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(Non)local logistic equations with Neumann conditions

Serena Dipierro, Edoardo Proietti Lippi, and Enrico Valdinoci

Abstract. We consider here a problem of population dynamics modeled on a logistic equation with
both classical and nonlocal diffusion, possibly in combination with a pollination term. The envi-
ronment considered is a niche with zero-flux, according to a new type of Neumann condition. We
discuss situations that are more favorable for the survival of the species, in terms of the first positive
eigenvalue. Quite surprisingly, the eigenvalue analysis for the one-dimensional case is structurally
different from the higher-dimensional setting, and it sensibly depends on the nonlocal character of
the dispersal.

The mathematical framework of this problem takes into consideration the equation �˛�u C
ˇ.��/su D .m � �u/uC �J ? u in �, where m can change sign. This equation is endowed with
a set of Neumann conditions that combines the classical normal derivative prescription and the
nonlocal condition introduced in Dipierro, Ros-Oton, and Valdinoci [Rev. Mat. Iberoam. 33 (2017),
377–416]. We will establish the existence of a minimal solution for this problem and provide a
thorough discussion on whether it is possible to obtain nontrivial solutions (corresponding to the
survival of the population).

The investigation will rely on a quantitative analysis of the first eigenvalue of the associated
problem and on precise asymptotics for large lower and upper bounds of the resource. In this, we
also analyze the role played by the optimization strategy in the distribution of the resources, showing
concrete examples that are unfavorable for survival, in spite of the large resources that are available
in the environment.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Functional analysis setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3. Existence results and proofs of Theorems 1.1 and 1.2 . . . . . . . . . . . . . . . . . . . . . . . . 15
4. Analysis of the eigenvalue problem in (1.13) and proof of Theorem 1.4 . . . . . . . . . . . . 20
5. Optimization on m and proofs of Theorems 1.5, 1.7, 1.8, 1.9 and 1.10 . . . . . . . . . . . . . 24
6. Badly displayed resources, hectic oscillations and proof of Theorem 1.11 . . . . . . . . . . . 54
A. Proofs of Theorems 1.7 and 1.8 when n D 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B. Another proof of Lemmata 5.5 and A.2 based on interpolation theory . . . . . . . . . . . . . . 65
C. Probabilistic motivations for the superposition of elliptic operators with different orders . 66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2020 Mathematics Subject Classification. Primary 35Q92; Secondary 35R11, 60G22, 92B05.
Keywords. Logistic equation, Fisher–KPP equation, long-range interactions, zero-flux condition.



S. Dipierro, E. Proietti Lippi, and E. Valdinoci 2

1. Introduction

We consider here a biological population with density u which is self-competing for the
resources in a given environment �.

These resources are described by a function m, which is allowed to change sign: the
positive values ofm correspond to areas of the environment favorable for life and produce
a positive birth rate, whereas the negative values model a hostile environment whose by-
product is a positive death rate of linear type.

The competition for the resource is encoded by a nonnegative function �. Resources
and competitions are combined into a standard logistic equation. In addition, the popu-
lation is assumed to present a combination of classical and nonlocal diffusion (the cases
of purely classical and purely nonlocal diffusions are also included in our setting, and
the results obtained are new also for these cases). The population is also endowed with
an additional birth rate possibly provided by pollination1 and modeled by a convolution
operator (the case of no pollination is also included in our setting, and the results obtained
are new also for this case).

The environment � describes an ecological niche and is endowed by a zero-flux
condition of Neumann type. Given the possible presence of both classical and nonlocal
dispersal, this Neumann condition appears to be new in the literature: when the diffusion
is of purely classical type this new prescription reduces to the standard normal derivative
condition along @�, and when the diffusion is of purely nonlocal type it coincides with the
nonlocal Neumann condition set in Rn n x� that has been recently introduced in [43] – but
in the case that the population is subject to both the classical and the nonlocal dispersion
processes, the Neumann condition that we introduce here takes into account the combina-
tion of both the classical and the nonlocal prescriptions (interestingly, without producing
an overdetermined, or ill-posed, problem).

The main question addressed in this paper is whether or not the environmental niche
is suited for the survival of the population (notice that life is not always promoted by the
ambient resource, sincem can attain negative values). We will investigate this question by
using spectral analysis and providing a detailed quantification of favorable and unfavor-
able scenarios in terms of the first eigenvalue compared with the resource and pollination
parameters.

More precisely, the mathematical framework in which we work goes as follows. We
consider a bounded open set � � Rn with boundary of class C 1: that is, we suppose that
there exist R > 0 and p1; : : : ; pK 2 @� such that @� � BR.p1/ [ � � � [ BR.pK/, and,
for each i 2 ¹1; : : : ; Kº,

the set �\BR.pi / is C 1-diffeomorphic to BC1 WD ¹.x1; : : : ; xn/2B1 s.t. xn>0º: (1.1)

1While we use the name of pollination throughout this paper, we observe that the pollination analysis
performed is not limited to vegetable species: indeed, for animal species the convolution term that we study
can be seen as a birth rate of nonlocal type produced, for instance, by a mating call that attracts partners
from surrounding neighbors.
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Given s 2 .0; 1/, ˛, ˇ 2 Œ0;C1/, with ˛ C ˇ > 0, mW�! R, �W�! Œ�;C1/, with
� > 0, � 2 Œ0;C1/ and J 2 L1.Rn; Œ0;C1// with

J.x/ D J.�x/ (1.2)

and Z
Rn

J.x/ dx D 1; (1.3)

we consider the mixed-order logistic equation

� ˛�uC ˇ.��/su D .m � �u/uC �J ? u in �; (1.4)

where
J ? u.x/ WD

Z
�

J.x � y/u.y/dy:

When ˇ D 0, we take the additional hypothesis that

� is connected: (1.5)

We observe that the operator in (1.4) is of mixed local and nonlocal type, and also of mixed
fractional- and integer-order type. Interestingly, the nonlocal character of the operator is
encoded both in the fractional Laplacian

.��/su.x/ WD
1

2

Z
Rn

2u.x/ � u.x C �/ � u.x � �/

j�jnC2s
d�

and in the convolution operator given by J .
The use of the convolution operator in biological models to comprise the interaction

of the population with the resource at a certain range has a very consolidated tradition; see
e.g. [4, 6, 13, 19, 23, 35, 36] and the references therein.

As for the nonlocal diffusive operator, for the sake of concreteness we stick here to the
prototypical case of the fractional Laplacian, but the arguments that we develop are in fact
usable in more general contexts, including various interaction kernels of singular type.

Given the presence of both the Laplacian and the fractional Laplacian, the operator
in (1.4) falls within the diffusive processes of mixed orders, which have been widely
addressed by several methodologies and arose from a number of different motivations; see
for instance various viscosity solution approaches [5, 7–9, 17, 33, 38, 48, 49], the Aubry–
Mather theory for pseudo differential equations [37], Cahn–Hilliard and Allen–Cahn-type
equations [22,25], probability and Harnack inequalities [10,11,31,32], decay for parabolic
equations [3,45], friction and dissipation effects [39], smooth approximation with suitable
solutions [24], Bernstein-type regularity results [21], variational methods [16], nonlinear
operators [1] and plasma physics [18].

