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Lyapunov functions and finite-time stabilization in
optimal time for homogeneous linear and
quasilinear hyperbolic systems

Jean-Michel Coron and Hoai-Minh Nguyen

Abstract. Hyperbolic systems in one-dimensional space are frequently used in the modeling of
many physical systems. In our recent works we introduced time-independent feedbacks leading to
finite stabilization in optimal time of homogeneous linear and quasilinear hyperbolic systems. In
this work we present Lyapunov’s functions for these feedbacks and use estimates for Lyapunov’s
functions to rediscover the finite stabilization results.

1. Introduction

Hyperbolic systems in one-dimensional space are frequently used in the modeling of
many systems such as traffic flow ([1]), heat exchangers ([39]), fluids in open channels
([15,18,22,23]), transmission lines ([14]), and phase transition ([20]). In our recent works
([10,11]), we introduced time-independent feedbacks leading to finite stabilization in opti-
mal time of homogeneous linear and quasilinear hyperbolic systems. In this work we
present Lyapunov’s functions for these feedbacks and use estimates for Lyapunov’s func-
tions to rediscover the finite stabilization results. More precisely, we are concerned about
the following homogeneous, quasilinear, hyperbolic system in one-dimensional space:

drw(t, x) = X(x,w(t,x))oxw(t, x) for(t,x) € [0, +00) x (0,1). (1.1)

Here, w = (wq, ..., wy,)": [0, +00) x (0,1) — R" and X (-, -) is an (n x n) real matrix-
valued function defined in [0, 1] x R”. We assume that X (-, -) has m > 1 distinct positive
eigenvalues and k = n —m > 1 distinct negative eigenvalues. We also assume that, maybe
after a change of variables, X (x, y) for x € [0, 1] and y € R” is of the form

Z(X, y) = diag(_kl(xs y)v o 7_Ak(x! y),Ak+1(X, y)’ N ,Ak—i-m(-x» y))v (12)

where

—A1(x,y) <+ < =Ap(x,y) <O < Aggr (X, ) <o Apgm(x,p). (1.3)
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Throughout the paper we assume that
A; and 9, A; are of class C! with respecttox and y forl <i <n=k+m. (1.4)

Denote
w_ = (wy,...,wg)" tand wy = Wiip1s--. Wim) -

The following types of boundary conditions and controls are considered. The boundary
condition at x = 0 is given by

w—(t,0) = B(w4+(¢,0)) forz >0, (1.5)

for some
B € (C2(R™))* with B(0) =0,

and the boundary control at x = 1 is

wi(t, 1) = Wigtrsooos Wiam)' () fort >0, (1.6)
where Wiy, ..., Wiym are controls.
Set
|
T = dx forl <i <n. 1.7
B Rvexy == 47

The exact controllability, the null-controllability, and the boundary stabilization of
hyperbolic systems in one dimension have been widely investigated in the literature for
almost half a century; see, for example, [3] and the references therein. Concerning the
exact controllability and the null-controllability related to (1.5) and (1.6), the pioneer
works date back to Rauch and Taylor ([35]) and Russell ([36]) for linear inhomogeneous
systems. In the quasilinear case with m > k, the null-controllability was established for
m > k by Liin [31, Theorem 3.2] (see also [32]). These results hold for time 73 + g 4.

Concerning the stabilization of (1.1), many works are concerned with boundary con-

ditions of the specific form
w-(1,0)\ w4 (t, 1)
()= (o) (49

where G: R" — R” is a suitable smooth vector field. Three approaches have been pro-
posed to deal with (1.8). The first one is based on the characteristic method. This method
was investigated in the framework of the C'-norm ([21, 30]). The second one is based
on Lyapunov functions ([4-7, 17,29]). The third one is via the delay equations and was
investigated in the framework of the W2:?-norm with p > 1 ([9]). Surprisingly, the sta-
bility criterion in the nonlinear setting depends on the norm considered ([9]). Required
assumptions impose some restrictions on the magnitude of the coupling coefficients when
dealing with inhomogeneous systems.

Another way to stabilize (1.1) is to use the backstepping approach. This was first pro-
posed by Coron et al. ([13]) for 2 x 2 inhomogeneous system (m = k = 1). Later this
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approach was extended and can now be applied for general pairs (m, k) in the linear case
([2,8,10,12,16,27]). In [13], the authors obtained feedbacks leading to finite stabilization
in time 71 + 12 withm = k = 1. In [27], the authors considered the case where X is con-
stant and obtained feedback laws for null-controllability at time t; + Z;”:l Tk 4+1. Later
([2, 8]), feedbacks leading to finite stabilization in time t3 + tx4; were derived.

Set, asin [10, 11],

max{ty + Tm+1,---» Tk + Tmtk> Tht1} ifm >k,
Topt == . (1.9
Max{Tk+1-m + Tk+1> Tht2—m + Tht2s---» Tk + Thktm) iEm <k.
Define
B = {B € R*™ guch that (1.11) holds for 1 <i < min{m — 1,k}}, (1.10)
where
the i x i matrix formed from the last i columns
and the last i rows of B is invertible. (1.11)

Using the backstepping approach, we established null-controllability for linear inhomo-
geneous systems for the optimal time 7T, under the condition B := VB(0) € 8 ([10,
12]) (see also [11] for the nonlinear, homogeneous case). This condition is very nat-
ural for obtaining null-controllability at 7oy, which roughly speaking allows us to use
the [ controls Wixim—i+1s--., Witm to control the [ directions wg—;4+1, ..., wg for
1 <[ < min{k, m} (the possibility of implementing / controls corresponding to the fastest
positive speeds to control / components corresponding to the lowest negative speeds').
The optimality of Ty was given in [10] (see also [37]). Related exact controllability
results can also be found in [10, 12, 26, 28]. It is easy to see that B is an open subset
of the set of (real) k x m matrices and the Hausdorff dimension of its complement is
min{k, m — 1}.

