial data, �
and time.

(b) There is a bounded absorbing set (in the L2qC2-topology) for the semigroup fam-
ily ¹S.t/ºt�0. Namely, for any �0 2 L1.m/.�/ such that k�0kL1.�/ � R, there
exists a time t0 D t0.R; m/ > 0 such that k�.t/kL2qC2.�/ � Cm for all t � t0,
with constant Cm > 0 independent of time, � and the initial datum (depending
only on m, and the structural assumptions of the theorem).

Proof. To show (2.12), let us test � D aK� �K � � C F 0.�/ by � in L2.�/. We obtain

.�; �/L2 D
1

2

Z
�

Z
�

K.x � y/.�.x/ � �.y//2 dy dx C .F 0.�/; �/L2 : (2.13)

By the convexity of G.r/ D F.r/C kaKk1
2

r2 (and therefore G00.r/ � c0 a.e. in�, owing
to (H2)), we have

F 0.r/r � F.r/ �
kaKk1

2
r2 for any r 2 R:

Therefore, from (2.13) we get

.�; �/L2 �
1

2

Z
�

Z
�

K.x � y/.�.x/ � �.y//2 dy dx C

Z
�

F.�.t// dx

�
kaKk1

2
k�k2

L2.�/
: (2.14)

On the other hand, by (H3) we can exploit the Poincaré inequality

�1k� � N�k
2
L2.�/

� l.�; �/ WD
1

2

Z
�

Z
�

J.x � y/.�.x/ � �.y//2 dy dx

and the conservation of mass N� D N�0 D m, to observe that

.�; �/L2 D .� � N�; �/L2 � �
�1=2
1

p
l.�; �/k�kL2.�/;
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assuming for simplicity (for now) that m D 0. Thus, by virtue of assumption (H4) (recall
that q > 2) we rewrite (2.14) and estimate in a simple fashion, in order to get

�
�1=2
1

p
l.�; �/k�kL2.�/ �

1

2
E.t/C

c1

2
k�k

2qC2

L2qC2.�/
�

�c2
2
j�j C

kaKk1

2
k�k2

L2.�/

�
:

An application of the Young inequality yields

1

2
E.t/C

c1

2
k�k

2qC2

L2qC2.�/
�

�c2
2
j�j C

kaKk1

2
k�k2

L2.�/

�
�
1

2
l.�; �/C

��11
2
k�k2

L2.�/
:

We thus easily deduce 1
2
E.t/ � 1

2
l.�; �/ C C�, with constant C� > 0 depending only

on q, c1, �1, kKkL1 , c2 and j�j. It follows by virtue of the foregoing inequality and the
energy identity for � that we have

d

dt
E.t/C E.t/ � 2C� for all t � 0: (2.15)

Since jE.0/j � CR with k�0kL1.�/ � R, by means of the Grönwall inequality we obtain

E.t/ � E.0/e�t C L � CRe
�t
C L; (2.16)

with L D 2C�. If m 6D 0, observe that if � is a mild solution with initial datum �0 for the
problem with potential F , then Q� D � �m is a mild solution with initial datum Q�.0/ D
�0 �m for the same problem with potential zF .s/ WDF.r Cm/�F.m/. Since now NQ�D 0,
we can employ the dissipative estimate (2.16) for the solution Q� and easily arrive at the
final inequality (2.12). The proof is complete.

3. Regular mild solutions and uniform estimates

Our main goal of this section is to investigate whether the mild solution is eventually more
regular, in a suitable class of Sobolev spaces. Furthermore, we aim to give dissipative
estimates which are crucial for the long-term behavior (as time goes to infinity) of the
mild solution in the following sections.

We introduce the i th difference quotient (of size h) in any open set �0 � � (where �
satisfies the cone condition), for all t � 0,

Di;h�.x; t/ D h
�1.�.x C eih; t/ � �.x; t//; i D 1; : : : ; N;

for x 2 �0 and 0 < jhj < .1=2/ dist.�0; @�/. As usual, r D .D1;D2; : : : ;DN /.
We impose additional assumptions on J , K and replace (H4) by a condition which

implies that F has some rational/polynomial growth at infinity.
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(H5) There exist ci > 0, Qci � 0 (i D 1; 2) such that

c2jr j
2l
C Qc2 � F

00.r/ � c1jr j
2q
� Qc1 for all r 2 R;

for some l � q > 0.

(H6) The interaction kernels J;K 2 W 1;1
loc .R

N /.

We remark that (H6) also implies that aJ .x/ D .J � 1/.x/ is continuous in x 2 x�,
and so

min
x2x�

aJ .x/ � �1;J > 0

(see [3, Lemma 3.15]). Recall that �1;J > 0 is the first eigenvalue of the (self-adjoint)
operator LJ WL

2
.0/
.�/! L2

.0/
.�/ (see Remark 2.6).

Our first regularity result is the following.

Theorem 3.1. Let (H1)–(H3) and (H5)–(H6) hold, and assume �0 2 L1.m/.�/ \H
1.�/

such that k�0kL1.�/ � R1 and k�0kH1.�/ � R2. Then for all t � 0, the following dissi-
pative estimate holds:

k�.t/kH1.�/ � k�0kH1.�/e
��1;J c0t C L2; (3.1)

where the constant L2 D L2.m; R1/ > 0 is independent of the initial data, � and time.
Moreover, there exists a time t1 D t1.R1; R2/ > 0 such that

k�.t/kH1.�/ � Cm for all t � t1: (3.2)

Here the constant Cm > 0 is independent of time, Ri , � and the initial datum (depending
only on m and the structural assumptions of the theorem).

Proof. In this proof (and everywhere else in this section), the constant C� > 0 is inde-
pendent of the initial data, �, Ri and time (and may change from line to line). By Theo-
rem 2.7 (a) and (H5), � 2 Cb.RCIL2qC2.�// with F.�/ 2 Cb.RCIL1.�//, andZ tC1

t

k�.s/k2
L2.�/

ds � CR1e
�t
C C� for all t � 0: (3.3)

Here CR1 > 0 is such that jE.0/j � CR1 since k�0kL1.�/ � R1. Moreover,

� 2 Cb.RCIL
1.�//

with j N�.t/j � CR1e
�t C C�, since jF 0.r/j � C�.jF.r/j C 1/, andZ tC1

t

k�.s/k2
L2.�/

ds � CR1e
�t
C C� for all t � 0: (3.4)

Indeed, we infer from the energy identity (2.10) that

E.t C 1/C
1

2

Z tC1

t

Z
�

Z
�

J.x � y/.�.t; x/ � �.t; y//2 dx dy dt

D E.t/ � CR1e
�t
C .L1 C C�/; (3.5)
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which in view of the Poincaré inequality (H3) yieldsZ tC1

t

k�.s/ � N�.s/k2
L2.�/

ds � CR1e
�t
C C�:

Thus, (3.4) holds.
Next, each bounded mild solution of Theorem 2.7 satisfies for a.e. x 2 �0 � �, all

t � 0 and i D 1; 2; : : : ; N ,

@tDi;h�.x; t/C aJ .x/Di;h�.x; t/ D .Di;hJ � �/.x; t/

� .Di;haJ /.x/�.x C eih; t/ (3.6)

where

Di;h�.x; t/ D �.Di;hK � �/.x; t/C .Di;haK/.x/�.x C eih; t/

C .aK.x/C F
00.�.x; t///Di;h�.x; t/; (3.7)

and �.x; �/ D ��.x C eih; �/C .1 � �/�.x; �/ for some � 2 .0; 1/.
Our goal is to derive uniform (in 0 < jhj � 2 dist.�0; @�/ and in time) estimates for

Di;h�. To this end, we multiply (3.6) by 2Di;h� and integrate the resulting identity over
�0. We deduce

d

dt
kDi;h�k

2
L2.�0/

C 2

Z
�0
aJ .x/.aK.x/C F

00.�.x; t///jDi;h�j
2 dx

D 2.aJDi;hK � �;Di;h�/L2 � 2.aJDi;haK�.x C eih; t/;Di;h�/L2

C 2.Di;hJ � �;Di;h�/L2 � 2..Di;haJ /�.x C eih; t/;Di;h�/L2 : (3.8)

The Young convolution theorem and (H2), (H6) then imply

d

dt
kDi;h�k

2
L2.�0/

C 2c0�1;J kDi;h�k
2
L2.�0/

� 4.kJ kL1kKkW 1;1k�kL2.�/ C kJ kW 1;1k�kL2.�//kDi;h�kL2.�0/

� 2C�g.t/kDi;h�kL2.�0/; (3.9)

where we have set g WD k�kL2.�/ C k�kL2.�/. On account of (3.3)–(3.4), we haveZ tC1

t

g.s/ ds � C
1=2
R1
e�t=2 C C 1=2� for all t � 0: (3.10)

There is also a time t0 D t0.R1/ > 0 such thatZ tC1

t

g.s/ ds � 2C 1=2� for all t � t0: (3.11)

Then, for all t � 0, (3.9) implies

d

dt
kDi;h�.t/kL2.�0/ C c0�1;J kDi;h�.t/kL2.�0/ � C�g.t/: (3.12)
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The Grönwall inequality yields from (3.12) that

kDi;h�.t/kL2.�0/ � e
�c0�1.t�t0/kDi;h�.t0/kL2.�0/

C e�c0�1.t�t0/
Z t

t0

g.s/ec0�1s ds

for all t � t0 � 0. Suppose now k C t0 � t < t0 C k C 1 for some integer k. Then in view
of (3.10) we have

kDi;h�.t/kL2.�0/

� e�c0�1.t�t0/kDi;h�.t0/kL2.�0/ C e
�c0�1.t�t0/

kX
jD0

Z 1CjCt0

jCt0

g.s/ec0�1s ds

� e�c0�1.t�t0/kDi;h�.t0/kL2.�0/

C e�c0�1.t�t0/
kX

jD0

ec0�1.t0CjC1/
�

sup
t�t0

Z tC1

t

g.s/ ds

�
� e�c0�1.t�t0/kDi;h�.t0/kL2.�0/ C e

c0�1.kC1Ct0�t/
ec0�1

ec0�1 � 1

�
sup
t�t0

Z tC1

t

g.s/ ds

�
� e�c0�1.t�t0/kDi;h�.t0/kL2.�0/ C

e2c0�1

ec0�1 � 1

�
sup
t�t0

Z tC1

t

g.s/ ds

�
: (3.13)

The above estimate easily yields claim (3.1) when t0D 0, on account of (3.10), since (3.13)
is also uniform with respect to h. In the case when t0 > 0, the existence of a bounded
absorbing set in H 1.�/ (see (3.2)) follows from (3.11) instead of (3.10), together with
(3.1). The proof of the theorem is complete.

Let us set pN D 2N=.N � 2/ if N � 3, and by the usual convention14 we notice that
p2 2 .1;1/ is arbitrary in dimension N D 2, and p1 D 1 when N D 1. Due to the
presence of a nonlinear term, the chemical potential � suffers from loss of integrability,
in any of its first derivatives, in any dimension N � 2 (cf. also Remark 3.3 below).

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. Then the following assertions
hold for some constant Cm > 0 independent of time, Ri , � and the initial datum.