We endow the problem in (1.4) with a set of Neumann boundary conditions that
correspond to a “zero-flux” condition according to the stochastic process producing the
diffusive operator in (1.4). This Neumann condition appears to be new in the literature
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and depends on the different ranges of ˛ and ˇ according to the following setting. If
˛ D 0, we consider the nonlocal Neumann condition introduced in [43], thus prescribing
that

Nsu.x/ WD

Z
�

u.x/ � u.y/

jx � yjnC2s
dy D 0 for every x 2 Rn n x�: (1.6)

If instead ˇ D 0, we prescribe the classical Neumann condition

@u

@�
D 0 on @�: (1.7)

Finally, if ˛ ¤ 0 and ˇ ¤ 0, we prescribe both the classical and the nonlocal Neumann
conditions, by requiring that 8<:Nsu D 0 in Rn n x�;

@u

@�
D 0 on @�:

(1.8)

We remark that the prescription in (1.8) is not an “overdetermined” condition (as will be
confirmed by the existence result in Theorem 1.1 below).

The set of boundary/external Neumann conditions in (1.6), (1.7) and (1.8), in depen-
dence of the different ranges of ˛ and ˇ, will be denoted by “.˛;ˇ/-Neumann conditions”,
and, with this notation and (1.4), the main question studied in this paper focuses on the
problem ´

�˛�uC ˇ.��/su D .m � �u/uC �J ? u in �;

with .˛; ˇ/-Neumann condition.
(1.9)

In this setting, the .˛; ˇ/-Neumann conditions provide an “ecological niche” for the pop-
ulation with density u, making � a natural environment in which a given species can live
and compete for a resource m, according to a competition function �. In this setting, the
parameter � , as modulated by the interaction kernel J , describes an additional birth rate
due to further intercommunication than just with the closest neighbors, as happens, for
instance, in pollination.

As a matter of fact, the role of the .˛; ˇ/-Neumann conditions is precisely to make the
boundary and the exterior of the niche � “reflective”: namely, when an individual exits
the niche, it is forced to immediately come back into the niche itself, following the same
diffusive process; see [43, Section 2] (see also [70] for a thorough probabilistic discussion
of this process).

As a technical remark, we also observe that our .˛; ˇ/-Neumann condition is struc-
turally different (even when ˛ D 0 and s D 1=2) from the case of bounded domains
with reflecting barriers presented in [63,65], and the diffusive operator taken into account
in (1.9) cannot be obtained by the spectral decomposition of the classical Laplacian in �
(except for the special case of periodic environments; see e.g. [2, Section 2.3 and Appen-
dix Q]).



(Non)local logistic equations with Neumann conditions 5

The possible presence in (1.9) of two different diffusion operators, one of classical
and the other of fractional flavor, has a clear biological interpretation, namely the pop-
ulation with density u can possibly alternate both short- and long-range random walks,
and this could be motivated, for instance, by a superposition between local exploration of
the environment and hunting strategies (see e.g. [28–30, 34, 46, 50, 58, 67, 69]). A detailed
presentation of this superposition of stochastic processes will be presented in Appendix C;
see also [44] for a detailed description of the local/nonlocal reflecting barrier also in terms
of the population dynamics model.

The notion of a solution of (1.9) is intended here in the weak sense, as will be precisely
discussed in formula (2.5). See however [16,47] for a regularity theory for weak solutions
of the equations driven by the mixed-order operators as in (1.9).

Our first result in this setting is that the problem in (1.9) admits a minimal energy
solution (under very natural and mild structural assumptions). To state it, it is convenient
to define

q WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2�

2� � 2
if ˇ D 0 and n > 2;

2�s
2�s � 2

if ˇ ¤ 0 and n > 2s;

1 if ˇ D 0 and n 6 2, or if ˇ ¤ 0 and n 6 2s;

D

8̂̂̂<̂
ˆ̂:
n

2
if ˇ D 0 and n > 2;

n

2s
if ˇ ¤ 0 and n > 2s;

1 if ˇ D 0 and n 6 2, or if ˇ ¤ 0 and n 6 2s.

(1.10)

As is customary, the exponent 2�s denotes the fractional Sobolev critical exponent for
n > 2s and it is equal to 2n

n�2s
. Similarly, the exponent 2� denotes the classical Sobolev

critical exponent for n > 2 and it is equal to 2n
n�2

.
We remark that q > n=2, and we have the following theorem:

Theorem 1.1. Assume that

m 2 Lq.�/ for some q 2 .q;C1� and .mC �/3��2 2 L1.�/.

Then there exists a nonnegative solution of (1.9) which can be obtained as a minimum of
an energy functional.

The precise definition of energy functional used in Theorem 1.1 will be presented
in (3.1): roughly speaking, the energy associated to Theorem 1.1 will be the “natural”
functional for the variational methods, and its Euler–Lagrange equation will correspond
to the notion of a weak solution.

While the functional analysis part of the proof of Theorem 1.1 relies on standard direct
methods in the calculus of variations, the more interesting part of the argument makes use
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of a structural property of the nonlocal Neumann condition that will be presented in Theo-
rem 2.1 (roughly speaking, the nonlocal Neumann condition in (1.6) will be instrumental
in minimizing the Gagliardo seminorm, thus clarifying the energetic role of the nonlocal
reflection introduced in [43]).

Though the result in Theorem 1.1 has an obvious interest in pure mathematics, our
main analysis will focus on whether problem (1.9) does admit a nontrivial solution (notice
indeed that u � 0 is always a solution of (1.9)). In particular, in view of Theorem 1.1, a
useful mathematical tool to detect nontrivial solutions consists in proving that the minimal
energy configuration is not attained by the trivial solution (hence, in this case, the solu-
tion produced by Theorem 1.1 is nontrivial). The question of the existence of nontrivial
solutions has a central importance for the mathematical model, since it corresponds to
the possibility of a population to survive in the environmental condition provided by the
niche. Interestingly, in our model, the survival of the population can be enhanced by the
possibility of exploiting resources by long-range interactions. Indeed, we stress that the
nonlocal resource m in (1.4) is not necessarily positive (hence, the natural environment
can be “hostile” for the population): in this configuration, we show that the survival of the
species is still possible if the “pollination” birth rate � is sufficiently large. The quantitative
result that we have is the following:

Theorem 1.2. Assume that

m 2 Lq.�/ for some q 2 .q;C1� and .mC �/3��2 2 L1.�/.

Then,

(i) ifm is nonpositive and � D 0, the only solution of (1.9) is the one identically zero;

(ii) if Z
�

.m.x/C �J ? 1.x// dx > 0 (1.11)

and
� 2 L1.�/; (1.12)

problem (1.9) admits a nonnegative solution u 6� 0.