We previously obtained time-independent feedbacks leading to finite stabilization for
the optimal time T, of the system (1.1), (1.5), and (1.6) when B € 8 in the linear case
([10]), and in the nonlinear case ([11]). In this paper we introduce Lyapunov functions for
these feedbacks. As a consequence of our estimate of the decay rate of solutions via the
Lyapunov functions (Theorems 1.1 and 3.1), we are able to rediscover finite stabilization
results in optimal time ([10, 11]).

To keep the notation simple in the introduction, from now on we will only discuss
the linear setting, i.e., X(x,y) = X(x) (so A;(x, y) = A;(x)) and B(-) = B- (recall that
B = VB(0)). The nonlinear setting will be discussed in Section 3. The boundary condition
at x = 0 becomes

w—(t,0) = Bw4(¢,0) fort > 0. (1.12)

'The i direction (1 <i < n) is called positive (resp. negative) if A; is positive (resp. negative).
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Figure 1. (a) k = m = 3, ¥ is constant, x; = x1(-, 74, 0), xo = x2(-, 75, 0), x3 = x3(-, 74, 0),
x4 = x4(-,0,1), x5 = x5(-,0, 1), and x¢ = x6(-,0,1). ) k + 1 <i < j <k +m and X is
constant.

We first introduce/recall some notation. Extend A; in R with 1 <i < k 4+ m by 4;(0) for
x < 0and A;(1) for x > 1. For (s, &) € [0, T] x [0, 1], define x; (¢, 5, &) for t € R by

%xi(t,s,é) = Ai(x;(t,5,8)) and x;(s,s,§) =& ifl <i <k, (1.13)
and
%xi(l,s,é) = —Ai(xi(z,5,8) and x;(s,5,6) =& ifk+1<i<k+m (1.14)

(see Figure 1).
Forx € [0,1],and k +1 < j <k 4+ m,let t(j, x) € R4 be such that

xj(r(j,x),0,x) =0,
andsetk + 1 <i<j<k+m,
ai,j(x) = x;(0,7(j, x), 0) (1.15)

(see Figure 1 (b)). Itis clear that t(j,1) = t; fork +1 < j <k +m.
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We now recall the feedback in [10]. We first consider the case m > k. Using (1.11)
with i = 1, one can derive that wg (¢,0) = 0 if and only if

Witk (£,0) = My (Wi 1, - - ., Wngk—1)" (2. 0), (1.16)

for some constant matrix My of size 1 x (m — 1). Using (1.11) with i = 2, one can derive
that w (¢,0) = wg—1(¢,0) = 0 if and only if (1.16) and

Wm+k—1 (l, O) = Mk_l(Wk+1 sy wm+k_2)T([, 0) (117)

hold for some constant matrix My_; of size 1 x (m — 2) by the Gaussian elimination
method etc. Finally, using (1.11) with i =k, one can derive that wy (t,0) = wg_(¢,0)--- =
w1 (¢,0) = 0if and only if (1.16), (1.17), ..., and

wm+1(t,0):Ml(wk+1,...,wm)T(t,0) (1.18)

hold for some constant matrix M of size 1 x (m — k) by applying (1.11) with i = k and
using the Gaussian elimination method when m > k. When m = k, a similar fact holds
with M, = 0.

The feedback is then given as follows:

Witk (2, 1) = My (i1 (2, X410, Tk 0), - . .,

Wetm—1 (£, X tm—1 0. T+, 0)) (1.19)
Wnk—1(0.1) = Mgy (W12, Xk 41(0, Ty r—1.0)). ...,
Wi +m—2 (0, Xk+m—2(0, Tmk—1, 0)))T, (1.20)
Wn+1(2,1) = My (g4 1 (8, Xk 41(0, Tn1,0)), .. .,
Wi (1, X1 (0, Tm1,0))) (1.21)
and
wi(t,1)=0 fork+1<j<m (1.22)

(see Figure 1 (a)).”
We next deal with the case m < k. The construction in this case is based on the con-
struction given in the case m = k. The feedback is then given by

Wit (. 1) = My (i1 (6 X541 (0, T . 0)), .,
Wi4m—1(, X 4+m—1(0, Tkgm. 0))), (1.23)

2In [10] we use x; (—7;,0,0) with k + 1 <i < j <k + m in the feedback above. Nevertheless,
xi (=7, 0,0) = x; (0, 7;,0).
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Wietm—1(, 1) = M1 (We41(7, X410, Tepm—1.0)), ...,

Wi 4m—2 (1, Xk4m=2(0, Tk4m—1,0))). (1.24)
W2, 1) = My po—m (Wit1 (1, Xk 41 (0, Teym—1.0))), (1.25)
Wi+1(t, 1) = Mg 1-m, (1.26)

with the convention My ;_,, = 0.