(1) In dimension N D 1 we have

k�.t/kH1.�/ C k@t�.t/kH1.�/ � Cm for all t � t1: (3.14)

(2) In dimension N � 2, setting qN WD
2pN
4lCpN

.< 2/, we have

k�.t/kW 1;qN .�/ C k@t�.t/kW 1;qN .�/ � Cm for all t � t1: (3.15)

14Due to the Sobolev embedding H 1.�/ � LpN .�/.
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Proof. First, we notice that by (3.2) we have

k�.t/kLpN .�/ � Cm for all t � t1: (3.16)

From equation (3.7) for Di;h�, it follows in view of (3.2) that

kDi;h�kL2.�0/ � 2kKkW 1;1k�kL2.�/ C kKkL1k�kH1.�/ C kF
00.�/Di;h�kL2.�0/

� C�.1C k�kH1.�/ C k�.x C eih/k
2l
L1.�0/ C k�.x/k

2l
L1.�0//:

Using (3.6), for any p > 1 we also have

kDi;h@t�kLp.�0/ � kJ kL1kDi;h�kLp.�0/ C 2kJ kW 1;1k�kLp.�/: (3.17)

In dimensionN D 1, (3.14) is a consequence of (3.2), in view of the embeddingH 1.�/�

L1.�/, (3.16)–(3.17) and the obvious inequality k@t�.t/kL1 � 2kJ kL1k�.t/kL1 . In
dimension N � 2, we have, in view of (3.2) and (3.16)–(3.17),

kDi;h�kLqN .�0/ � 2kKkW 1;1k�kL2.�/ C kKkL1k�kH1.�/

C kF 00.�/k
L
pN
2l .�0/

k�kH1.�/

� C�.k�.x C eih/kLpN .�0/ C k�.x/kLpN .�0/ C 1/

� C�

for all t � t1. This gives the first part of the conclusion in (3.15). For the second part,
we exploit the continuous embedding W 1;qN .�/ � L

pN
2lC1 .�/, the boundedness of the

mapping LJ , and once again (3.17) with p D qN < pN =.2l C 1/. The theorem is
proved.

Remark 3.3. If F.r/ D � r4 � �cr2, (0 < � < �c) we have in dimension N D 3, that

@t�;� 2 L
1..t1;1/IW

1;6=5.�// � L1..t1;1/IL
2.�//:

We can improve theW 1;2-regularity of � toW 1;p-regularity (p > 2), at least in dimen-
sion N D 1; 2, without any further assumptions on J and F .

Theorem 3.4. Let the assumptions of Theorem 3.1 hold in dimension N D 1; 2. Assume
�0 2 W

1;p.�/ for any p 2 .N;1/, such that k�0kH1.�/ � R3 and k�0kW 1;p.�/ � R4.

(1) For all t � 0, the following dissipative estimate holds:

k�.t/kW 1;p.�/ � k�0kW 1;p.�/e
��1;J c0t C L3; (3.18)

where the constant L3 D L2.m;R3/ > 0 is independent of the initial data, � and
time.

(2) There exists a time t2 D t2.R3; R4/ > 0 such that

k�.t/kW 1;p.�/ � Cm for all t � t2: (3.19)

The constant Cm > 0 is independent of time, Ri , � and the initial datum.
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(3) Finally,

k�.t/kW 1;p.�/ C k@t�.t/kW 1;p.�/ � Cm for all t � t2: (3.20)

Proof. We multiply (3.6) by jDi;h�jp�2Di;h� (for any p > 2) and integrate the resulting
identity over �0. We deduce

1

p

d

dt
kDi;h�k

p

Lp.�0/
C

Z
�0
aJ .x/

�
aK.x/C F

00.�.x; t//
�
jDi;h�j

p dx

D .aJDi;hK � �; jDi;h�j
p�2Di;h�/L2

� .aJDi;haK�.x C eih; t/; jDi;h�j
p�2Di;h�/L2

C .Di;hJ � �; jDi;h�j
p�2Di;h�/L2

� ..Di;haJ /�.x C eih; t/; jDi;h�j
p�2Di;h�/L2 : (3.21)

The first two summands on the right-hand side are bounded collectively and uniformly by

2kJ kL1kKkW 1;1k�kLp.�/kDi;h�k
p�1

Lp.�0/
; (3.22)

while the last two can be bounded uniformly in terms of

2kJ kW 1;1k�kLp.�/kDi;h�k
p�1

Lp.�0/
: (3.23)

Thus, as in the proof of (3.9), we deduce

d

dt
kDi;h�kLp.�0/ C c0�1kDi;h�kLp.�0/ � C��.t/; (3.24)

where we have set � WD k�kLp.�/ C k�kLp.�/. In dimension N D 1 or 2, the embedding
W 1;qn.�/ � LpN =.2lC1/.�/ holds, where we recall that pN is arbitrary in .N;1/ (and
so is pN =.2l C 1/ for any fixed l > 0). In fact, N D 1 is subcritical with respect to the
energy estimate since H 1.�/ � L1.�/, while N D 2 is only critically so. Thus, we can
set p D pN

2lC1
< pN in (3.24), and notice that � . k�kLpN .�/Ck�kW 1;qN .�/. On account

of Theorem 3.1 and Corollary 3.2, this implies thatZ tC1

t

�.s/ ds � CR3e
��1;J c0t C L2 for all t � 0: (3.25)

Clearly, there is also a time t2 D t2.t1/ > 0 such thatZ tC1

t

�.s/ ds � Cm for all t � t2: (3.26)

The argument leading to (3.13) then yields from (3.24), for any t0 � 0 and all t � t0,

kDi;h�.t/kLp.�0/ � e
�c0�1.t�t0/kDi;h�.t0/kLp.�0/

C
e2c0�1

ec0�1 � 1

�
sup
t�t0

Z tC1

t

�.s/ ds

�
:

The final conclusions (3.18)–(3.19) then follow because of (3.25)–(3.26). Finally, argu-
ing exactly as in the proof of Corollary 3.2, while observing that W 1;p.�/ is embedded
continuously into C 0;1�N=p.x�/, one also gets (3.20). The proof is complete.
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Suppose now thatN D 3. In (3.24), we observe that theLp-estimate forDi;h� requires
that � 2 Lp.�/ (for p > 2), which is a gap that cannot be filled in the case of the double-
well potential (see Remark 3.3). Indeed, from (3.15), � 2 W 1;qN .�/ � LpN =.2lC1/.�/

is optimal. To close the “energy” gap, we will employ the notion of weak Lp-spaces, the
Young inequality in weakLp-spaces, and impose some (new, but) reasonable assumptions
on the kernel J . These assumptions still include important cases of interest, such as when
J is the fundamental solution to an elliptic PDE (see below).

To this end, we denote the weakLp-space byLp;1.�/ and the associated quasi-norm

k�kLp;1.�/ D
�

sup
ˇ>0

ˇp��.ˇ/
�1=p

;

where ��.ˇ/ D j¹j�j > ˇºj is the distribution function of �. In this case, the Young
inequality for convolutions in weak Lp-spaces reads15

kf � gkLr � Cp;q;rkf kLp;1kgkLq ;

for 1 < p; q; r <1, 1=p C 1=q D 1=r C 1 (cf. [22, Theorem 1.4.25]).
We consider the following assumptions on J , only in dimension16 N D 3 (recall that

pN D 6).

(H7) We assume J 2 W 1;1
loc .R

3/ \ C 1.R3n¹0º/ satisfies the following conditions:

• J.x/ D j.jxj/ D j.r/ such that j is nonincreasing as a function r 2 .0; ı/,
for some ı > 0;

• j 0.r/ is monotone for r 2 .0; ı/;

• jrJ.x/j � C jxj�3=.1C"/ as jxj ! 0C, for some " > 0 and C > 0.

Regarding the potential F , we assume instead of (H5), the following:

(H8) There exist ci > 0, Qci � 0 (i D 1; 2) such that

c2jr j
2l
C Qc2 � F

00.r/ � c1jr j
2q
� Qc1 for all r 2 R;

for some 5=2 > l � q > 0, satisfying 0 < Ql;".p3/ < 1=2, where

Ql;".p3/ WD
2l C 1

p3
�

"

1C "
;

and " > 0 is the parameter in (H7).

The interplay between the singularity (at the origin) of J , in (H7), and the (growth)
exponent l in (H8) implies the W 1;p-regularity of the order parameter for any p > 2,

15The endpoints r; q D 1 and r; q D 1 fail in general, compared to the standard Young convolution
theorem.

16We consider the case N D 3 only, in order to avoid additional (nonessential) technicalities. Our
approach can be extended to the higher-dimensional case N � 4 with minor modifications.
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in dimension N D 3. Our argument emphasizes how the (integrable) singularity of J
at 0 controls the value of the exponent l > 0 in (H8), and vice versa. This property
appears natural since it is known also to occur in the case when LJ is replaced by an
operator (of strong type), such as the fractional (Neumann) Laplacian (see, for instance,
[17, 19]). Our approach to show W 1;p-regularity is based on an iteration procedure that
allows us to increase the regularity of � 2W 1;2, beyond that ofW 1;pj -regularity, for some
pj > pj�1 > 2, at each step, in order to reach W 1;3-regularity in finitely many steps. At
that point, we have reached the critical point where either pj DN D 3 (and the embedding
W 1;3.�/ � Ls.�/ holds for arbitrary s 2 .2;1/) or pj > 3 (withW 1;pj .�/ � L1.�/).
Therefore, the same argument (in dimension N D 2) developed in the proof of Theo-
rem 3.4 applies (albeit with some nonessential modifications), due to the validity of the
foregoing embeddings.

Theorem 3.5. Let (H1)–(H3) and (H6)–(H8) hold. Let �0 2W 1;p.�/ for any p 2 .2;1/,
such that k�0kH1.�/ �R3 and k�0kW 1;p.�/ �R4 for someR3;R4 > 0. Next assume that,
for given " > 0, l > 0, there exists � � 0 such that the condition

0 < Ql;".p3 C �/ <
1
3

(3.27)

holds. Then the same conclusions as in Theorem 3.4 also hold in dimension N D 3.