A particular case of Theorem 1.2 is when the resource m is nonnegative. In this situ-
ation, Theorem 1.2(i) gives that no survival is possible without resources and pollination,
i.e. when bothm and � vanish identically (unless also� vanishes identically, then reducing
the problem to that of mixed operator harmonic functions), whereas Theorem 1.2(ii) guar-
antees survival if at least one between the environmental resource and the pollination is
favorable to life. Precisely, one can immediately deduce from Theorem 1.2 the following
result:

Corollary 1.3. Assume that

m 2 Lq.�/ for some q 2 .q;C1�, m is nonnegative and .mC �/3��2 2 L1.�/.
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Then

(i) if m � 0 and � D 0, the only solution of (1.9) is the one identically zero;

(ii) if eitherm > 0 or �.J ? 1/ > 0 in a set of positive measure and � 2 L1.�/, (1.9)
admits a nonnegative solution u 6� 0.

Problems related to Corollary 1.3 have been studied in [23] under Dirichlet (rather
than Neumann) boundary conditions.

From the biological point of view, assumption (1.11) states that the environment is “on
average” favorable for the survival of the species. It is therefore natural to investigate the
situation in which the environment is “mostly hostile to life”. To study this phenomenon,
when m 2 Lq with q > n=2, with mC 6� 0 andZ

�

m.x/ dx < 0;

we denote2 by �1 the first positive eigenvalue associated with the diffusive operator in
(1.9). More precisely, we consider the weighted eigenvalue problem´

�˛�uC ˇ.��/su D �mu in �;

with .˛; ˇ/-Neumann condition.
(1.13)

As will be discussed in detail in Proposition 4.1 here and in [42], problem (1.13) admits
the existence of two unbounded sequences of eigenvalues, one positive and one negative.
In this setting, the smallest strictly positive eigenvalue will be denoted by �1. When we
want to emphasize the dependence of �1 on the resource m, we will write it as �1.m/.

We also denote by e an eigenfunction corresponding to �1 normalized such thatZ
�

m.x/e2.x/ dx D 1:

The first eigenvalue will be an important threshold for the survival of the species, quanti-
fying the role of the necessary pollination parameter � in order to overcome the presence
of hostile behavior on average. The precise result that we obtain is the following one:

Theorem 1.4. Assume that m 2 Lq.�/, for some q 2 .q;C1�, and .m C �/3��2 2
L1.�/.

Then,

(i) if m 6 �� , the only solution of (1.9) is the one identically zero;

2As is customary, in this paper we freely use the standard notation

mC.x/ WD max¹0;m.x/º and m�.x/ WD max¹0;�m.x/º:
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(ii) if mC 6� 0, � 2 L1.�/, Z
�

m.x/ dx < 0; (1.14)

and
�1 � 1 < �

Z
�

.J ? e.x//e.x/ dx; (1.15)

(1.9) admits a nonnegative solution u 6� 0.

Once again, in Theorem 1.4, the case described in (i) is the one less favorable to life,
since the combination of both the resources and the pollination is on average negative,
while the case in (ii) gives a lower bound of the pollination parameter � which is needed
for the survival of the species, as quantified by (1.15).

We recall that the link between the survival ability of a biological population and the
analysis of the eigenvalues of a linearized problem is a classical topic in mathematical
biology; see e.g. [12,14,15,51,52,59,60,63,66] (yet we believe that this is the first place
in which a detailed analysis of this type is carried over to the case of mixed operators with
our new type of Neumann conditions).

We also remark that condition (1.15) can be sharpened by considering, instead of
(1.13), an eigenvalue problem also containing the convolution term. This observation will
be expanded in Remark 4.3.

In light of (1.15), a natural question consists in quantifying the size of the first eigen-
value. Roughly speaking, from (1.15), the smaller �1, the smaller the threshold for the
pollination guaranteeing survival, hence configurations with small first eigenvalues corre-
spond to the ones with better chances of life.

To address this problem, since the eigenvalue �1 D �1.m/ depends on the resource
m, it is convenient to consider an optimization problem for �1 in terms of three structural
parameters of the resourcem, namely its minimum, its maximum and its average, in order
to detect under which conditions on these parameters the first eigenvalue can be made
conveniently small. More precisely, given xm,m 2 .0;C1/ andm0 2 .�m;0/we consider
the class of resources

M DM. xm;m;m0/ WD
®
m 2 L1.�/ s.t. inf�m > �m; sup�m 6 xm;R

�
m.x/ dx D m0j�j and mC 6� 0

¯
: (1.16)

We will also consider the smallest possible first eigenvalue among all the resources in M,
namely we set

� WD inf
m2M

�1.m/: (1.17)

When we want to emphasize the dependence of � on the structural quantities xm, m and
m0 that characterize M, we will adopt the explicit notation �. xm;m;m0/.

Our main objective will be to detect whether or not � can be made arbitrarily small in
a number of different regimes: we stress that the smallness of � corresponds to a choice
of an optimal distribution of resources that is particularly favorable for survival.
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The first result that we present in this direction is a general estimate controlling �
with O. 1

xm
/, provided that the maximal hostility of the environment does not prevail with

respect to the maximal and average resources. In terms of survival of the species, this is
a rather encouraging outcome, since it allows the existence of nontrivial solutions pro-
vided that the maximal resource is sufficiently large. The precise result that we have is the
following:

Theorem 1.5. Let
mCm0

mC xm
> d0 (1.18)

for some d0 > 0. Then

�. xm;m;m0/ 6
C

xm

for some C D C.�; d0/ > 0.

A direct consequence of Theorem 1.5 is that when the upper and lower bounds of the
resource are the same and get arbitrarily large, then � gets arbitrarily small (hence, in
view of (1.15), there exists a resource distribution which is favorable to survival). More3

precisely, we have the following corollary:

Corollary 1.6. We have
lim

m%C1
�.m;m; m0/ D 0:

We now investigate the behavior of � for large upper and lower bounds on the resource
(maintaining the other parameters constant). Interestingly, this behavior sensibly depends
on the dimension n. In this setting, we first consider the asymptotics in dimension n > 2:
we show that large upper and lower bounds are both favorable for life for a givenm0 < 0,
according to the following two results:

Theorem 1.7. Let n > 2. Then

lim
m%C1

�.m; m;m0/ D 0:

Theorem 1.8. Let n > 2. Then

lim
m%C1

�. xm;m; m0/ D 0:

While Theorem 1.7 is somehow intuitive (large resources are favorable to survival),
at first glance Theorem 1.8 may look unintuitive, since it seems to suggest that a largely
hostile environment is also favorable to survival: but we remark that in Theorem 1.8, m0
being given, an optimal strategy formmay well correspond to a very harmful environment

3To avoid notational confusion, we reserve the name m for the resource in (1.4) and we denote bym a
“free variable” dimensionally related to the resource.
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confined to a small portion of the domain, with a positive resource allowing for the survival
of the species.

Quite surprisingly, the structural analysis developed in Theorems 1.7 and 1.8 is sig-
nificantly different in dimension 1. Indeed, for n D 1, we have that � does not become
infinitesimal for large upper and lower bounds on the resource, unless the diffusion is
purely nonlocal with strongly nonlocal fractional parameter. Namely, we have the follow-
ing two results.