Remark 1.1. The well-posedness of (1.1) with X (x, y) = X (x), (1.5), with the feedback
given above for wg € [L°°(0, 1)]" is given by [10, Lemma 3.2]. More precisely, for wqy €
[L°°(0,1)]" and T > 0, there exists a unique broad solution w € [L*°((0,T) x [0, 1])]" N
[C([0, T); L?(0, 1)]" N [C([0, 1]; L2(0, T))]". The broad solutions are defined in [10,
Definition 3.1]. The proof is based on a fixed point argument using the norm
lw] = sup esssup e M1 (¢, €),
1<i<n (z,£)€(0,T7)x(0,1)

where L, L, are two large positive numbers with L; much larger than L.
Concerning these feedbacks, we have the following theorem.

Theorem 1.1. Let m, k > 1, and wo € [L*°(0, 1)]", and assume that ¥(x,y) = %(x)
and B(-) = B-. There exists a constant C > 1, depending only on B and %, such that for
allq > 1 and A > 1, it holds that

lw(t, )La.1)y < Ce* T ||w(0,)||Lao.1y fort >0, (1.27)

where w is the solution of (1.1) with w(0, -) = wq satisfying the feedback (1.19)—(1.22)
whenm > k and (1.23)—(1.26) when m < k. As a consequence, we have

lw(t, Y o1y < CeATrDw(r = 0,)||Le@.1) Sfort = 0. (1.28)

As a consequence of Theorem 1.1, finite stabilization in the optimal time Top is
achieved by taking A — 4-o0 since C is independent of A. The spirit of deriving appro-
priate information for the L°°-norm from the one associated to the LZ-norm was also
considered in [4]. The proof of Theorem 1.1 is based on considering the following Lya-
punov function. Let ¢ > 1 and, with £ = max{m, k}, let V:[L4(0, 1)]" — R be defined
by

¢ 1
V) = Zf pi (0)|v; (x)|?dx (1.29)
i=170

1
+ Z /0 pm+i(x)|vm+i(x)_Mi(vk+1(ak+l,m+i(x))’-~~,

L+1<m+i q
<k+m Umti—1@myi-1,m+i (x))]? dx,

3Recall that B = VB(0).
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where
pi(x) = A7 (x)e~9A o 27 9 dstah Jo 27 (5) ds for 1 <i <k, (1.30)
pi(x) = TIAT1 (x)edA o A (9)ds fork +1<i<4¢ (131
P (x) = TOL () IM 0 i O dstah o AT s for g 41 < 4
<m+k, (132

for some large positive constant I' > 1 depending only on ¥ and B (it is independent of
A and ¢q).

Remark 1.2. Our Lyapunov functions are explicit. This is useful to study the robustness
of our feedback laws with respect to disturbances. The use of Lyapunov functions is a clas-
sical tool to study the robustness of feedback laws for control systems in finite dimensions
(see, for example, [33, Sections 4.6, 4.7, 5.5.2, 11.7]). For one-dimensional hyperbolic
systems, Lyapunov functions are used in particular for the study of a classical robustness
property called the input-to-state stability (ISS); see, for example, [19,25,34,38].

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1.
The nonlinear setting is considered in Section 3. The main result there is Theorem 3.1,
which is a variant of Theorem 1.1. In the appendix we will establish a lemma that is used
in the proofs of Theorems 1.1 and 3.1.

2. Analysis for the linear setting — proof of Theorem 1.1

This section, containing two subsections, is devoted to the proof of Theorem 1.1. The first
subsection concerns the case m > k and the second the case m < k.

2.1. Proof of Theorem 1.1 form > k

One can check that a; ; is of class C I since A is of class C! (see, for example, [24,
Chapter V]). We claim that, fork + 1 <i < j <k + m and for x € [0, 1],

a; ;(x) = Aiai, j(x))/A;(x). 2.1)

Indeed, by the characteristic method and the definitions of a; ; and 7(}j, -) (see also Figure
1 (b)), we have

a;,j (xj(1,0.)) = x;(t.7(j.x).0) for0 <1 <(j.x).
Taking the derivative with respect to ¢ gives
aj ;(xj(2,0,x))3,x;(£,0,x) = 9,x; (¢, T(j, x), 0).
This implies, by the definition of x; and x;,
aj ; (xj(1,0,X))4; (x; (1,0, x)) = Ai (xi (1, 7(j, X), 0)).
Considering ¢ = 0, we obtain (2.1).
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As a consequence of (2.1), we have

Ai(ai j(x))

dx(wi (1,41, (x))) = Wax w; (¢, a;, j(x)). (2.2)
J

Identity (2.2) is one of the key ingredients in deriving properties for %"V(w (¢,+)), which
will be done next.

In what follows, we assume that w is smooth. The general case will follow by a stan-
dard approximation argument. Set

Sm+i (1, X) = Am4i (X)0x W4 (2, X)
— M; (A1 (ks 1,m4i (0))Ox Wi 1 (7, Al 1,m41 (X)), - . .,

Amti—1(@m+i—1,m+i (X))0xWmri—1(t, Amti—1,m+i (X)), (2.3)
and

Ton+i(t,x) = Wi (2, X)

— M (Wet1 (7, Akt 1m+1 (X)), oo s Wit (F Gmgi—1,m4i (X)) (24)