Proof. Without loss of generality, assume 02�, and consider the ballBd WDB.0;d/��,
where d > 2 diameter.�/ and d > ı. Let y� and y� be the trivial extensions of �, � to Bd
such that y�jBd n� D 0, y�jBd n� D 0. We will drop the hats, for the sake of convenience, in
what follows. By (H7), jDiJ.x/j � �.r/ D jj 0.r/j near the origin, for x 2 Bı . Since �
is monotone in r 2 .0; ı/ and � D O.�r3=.1C"// as r ! 0C, it follows that there exists
C > 0 such that for all 0 < r < ı, �.r/ � Cr�3=.1C"/ and, for any ˇ > 0, there exists a
unique r� D r.ˇ/ 2 Œ0; ı� such that �.r/ > ˇ for r < r�. We take r� D 0 if �.r/ < ˇ over
the entire interval Œ0; ı�. Then we get r� D r.ˇ/ � Cˇ�.1C"/=3 for some C > 0, and

ˇ1C"��.ˇ/ D ˇ
1C".!3r

3
�/ � C (3.28)

for some (finite) constant C > 0. Here !3 is the volume of the unit ball in R3. By defi-
nition, (3.28) implies that �1Bı 2 L

1C";1.Bd /. Since DiJ is also continuous in BdnBı ,
we obtain

rJ.x/ 2 L1C";1.Bı/ and rJ.x/1Bd nBı 2 L
1.Bd /:

Consider now the identity (3.21) for p > 2. We estimate the last summand in (3.21)
since one argues in a similar fashion for the first three summands, observing also that
k�kLs=.2lC1/ . k�kLs for all s. Indeed, for any s1; s2; s3 2 .1;1/ with 1=s1 C 1=s2 C
1=s3 D 1, the Hölder inequality, together with Young inequalities in Lp- and weak Lp-
spaces, gives

j..Di;haJ /�.x C eih; t/; jDi;h�j
p�2Di;h�/L1 j

� kDi;hJ � 1kLs1 k�kLs2 kDi;h�k
p�1

Ls3.p�1/
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� krJ kL1C";1.Bı /k1BıkLQt k�kLs2 kDi;h�k
p�1

Ls3.p�1/

C krJ1Bd nB�kL1k1Bd nB�kLpk�kL1kDi;h�k
p�1
Lp (3.29)

for any Qt 2 .1;1/ provided that

1

1C "
C
1

Qt
C
1

s2
C
1

s3
D 2:

Pick s3 WD p
p�1

and s2 WD p3
2lC1

> 1 (since l < 5=2). The previous condition implies, for
any p > 2, that

�"

1C "
C
2l C 1

p3
D

1

q�
<

1

1C "
� 1C

1

Qt
C
2l C 1

p3
D
1

p
<
1

2
: (3.30)

This defines q� D q�."; l/ > 2 for each fixed ", l . Note that 1=q� 2 .0; 1=2/, due to the
given range for l in assumption (H8) (i.e., q� DQ�1l;" .p3/). Moreover, due to the openness
of this interval, we find that p 2 .2; q�/ and that, in view of (3.29),

j..Di;haJ /�.x C eih; t/; jDi;h�j
p�2Di;h�/j � CJ;�;d;pk�k

L
p3
2lC1
kDi;h�k

p�1
Lp :

Thus, we infer from (3.21), estimating the remaining summands in a similar way, that

d

dt
kDi;h�kLp.�0/ C �1c0kDi;h�kLp.�0/ . k�k

L
p3
2lC1 .�/

C k�kLp3 .�/: (3.31)

Since the right-hand side of (3.31) can be estimated in terms of the H 1-regularity of �
(see the proof of Theorem 3.4), we can argue once again as in the proof of Theorem 3.1,
by means of the Grönwall inequality. We obtain

k�.t/kW 1;p.�/ � k�0kW 1;p.�/e
��1;J c0t C L4; (3.32)

where the constant L4 D L2.m; R3/ > 0 is independent of the initial data, � and time.
Moreover, there exists a time t3 > 0 such that

k�.t/kW 1;p.�/ � Cm for all t � t3 D t3.R3; R4/: (3.33)

These arguments yield the conclusions of the theorem in the range for all p 2 .2; q�/.
If q� > 3 (or, equivalently, for given ."; l/, there holds 0 < Ql;".p3/ < 1

3
), then we are

done since the next energy computations can be carried out as in dimension 2, whenever
p 2 Œq�;1/. If not (i.e., q� � 3, or simply, Ql;".p3/ � 1

3
), we iterate the above argument

finitely many times to find a (positive) increasing sequence ¹q�j º such that, at some (finite)
j 2 N0, q�j > 3, owing to the fact that both " and l are fixed at the beginning of the
iteration. To set up the scheme, first set q� DW q�0 , p�0 WD p3 D 6, such that (3.31) holds
for any p 2 .2; q�0 / whenever q� is defined by (3.30). Next we choose q1 2 .2; q�/ as
close to q� DW q�0 as possible, for which the dissipative estimates (3.32)–(3.33) hold with
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p D q1. Then consider p�1 > p�0 D 6, such that W 1;q1.�/ is embedded continuously
into Lp�1.�/, and then define q�1 by

1

q�1
D
�"

1C "
C
2l C 1

p�1
DW Ql;".p�1/ <

1

2
:

Then, arguing as above in (3.29), a version of (3.31) now holds for all p 2 .2; q�1 / and
with the exponent p3 D p�0 replaced by p�1 > p3 on the right-hand side of (3.31). Since
the right-hand side is also bounded uniformly in terms of (3.32)–(3.33), by the Grönwall
inequality we may then conclude the same uniform estimates, in the wider range, for all
p 2 .2; q�1 /� .2; q

�
0 /. Thus, at once we can define an (increasing, finite) sequence ¹qj º by

picking qjC1 2 .2; q�j /, as close as possible to q�j , such that the corresponding estimates
(3.32)–(3.33) hold for p D qjC1. If q�j � 3 (or, equivalently, 0 < Ql;".p�j / <

1
3

), the
iteration stops; if not, the (increasing) sequence p�j , defined by the continuous embedding
W 1;qjC1.�/ � Lp�j .�/, allows one to define the sequence

1

q�jC1
D
�"

1C "
C
2l C 1

p�j
DW Ql;".p�j / <

1

2
; j � 1:

Finally, for all p 2 .2; q�jC1/� .2; q
�
j /, one can show that (3.31) holds in this range as well

(arguing by the Hölder inequality and by Young inequalities, as in (3.29)), with a right-
hand side that contains the exponent p�j .> p�j�1/, in place of p3 D p�0. Since "; l are
fixed and finite, there is ultimately a finite j D j# 2 N, such that q�j#

> 3 (or, equivalently,
Ql;".p�j#/ <

1
3

) because of the stopping condition (3.27); at that point, the (uniform)
estimates (3.32)–(3.33) close in light of our observations before the theorem.

Example 3.6. Let F.r/D � r4 � �cr2 with 0 < � < �c . Notice that F satisfies (H8) with
l D q D 1. Then, in dimension 3, a radially symmetric J satisfies (H7) for any " > 1=5.

Example 3.7. Among radially symmetric potentials that satisfy (H6) and (H8) are the
Newtonian, Bessel and Riesz-like potentials. Consider, for x 2RN n¹0º, the Bessel poten-
tial

bs.jxj/ D
e�jxj

.2�/N�12s=2�. s
2
/�.N�sC1

2
/

Z 1
0

e�jxjt
�
t C

t2

2

�N�s�1
2

dt;

where � is the Gamma function and 0 < s. Note that on RN , .I ��/�s=2� D bs � � . In
particular, bs behaves as the Riesz potential, asymptotically as jxj ! 0C, since

bs.jxj/ D
�.N � s/

2s�s=2
1

jxjN�s
.1C o.1// if 0 < s < N :

Logarithmically behaving kernels are also included in this analysis, as

bN .jxj/ D �
1

2N�1�N=2
log jxj.1C o.1// as jxj ! 0C:
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Under the assumptions of the previous theorems, problem (1.3)–(1.5) generates a
(strongly) continuous semigroup

Sp.t/WW
1;p

.m/
.�/! W

1;p

.m/
.�/; p > N and p � 2;

given by
Sp.t/�0 D �.t/; t � 0;

where � is the unique mild solution in the sense of Definition 2.1. Here, W 1;p

.m/
.�/ D

W 1;p.�/ \ L1
.m/
.�/.

Remark 3.8. The main results in this section determine the space X D W 1;p

.m/
.�/ as one

possible candidate for the problem to possess the dissipation property.17 However, we will
see in Section 7 that certain equilibrium configurations can also be achieved for an initial
datum

�0.x/ D

´
�1; x 2 ��;

C1; x 2 �C;
(3.34)

bounded in L1
.m/
.�/, but which is not in W 1;p

.m/
.�/ for p > N (here, � D �C [��I see

Example 7.1). Note that �0 2 W s;1.�/ \ L1
.m/
.�/ for any s 2 .0; 1/ since the charac-

teristic function 1�˙ , of the set �˙; belongs to W s;1.�/. It is an open question whether
our problem also possesses a dissipation property in the space W s;1.�/, under suitable
assumptions on the parameters of the problem.

4. Characterization of omega-limit sets

Let � be the (unique) mild solution of (1.3)–(1.5), corresponding to some given initial
datum �0 2 W

1;p

.m/
.�/, p > N and p � 2 (see Section 3). Our goal is to establish that

once the solution � enters a small L2-neighborhood of a nonzero stationary state ��,
then it must remain there for all time t � t�, t� large enough and, consequently, �.t/ fully
converges to �� as t!1 (and not just along subsequences!). But first we show that every
mild solution � D Sp.t/�0 has a nonempty !-limit set !.�0/, where !.�0/ is defined by

!.�0/ D
®
�� W 9 tn !1 such that �.tn/! �� strongly in C.x�/

¯
:

To study the asymptotic behavior of solutions, we first need the following.

Lemma 4.1. Consider the dynamical system .W
1;p

.m/
.�/; ¹Sp.t/ºt�0/ under the assump-

tions of Theorems 3.4, 3.5. Then, any divergent sequence ¹tnº � Œ0;1/ admits a subse-
quence, denoted by ¹tnk º, such that

lim
tnk!1

�.tnk / D �� strongly in C.x�/; (4.1)

17Namely, the trajectories corresponding to bounded sets of initial data in X , enter X after a certain
time, and will stay there forever.
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for some �� 2 C ˛.�/, 0 < ˛ < 1, which is a solution of´
aK.x/�� �K � �� C F

0.��/ D �� a.e. in �;

�� D constant; N�� D N�0 D m:
(4.2)

Proof. By Theorems 3.4, 3.5, � 2 Cb.RCIW
1;p

.m/
.�// with

k�kC 1�N=p.x�/ . k�.t/kW 1;p.�/ � Cm for all t � t3: (4.3)

It follows that � 2 Cb.RCIL1.�//, @t� 2 L1.RCIL1.�// with

k�.t/kL1.�/ � CJ;l1;K ; k@t�.t/kL1.�/ � CJ;l1;K ; for all t � t3: (4.4)

We also infer from the energy identity (2.10) that

E.t2/ � E.t1/ D �
1

2

Z t2

t1

Z
�

Z
�

J.x � y/.�.t; x/ � �.t; y//2 dx dy dt � 0 (4.5)

for all 0 � t1 < t2 <1. Furthermore, due to (4.3), E.t/ � �C for all t � 0, for some
positive constantC DC.K;F /, and so E.t/ converges to a certain constant E1 as t!1.
Therefore, setting t1 D 0 and letting t2 !1, we also deduce from (4.5) thatZ 1

0

Z
�

Z
�

J.x � y/.�.t; x/ � �.t; y//2 dx dy dt D E1 � E.0/ � C (4.6)

for some constant C < 1. By Theorem 2.5, each mild solution satisfies @t�.t/ D
LJ .�.t/ � N�.t// for a.e. t > 0: Thus, by (H3) we find

k@t�.t/k
2
L2.�/

D kLJ .�.t/ � N�.t//k
2
L2.�/

� CJ k�.t/ � N�.t/k
2
L2.�/

�
CJ

2�1

Z
�

J.x � y/.�.t; x/ � �.t; y//2 dx dy:

This, together with (4.6), also implies the uniform estimateZ 1
0

k@t�.t/k
2
L2.�/

dt � C <1: (4.7)

In particular, it follows from (4.4) and (4.7) that

k@t�.t/kL2.�/ ! 0 as t !1: (4.8)

Now let ¹tnº � Œ0;1/ be a divergent sequence. Then, by (4.3)–(4.4), at least along a
suitable subsequence ¹tnk º of ¹tnº, it follows that

�.tnk /! �� strongly in C.x�/ (4.9)

and

�.tnk / * �� weakly-* in L1.�/; (4.10)
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for some �� 2 C ˛.x�/ and �� 2 L1.�/. We next claim that

�.tnk /! �� strongly in L2.�/; (4.11)

at least along a further subsequence (still denoted by ¹tnk º). Indeed, this is obvious due to
the strong convergence (4.9) and the fact that F 0.�.tnk //! F 0.��/ strongly in L2.�/.
Also, (4.11) and (4.8) imply that LJ .��/ D 0, and so �� is constant (in �). We finally
observe that �� 2 C ˛.x�/ is a solution of (4.2), and that the energy level E1 is the same
for each stationary state ��, as claimed. The lemma is proved.