Theorem 1.9. Let n D 1, ˛ > 0 and ˇ > 0. Then, for any m > 0 and m0 2 .�m; 0/,

�.m; m;m0/ > C (1.19)

for every m > 0, for some C D C.m;m0; ˛; ˇ;�/ > 0, and

lim
m&0

�.m; m;m0/ D C1: (1.20)

Moreover, for any xm > 0 and m0 < 0,

�. xm;m; m0/ > C (1.21)

for every m > �m0, for some C D C. xm;m0; ˛; ˇ;�/ > 0.

Theorem 1.10. Let n D 1, ˛ D 0 and ˇ > 0.
If s 2 .1=2; 1/, then, for any m > 0 and m0 2 .�m; 0/

�.m; m;m0/ > C (1.22)

for every m > 0, for some C D C.m;m0; ˛; ˇ;�/ > 0, and

lim
m&0

�.m; m;m0/ D C1: (1.23)

Moreover, for any xm > 0 and m0 < 0,

�. xm;m; m0/ > C (1.24)

for every m > �m0, for some C D C. xm;m0; ˛; ˇ;�/ > 0.
If s 2 .0; 1=2�, then

lim
m%C1

�.m; m;m0/ D 0 (1.25)

and
lim

m%C1
�. xm;m; m0/ D 0: (1.26)

An interesting feature of Corollary 1.6, Theorems 1.7 and 1.8, (1.25) and (1.26) in
terms of real-world applications is that their proofs are based on the explicit constructions
of suitable resources: though perhaps not optimal, these resources are sufficiently well
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located to ensure the maximal chances of survival for the population, and their explicit
representation allows one to use them concretely and to build on this specific knowledge.

We also think that the phenomenon detected in Theorems 1.9 and 1.10 reveals an
important role played by the nonlocal dispersal of the species in dimension 1: indeed, in
this situation, the only configurations favorable to survival are those in (1.25) and (1.26),
that are induced by purely nonlocal diffusion (that is, ˛ D 0) with a strongly nonlocal
diffusion exponent (that is, s 6 1=2, corresponding to very long flies in the underlying
stochastic process).

To better visualize the results in Theorems 1.7, 1.8, 1.9 and 1.10, we summarize them
in Table 1. For typographical convenience, in Table 1 we used the check symbol ✓ to
denote the cases in which � gets as small as we wish (cases favorable to life) and the
cross symbol ✗ to mark the situations in which � remains bounded away from zero (cases
unfavorable to life which require stronger pollination for survival).

Large xm Large m

n > 2 ✓ ✓

n D 1 and ˛ > 0 ✗ ✗

n D 1, ˛ D 0 and s > 1=2 ✗ ✗

n D 1, ˛ D 0 and s 6 1=2 ✓ ✓

Table 1. Summarizing the results in Theorems 1.7, 1.8, 1.9 and 1.10.

We stress that the optimization of the resources plays a crucial role in the survival
results provided by Corollary 1.6, Theorems 1.7 and 1.8, and formulas (1.25) and (1.26):
that is, given m0 < 0, very large but badly displayed resources may lead to nonnegligible
first eigenvalues (different from the case of optimal distribution of resources discussed in
Corollary 1.6, Theorems 1.7 and 1.8, and formulas (1.25) and (1.26)).

To state this phenomenon precisely, given m0 < 0 and ƒ > �4m0, we let

M
]
ƒ;m0

WD
®
m 2M.2ƒ; 2ƒ;m0/ s.t. inf�m 6 �ƒ

2
and sup�m > ƒ

2

¯
: (1.27)

Roughly speaking, the resources m in M
]
ƒ;m0

have a prescribed average equal to m0 and
attain maximal positive and negative values comparable with a large parameter ƒ, and a
natural question in this case is whether large ƒ’s provide sufficient conditions for the sur-
vival of the species. The next result shows that this is not the case, namely the abundance
of the resource without an optimal distribution strategy is not sufficient for prosperity:

Theorem 1.11. Given m0 < 0 and ƒ > �4m0, we have

sup
m2M

]
ƒ;m0

�1.m/ D C1:
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Interestingly, the proof of Theorem 1.11 will be “constructive”, namely we will pro-
vide an explicit example of a sequence of badly displayed resources which make the first
eigenvalue diverge: a telling feature of this sequence is that it is highly oscillatory, thus
suggesting that a hectic and erratic alternation of highly positive resources with very harm-
ful surroundings is potentially lethal for the development of the species.

We recall that the investigation of the roles of fragmentation and concentration for
resources is a classical topic in mathematical biology, and, in this sense, our result in The-
orem 1.11 confirms the main paradigm according to which concentrated resources favor
survival (see e.g. [14, 15, 54]) – however, there are several circumstances in which this
general paradigm is violated and fragmentation is better than concentration; see e.g. the
small diffusivity regime analyzed in [53,56,62]. In any case, the analysis of fragmentation
and concentration for mixed operators with our Neumann condition is, to the best of our
knowledge, completely new.

We also remark that the results presented here are new even in the simpler cases in
which no classical diffusion and no pollination term is present in (1.4), as well as in the
cases in which the death rate and the pollination functions are constant.

The rest of this paper is organized as follows. In Section 2 we will introduce the func-
tional framework in which we work and the notion of weak solutions, also providing a
new result showing that the nonlocal Neumann condition naturally produces functions
with minimal Gagliardo seminorm (this is a nonlocal phenomenon, which has no counter-
part in the classical setting, and will play a pivotal role in the minimization process).

Then, in Section 3, we prove the existence results in Theorems 1.1 and 1.2. In Section 4
we study the eigenvalue problem in (1.13), and we give the proof of Theorem 1.4. Not to
overburden this paper, some technical proofs related to the spectral theory of the problem
are deferred to the article [42].

In Section 5, we deal with the proofs of Theorem 1.5, Theorems 1.7 and 1.8 when
n > 3, and Theorems 1.9 and 1.10.

When n D 2, the proofs of Theorems 1.7 and 1.8 require some technical modification
of logarithmic type, hence their proofs are deferred to Appendix A.

The proof of Theorem 1.11 is contained in Section 6.
An alternative proof of some technical lemmata is provided in Appendix B. Finally,

Appendix C contains some probabilistic motivations related to the diffusive operators of
mixed integer and fractional order.

2. Functional analysis setting

In this section we define the functional space in which we work. First, we recall the space
H s
� introduced in [43] and defined as

H s
� WD

®
uWRn ! R s.t. u 2 L2.�/ and

’
Q
ju.x/�u.y/j2

jx�yjnC2s
dx dy < C1

¯
; (2.1)



(Non)local logistic equations with Neumann conditions 13

where
Q WD R2n n .Rn n�/2:

As is customary, by u 2 L2.�/ in (2.1) we mean that the restriction of the function u to�
belongs to L2.�/ (we stress that functions in H s

� are defined in the whole of Rn). Also,
all functions considered will be implicitly assumed to be measurable.