Since M; is constant, it follows from the definition of V(v) and (1.1) that, for ¢ > 0,

d
SV ) = Un () + U, 2.5)
where
k 1
U0 ==Y [ pn @00l dx
i=1
m 1
+ 30 [ a0l dx 2.6)
i=k+1"0
and

k 1
Uz (1) = Z/ qPm+i (X)Sm+i (€, X)| Trn+i (tvx)|q72Tm+i(t7x) dx. 2.7
i=170

We next consider U;. An integration by parts yields

m 1
Z /O(/\ipi)/(x)lwi(t,x)lqu

i=k+1

k 1
U =Y [ Gup ol dx -
i=170

k m
B YIS YOS IUEACaRS ] RS P MCS VYRS ACA N eX
i=1

i=k+1
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Using the feedback (1.22) and the boundary condition (1.5), we obtain

m 1
Z /O(Aipi)/(x”wi(t,xﬂqu

i=k+1

k 1
U =Y [ Gup ol dx -
i=170

k k
= AW pi(Mwi . DI+ Y 2i(0) pi (0)[(Bw )i (1,0)|4

i=1 i=1
m
— > 2i(0)pi(0)w; (1.0 2.9)
i=k+1
We next deal with U,. Using (2.2), we derive from the definition of S,,; that
Sm+i (1, X) = Am+i (X)0x Wi (7, X)
- Am-H' (X)Mi (8)6 (U)k+1(Z, Ak+1,m+i (X))), EE
Ox (Wmti—1(t, Amsi—1,m+i (X)), (2.10)

which yields, since M; is constant,
Sm+i (. %) = Am4i (X)0x T4 (¢, x). (2.11)

Combining (2.7) and (2.11) and integrating by parts yield

ko1
Ualt) = = 3 [ Gt s O Tt 01
i=170

k 1
3 i () P (O T 1, )17 | (2.12)

i=1
By the feedback laws (1.19)—(1.21), the boundary term on the right-hand side of (2.12) is

k
= At (0) P i (0)| w1 (£, 0) = My (w1 (2.0). ... wnpi—1(2.0)|".

i=1

One then has

k 1
Ua®) == Y [ Gt s O 1. 01 @.13)
i=1
k
=Y Am+i (0) P (O) | w4 (1,0) = Mi (Wi 1(2,0), ..., wynpi—1 (2, 0) |
i=1

From (2.9) and (2.13), we obtain

U () + Ua(t) = Wi (t) + Walt), (2.14)
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where

k k
Wi(t) ==Y XD pi(D]wi (e, DI+ Y 4 (0)pi (0)|(Bw+)i (2, 0)|?

i=1 i=1
— Y 20 pi(0)w; (2, 0)| (2.15)
i=k+1
k
- Z A 4i(0) Prn4i (0) [ Wi 4i (2. 0) — My (wie1(2,0), ... Wi i—1 (2, 0) |7,
i=1

and

m 1
Z /O(Aipi)/(x)lwi(t,xﬂqu (2.16)

i=k+1

k 1
W) = 3 [ Gupe ol dx -
i=170

k
- Z/(;l(/\m+ipm+i)/(x)|wm+i (t,x) = M; (i1 (1, Qi1 m4i (X))
= Wi i1t a1 s ()| dx.
On the other hand, (1.30), (1.31), and (1.32) imply

(Aipi) = —qAp; forl <i <k, (2.17)

Aipi) =qAp;  fork+1<i<k+m. (2.18)

Using (2.17) and (2.18), we derive from (2.16) that

Wa(t) = —qAV(2). (2.19)

We have, by the Gaussian elimination process,

k

k
D | Wi (1,0) = My (Wi 11,0, .., Wy si1 (1,0)] = € Y [(Bwo)i (1, 0)]
i=j i=j

for j =k, then j =k —1,..., and finally for j = 1. Using the fact that

1 1
/O)L;l(s)ds</0 )ti_zl(s)ds forl <i; <ip <k,

and, fora; > Owith1 <i < j <kand1 <g¢g < 400,

J q J
(Zai) < Can?
i=1

i=1
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for some positive constant C independent of ¢ and a;, we derive from (1.30) and (1.32)
that, for large I" (the largeness of " depends only on B, k, and [; it is in particular inde-
pendent of A and g),

k
Z Am+i(0) P (0)|win 4 (2, 0) — Mi (i1 (2,0, . .., wmti—1(2,0))|

i=1
k
> Z 2i(0) p; (0)](Bw); (¢,0)|.
im1

It follows from (2.15) that
Wi(2) <0. (2.20)

Combining (2.5), (2.14), (2.19), and (2.20) yields

d
o7 Y W(.) = —gAV(w(. ).

This implies
V() < e M V(w(0, ). (2.21)
Set
A= sup pi(x) and a= inf p;(x), (2.22)
1<i<n 1<i<n
xE_(O_,l) x€(0,1)

and define, for v € [L2(0, 1)]",

1 m
ol =[0 S i (o)l dx

i=1

k
+ /01 D omti () = Mi (Vi1 @4 1.mti (), -
= Vmti—1 @myi-tmi(x))]7 dx. (2.23)
Using (1.30), (1.31), (1.32), and the definition of T, (1.9), one can check that
Aja < C9ed0Tom (2.24)

for some positive constant C depending only on I' and X. It follows that

(2.22),223) 1 @21 1
lwE. )%, = =Vw(,) = —e M Vw(,)
a a

(2.22),223) A (2.24)
< e M wold <

A(Top—
- C 490 Topt t)||w0||f]v-

Since [[v|ly ~ ||v||La(o,1) for v € [LZ(0,1)]" by Lemma A.1, assertion (1.27) follows.
It is clear that (1.28) is a consequence of (1.27) by taking ¢ — +o0. ]
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2.2. Proof of Theorem 1.1 for m < k
The proof of Theorem 1.1 for m < k is similar to that for m > k. Indeed, one has
Wo(t) = —AV. (2.25)
We have, by the Gaussian elimination process, fork + 1 <m + j <m + k,