We have the following convergence result which is the main result of this section.

Theorem 4.2. Let the assumptions of Theorem 3.5 (ifN D 3) or Theorem 3.4 (ifN D 1;2)
hold. Assume F is real analytic18 on Œ�Cm; Cm�. Then !.�0/ D ¹��º; namely, for any
(given) �0 2 W

1;p

.m/
.�/, the corresponding mild solution � satisfies

k�.t/ � ��kC.x�/ D O..1C t /
� 1
 / as t !1; (4.12)

for some 
 > 0, where �� is (some) solution of (4.2).

Proof. First, we observe that since the mapping � 7!K � �WL1.�/! C.x�/ is compact,
all stationary solutions �� 2 !.�0/ are continuous in x� and bounded in C ˛.x�/. Secondly,
setting

l.�.t/; �.t// WD
1

2

Z
�

Z
�

J.x � y/.�.t; x/ � �.t; y//2 dx dy;

by the energy identity (2.10),

dE.t/

dt
D �l.�.t/; �.t// for t � 0: (4.13)

Thus, integrating (4.13) over .t;1/, we getZ 1
t

l.�.s/; �.s// ds D E.t/ � E1: (4.14)

We can now apply Lemma A.3 and (H3) for the Poincaré inequality, to infer the existence
of some constants � 2 .0; 1

2
/, C > 0, " > 0, such that

jE.t/ � E1j
1��
� Ck�.t/ � N�.t/kL2.�/

�
C

�
1=2
1

p
l.�.t/; �.t// (4.15)

provided that
k� � ��kL2.�/ � ": (4.16)

18Cm > 0 is the radius of the absorbing ball; see Theorems 3.4, 3.5.
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Combining (4.15) with (4.14) yields�Z 1
t

l.�.s/; �.s// ds

�2.1��/
� Cl.�.t/; �.t// (4.17)

for all t > 0, for as long as (4.16) holds. Note that, in general, the quantities � , C and "
above may depend on �� and �1 D �1;J . Let us set

M D [
®
	 W 	 is an open interval on which (4.16) holds

¯
:

Clearly, M is nonempty since �� 2 !.�0/. As usual, we can then use (4.17), the fact
that Z.t/ WD

p
l.�.t/; �.t// 2 L2.0;1/ (cf. (4.13)), and exploit [12, Lemma 7.1] with

˛ D 2.1 � �/ to deduce that Z.�/ 2 L1.M/ andZ
M

Z.s/ ds D

Z
M

p
l.�.s/; �.s// ds � C.��/ <1: (4.18)

Consequently, using (4.18) and the fact that @t� D LJ .� � N�/, we also obtainZ
M

k@t�.s/kL2.�/ ds <1: (4.19)

Using (4.19), we can derive the integrability of @t� in L1.�;1IL2.�// for some � > 0.
Indeed, we claim that we can find a sufficiently large time � > 0 such that .�;1/�M . To
this end, recalling (4.14) and the above bounds, we also have that @t� 2L2.0;1IL2.�//,
Z 2 L2.0;1/ and, furthermore, for any � > 0 there exists a time t� D t�.�/ > 0 such that

k@t�kL1.M\.t�;1/IL2.�// � �; k@t�kL2..t�;1/IL2.�// � �;

kZkL2..t�;1// � �:
(4.20)

Next, observe that by the uniform bounds provided in Section 3, there is a time tm > 0

such that
sup
t�tm

k�.t/kW 1;p.�/ � Cm: (4.21)

Now, let .t0; t2/�M , for some t2> t0� t�.�/, jt0 � t2j � 1 such that (4.21) holds (without
loss of generality, we shall assume that t� � tm). Exploiting (4.20) and (4.21), we obtain

k�.t0/ � �.t2/k
2
L2.�/

D 2

Z t2

t0

h@t�.s/; �.s/ � �.t0/i ds

� 2

Z t2

t0

k@t�.s/kL2.�/.k�.s/kL2.�/ C k�.t0/kL2.�// ds

� 2Ck@t�kL1.t0;t2IL2.�//.k�kL1.t�;1IL2.�// C 1/

� 2C.1C Cm/�:

Therefore we can choose a time t�.�/ D � < t0 < t2, such that

k�.t0/ � �.t2/kL2.�/ < "=3; (4.22)
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provided that (4.16) holds for all t 2 .t0; t2/. Since �� 2 !Œ��, a large (redefined) � can be
chosen such that

k�.�/ � ��kL2.�/ < "=3: (4.23)

Hence, (4.22) yields .�;1/ �M . Indeed, taking Nt D inf¹t > � W k�.t/� ��kL2.�/ � "º,
we have Nt > � and k�.Nt /� ��kL2.�/ � " if Nt is finite. On the other hand, in view of (4.22)
and (4.23), we have

k�.t/ � ��kL2.�/ � k�.t/ � �.�/kL2.�/ C k�.�/ � ��kL2.�/ < 2"=3

for all Nt > t � � , and this leads to a contradiction. Therefore, Nt D1 and by (4.20) the inte-
grability of @t� inL1.�;1IL2.�// follows. Hence,!Œ��D¹��º in the strong topology of
L2.�/, as well as in the C.x�/-topology, owing to the compactness of W 1;p.�/ � C.x�/

and interpolation. As usual, when applying the Łojasiewicz inequality, the following rate
of convergence holds, due to (4.15):

k�.t/ � ��kC.x�/ � C.1C t /
� 1
 as t !1;

for some constants C > 0, 
 D 
.�; ��/ > 0. The proof is finished.

5. Finite-dimensional attractors

We show that problem (1.3)–(1.5) possesses finite-dimensional exponential attractors,
provided the assumptions of the previous sections hold. The existence of the (finite-
dimensional) global attractor, with similar properties, follows immediately as a corollary
of the subsequent result (see, e.g., [19]). Let p > N and p � 2 in what follows.

Theorem 5.1. Let the assumptions of Theorem 3.5 (if N D 3) or Theorem 3.4 (if N D
1; 2) hold for some F 2 C 3.R/. For every fixed M � 0 such that m 2 Œ�M;M�, there
exists an exponential attractor G D GM bounded in W 1;p.�/, for the dynamical system
.W

1;p

.m/
.�/; Sp.t//, which satisfies the following properties:

(1) semi-invariance:
Sp.t/G � G for every t � 0;

(2) exponential attraction:

distC.x�/.Sp.t/B;G / � CM e
��t for all t � 0;

for any bounded B �W 1;p.�/, for some positive constants CM and � (which are
independent of B);

(3) finite-dimensionality:

dimF .G ; C.x�// � CM <1:



The weak-to-weak interaction case 1207

Proof. Let B0 be a bounded absorbing set with respect to the W 1;p-topology. This set
clearly exists by Theorem 3.5 or Theorem 3.4, respectively. We next define B1 D

Œ
S
t�0Sp.t/B0�H1 , where Œ��H1 denotes closure in the space H 1.�/, and then set B D

S.1/B1. Thus, B is a semi-invariant and closed (for the H 1-metric) subset of the phase
space W 1;p

.m/
.�/. On the other hand, for m 2 Œ�M;M� we have

sup
t�0

.k�.t/kW 1;p.�/ C k�.t/kW 1;p.�/ C k@t�.t/kW 1;p.�// � CM (5.1)

for every trajectory � originating from �0 D �.0/ 2 B, for some positive constant CM ,
which is independent of the choice of �0 2 B.

We can now define the map S D Sp.T /WB! B and H D H 1.�/ for a fixed T > 0
such that e�c0�1T < 1

2
. Then set

V1 WD L
2.Œ0; T �IH 1.�// \H 1.Œ0; T �IH 1.�/�/;

V WD L2.Œ0; T �ILq.�//:
(5.2)

Here q WD 2p=.p � 2/ if N D 2; 3, and q D1 if N D 1. Define the operator T WB! V1
by T�0 WD � 2 V1, where � solves the nonlocal problem (1.3)–(1.5), with �.0/D �0 2 B.
Notice that V1 is compactly embedded into V . Also set bi WD �i .0/ 2 B. With this choice
of spaces and operators, it follows from (A.13)–(A.14) of Proposition A.2 that

kTb1 � T b2kV1 � Lkb1 � b2kH ;

kSb1 � Sb2kH � 
kb1 � b2kH CKkTb1 � T b2kV

for some K WD C > 0, independent of time and bi , with L WD CeCT and 
 WD e�c0�1T .
Therefore, all the hypotheses of Proposition A.4 hold for the maps S and T , respectively.
Subsequently, we can infer the existence of a (discrete) exponential attractor Gd � B asso-
ciated with the semigroup S.n/ D Sp.nT /, n 2 N. Finally, the map .t; �0/ 7! Sp.t/�0
is also uniformly Hölder continuous on Œ0; T � � B, when B is endowed with the H 1-
topology. Next, one has that

G WD
[

t2Œ0;T �

Sp.t/Gd

is the desired exponential attractor for the continuous dynamical system .W
1;p

.m/
.�/;

Sp.t//. In particular, the exponential attraction and finite-dimensionality of G , in the state-
ment of Theorem 5.1, are satisfied with respect to the H 1-topology. However, owing to
the fact that B is bounded in W 1;p

.m/
.�/ � C 1�N=p.x�/, and interpolation (i.e., k�kC.x�/ �

C�k�kW 1;� � Cp;qk�k
s
W 1;pk�k

1�s
H1 for some s D s.p; �/ 2 .0; 1/ and N < � < p), G is

also an exponential attractor for Sp.t/ restricted to B with respect to the stronger metric
on C.x�/ (and in fact, in the stronger metric of W 1;�.�/). Therefore, all the conclusions
of Theorem 5.1 hold.
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6. Convergence to the classical Cahn–Hilliard equation

Consider the classical problem for the Cahn–Hilliard equation

@t .t; x/ D �v.t; x/; v.t; x/ D �� .t; x/C F 0. .t; x//; (6.1)

for .t; x/ 2 .0;1/ ��, with

rv.t; x/ � n D r .t; x/ � n D 0 for .t; x/ 2 .0;1/ � @�; (6.2)

and subject to the initial condition

 .0; x/ D �0.x/; x 2 �: (6.3)

Here, n stands for the outer normal to the boundary @� of the domain �.
In this section we show that problem (6.1)–(6.3) can be approximated by suitable

doubly nonlocal problems of the form (1.3)–(1.5) when the symmetric kernel K D J is
rescaled appropriately, the domain � is smooth enough, and the second derivative of the
potential F is bounded away from any interval containing .�1; 1/. In what follows we
will assume the following hypotheses:

(H9) J 2 C.RN /\L1.RN / is radially symmetric over RN with supp(J )D B.0; r/
(for some r > 0).