Furthermore, we define

X˛;ˇ D X˛;ˇ .�/ WD

8̂̂<̂
:̂
H 1.�/ if ˇ D 0;

H s
� if ˛ D 0;

H 1.�/ \H s
� if ˛ˇ ¤ 0:

(2.2)

In light of this definition, X˛;ˇ is a Hilbert space with respect to the scalar product

.u; v/X˛;ˇ WD

Z
�

u.x/v.x/ dx C ˛

Z
�

ru.x/ � rv.x/ dx

C
ˇ

2

“
Q

.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dx dy (2.3)

for every u; v 2 X˛;ˇ .
We also define the seminorm

Œu�2X˛;ˇ WD
˛

2

Z
�

jru.x/j2 dx C
ˇ

4

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy: (2.4)

From the compact embeddings of the spaces H 1.�/ and H s
� (see e.g. [41, Corol-

lary 7.2] when ˛ D 0), we deduce the compact embedding of X˛;ˇ into Lp.�/, for every
p 2 Œ1; 2�/ if ˛ ¤ 0, and for every p 2 Œ1; 2�s / if ˛ D 0.

We say that u 2 X˛;ˇ is a solution of (1.9) if

˛

Z
�

ru.x/ � rv.x/ dx C
ˇ

2

“
Q

.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dx dy

D

Z
�

��
m.x/ � �.x/u.x/

�
u.x/C �.x/J ? u.x/

�
v.x/ dx (2.5)

for all functions v 2 X˛;ˇ .
Now we show that among all the functions in H s

�, the ones minimizing the Gagliardo
seminorm are those satisfying the nonlocal Neumann condition in (1.6). This is a useful
result in itself, which also clarifies the structural role of the Neumann condition introduced
in [43]:

Theorem 2.1. Let uWRn ! R with u 2 L1.�/, and set, for all x 2 Rn n x�,

Eu.x/ WD

Z
�

u.z/

jx � zjnC2s
dz:
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Then, if we define

Qu.x/ WD

8̂<̂
:
u.x/ if x 2 �;

Eu.x/

E1.x/
if x 2 Rn n x�;

(2.6)

we have “
Q

j Qu.x/ � Qu.y/j2

jx � yjnC2s
dx dy 6

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy: (2.7)

Also, the equality in (2.7) holds if and only if u satisfies (1.6).

Proof. We remark that the notation E1 in (2.6) stands for Eu when u � 1. Moreover,
without loss of generality, we can suppose that“

Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy < C1I

otherwise the claim in (2.7) is obviously true.
In addition,Z

�

Z
�

j Qu.x/ � Qu.y/j2

jx � yjnC2s
dx dy D

Z
�

Z
�

ju.x/ � u.y/j2

jx � yjnC2s
dx dy; (2.8)

so we only need to consider the integral on .Rn n�/ �� (the integral on � � .Rn n�/
being the same).

Setting '.x/ WD u.x/ � Qu.x/, for every y 2 Rn n x� we haveZ
�

ju.x/�u.y/j2

jx � yjnC2s
dx D

Z
�

ju.x/ � Qu.y/ � '.y/j2

jx � yjnC2s
dx

D

Z
�

ju.x/� Qu.y/j2�2'.y/.u.x/� Qu.y//Cj'.y/j2

jx � yjnC2s
dx: (2.9)

Now we observe that, for every y 2 Rn n x�,Z
�

u.x/ � Qu.y/

jx � yjnC2s
dx D Eu.y/ �

Eu.y/

E1.y/
E1.y/ D 0:

Accordingly, (2.9) becomesZ
�

ju.x/ � u.y/j2

jx � yjnC2s
dx D

Z
�

j Qu.x/ � Qu.y/j2 C j'.y/j2

jx � yjnC2s
dx >

Z
�

j Qu.x/ � Qu.y/j2

jx � yjnC2s
dx

for every y 2 Rn n x�, and the equality holds if and only if '.y/ D 0. Integrating over
Rn n� (or, equivalently, on Rn n x�), we getZ

Rnn�

Z
�

ju.x/ � u.y/j2

jx � yjnC2s
dx dy >

Z
Rnn�

Z
�

j Qu.x/ � Qu.y/j2

jx � yjnC2s
dx dy;

and the equality holds if and only if ' � 0 in Rn n�. From this observation and (2.8) we
obtain (2.7), as desired.
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3. Existence results and proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 is based on a minimization argument. More precisely, given the
functional setting introduced in Section 2 (recall in particular (2.2)), in order to deal with
problem (1.9), we consider the energy functional EWX˛;ˇ ! R defined as

E.u/ WD
˛

2

Z
�

jruj2 dx

C
ˇ

4

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy

C

Z
�

��juj3
3
�
mu2

2
�
�u.J ? u/

2

�
dx: (3.1)

As a technical remark, we observe that our objective here is to distinguish between
trivial and nontrivial solutions, to detect appropriate conditions for the survival of the
solutions, and we do not indulge in the distinction nonnegative and nontrivial versus
strictly positive solutions. For the reader interested in this point, we mention however
that, under appropriate conditions, one could develop a regularity theory (see e.g. [47,
Theorems 3.1.11, 3.1.12]) that allows the use of a strong maximum principle for smooth
solutions (see e.g. [47, Theorem 3.1.4]).

Now we prove that the functional in (3.1) is the one associated with (1.9):

Lemma 3.1. The Euler–Lagrange equation associated to the energy functional E intro-
duced in (3.1) at a nonnegative function u is (1.9).

Proof. We compute the first variation of E, and we focus on the convolution term in (3.1)
(the computation for the other terms being standard; see in particular [43, Proposition 3.7]
to deal with the term involving the Gagliardo seminorm, which is the one producing the
nonlocal Neumann condition).

For this, we set

J.u/ WD
�

2

Z
�

u.x/.J ? u.x// dx:

For any � 2 X˛;ˇ and " 2 .�1; 1/ we have

J.uC "�/ D
�

2

Z
�

.uC "�/.x/.J ? .uC "�//.x/ dx

D
�

2

Z
�

u.x/.J ? u/.x/C "
�
u.x/.J ? �/.x/C �.x/.J ? u/.x/

�
C "2�.x/.J ? �/.x/ dx:

Accordingly,

dJ

d"
.uC "�/

ˇ̌̌
"D0
D
�

2

Z
�

u.x/.J ? �/.x/C �.x/.J ? u/.x/ dx: (3.2)
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Now, since J is even (recall (1.2)), we see thatZ
�

u.x/.J ? �/.x/ dx D

Z
�

u.x/

�Z
�

J.x � y/�.y/ dy

�
dx

D

Z
�

�.y/

�Z
�

J.y � x/u.x/ dx

�
dy D

Z
�

�.x/.J ? u/.x/ dx:

Using this in (3.2) we obtain

dJ

d"
.uC "�/

ˇ̌̌
"D0
D �

Z
�

�.x/.J ? u/.x/ dx;

which concludes the proof.

As a consequence of Lemma 3.1, to find solutions of (1.9), we will consider the
minimizing problem for the functional E in (3.1). First, we show the following useful
inequality:

Lemma 3.2. Let v;w 2 L2.�/. ThenZ
�

jv.x/j j.J ? w/.x/j dx 6 kvkL2.�/kwkL2.�/: (3.3)

Proof. By the Cauchy–Schwarz inequality, we haveZ
�

jv.x/j j.J ? w/.x/j dx 6 kvkL2.�/kJ ? wkL2.�/: (3.4)

Now, using the Young inequality for convolutions with exponents 1 and 2 (see e.g. [71,
Theorem 9.1]), we obtain

kJ ? wkL2.�/ D kJ � .w��/kL2.Rn/ 6 kJ kL1.Rn/kw��kL2.Rn/ D kwkL2.�/;

where (1.3) has also been used. This and (3.4) give (3.3), as desired.