Z |Wimti (,0) — Mi (Wr41(2,0), ..., Wn4i—1(2,0))]

i
m+j<m+i

<m+k
>C Y |(Bwy)i(t,0)].
m+j15m+i

<m+k
and, for1 < j <k —m,

Z | Wit (2. 0) = M (W 41(2,0), ..., Wm4i—1(2,0))| = C|(Bwy);(t,0)].

i
k+1<m+i
<m+k

Using the fact

1 1
/ A;l(s) ds </ )Li_zl(s) ds forl <iy <i, <k,
0 0

we derive from (1.30) and (1.32) that, for large I" (the largeness of I" depends only on B,
k, and [; it is in particular independent of A and ¢q),

Y Anti(0) pti (0)[wim i (1,0) = My (i 1.(£,0), - .., Wi (2, 0)) |

i
k+1<m+i
<m+k

k
> 2i(0)pi(0)[(Bw)i (1, 0)[4.
i=1

One can then derive that
Wi(t) <0. (2.26)

Combining (2.25) and (2.26) yields
d V() < —AV(t)
dt - '

The conclusion now follows as in the proof of Theorem 1.1 for m > k. The details are
omitted. [
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3. On the nonlinear setting

The following result was established in [11].

Proposition 3.1. Assume that V B(0) € B. Then, for any T > Ty, there exist ¢ > 0 and a
time-independent feedback control for (1.1), (1.5), and (1.6) such that if the compatibility
conditions (at x = 0) (3.1) and (3.2) below hold for w(0, -),

(Iw(0, )¢ < &) = (w(T,-) = 0).
In what follows, we denote, for x € [0, 1] and y € R”,

¥_(x,y) =diag(—A1(x,y),...,—Ax(x,y)),
T (x,y) = diag(Ag41(x, ), ..o, An(x, ¥)).

The compatibility conditions considered in Theorem 3.1 are
w-(0,0) = B(w+(0,0)) 3.1
and
¥_(0,w(0,0))d,w-(0,0) = VB(w4(0,0)) X4+ (0, w(0,0))dxw4+(0,0). (3.2)

We next describe the feedback given in the proof of Proposition 3.1 in [11]. Let x; be
defined as

d
EX]’([,S,E) = Aj(x;(t,s,6). w(t,x;(t,s,§)) and x;(s,s,8) =&
forl <j <k,
and
d
Ex_,'(t,s,é) = —Aj(x;(r,5.8). w(t, x;(t,5.£))) and x;(s,5.§) =&
fork+1<j<k+m.

At this stage we do not explicitly mention the domain of x;. Later, we will only consider
flows in regions where the solution w is well defined.

To arrange the compatibility of our controls, we also introduce auxiliary variables
satisfying autonomous dynamics. Set § = T — T, > 0. Fort > 0, let, fork + 1 < j <
k +m,

&0 =wo;(1). 5O = A (Lwe(Wwy; (1, &) =0 forr=6/2 (33)

and
nj(0) =1, 7;(0)=0, n;(t)=0 fort=>§/2. (3.4)
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We first deal with the case m > k. Consider the last equation of (1.5). Impose the
condition wg (¢,0) = 0. Using (1.11) with i = 1 and the implicit function theorem, one
can then write the last equation of (1.5) in the form

wm+k(tv 0) = Mk(U)k+1(l, 0)7 cees Wmtk—1 (t’ 0))9 (35)

for some C? nonlinear map M}, from Uy into R for some neighborhood Uy of 0 € R™~!
with M (0) = 0 provided that |w (¢, 0)] is sufficiently small.

Consider the last two equations of (1.5) and impose the condition wg(¢, 0) =
Wg—1(¢,0) = 0. Using (1.11) with i = 2 and the Gaussian elimination approach, one
can then write these two equations in the form (3.5) and

wm+k*1(t’ O) = Mk*l(wk+l([7 0)’ RN wm+k*2(tv 0))7 (36)

for some C? nonlinear map My_; from Uj_, into R for some neighborhood Uy_; of
0 € R™2 with My_,(0) = 0 provided that |w, (¢, 0)| is sufficiently small, etc. Finally,
consider the k equations of (1.5) and impose the condition wg (¢,0) = --- = w; (¢,0) = 0.
Using (1.11) with i = k and the Gaussian elimination approach, one can then write these
k equations in the form (3.5), (3.6), ..., and

wm+1(t,0) = Ml(wk-‘rl(t’o)»”'7wm(tv0))7 (37)

for some C2 nonlinear map M; from Uj into R for some neighborhood U; of 0 € R™k
with M1(0) = 0 provided that |w4 (¢, 0)]| is sufficiently small for m > k. When m = k,
we just define M; = 0.
We are ready to construct a feedback law for the null-controllability at time 7". Let
tm+k be such that
Xm+k(t + tmtk.1,1) = 0.

Itis clear that #,,, x depends only on the current state w(z,-). Let Dy = D1 (t) C R?
be the open set whose boundary is {¢} x [0, 1], [¢, ¢ + t;+%] X {0}, and {(s, Xp+£ (5,7, 1));
s € [t,t + ty+4k]}- Then D, 1 depends only on the current state as well. This implies

Y16+ tmgkes 0)s o ooy Xkpm—1(E, E + Ik, 0)
are well defined by the current state w(z, -).