(H10) Let � be a bounded C 4C˛-domain, 0 < ˛ < 1, and let �0 2 C 4C˛.x�/ satisfy
r�0 � n D r.��0/ � n D 0 on @�.19

(H11) F 2 C 2.R/ satisfies F.0/ D F 0.0/ D 0, and for some " � 0, `1 > 0;

jF 00.r/j � `1 for all r 2 .�1;�1 � "/ [ .1C ";1/: (6.4)

Clearly, `1 > 0 may depend on "; in particular, (6.4) implies that F has at most quadratic
growth20 at ˙1. The reasoning behind assumption (H11) is as follows. The physically
relevant example is the logarithmic potential defined by

xF .s/ D �F0.s/ � �cs
2; F0.s/ WD .1C s/ log.1C s/C .1 � s/ log.1 � s/; (6.5)

for all s 2 Œ�1; 1�, with 0 < � < �c , where � is the temperature of the system and �c
the critical temperature, both assumed to be constant. In this context, F0 refers to the
entropy of the binary mixture (see, e.g., [17]). However, F0 is also quite often replaced21

by a polynomial approximation over the interval Œ�1; 1� (typically, by s4), which then
leads to an approximation of xF (over the interval Œ�1; 1�) by the double-well potential

19In particular, this is also equivalent to r�0 � n D r.���0 C F 0.�0// � n D 0 on @�.
20(H11) implies that the mapping F 0WLp.�/! Lp.�/ is (globally) Lipschitz continuous.
21Since any higher-order derivatives F .j /0 , j D 1; 2 end up being singular at the endpoints ˙1. In

particular, one has F00.˙1/ D ˙1 and F
00

0 .˙1/ D1.



The weak-to-weak interaction case 1209

F.s/D �s4 � �cs
2. Finally, since concentration values outside the interval I" WD Œ�1� ";

1C "�, for some " � 0, are not physically relevant, we can modify the double-well poten-
tial F outside the interval I" in such a way that the resulting potential F is of class C 2

over the whole interval R, satisfying (6.4). Although the study of the singular potential
case in (6.5) is not the goal of the present contribution, we point out that the subsequent
result immediately applies once one knows that the separation property holds for the order
parameter satisfying both the doubly nonlocal problem as well as the classical problem,
with a singular potential. We will return to this question elsewhere.

Given ı > 0, consider the rescaled kernel

Jı.x/ D
CJ

ıN
J
�x
ı

�
with C�1J D

1

2

Z
B.0;r/

J.x/jxN j
2 dx: (6.6)

For .t; x/ 2 .0;1/ ��, let �ı D �ı.t; x/ be the unique solution of the doubly nonlocal
problem8̂̂̂̂

<̂̂
ˆ̂̂̂:
@t�ı.t; x/ D ı

�2

Z
�

Jı.x � y/.�ı.y; t/ � �ı.x; t// dy;

�ı.t; x/ D �ı
�2

Z
�

Jı.x � y/.�ı.y; t/ � �ı.x; t// dy C F
0.�ı.t; x//;

�ı.0; x/ D �0.x/; x 2 �:

(6.7)

By Section 2, such a solution �ı exists for all t 2 Œ0;T �, for any T > 0, even upon imposing
the (slightly more restrictive) conditions (H1), (H9)–(H11). Also, assumptions (H10)–
(H11) imply the existence of a (unique) classical solution  2 C 4C˛;1C˛=2.x�� Œ0; T �/ to
(6.1)–(6.3), such that v 2 C 2C˛;˛=2.x� � Œ0; T �/. See, for instance, [24].

The main result of this section reads as follows.

Theorem 6.1. Let (H1) and (H9)–(H11) hold. Let  be the solution of (6.1)–(6.3) and
�ı be the solution of (6.7) with Jı as in (6.6). Then, for any T > 0,

lim
ı!0C

k�ı �  kC.Œ0;T �IL2.�// D 0: (6.8)

Proof. The proof of (6.8) is based on an energy estimate for the difference wı D �ı �  
since no maximum principle holds for our problem. Let Q be a C 4C˛;1C˛=2.RN � Œ0;T �/-
smooth extension of  , and Qv be a C 2C˛;˛=2-smooth extension v to RN � Œ0; T � (recall
also that r Q � n D r Qv � n D 0 on @�). Following [3], we also set mı D �ı � v and
consider the following operators:

Lı.w/.x; t/ D ı
�2

Z
�

Jı.x � y/.w.y; t/ � w.x; t// dy

and

zLı.w/.x; t/ D ı
�2

Z
RN

Jı.x � y/.w.y; t/ � w.x; t// dy:
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Since � D � Q and �v D � Qv in �, the difference wı then satisfies for .t; x/ 2
Œ0; T � ��,8̂̂<̂
:̂
@twı.t; x/ D Lı.mı/.t; x/C Fı. Qv/.x; t/;

mı.t; x/ D �Lı.wı/.t; x/C F
0.�ı.t; x// � F

0. .t; x// � Fı. Q /.x; t/;

wı.0; x/ D 0; x 2 �:

(6.9)

Here, for any smooth function ! 2 C 2C˛;˛=2.RN � Œ0; T �/, we have set

Fı.!/.x; t/D zLı.!/.x; t/��! � ı
�2

Z
RN n�

Jı.x � y/.!.y; t/� !.x; t// dy: (6.10)

Since J is radially symmetric and Qv 2 C 2C˛;˛=2.RN � Œ0; T �/, Q 2 C 4C˛;1C˛=2.RN �
Œ0; T �/, we have by a simple Taylor expansion (see [3, p. 50]) that

sup
t2Œ0;T �

kzLı. Qv/ �� QvkL1.�/ D sup
t2Œ0;T �

kzLı. Q / �� Q kL1.�/ D O.ı
a/:

For the last integral term in (6.10), we apply [3, Lemma 3.14] to find that jFı.!/j �Cı˛C
C
R

RN n�
Jı.x � y/ dy, with ! 2 ¹ Qv; Q º, for some constant C > 0 independent of ı. In

particular, this implies that Fı.!/.x; t/ is bounded for all x 2�ı D¹x 2� W dist.x;@�/<
ıº and 0� t � T . Since j�ı j DO.ı/ and Fı.!/.x; t/DO.ı˛/ for x 2�n�ı , t 2 Œ0; T �,
we then get

lim
ı!0C

kFı. Qv/kC.Œ0;T �IL2.�// D lim
ı!0C

kFı. Q /kC.Œ0;T �IL2.�// D 0: (6.11)

Next we multiply the first equation of (6.9) by wı , the second equation of (6.9) by mı ,
and then integrate the resulting identities over �. We obtain

1

2

d

dt
kwı.t/k

2
L2.�/

D
�
Lı.mı.t//; wı.t/

�
L2
C .Fı. Qv/; wı.t//L2 ;

kmı.t/k
2
L2.�/

D
�
�Lı.wı.t//;mı.t/

�
L2
C
�
F 0.�ı.t; x// � F

0. .t; x//;mı.t/
�
L2

� .Fı. Q /;mı.t//L2 :

Using the fact that Lı WL2.�/! L2.�/ is a self-adjoint (bounded) operator, we derive

1

2

d

dt
kwı.t/k

2
L2.�/

C kmı.t/k
2
L2.�/

D .Fı. Qv/; wı.t//L2 C
�
F 0.�ı.t// � F

0. .t//;mı.t/
�
L2
� .Fı. Q /;mı.t//L2 :

The Young inequality combined with the fact that F 0 is Lipschitz continuous (without
loss of generality, we assume that the (uniform) Lipschitz constant of F 0 is `1 D `1."/;
cf. (6.4)) as a mapping from L2.�/! L2.�/ then yields the estimate

d

dt
kwı.t/k

2
L2.�/

C kmı.t/k
2
L2.�/

(6.12)

� C"kwı.t/k
2
L2.�/

C 2.kFı. Q .t//k
2
L2.�/

C kFı. Qv.t//k
2
L2.�/

/:
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Here, C" WD 2.`21."/C 1/ > 0 is independent of ı andwı . Sincewı.0/D 0, we infer from
(6.12) and the application of the Grönwall inequality that

kwı.t/k
2
L2.�/

� 2.kFı. Q /k
2
C.Œ0;T �IL2.�//

C kFı. Qv/k
2
C.Œ0;T �IL2.�//

/eC"T

for all t 2 Œ0; T �. Claim (6.8) now follows in view of (6.11), and the theorem is proved.

7. Numerical analysis and implementation of a forward Euler scheme

In this section we present four examples of the numerical doubly nonlocal Cahn–Hilliard
equation posed on a two-dimensional domain. In each example we treat a different inter-
action kernel J : Gaussian, logarithmic, Riesz and bimodal (see Figures 1 and 2 for one-
dimensional plots of each kernel). The second kernelK is kept as a Gaussian throughout.

-1.0 -0.5 0.0 0.5 1.0

5

10

15

exp -
x2

2 σ2

2 π σ2

-

log
x2

2

6-π

1

7.051 x

4 x2+0.01 exp-2 x2 

π

Figure 1. One-dimensional profiles of the four different kernels J used in the two-dimensional
simulations.

This means, in the first instance when both kernels are the same, we may, and do, illustrate
the convergence guaranteed in Theorem 6.1. In these studies we discretize the equation
over time Œ0; T � and space � in a conventional and literal sense. We treat the time deriva-
tive with the divided difference

@t�.t; x/ �
�.nC 1;m; l/ � �.n;m; l/

�t

and convolutions as simply (compare [4, p. 35])

.J � �/.t; x/ D

Z
�

J.x � y/�.y/ dy � �x2
MX
kD1

MX
jD1

J.�x.m� k/;�x.l � j //�.k; j /
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0.1
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x2
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log
x2

2

6-π

1

7.051 x

4 x2+0.01 exp-2 x2 

π

Figure 2. One-dimensional profiles of the four different kernels J used in the two-dimensional
simulations. Here the range is restricted in order to express the “bimodal” kernel.

and

.K � �/.t;x/D

Z
�

K.x � y/�.y/dy ��x2
MX
kD1

MX
jD1

K.�x.m� k/;�x.l � j //�.k;j /:

Initial data �0 is assumed to be rough/binary, taking only the values C1 or �1. In each
example two control constants, ˛ and ˇ, will be introduced as multipliers on the dis-
cretized convolution. Bounds on the control constants are then sought to ensure that the
absolute value of the first iterate j�.1;m; l/j lies (approximately) within 1 over all m and
l ; that is, for any random initial data described above. With that in place we are able to
(heuristically) determine suitable proportions, called ˛ and ˇ, so that the numerical model
remains stable for all n.

Some global assumptions.
(1) T > 0 and t 2 Œ0; T �.

(2) N 2 N and �t D T
N

. The time interval Œ0; T � is partitioned into N subintervals
Œ.n � 1/�t; n�t� for n D 1; 2; : : : ; N .