We are now able to provide a minimization argument for the functional in (3.1):

Proposition 3.3. Assume thatm 2Lq.�/, for some q 2 .q;C1�, where q was introduced
in (1.10), and that

.mC �/3��2 2 L1.�/: (3.5)

Also let
p WD

2q

q � 1
:

Then the functional E in (3.1) attains its minimum in X˛;ˇ . The minimal value is the same
as the one occurring among the functions u 2 Lp.�/ for which“

Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy < C1

and such that Nsu D 0 a.e. outside �.
Moreover, there exists a nonnegative minimizer u, and it is a solution of (1.9).
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Proof. First, we notice that p 2 Œ2;
2q

q�1
/ and

2

p
C
1

q
D 1: (3.6)

By (3.3) we haveZ
�

�u.J ? u/

2
dx 6

�

2
kukL2.�/kukL2.�/ D

�

2

Z
�

ju.x/j2 dx: (3.7)

Moreover, we use the Young inequality with exponents 3=2 and 3 to obtain

.mC �/u2

2
D
�
2
3u2

2
4
3

�
mC �

2�
1
3�

2
3

6
�juj3

6
C
2

3

jmC � j3

�2
:

From this and (3.7) we haveZ
�

�juj3

6
�
mu2

2
�
�u.J ? u/

2
dx >

Z
�

�juj3

6
�
mu2

2
�
�u2

2
dx

> �
2

3

Z
�

jmC � j3

�2
dx DW ��: (3.8)

We point out that the quantity � is finite, thanks to (3.5), and it does not depend on u.
Recalling (3.1), formula (3.8) implies that

E.u/ >
˛

2

Z
�

jruj2 dx C
ˇ

4

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy C

Z
�

�juj3

6
dx � �: (3.9)

Now we take a minimizing sequence uj , and we observe that, in light of Theorem 2.1,
we can assume that

Nsuj D 0 in Rn n x� for every j 2 N. (3.10)

We can also suppose that

0 D E.0/ > E.uj /

>
˛

2

Z
�

jruj j
2 dx C

ˇ

4

“
Q

juj .x/ � uj .y/j
2

jx � yjnC2s
dx dy C

Z
�

�juj j
3

6
dx � �;

where (3.9) has also been exploited. This implies that

˛

2

Z
�

jruj j
2 dx C

ˇ

4

“
Q

juj .x/ � uj .y/j
2

jx � yjnC2s
dx dy C

Z
�

�juj j
3

6
dx 6 �:

As a consequence,

˛

2

Z
�

jruj j
2 dx C

ˇ

4

“
Q

juj .x/ � uj .y/j
2

jx � yjnC2s
dx dy 6 �: (3.11)
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Moreover, by the Hölder inequality with exponents 3=2 and 3,

kuj k
2
L2.�/

6
�Z

�

juj j
3 dx

�2=3
j�j1=3

6
�Z

�

�juj j
3

6
dx

�2=3
62=3j�j1=3

�2=3

6
�Z

�

�juj j
3

6
dx

�2=3
62=3j�j1=3

�2=3
6
62=3j�j1=3�

�2=3
:

From this and (3.11), and using compactness arguments, we can assume, up to a subse-
quence, that uj converges to some u 2 Lp.�/ (for every p 2 Œ1; 2�s / if ˛ D 0, and for
every p 2 Œ1; 2�/ if ˛ ¤ 0; see e.g. [41, Corollary 7.2]) and a.e. in �, and also juj j 6 h

for some h 2 Lp.�/ for every j 2 N (see e.g. [20, Theorem IV.9]).
Hence, if x 2 Rn n x�, by the dominated convergence theorem,Z

�

uj .y/

jx � yjnC2s
dy !

Z
�

u.y/

jx � yjnC2s
dy

as j %C1. Accordingly, in light of (3.10), when x 2 Rn n x�, we have

uj .x/ D

R
�

uj .y/

jx�yjnC2s
dyR

�
dy

jx�yjnC2s

!

R
�

u.y/

jx�yjnC2s
dyR

�
dy

jx�yjnC2s

DW u.x/ (3.12)

as j % C1 (we stress that till now u has only been defined in �, hence the last step
in (3.12) is instrumental to also define u outside �). As a consequence, we obtain that uj
converges a.e. in Rn.

Now, recalling (3.6), we have

lim sup
j%C1

ˇ̌̌̌Z
�

m.u2j � u
2/ dx

ˇ̌̌̌
6 lim sup
j%C1

Z
�

jm.u2j � u
2/j dx

D lim sup
j%C1

Z
�

jm.uj � u/.uj C u/j dx

6 lim sup
j%C1

kmkLq.�/kuj � ukLp.�/kuj C ukLp.�/ D 0;

so that
lim

j%C1

Z
�

m.u2j � u
2/ dx D 0:

Also, Z
�

.uj .J ? uj / � u.J ? u// dx D

Z
�

.uj � u/.J ? uj / dx

C

Z
�

.J ? uj � J ? u/u dx: (3.13)
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Using (3.3) with v WD uj � u and w WD u, we obtain

lim sup
j%C1

Z
�

juj � uj jJ ? uj j dx 6 lim sup
j%C1

kuj � ukL2.�/kuj kL2.�/ D 0: (3.14)

Similarly, exploiting (3.3) with v WD u and w WD uj � u, we have

lim sup
j%C1

Z
�

jJ ? uj � J ? uj juj dx D lim sup
j%C1

Z
�

jJ ? .uj � u/j juj dx

6 lim sup
j%C1

kuj � ukL2.�/kukL2.�/ D 0: (3.15)

From (3.13), (3.14) and (3.15) we conclude that

lim
j%C1

Z
�

.uj .J ? uj / � u.J ? u// dx D 0:

We also have, by the Fatou lemma and the lower semicontinuity of the L2-norm,

lim inf
j%C1

“
Q

juj .x/ � uj .y/j
2

jx � yjnC2s
dx dy >

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy;

lim inf
j%C1

Z
�

jruj j
2 dx >

Z
�

jruj2 dx

and

lim inf
j%C1

Z
�

�juj j
3

3
dx >

Z
�

�juj3

3
dx:

Gathering together these observations, we conclude that

lim inf
j%C1

E.uj / > E.u/;

and therefore u is the desired minimum.
Also, since E.juj/6E.u/, we can suppose that u is nonnegative. Finally, u is a solution

of (1.9) thanks to Lemma 3.1.

The claim of Theorem 1.1 follows from Proposition 3.3.
Now we provide the proof of Theorem 1.2, relying also on the existence result in

Theorem 1.1:

Proof of Theorem 1.2. Thanks to Theorem 1.1, we know that there exists a nonnegative
solution to (1.9).