As a consequence, the feedback

Witk (1) = Gnyic (1)
+ (1 - nm+k([))Mk(wk+l(t’xk+1(t9t +tmtk, 0))7 s
WiAm—1 (. Xiegm—1(1.1 + ik, 0))) (3.8)

is well defined by the current state w(z, -).
We then consider system (1.1), (1.5), and the feedback (3.8). Let #,,4x—; be such that

Xm+k—1(t + tmtk—1,1,1) = 0.
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It is clear that ¢,, - x—1 depends only on the current state w (¢, -) and the feedback law (3.8).
Let Dyyk—1 = Dimix—1(t) C R? be the open set whose boundary is {t} x [0, 1], [t,¢ +
tmk—1] X {0}, and {(s, xp4k—1(s,2,1)); s € [t,t + tyyrx—1]}- Then D,, ;1 depends
only on the current state. This implies

X1t + tmgk—1.0), oo Xpgm—(t, t + tmik—1,0)

are well defined by the current state w(z, -).

As a consequence, the feedback

Win+k—1(1, 1) = Emyie—1(7) (3.9)
+ (1= k=1 O M1 (i1 (¢, X1 (6 8+ Ly ie—1.0)), - .,
Wi Am—2(t. Xkpm—2 (1,1 + tmik—1,0)))

is well defined by the current state w(z, -).
We continue this process and reach the system (1.1), (1.5), (3.8), ...,

Wim2(t, 1) = Enta(t)
+ (1 = D2 (O)) Mo (i1 (6, X1 (1,1 + 142, 0)), . ...,
W1, Xm1 (8,1 +[m+2,0))). (3.10)
Let #,,,+1 be such that
Xm4+1(t + tm1.1,1) = 0.

It is clear that #,,4+; depends only on the current state w(¢, -) and the feedback law (3.8),
..., (3.10). Let D;yy 1 = Dyy1(t) C R? be the open set whose boundary is {¢} x [0, 1],
[t,t + tmy1] X {0}, and {(s, Xpm41(s,2,1)); s € [t,t + ty+1]}. Then D,y 1 depends only
on the current state. This implies

Xk+1(l,l +tm+1,0),...,xm(t,t +lm+1,0)

are well defined by the current state w(z, -).

As a consequence, the feedback

Wm+1(, 1) = Emt1(2)
+ (1 - 77m+1(t))M1 (wk+1(t, xk+1(l,t + tn+1, 0)), e,
Wi (¢, Xm (1,1 + tms1,0))) (3.11)

is well defined by the current state w(z, -).
To complete the feedback for the system, we consider, fork + 1 < j < m,

wi(t. 1) = § (). (3.12)
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We next consider the case k > m. The feedback law is then given as

Witk (£, 1) = Emii (2)
+ (1= Dok () M (Wi (8 X1 (1.7 + Ly, 0)), - .,
wk-‘rm—l(tv xk-‘rm—l(l,t + tm+k7 O)))v (313)

Wi 42(2, 1) = rq2(2)

+ (1= kg2 (D)) My 2 (Wi 41 (1. X1 (2,1 + 1542, 0))), (3.14)
W15, 1) = Cep1 (1) + (1= N1 (O) My 1-m» (3.15)
with the convention My 41—, = 0.

Remark 3.1. The feedbacks above are time independent and the well-posedness of the
control system is established in [11, Lemma 2.2] for small initial data.

To introduce the Lyapunov function, as in the linear setting, for k + 1 <i < j <
k 4+ m, and for x € [0,1],¢ > §/2, let T(J, ¢, x) be such that

xj(z(j.1.%).1,x) =0,

and define
a;j,j(t,x) = a;;j(x,w(t,-) = x;(t.t(j,t,x),0).

In the last identities, by convention we considered x; (¢, t(J,, x), 0) as a function of ¢ and
x denoted by a; ; (¢, x) or a function of x and w(¢, -) denoted by a; ; (x, w(z,-)).
Set

H = {v € [C'([0,1])]"; v satisfies the compatibility conditions at 0 and 1}.
Letg > l andlet V: H — R (¢ > 1) be defined by
V() = V() + V(v). (3.16)
Here, with £ = max{m, k},
90 =Y [ piwlitor ds (3.17)
i=170
1
+ Z /0 Pmti () [Vmti (6) = Mi (V4 1(a 4y g (6, 0))s

1
{+1<m—+i q
<k+m Um+i—1 (a;)n+i—1,m+i (x, U)))| dx
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and

P0) =3 [ il dx (3.18)

i=1

1
+ Z /0 Pt (0|81 Vmi (0. %) = 3 (M (Vi1 (1, Ry g i (8 X)) -

C+1<m+i 4
Zkm Vmi=t (U iy i (6.X)))) | dx.

Here v(¢, -) is the corresponding solution with v(0,-) = v and a}, . . is defined as
k+j,m+i
Ak + jm+i With w(z,) replaced by v(z, -). We also define here
pi(x) = A7 (x, 0)e I N0 AT 6.0 dstah fy 27100 ds  for | < i<k, (3.19)
pi(x) =927 (x, 0)e?A o 47 (5.0 ds fork +1<i<4£, (3.20)
P (6) = TIATL  (x, 0)e 905 A -0 dstah Jo A7 60 ds gor 4 ] <yt

<m+k, (321)

for some large positive constant I' > 1 depending only on ¥ and B (it is independent of
A and gq).
Concerning the feedback given above, we have the following theorem.