(3) L > 0 and x D .x1; x2/ 2 � D .�L;L/2.

(4) M is a positive integer and �x D 2L
M

. The domain � is partitioned into M 2

subsquares determined by .�LC .m� 1/�x;�LCm�x/� .�LC .l � 1/�x;
�LC l�x/ for m; l D 1; 2; : : : ;M .

(5) Initial data �0.x1; x2/ 2 L1.0/.�/ is discretized on the .M �M/-mesh so that

�.0;m; l/ � �0.x1; x2/:
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(6) In accordance with Remark 2.6, the double-well potential is approximated by
F.r/ D � r4 � �cr

2 with � D 1
4

and �c D 1
2

.

Example 7.1. First we examine the discretized doubly nonlocal Cahn–Hilliard equation
when both kernels are the same Gaussian.

(1) Here we set T D 1, N D 28, L D 1 and M D 27. Our choice of (discretized)
initial condition �.0; m; l/ is the bounded function that consists of a uniformly
randomly chosen number ¹�1; 1º at each .m; l/ 2 .M �M/-mesh. See Figure 3.
Note that we choose �.0;m; l/ with the property

PM
m;lD1 �.0;m; l/ D 0 in order

to emulate N�0 D 0.

Figure 3. Discrete initial data �.0;m; l/ in the .27 � 27/-mesh with values chosen randomly from
¹�1; 1º with

P27

m;lD1 �.0;m; l/ D 0.

(2) J.x1; x2/ D K.x1; x2/ D 1
2��2

exp.�x
2
1Cx

2
2

2�2
/ with � D 0:1 fixed. In this example

we will employ the rescaled kernels appearing in (6.6) where ı is allowed to range
in ¹0:03125; 0:0625; 0:125; 0:25; 0:5; 1:0º and where the constant CJ D 15:9577.

Under the above assumptions, equations (6.7) are discretized in time with a forward
Euler scheme and the convolution integrals are discretized with direct Riemann sums.
For each n D 1; 2; : : : ; N and for each m; l D 1; 2; : : : ; M , we consider the following
approximations of �.t; x/ and �.t; x/:

�.n;m; l/ D �.n � 1;m; l/

C ˛�t�x2
MX

k;jD1

CJ

2��2ı4
exp

�
�
..m � k/�x/2 C ..l � j /�x/2

2�2ı2

�
� .�.n � 1; k; j / � �.n � 1;m; l//
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and

�.n � 1;m; l/ D �ˇ�x2
MX

k;jD1

CJ

2��2ı4
exp

�
�
..m � k/�x/2 C ..l � j /�x/2

2�2ı2

�
� .�.n � 1; k; j / � �.n � 1;m; l//

C �.n � 1;m; l/3 � �.n � 1;m; l/;

where M , �x, �t , � , ı and CJ are known values, and ranges of the “control constants”
˛ and ˇ will be sought to provide numerical stability. Indeed, it is worth analyzing the
first step n D 1 to find suitable choices of the constants ˛ and ˇ that might aid in the
convergence of the two discretized relations above. At t D 1 ��t we find

�.1;m; l/ D �.0;m; l/

C ˛�t�x2
MX

k;jD1

CJ

2��2ı4
exp

�
�
..m � k/�x/2 C ..l � j /�x/2

2�2ı2

�
� .�.0; k; j / � �.0;m; l//;

where now

�.0;m; l/ D �ˇ�x2
MX

k;jD1

CJ

2��2ı4
exp

�
�
..m � k/�x/2 C ..l � j /�x/2

2�2ı2

�
� .�.0; k; j / � �.0;m; l//

C �.0;m; l/3 � �.0;m; l/:

Recall that the initial condition �.0; m; l/ takes only the values ¹�1; C1º. Hence,
�.0; m; l/, �.0; k; j / 2 ¹�1;C1º for each choice of m; l D 0; 1; 2; : : : ; M and k; j D
1; 2; : : : ;M , and we further find

�.0; k; j / � �.0;m; l/ 2 ¹�2; 0; 2º;

and
�.0;m; l/3 � �.0;m; l/ D 0;

so that

�.0;m; l/ D �
ˇ�x2CJ

2��2ı4

MX
k;jD1

exp
�
�
..m � k/�x/2 C ..l � j /�x/2

2�2ı2

�
¹�2; 0; 2º:

Illustration 1. To further motivate these formulas and to show how they are important to
the general scheme, we provide a simple illustration of the first iterate �.1; m; l/ on the
square .�1; 1/2 with M D 2. So �x D 1 and there are four subsquares determined by
.�1C .m � 1/;�1Cm/ � .�1C .l � 1/;�1C l/ where m; l D 1; 2. In this 2 � 2 case
we show an example discretized initial condition �.0;m; l/ in Table 1.
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Table 1. Left: The nine mesh points on the domain � D .�1; 1/2. Right: A discretized initial con-
dition �.0;m; l/.

We first obtain �.0;m; l/ on each of the four subsquares from simple calculations:

�.0; 1; 1/ D �.0; 2; 2/ D
2ˇ�x2CJ

��2ı4e�x
2=2�2ı2

;

�.0; 2; 1/ D �.0; 1; 2/ D �
2ˇ�x2CJ

��2ı4e�x
2=2�2ı2

:

With these we are able to also find the four �.1;m; l/:

�.1; 1; 1/ D �.1; 2; 2/ D 1 �
2˛�t�x2CJ

��2ı4e�x
2=2�2ı2

�
2ˇ�x2CJ

��2ı4e�x
2=2�2ı2

;

�.1; 2; 1/ D �.1; 1; 2/ D �1C
2˛�t�x2CJ

��2ı4e�x
2=2�2ı2

�
2ˇ�x2CJ

��2ı4e�x
2=2�2ı2

:

It is worth noting that, based on the above calculations, a generic term in the 2 � 2
case could contain exponentials of the form

e��x
2=�2ı2

which potentially arise from terms with, for example,

e
��x2

.2�1/2C.2�1/2

2�2ı2 or e
��x2

.1�2/2C.1�2/2

2�2ı2 :

We need to account for such terms when we make estimates or bounds. Based on the
illustration so far we can determine the largest values of the initial chemical potential
�.0; 1; 1/. The largest is, for example, when �.0; 1; 1/ D 1 and �.0; 2; 1/ D �.0; 1; 2/ D
�.0; 2; 2/ D �1,

�.0; 1; 1/ D
ˇ�x2CJ

��2ı4
.2e��x

2=2�2ı2
C e��x

2=�2ı2/:
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In that case the remaining � are

�.0; 1; 2/ D �.0; 2; 1/ D �
ˇ�x2CJ

��2ı4
e��x

2=2�2ı2

and

�.0; 2; 2/ D �
ˇ�x2CJ

��2ı4
e��x

2=�2ı2 :

We conclude this illustration with the proposed control criteria obtained from the first
iterate. Hence, the largest admissible ˛ and ˇ guaranteed to keep j�.1; m; l/j / 1 for all
possible 24 D 16 possible different discretized initial conditions is

ˇ D
��2ı4

�x2CJ
.2e��x

2=2�2ı2
C e��x

2=�2ı2/�1 and ˛ D
ˇ

�t
:

With the illustration concluded we look at the generalM �M case. The largest admissible
˛ and ˇ guaranteed to keep j�.1;m; l/j / 1 for all possible 2M

2
initial conditions is

ˇ� WD
��2ı4

�x2CJ

� MX
dD2

e
��x2

.1�d/2

�2ı2„ ƒ‚ …
diagonal terms

C 2

MX
k>j

MX
jD2

e
��x2

.1�k/2C.1�j /2

2�2ı2

„ ƒ‚ …
off-diagonal terms

��1

and

˛� WD
ˇ�

�t
:

Equivalently,

ˇ� WD
��2ı4

�x2CJ

� MX
k;jD1

e
��x2

.1�k/2C.1�j /2

2�2ı2 � 1

��1
and ˛� WD

ˇ�

�t
:

We proceed with the numerical approximation for Example 7.1. A sequence of discretized
solutions corresponding to the nonlocal Cahn–Hilliard equation given in (6.7) for each of
the choices of ı 2 ¹0:03125; 0:0625; 0:125; 0:25; 0:5; 1:0º with ˛ D .0:4/ˇ

�

�t
and ˇ D

.0:4/ˇ� are pictured in Tables 2–7. Each sequence is initiated with the same initial condi-
tion (with the zero sum property) given in Figure 3. Following these simulations is a table
(Table 8) of the approximate solution,  .n; m; l/, corresponding to the classical prob-
lem also initiated with the data given in Figure 3. We investigate the L2-convergence of
the nonlocal problems to the classical problem in Figure 4. This is done by plotting the
root of the sum of the squared differences between the numerical solution for the iterates
t D 1; 32; 64; 96; 128; 160; 192; 224; 256 of the classical Cahn–Hilliard equation (6.1)–
(6.3) and the corresponding numerical solution to a rescaled nonlocal problem in (6.7).
Hence, Figure 4 shows a plot of

diff.ı/ WD
� MX
m;lD1

j�ı.n;m; l/ �  .n;m; l/j
2

�1=2
:
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In the interests of numerically validating Theorem 6.1 and in comparing the resulting
Figure 4 when the numerical procedure is initialized with smooth data, we also obtain the
result of this case (when both kernels are the same Gaussian) when the problems are given
smooth initial data (as opposed to Figure 3). The results of this smooth data test appear in
Appendix B.

t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 2. Example 7.1: Evolution of the discretized solution of the Gauss–Gauss nonlocal CHE with
ı D 0:03125.

Example 7.2. We investigate the doubly nonlocal Cahn–Hilliard equation where the inner
kernel K is the Gaussian from Example 7.1 and the outer kernel J is a logarithmic New-
tonian potential.

(1) Again we take T D 1, N D 28, L D 1 and M D 27 and the (discretized) initial
condition �.0;m; l/ is the same initial condition from Example 7.1.

(2) Here

J.x1; x2/ D

8̂̂<̂
:̂�c log

s
x21 C x

2
2

2
when .x1; x2/ 6D .0; 0/;

J � when .x1; x2/ D .0; 0/;

where c is a normalization constant; here, c D 1
6��

.
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t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 3. Example 7.1: Evolution of the discretized solution of the Gauss–Gauss nonlocal CHE with
ı D 0:0625.

t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 4. Example 7.1: Evolution of the discretized solution of the Gauss–Gauss nonlocal CHE with
ı D 0:125.
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t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 5. Example 7.1: Evolution of the discretized solution of the Gauss–Gauss nonlocal CHE with
ı D 0:25.

t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 6. Example 7.1: Evolution of the discretized solution of the Gauss–Gauss nonlocal CHE with
ı D 0:5.
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t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 7. Example 7.1: Evolution of the discretized solution of the Gauss–Gauss nonlocal CHE with
ı D 1:0.

t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 8. Evolution of the discretized solution of the classical Cahn–Hilliard equation (" D 0:007).
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Figure 4. Example 7.1: The root of the sum of squared differences between various iterates (n D
1; 32; 64; 96; 128; 160; 192; 224; 256) of the solution of the classical CHE (" D 0:007) and the
corresponding doubly nonlocal CHE .