We now prove the claim in (i). For this, we assume that m is nonpositive and � D 0,
and we argue towards a contradiction, supposing that there exists a nontrivial solution u
of (1.9).
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We notice that, since u > 0 and � > � > 0 in �,Z
�

�u3 dx > 0:

As a consequence, taking v WD u in (2.5) we obtain

0 6 ˛

Z
�

jruj2 dx C
ˇ

2

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy D

Z
�

mu2 dx �

Z
�

�u3 dx < 0;

which is a contradiction, and therefore the claim in (i) is proved.
Now we deal with the claim in (ii). From Theorem 1.1 we know that there exists a

nonnegative solution u to (1.9) which is obtained by the minimization of the functional E
in (3.1) (recall Proposition 3.3). We claim that

u does not vanish identically. (3.16)

To prove this, we show that

0 is not a minimizer for E. (3.17)

For this, we consider the constant function v � 1 and a small parameter " > 0. Then

E."v/ D �
"2

2

�Z
�

mC �.J ? 1/ dx

�
C
"3

3

Z
�

�dx

6 �c1"2 C c2"3;

where
c1 WD

1

2

Z
�

mC �.J ? 1/ dx and c2 WD
1

3
k�kL1.�/:

We remark that c1 > 0, thanks to (1.11), and c2 2 .0;C1/, in light of (1.12). Then, for
small " we have E."v/ < 0 D E.0/. This implies (3.17), which in turn proves (3.16).

4. Analysis of the eigenvalue problem in (1.13) and proof of
Theorem 1.4

In this section we focus on the proof of Theorem 1.4. For this, we need to exploit the
analysis of the eigenvalue problem in (1.13) (some technical details are deferred to [42]
for the reader’s convenience).

The first result towards the proof of Theorem 1.4 concerns the existence of two
unbounded sequences of eigenvalues, one positive and one negative:

Proposition 4.1. Let

m 2 Lq.�/ for some q 2 .q;C1�; (4.1)
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where q is given in (1.10). Suppose that mC, m� 6� 0 and thatZ
�

m.x/ dx ¤ 0: (4.2)

Then problem (1.13) admits two unbounded sequences of eigenvalues:

� � � 6 ��2 6 ��1 < �0 D 0 < �1 6 �2 6 � � � :

In particular, if Z
�

m.x/ dx < 0;

then
�1 D min

u2X˛;ˇ

®
Œu�2X˛;ˇ s.t.

R
�
mu2 dx D 1

¯
; (4.3)

where we use the notation in (2.4). If insteadZ
�

m.x/ dx > 0;

then
��1 D � min

u2X˛;ˇ

®
Œu�2X˛;ˇ s.t.

R
�
mu2 dx D �1

¯
:

The proof of Proposition 4.1 is contained in [42].
The first positive eigenvalue �1, as given by Proposition 4.1, has the following prop-

erties:

Proposition 4.2. Let m 2 Lq.�/, for some q 2 .q;C1�, where q is given in (1.10).
Suppose that mC 6� 0 and Z

�

mdx < 0:

Then the first positive eigenvalue �1 of (1.13) is simple, and the first eigenfunction e can
be taken such that e > 0.

A similar statement holds for ��1 if m� 6� 0 andZ
�

mdx > 0:

See [42] for the proof of Proposition 4.2.

With this, we are now ready to give the proof of Theorem 1.4:

Proof of Theorem 1.4. Thanks to Theorem 1.1, we know that there exists a nonnegative
solution to (1.9).

We first prove the claim in (i). For this, we assume that m 6 �� , and we suppose by
contradiction that there exists a nontrivial solution u of (1.9).
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We observe that, applying (3.3) with v WD u and w WD u,

�

Z
�

u.J ? u/ dx 6 �kuk2
L2.�/

D �

Z
�

u2 dx: (4.4)

Hence, taking u as a test function in (2.5), using (4.4) and recalling that u > 0 and � > �,
we get

0 6 ˛

Z
�

jruj2 dx C
ˇ

2

“
Q

ju.x/ � u.y/j2

jx � yjnC2s
dx dy

D

Z
�

.m � �u/u2 dx C �

Z
�

.J ? u/u dx

6 ��
Z
�

u2 dx � �

Z
�

u3 dx C �

Z
�

u2 dx

< 0:

This is a contradiction, whence the first claim is proved.
Now we show the claim in (ii). From Theorem 1.1 we know that there exists a non-

negative solution u to (1.9) which is obtained by the minimization of the functional E
in (3.1) (recall Proposition 3.3). We claim that

u does not vanish identically. (4.5)

To prove this, we show that

0 is not a minimizer for E. (4.6)

For this, we take an eigenfunction e associated to the first positive eigenvalue �1, as given
by Proposition 4.2. Namely, we take e 2 X˛;ˇ such that

˛

Z
�

re � rv dx C
ˇ

2

“
Q

.e.x/ � e.y//.v.x/ � v.y//

jx � yjnC2s
dx dy D �1

Z
�

mev dx (4.7)

for every v 2 X˛;ˇ .
By taking v WD e in (4.7), we obtain

˛

Z
�

jrej2 dx C
ˇ

2

“
Q

je.x/ � e.y/j2

jx � yjnC2s
dx dy D �1

Z
�

me2 dx: (4.8)

We also remark that, thanks to (1.14), we can use the characterization of �1 given in
formula (4.3) of Proposition 4.1, and hence we can normalize e in such a way thatZ

�

me2 dx D 1: (4.9)

By [42, Corollary 1.4], we know that

e is bounded. (4.10)
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We also take " > 0. Then, by (4.8) and (4.9),

E."e/ D
"2

2

�
˛

Z
�

jrej2 dx C
ˇ

2

“
Q

je.x/ � e.y/j2

jx � yjnC2s
dx dy

�

Z
�

me2 dx �

Z
�

�.J ? e/e dx

�
C
"3

3

Z
�

�e3 dx

D
"2

2

�
.�1 � 1/

Z
�

me2 dx �

Z
�

�.J ? e/e dx

�
C
"3

3

Z
�

�e3 dx

D
"2

2

�
.�1 � 1/ �

Z
�

�.J ? e/e dx

�
C
"3

3

Z
�

�e3 dx

D �
c1

2
"2 C c2

"3

3
; (4.11)

where

c1 WD 1 � �1 C �

Z
�

.J ? e/e dx;

c2 WD

Z
�

�e3 dx:

We notice that c1 > 0, thanks to (1.15), and c2 2 R, in light of (4.10). As a consequence,
for small " we have E."e/ < 0D E.0/, which proves (4.6). In turn, this implies (4.5), thus
completing the proof of (ii).

Remark 4.3. For the sake of simplicity, we focused here on the eigenvalue problem
in (1.13) since it is the “natural one” associated with the diffusive character of the popu-
lation. In this sense, condition (1.15) relates, in a simple and explicit manner, the survival
chances of the population to the corresponding values of the diffusive eigenvalue with
respect to the pollination term.