Theorem 3.1. Let m,k > 1. There exists a constant C > 1, depending only on B and
X such that for A > 1 and for T > Ty, there exists € > 0 such that if the compatibility
conditions (at x = 0) (3.1) and (3.2) hold for w(0, ), and |w(0,-)||c1([o,1]) < & we have,
fort = 8/2withd =T — Ty,

lw(, ) lwra,)
< CeMTn D (Jlw(0, ) lwran + IEler + Inllet [w©,)lwian).  (3:22)

where w is the solution of (1.1) with w(0,-) = wy satisfying (3.8)—(3.12) when m > k and
(3.13)—(3.15) when m < k, where {; and n; are given in (3.3) and (3.4). As a consequence,
we have

lw(, )l o,
< CeM T D (lw(0. )l crop + IEllcr + Inlcillw©. lcrqoay).  (3:23)

Proof. We first claim that, fork +1 <i < j <k +mand x € [0, 1],
)t,-(ai’j(t, x),w(t, a;; (t,x))) + 0:a;,j(t,x) = A; (x, w(t, x))0xa;,;(t, x). (3.24)
Indeed, by the characteristic, we have

a;j(s,x;(s,t,x)) = x;(s,7(j,¢,x),0) fort <s <71(j,1,x).
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Taking the derivative with respect to s yields, fort <s < 7(J, ¢, x),
0ra; (8, xj(s,t,x)) + 05x; (5,1, x)0xa;,; (s, X (5,1, X))

= dsx; (s, 7(Jj, ¢, x),0).

Considering s = ¢ and using the definition of the flows, we obtain the claim.
As a consequence of (3.24), we have

dx(wi(7,ai,; (1. x)))

_ i), witan 60)) + b ),
- Aj(x,w(t, x)) dxw; (1, ai j (1, x)). (3.25)

Identity (3.25) is a variant of (2.2) for the nonlinear setting and plays a role in our analysis.
We next consider only the case m > k. The case m < k can be proved similarly to

Theorem 1.1. We will assume that the solutions are of class C2. The general case can be

established via a density argument as in [4, p. 1475] and [3, Comments 4.6, pp. 127-128].
We first deal with V. We have, fort > §/2,

d ~ ko
Ev(w(t,-)) = —;/0 Pi (X)A; (x, w(t, x))0x|w; (¢, x)|? dx

m 1
+ 0 [ peon e e ol dx

i=k+1

k1
+Z/ qpm-H'(x)atTm-H'(tax)|Tm+i(l,x)|q_2Tm+i(tax) d-x9 (326)
0

i=1

where

T (£, %) = Wi (£, %) (3.27)

— Mi(wie1 (7, kg1 mti (6,%)) - Wit (F Gmi—1,me4i (7, X))
Using (3.25) and noting that, fork + 1 <i < j <k + m,
dew; (t,a; (¢, %)) = Ai(aij(t, x), w(t,a;,;(t,x)))dxw; (t, a; ;(t, x)),
one can prove that
0t Tm+i(t, x) = Amai (x, w(t, x))0x Ty 4i (2, X). (3.28)

Using (3.28) and integrating by parts, as in (2.14), we obtain

%’G(w(z,)) = Wi (1) + Wa(t), (3.29)
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where
R k
Wi(1) = —Zki(l, w(t, 1) pi (D]w; (, D]

i=1

k
+ > 2i(0.w(t,0) pi (0)|(Buy )i (1. 0)|7

i=1

— > 0. w(r.0)) p; (0)|w; (1.0)|4

i=k+1
k
=D Am4i (0, w(E,0) P (0)

i=1

X [wm+i (t,0) = Mi (W 11(2,0), ..., W 4i—1 (2, 0)) |7

and
W)=Y [0 (hi G w0t ) pi () [ (1, )19 dx
i=1

m 1
- 2 [ it p ) o ds

i=k+1
k 1

- Z/ (Ami (6, w(t, %)) pmti (X))
i=1"0

X | Wi (8, X) dx — Mi (Wieq1 (1, @1, mti (1. X)) ..

Wini—1 (t, @mepiot,mi (£, X)))|* dx.

1253

(3.30)

(3.31)

As in the proof of Theorem 1.1, we also have, for large I and |w(z, 0)| sufficiently

(3.32)

small,

, 2
> dmti (0. (2, 0)) P (0) w1 (2.0) = My (wie41(2.0). ..., Winpi—1(2,0))|
i=1

k
> ¥ 4 (0. w(z.0)) pi (0)|(Bwy )i (1. 0)>.
i=1
This implies
Wi(@t) <0.
Concerning 'Wz (t), we write
Ai(x, w(t, x))
Ai (e, w(t, x) pi(x) = —————Ai(x,0) p; (x).

Ai(x,0)
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Note that, since > and 3y2 are of class C!,

Ai(x, w(t, x)) Ai(x, w(t, x))
_ Ix|———————=)| < C(s,6),
1 (x,0) x( 1 (x,0) )‘— (,9)
a quantity which goes to 0 if ¢ — 0 for fixed §.
Using (3.19) and (3.21), we obtain
Wy(t) < —gA(1 — C(e,8)V(1). (3.33)
Combining (3.29), (3.32), and (3.33) yields
d ~ ~
EV([) <—q(A—-C(s8)V(t) fort>§/2. (3.34)
We next investigate V. By (3.18), we have, for ¢t > §/2,
V(w(t, x)) = Z/ pi (X)[0;w(t, x)|? dx (3.35)
D / Pt (X)
kH1<m-+i
<k+m

|atwm+l(t x) — (M; (w1 (2, Ak 1myi (1. ), -
wm+i—1(t’am+i—l,m+i(tvx))))t|q dx.