P27

m;lD1 j�ı .n; m; l/ �  .n; m; l/j
2/1=2 over the scaling

parameter ı 2 ¹0:03125; 0:0625; 0:125; 0:25; 0:5; 1:0º.

The constant J � > 0 is meant to simulate the singularity at the origin.22 The kernelK
is the same Gaussian from Example 7.1, save that we now take � D 0:02. In this example,
we do not entertain the rescaled kernels, so there is no such constant CK to compute. Also,
for the Gaussian kernel K, we refer to the previous example with the scaling parameter
now fixed at ıD 1. It remains to compute ˛� and ˇ� that guarantee a suitable bound on the
first iterate. It is important to note that in Example 7.1 the kernels are the same Gaussian.
Because of this we sought “stability constants” ˛ and ˇ, separately, so that j�.1;m; l/j/ 1.
In this example, due to the presence of the singular kernel J and the regular Gaussian K,
we will here seek a suitable bound on the product ˛ˇ rather than separately. Imitating the
simple calculations as in Example 7.1 we now find, for each m; l D 1; 2; : : : ;M ,

�.1;m; l/ D �.0;m; l/

� ˛c�t�x2
MX

k;jD1

log
�
�x

r
.m � k/2 C .l � j /2

2

�
� .�.0; k; j / � �.0;m; l//

22The number 9,223,372,036,854,775,807 is the maximum positive value for a 64-bit signed binary
integer in computing.
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where again (see above; but here ı D CJ D 1)

�.0;m; l/ D �ˇ�x2
MX

k;jD1

1

2��2
exp

�
�
�x2

2�2
..m � k/2 C .l � j /2/

�
� .�.0; k; j / � �.0;m; l//

C �.0;m; l/3 � �.0;m; l/:

Illustration 2. Again, we visit the 2 � 2 case to gain insight into the largest value of the
initial chemical potential. Supposing as before that �.0; 1; 1/ D 1 and �1 elsewhere, then
we now find

�.1; 1; 1/ D �.0; 1; 1/

� ˛c�t�x2
2X

k;jD1

log
�
�x

r
.1� k/2C .1� j /2

2

�
.�.0; k; j /��.0; 1; 1//

D 1 � ˛c�t�x2

�

�
J �.�.0; 1; 1/��.0; 1; 1//C log

��x
p
2

�
.�.0; 1; 2/��.0; 1; 1//

C log
��x
p
2

�
.�.0; 2; 1/��.0; 1; 1//C log.�x/.�.0; 2; 2/��.0; 1; 1//

�
D 1 �

2˛ˇc�t�x4

��2

�
log
��x
p
2

�
.3e��x

2=2�2
C e��x

2=�2/

C log.�x/.e��x
2=2�2

C e��x
2=�2/

�
:

Hence, to bound the iterate j�.1;m; l/j / 1 we require

˛ˇ / �
��2

2c�t�x4

�
log
��x
p
2

�
.3e��x

2=2�2
C e��x

2=�2/

C log.�x/.e��x
2=2�2

C e��x
2=�2/

��1
:

Observe that the arbitrary (positive) value of J � does not appear in the calculations. (This
is also true of the general case.) The singularity in the logarithm is effectively limited out
by the vanishing of the �.0; k; j / � �.0; m; l/ terms when both k D m and j D l . The
illustration is concluded.

Moving on to the general case, we seek ˛ and ˇ so that j�.1;m; l/j / 1 for all m; l D
1; 2; : : : ;M and over any possible discretized initial data �.0;m; n/. Thus,

˛�ˇ� D �
��2

2c�t�x4

� MX
k;jD1

log
�
�x

r
.1 � k/2 C .1 � j /2

2

�
� J �

��1
�

� MX
k;jD1

e
��x2

.1�k/2C.1�j /2

2�2 � 1

��1
:

We illustrate the log-Gauss case in Table 9 with ˛ D .0:3/
p
˛�ˇ�, ˇ D .0:3/

p
˛�ˇ�.
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t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 9. Example 7.2: Evolution of the discretized solution of the log–Gauss nonlocal CHE.

In the next part of this section we study the Riesz potential.

Example 7.3. We investigate the doubly nonlocal Cahn–Hilliard equation where again
the inner kernel K is the Gaussian from Example 7.1 and the outer kernel J is a Riesz
potential.

(1) Again we take T D 1, N D 28, L D 1 and M D 27 and the (discretized) initial
condition �.0;m; l/ is the same initial condition from Example 7.1.

(2) Here,

J.x1; x2/ D

8̂<̂
:

cq
x21 C x

2
2

when .x1; x2/ 6D .0; 0/;

J � when .x1; x2/ D .0; 0/;

with normalization constant c D 7:051.

As in the previous example, the kernel K is the same Gaussian from Example 7.1 but
with � D 0:02, and we do not apply the rescaled kernels. Concerning ˛� and ˇ� we first
have the calculations, for each m; l D 1; 2; : : : ;M ,

�.1;m; l/ D �.0;m; l/

C ˛c�t�x

MX
k;jD1

1p
.m � k/2 C .l � j /2

.�.0; k; j / � �.0;m; l//
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t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 10. Example 7.3: Evolution of the discretized solution of the Riesz–Gauss nonlocal CHE.

and again

�.0;m; l/ D �ˇ�x2
MX

k;jD1

1

2��2
exp

�
�
�x2

2�2
..m � k/2 C .l � j /2/

�
� .�.0; k; j / � �.0;m; l//

C �.0;m; l/3 � �.0;m; l/:

In the general case we find the bound on the first iterate j�.1; m; l/j / 1 for all m; l D
1; 2; : : : ;M and over any possible discretized initial data �.0;m; n/ when

˛�ˇ� D
��2

2c�t�x3

� MX
k;jD1

1p
.1 � k/2 C .1 � j /2

� J �
��1

�

� MX
k;jD1

e
��x2

.1�k/2C.1�j /2

2�2 � 1

��1
:

We illustrate the Riesz–Gauss case with ˛ D .0:6/
p
˛�ˇ�, ˇ D .0:5/

p
˛�ˇ� in Table 10.

We conclude this section with a brief study of the so-called bimodal potential.

Example 7.4. Again we look at the doubly nonlocal Cahn–Hilliard equation where the
inner kernel K is the Gaussian from Example 7.1, but now the outer kernel J is a
“bimodal” potential.
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(1) Again we take T D 1, N D 28, L D 1 and M D 27 and the (discretized) initial
condition �.0;m; l/ is the same initial condition from Example 7.1.

(2) Here,
J.x1; x2/ D c.x

2
1 C x

2
2 C 0:01/e

�2.x21Cx
2
2/;

with normalization constant c D 4
�

.

The kernel K is the same Gaussian from Example 7.3 (i.e., � D 0:02). By following
the calculations made through the previous three examples, we find

ˇ� D
��2

�x2

� MX
k;jD1

e
��x2

.1�k/2C.1�j /2

2�2 � 1

��1
and

˛� D
�

4�t�x4

�

� MX
k;jD1

..1 � k/2 C .1 � j /2 C 0:01/e�2�x
2..1�k/2C.1�j /2/

��1
:

The illustration in this bimodal–Gauss case with ˛ D .0:35/
p
˛�ˇ�, ˇ D .0:35/

p
˛�ˇ�

is in Table 11.

t D 0:0078125 (n D 1) t D 0:125 (n D 32) t D 0:25 (n D 64)

t D 0:375 (n D 96) t D 0:5 (n D 128) t D 0:625 (n D 160)

t D 0:75 (n D 192) t D 0:875 (n D 224) t D 1 (n D 256)

Table 11. Example 7.4: Evolution of the discretized solution of the bimodal–Gauss nonlocal CHE.
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A. Some technical tools

For the sake of completeness, we include a simple proof of the local (in time) existence
result of bounded mild solutions.

Theorem A.1. Let assumption (H1) hold and assume that F 2C 2.R;R/ satisfies F.0/D
F 0.0/D 0. Then system (1.3)–(1.5) has at least one mild solution, in the sense of Definition
2.1, on the interval .0; T�/, for some T� > 0.

Proof. We want to show that the sequence ¹�n.t; x/º1nD0 defined by the iterates (2.2)–
(2.4) converges to a solution �.t; x/ of (1.3)–(1.5). We know the solution �.t; x/ has the
form

�.t; x/ D �.0; x/C

Z t

0

..J � �/.�; x/ � aJ .x/�.�; x// d�

where
�.�; x/ D �.K � �/.�; x/C aK.x/�.�; x/C F

0.�.�; x//:

Given �0 2 L1.�/, we claim the sequence �n.t; x/ converges in L1.�/, uniformly in
t 2 Œ0; T��, for a suitable T�. We also claim the limit �.t; x/ is a solution to problem (1.3)–
(1.5). Indeed, using (2.3) and (2.4), for almost all t 2 Œ0; T�� and for almost every x 2 �,
there holds

lim
n!1

�n.t; x/ D �0.x/C lim
n!1

Z t

0

�Z
�

J.x � y/�n�1.�; y/ dy � aJ .x/�n�1.�; x/

�
d�

D �0.x/C

Z t

0

�Z
�

J.x � y/ lim
n!1

�n�1.�; y/ dy

� aJ .x/ lim
n!1

�n�1.�; x/

�
d�; (A.1)

and

lim
n!1

�n�1.�; x/ D lim
n!1

Z
�

�K.x � y/�n�1.�; y/ dy C lim
n!1

aK.x/�n�1.�; x/

C lim
n!1

F 0.�n�1.�; x//

D

Z
�

�K.x � y/ lim
n!1

�n�1.�; y/ dy C aK.x/ lim
n!1

�n�1.�; x/

C F 0. lim
n!1

�n�1.�; x//

D

Z
�

�K.x � y/�.�; y/ dy C aK.x/�.�; x/C F
0.�.�; x//

D �.�; x/: (A.2)

Hence, it follows that

lim
n!1

�n.t; x/ D �0.x/C

Z t

0

�Z
�

J.x � y/ lim
n!1

�n�1.�; y/ dy

� aJ .x/ lim
n!1

�n�1.�; x/

�
d�
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D �0.x/C

Z t

0

�Z
�

J.x � y/�.�; y/ dy � aJ .x/�.�; x/

�
d�

D �.t; x/:

We should note that the termwise integration is justified since it does not hold only on
a set of measure zero. From now on, we denote by C > 0, a constant that depends on
the structural parameters, and may even change from line to line. Such constant used
below is independent of t and n, k. To this end, we define the closed subset YM;T� of
C.Œ0; T��IL

1.�// as the set

YM;T� WD
®
� 2 C.Œ0; T��IL

1.�// W k�kC.Œ0;T��IL1.�// �M
¯

for suitable constants M; T� > 0, such that the sequence of iterates ¹�n.t/º � YM;T� for
all n 2 N0. This follows by an induction argument assuming that M D 2k�0kL1.�/ and
T� > 0 is small enough such that

T� �
k�0kL1.�/

kJ kL1.kKkL1 C jF
00.�M/jM/

for some � 2 .0; 1/. Indeed, by definition,

k�nC1.t/kL1.�/ � k�0kL1.�/ C

Z t

0

kJ kL1k�.s/kL1.�/ ds

� k�0kL1.�/

C

Z t

0

kJ kL1.kKkL1 C kF
00.��n.s//kL1.�/k�n.s/kL1.�// ds

� k�0kL1.�/ C tkJ kL1.kKkL1 C jF
00.�M/jM/

� 2k�0kL1.�/ DM

for all t 2 Œ0; T��.

The case n D 0. To begin, recall the Young inequality for convolutions: kf � gkLr �
kf kLpkgkLq for 1 � p; q; r � 1, 1=p C 1=q D 1=r C 1. Using (H1), we first estimate

k�1.t/ � �0kL1.�/ D





Z t

0

.J � �0 � a�0/ d�






L1.�/

� .kJ � �0kL1.�/ C ka�0kL1.�//t

D .kJ kL1.�/ C kaJ kL1.�//k�0kL1.�/t

� Ck�0kL1.�/t; (A.3)

where, using (2.4),

k�0kL1.�/ � kK � �0kL1.�/ C kb�0kL1.�/ C kF
0.�0/kL1.�/

� .kKkL1.�/ C kaKkL1.�//k�0kL1.�/ C Ck�0kL1.�/

� C: (A.4)
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Hence, combining (A.3) and (A.4) yields

k�1.t/ � �0kL1.�/ � Ct for all t 2 Œ0; T��:

The n D k case, for k � 0. We now assume that the following holds. For each n D
0; 1; 2; : : : ; k, for some positive constant C , independent of t and n (this is the weak
inductive hypothesis),

k�kC1.t/ � �k.t/kL1.�/ � C
tkC1

.k C 1/Š
for all t 2 Œ0; T��: (A.5)

We claim that there is a positive constant C such that

k�kC2.t/ � �kC1.t/kL1.�/ � C

Z t

0

k�kC1.�/ � �k.�/kL1.�/ d�

� C
tkC1

.k C 1/Š
: (A.6)

The first inequality in (A.6) follows naturally in view of the Young convolution theorem
and the assumptions on J in (H1). It suffices to show the second inequality in (A.6).
Namely,Z t

0

k�kC1.�/ � �k.�/kL1.�/ d�

� C

Z t

0

�
kK � .�kC1 � �k/.�/kL1.�/ C kaK.�kC1.�/ � �k.�//kL1.�/

C kF 0.�kC1.�// � F
0.�k.�//kL1.�/

�
d�: (A.7)

Furthermore, using (A.5) we find the bounds

kK � .�kC1 � �k/.�/kLp.�/ � kKkL1.�/k�kC1.�/ � �k.�/kLp.�/

�
C�kC1

.k C 1/Š
(A.8)

and

kaK.�kC1.�/ � �k.�//kLp.�/ � kaKkL1.�/k�kC1.�/ � �k.�/kLp.�/

�
C�kC1

.k C 1/Š
: (A.9)

Of course, the Lipschitz continuity of ' 7! F 0.'/WL1.�/! L1.�/ implies

kF 0.�kC1.�// � F
0.�k.�//kLp.�/ � CM

�kC1

.k C 1/Š
: (A.10)
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Putting together (A.7)–(A.10) we observe that, upon integrating, (A.6) holds. The above
induction argument proves that, for all t 2 Œ0; T��,



�0 C 1X

nD1

.�n.t/ � �n�1.t//






L1.�/

� C

1X
nD1

tnC1

.nC 1/Š
� CM e

T� :

By the Weierstrass M -test, the series converges uniformly in t 2 Œ0; T��, in the space
L1.�/. Thus, for each t 2 Œ0; T�� there exists a limit function �.t/ 2 L1.�/ in which
limn!1 �n.t/ D �.t/ in L1.�/ and (A.1)–(A.2) hold in L1.�/. By construction, each
term �n.t/ 2 L

1.�/ is continuous in t , so by the uniform convergence for t 2 Œ0; T��, it
follows with an application of the uniform limit theorem that the limit �.t/ 2 L1.�/ is
also continuous in t ; i.e.,

�n 2 C.Œ0; T �IL
1.�// and � 2 C.Œ0; T �IL1.�//:

Since the L1.�/-normed convergence implies convergence pointwise a.e., the function
�.t; x/ satisfies problem (1.3)–(1.5) pointwise a.e., and is a mild solution. As a further
consequence, we also have the (local-in-time) bound

k�.t/kL1.�/ D lim
n!
k�n.t/kL1.�/

D k�0 C

1X
nD1

.�n.t/ � �n�1.t//kL1.�/ � Ce
T� : (A.11)

Of course, we now examine the bound on �.t/; indeed, thanks to the Lipschitz continuity
of the map ' 7! F 0.'/,

k�.t/kL1.�/ D k �K � �.t/C aK�.t/C F
0.�.t//kL1.�/

� kK � �.t/kL1.�/ C kaK�.t/kL1.�/ C kF
0.�.t//kL1.�/

� kKkL1.�/k�.t/kL1.�/ C kaKkL1.�/k�.t/kL1.�/ C Ck�.t/kL1.�/

� Ck�.t/kL1.�/: (A.12)

This concludes the existence argument for a locally defined mild solution.

The following statement is required in the proof of Theorem 5.1. It allows one to find
some compactness along differences of any two trajectories for the problem.

Proposition A.2. Let �i , i D 1; 2 be a pair of mild solutions corresponding to �i .0/ 2 B .
Then the following estimates23 hold:

k�1.t/ � �2.t/k
2
H1.�/

� k�1.0/ � �2.0/k
2
H1.�/

e�c0�1t C C

Z t

0

k�1.s/ � �2.s/k
2
Lq.�/ ds (A.13)

23Here q > 2 is the same exponent as in (5.2). Namely, q D 2p
p�2

if p > N D 2; 3, and q D1 ifN D 1.



C. G. Gal and J. L. Shomberg 1230

and Z t

0

.k@t�1.s/ � @t�2.s/k
2
.H1.�//�

C c0�1k�1.s/ � �2.s/k
2
H1.�/

/ ds (A.14)

� CeCtk�1.0/ � �2.0/k
2
H1.�/

for all t � 0, for some positive constant C which depends on c0, �1 and J , K, but is
independent of �i .0/ and time.

Proof. We have that � WD �1 � �2 satisfies the problem

@t� D LJ Q�; Q� D �K � � C aK.x/� C F
0.�1/ � F

0.�2/; (A.15)

subject to the initial condition

�jtD0 D �1.0/ � �2.0/ in �: (A.16)

Also, observe that Di� satisfies the problem

@tDi� C aJ .x/.aK.x/C F
00.�//Di� D %.�/; (A.17)

where

%.�/ WD �.DiaJ .x// Q�CDiJ � Q�C aJ .x/DiK � � � aJ .x/.DiaK.x//�

� .J � 1/.x/.�F 000.�/Di�/

and � WD ��1 C .1 � �/�2 for some � 2 .0; 1/. Multiply (A.15) and (A.17) by 2� and
2Di�, respectively, and integrate over �. We obtain, thanks to the assumptions of Theo-
rem 5.1, the following identities:

d

dt
k�.t/k2

L2.�/
C 2c0�1k�.t/k

2
L2.�/

D 2.J � Q�; �/L2 C 2.aJ .x/K � �; �/L2 � CMk�k
2
L2.�/

(A.18)

and

d

dt
kDi�.t/k

2
L2.�/

C 2c0�1kDi�.t/k
2
L2.�/

D 2.%.�/;Di�/L2 � CMk%.�/k
2
L2.�/

C c0�1kDi�k
2
L2.�/

(A.19)

for all t � 0. Adding together (A.18)–(A.19), owing to (5.1) (which holds for every tra-
jectory �i .t/) and arguing as in the proofs of Theorems 3.5, 3.4 (on account of the Young
convolution theorem), we arrive at the estimate

d

dt
k�.t/k2

H1.�/
C c0�1k�.t/k

2
H1.�/

� C.k%.�/k2
L2.�/

C k�k2
L2.�/

/ � CMk�k
2
Lq.�/ (A.20)
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for all t � 0. Then the Grönwall inequality yields (A.13) from (A.20). We also note that,
upon integrating (A.18) over .0; t/, we find

k�.t/k2
L2.�/

C c0�1

Z t

0

k�.s/k2
L2.�/

ds � k�.0/k2
L2.�/

e2c0�1t : (A.21)

Then, upon integrating (A.20) once again, owing to H 1.�/ � Lq.�/ we deduceZ t

0

k�.s/k2
H1.�/

ds � CMk�.0/k
2
H1.�/

ec0�1t for all t � 0: (A.22)

Moreover, by (A.15), we haveZ t

0

k@t�.s/k
2
H1.�/�

ds � CM

Z t

0

k Q�.s/k2
L2.�/

ds � CM

Z t

0

k�.s/k2
L2.�/

ds: (A.23)

Finally, combining (A.21) with (A.23) and then recalling (A.22), we immediately arrive
at (A.14). The proof is finished.

The main tool, used in Section 4, is the Łojasiewicz–Simon theorem for the energy
functional E D E.t/ (see, e.g., [19, Lemma 2.20] for a proof).

Lemma A.3. There exist constants � 2 .0; 1
2
�, C > 0, ı > 0 such that the following

inequality holds:
jE � E1j

1��
� Ck� � N�kL2.�/ (A.24)

for all � 2 L1
.m/
.�/, provided that k� � ��kL2.�/ � ı.

We report for the reader’s convenience the following abstract result on the existence
of exponential attractors ([11, Proposition 4.1]), used in Section 5.

Proposition A.4. Let H , V , V1 be Banach spaces such that the embedding V1 � V is
compact. Let B be a closed bounded subset of H and let S WB ! B be a map. Assume
also that there exists a uniformly Lipschitz continuous map T WB ! V1, i.e.,

kTb1 � Tb2kV1 � Lkb1 � b2kH for all b1; b2 2 B; (A.25)

for some L � 0, such that

kSb1 � Sb2kH � 
kb1 � b2kH CKkTb1 � Tb2kV for all b1; b2 2 B; (A.26)

for some 
 < 1
2

and K � 0. Then there exists a (discrete) exponential attractor Md � B

of the semigroup ¹S.n/ WD Sn; n 2 ZCº with discrete time in the phase space H .

B. Supplement to Example 7.1

In this short section we present another plot similar to Figure 4 in Example 7.1. For val-
idation purposes we here choose (smooth) initial data that satisfy the assumptions of
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Theorem 6.1. Hence, we expect to see the convergence indicated by (6.8), at least an
approximation at the numerical level. It is important to keep in mind that this convergence
was not expected in Example 7.1. Indeed, the initial data used throughout Examples 7.1–
7.4 were nonsmooth and meant to emulate a substance containing two components that
are thoroughly mixed and randomly placed. We are again interested in seeing the L2-
distance between the numerical solution to the classical CHE and the numerical solution
of the rescaled doubly nonlocal CHE, but here each problem is initialized with �0.x/ D
cos.2�x/ cos.2�y/. The result appears in Figure 5.

Figure 5. Smooth initial data. The root of the sum of squared differences between various iterates
(n D 1; 16; 32; 48; 64; 80; 96; 112; 128) of the solution of the classical CHE (" D 0:007) and the
corresponding doubly nonlocal CHE .

P27

m;lD1 j�ı .n; m; l/ �  .n; m; l/j
2/1=2 over the scaling

parameter ı 2 ¹0:03125; 0:0625; 0:125; 0:25; 0:5; 1:0º.
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