Using (3.28), we have
d ~
—V t,-
V()

k 1
= —Z/ i (O)A;: (x, w(t, x))0x|0:w; (¢, x)|4 dx
, 0

+Z/ oy (qpl(x) Ay i (x, w(t, x))0,w(t, x)|0:w; (t, x)|? dx

x,w(t

s / Pi GO (6, w(t, X)) 0,3 (1, 1) dx

i k+1

n Z / qpi(x) 3 A (x, w(t, x))0,w(t, x)|0,w; (¢, x)|7 dx

Lo Jo hwG

+ Z/O Pt () g (6, (. X)) (|07 Tin i (2, %)) dx

+Z/ Amfl”(’]’z*;)(()?x))a Kot (e (L X)) w0, )| Ty (1. X)|9 dx.
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Set
Wi(t) = Z/ _PO) e (e 1), x)|dw(r )| dx (3.36)
’ G w(z, x) 2 WiE X))0aot, 110wl :
m 1 '
+i§1/o #(Zcr?x))a”f("’w“»xbazw(nxnatw(z,x>|qdx

1
pm+i(x) . . q
+Z/0 Am+i(x7w(t,x))aykm-‘rl(x»w(t’x))al‘w(t’x)|atTm+l(t’x)| dx.

An integration by parts yields
d ~ - - -
EV(w(r, D)) = Wi(t) + Walt) + Ws(2), (3.37)

where

k
Wi(t) == Ai (1w, 1) pi (1)]0,wi (2, D]

i=1

k
+ D Ai(0,w(r,0)) pi (0)]9, (Bu)i (1, 0)|*

i=1

= > X0, w(t,0) pi (0)|0,w; (2. 0)|

i=k+1

k
- Z Am+i (07 LU(I, O))pm+z (0)

i=1
X |swm4i (2, 0) — (Mi (w112, 0), . .., wmi—1(2,0))), |7 (3.38)

and

ZOEDY / (A G w(t, 30) ps () [, ¢, )1 dx

s / (hi G, w0, 0) 1 () [y (1,01 dx

i=k+1
_ Z/ (Am+i(x,w(t,x))pm+i(x))x
i=1

|atwm+l (¢, x) — ( (wk-‘rl(t Ag+1,m+i (1, %)),
wm+i—1(tsam+i—l,m+i(tvx))))t}q dx. (3.39)

As before, we have
Wi(2) + Wa(t) < —gA(1 = C(e,6))V. (3.40)
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One can check that
W; < C(e,8)qV. (3.41)
From (3.37), (3.40), and (3.41), we derive that

%T)(r) < —gA(1—C(g,8)V. (3.42)

Combining (3.34) and (3.42) yields
d
EV(Z) < —qgA(1—-C(s0))V.

The conclusion now follows as in the linear case after taking ¢ sufficiently small,
replacing A(1 — C¢) by A, and noting that, for 0 <t < §/2,

lw(. e qoan = CUw(O, o + IEller + lInllerlw(©. e qo,m)-

We also note here that the conclusion (A.3) of Lemma A.1 also holds for nonlinear maps
M; of class C! with M;(0) = 0 provided that [|v||c1(o,1) is sufficiently small. The details
are omitted. [

A. A useful lemma

Lemma A.l. Letm, k > 1. Fork +1 <i < j <k +m, let b; ;:[0,1] — [0, 1] be of
class C' such that
c1 < |b; ;(X)| <c2 forx €(0,1), (A1)

for some positive constants ¢ and c;. Set £ = max{k,m}. For{ + 1 <m +i <m + k,
let M; € R\ H1=k=) Dofine, for v e [L1(0,1)]",

£
ol = 3" /0 s ()19 dx

i=1

1
+ ) /0 |[vmti (%) = Mi (Vk 41 (Bt 1,m+i (X)), - -
i
L+1<m+i

sktm Umti—1(Omti—t,m+i (x)))|q dx. (A2)

We have
A wllza.ny < Mvlll < Allvlizeco,n- (A3)

for some A > 1 depending only on k, m, cy, and ¢, and M;; it is independent of q.

Proof. We only consider the case m > k. The other case can be proved similarly. It is
clear that

vl < Cllvlizaco,1)- (A4)
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On the other hand, using the inequality, for £;, &, € R? withd > 1,

€117 4182 — &117 = CTI(&1|7 + |&2]9).

we have, for 1 <i <k,
! q
/ [Vm+i (¥) = Mi (Vi1 (D 1,m4 (6))s - Vit (Bmi—1m+i (X)) |7 dx
0

1 1
X [ arz e [l @s)

k+1<j<m+i—1
Using (A.1), by a change of variables we obtain, fork + 1 <i < j <m + k,

1

1
[ Jui iy (D7 dx < € / v (Ol dix. (A6)
0 0

From (A.5) and (A.6), we deduce that

k 1
Z/ [vmai () = M; (Vi1 By 14 () -+ s Vi =1 (Bpi—1,m i (X)) | * dx
0

i=1
m 1 1 n
+ 3 [ mwrdxzc [0 Y (A7)
0 0

i=k+1 i=k+1

The conclusion then follows from (A.4) and (A.7). ]
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