We observe however that condition (1.15) can be sharpened by considering an eigen-
value problem in which one considers altogether diffusion and pollination. More specifi-
cally, one could consider, instead of (1.13), the weighted eigenvalue problem of convolu-
tion type ´

�˛�uC ˇ.��/su D �.muC �J ? u/ in �;

with .˛; ˇ/-Neumann condition.
(4.12)

One could denote by �1? the smallest strictly positive eigenvalue of (4.12) and by e? the
eigenfunction corresponding to �1? normalized such thatZ

�

m.x/e2?.x/ dx C �

Z
�

.J ? e?.x//e?.x/ dx D 1:

In this functional analytic setting, proceeding as in (4.11), but with e replaced by e?, one
would obtain, instead of (1.15), the condition

�1? < 1: (4.13)
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We point out that (4.13) is indeed a milder condition than (1.15), since

�1? 6
˛
R
�
jrej2 dx C ˇ

2

’
Q
je.x/�e.y/j2

jx�yjnC2s
dx dyR

�
me2 dx C �

R
�
.J ? e/e dx

D
�1

1C �
R
�
.J ? e/e dx

I

therefore if (1.15) holds true, then so does (4.13).

5. Optimization on m and proofs of Theorems 1.5, 1.7, 1.8, 1.9
and 1.10

This section is devoted to the understanding of the optimal configuration of the resource
m, which is based on the analysis of the minimal eigenvalue problem given in (1.17).

First of all, we will see that the optimal resource distribution attaining the minimal
eigenvalue in (1.17) is of bang-bang type, namely concentrated on its minimal and max-
imal values m and xm. This property is based on the so-called “bathtub principle”; see
[40, Lemma 3.3] (or [55,57]). We recall this result here for the convenience of the reader:

Lemma 5.1. Let f 2 L1.�/ and M be as in (1.16). Then the maximization problem

sup
m2M

Z
�

f mdx

is attained by a suitable m 2M given by

m WD xm�D �m��nD

for some subset D � � such that

jDj D
mCm0

mC xm
j�j: (5.1)

We now show that, in light of Lemma 5.1, to optimize the eigenvalue �1 in (1.17), we
have to consider m 2M of bang-bang type. More precisely, we define

zM D zM. xm;m;m0/ WD
®
m 2M s.t. m WD xm�D �m��nD;

for some subset D � � with jDj D mCm0
mCxm

j�j
¯
; (5.2)

and we have the following result:

Proposition 5.2. We have
� D inf

m2 zM

�1.m/:
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Proof. We define
Q� WD inf

m2 zM

�1.m/;

and we claim that
� D Q�: (5.3)

To this end, we observe that, since zM �M, we have

� 6 Q�: (5.4)

Moreover, by the definition of � in (1.17), we have that for every " > 0 there existsm" 2M
such that �C "> �1.m"/. Then we denote by e" the nonnegative eigenfunction associated
to �1.m"/, and we conclude that

�C " > �1.m"/ D
Œe"�

2
X˛;ˇR

�
m"e2" dx

: (5.5)

We also observe that, in light of Lemma 5.1,Z
�

m"e
2
" dx 6

Z
�

. xm�D" �m��nD"/e
2
" dx

for a suitable D" � � satisfying (5.1). Plugging this information into (5.5), and letting
m?" WD xm�D" �m��nD" , we obtain

�C " >
Œe"�

2
X˛;ˇR

�
. xm�D" �m��nD"/e

2
" dx

> �1.m
?
" / > Q�:

Hence, taking the limit as " goes to 0, we get that � > Q�. This, combined with (5.4),
establishes (5.3), as desired.

We recall that many biological models describe optimal resources of bang-bang type;
see e.g. [26, 27, 54, 57, 61, 64].

In light of Proposition 5.2, from now on, when optimizing the eigenvalue �1.m/ as
in (1.17), we will suppose that m belongs to the set zM introduced in (5.2).

Now we provide the proof of Theorem 1.5.

Proof of Theorem 1.5. We take a ball B � � such that

jBj 6
d0

2
j�j: (5.6)

We can assume, up to a translation, that � � ¹xn > 0º, and, for every � > 0, we define
the set

�� WD B [ .¹xn < �º \�/:
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We observe that j�� j is nondecreasing with respect to �, and we define

�� WD sup
®
� > 0 W j�� j <

mCm0
mCxm

j�j
¯
:

We claim that, for every � > 0,

lim
�!�
j�� j D j�� j: (5.7)

To this end, we first show that

lim
�!�

��� .x/ D ��� .x/ for a.e. x 2 �: (5.8)

For this, we consider several cases. If x D .x0; xn/ 2 �� , then either x 2 B or xn < � .
If x 2 B , then x 2 �� for each � > 0, and accordingly ��� .x/ D 1 D ��� .x/, which
implies (5.8). If instead xn < �, then there exists Q� 2 .xn; �/ such that, for every � 2 . Q�; �/,
we have ��� .x/ D 1 D ��� .x/, which proves (5.8) also in this case.

On the other hand, if x 62 �� , then x 62 B and xn > � . We notice that the set ¹xn D �º
has zero Lebesgue measure, and therefore, in order to prove (5.8), we can assume that
xn > � . Then there exists Q� 2 .�; xn/ such that, for every � 2 .�; Q�/, we have x 62 �� , and
so ��� .x/ D 0 D ��� .x/. This completes the proof of (5.8).

By (5.8) and the dominated convergence theorem we obtain (5.7), as desired.
We also notice that if � D 0, then �� D B , and therefore, by (1.18) and (5.6),

j�� j D jBj 6
d0

2
j�j 6

mCm0

2.mC xm/
j�j:

This and the continuity statement in (5.7) guarantee that �� > 0.
Moreover, the continuity in (5.7) implies that

j��� j D
mCm0

mC xm
j�j: (5.9)

Now we set D WD ��� , and we observe that D satisfies (5.1), thanks to (5.9). Also,
we take v 2 C10 .B/, with v 6� 0. Then, recalling that B � D,

� 6
Œv�2X˛;ˇR

�
. xm�D �m��nD/v2 dx

D

Œv�2X˛;ˇ

xm
R
B
v2 dx

6
C

xm

for some positive constant C depending on � and d0. This completes the proof of Theo-
rem 1.5.

With the aid of Theorem 1.5 we now prove Corollary 1.6, by arguing as follows:
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Proof of Corollary 1.6. We notice that

lim
m%C1

mCm0
2m

D
1

2
:

By taking m D m D xm, this implies that

mCm0

mC xm
D
mCm0
2m

>
1

4
;

as long as m is large enough. This says that the assumption (1.18) in Theorem 1.5 is
satisfied with d0 WD 1

4
, and therefore, Theorem 1.5 gives that

�.m;m; m0/ 6
C

m

for some C > 0 depending only on �. As a consequence,

lim
m%C1

�.m;m; m0/ D 0;

as desired.

The next goal of this section is to prove Theorem 1.7. For concreteness, we give here
the proof for n > 3, and we defer the case n D 2 to Appendix A.

Without loss of generality, we suppose that

B2 � �: (5.10)

For n > 3 and for any � 2 .0; 1/, we define the function 'WRn ! R as

'.x/ WD

8̂̂̂<̂
ˆ̂:
c? C 1 if x 2 B�;

c? C
�

1 � �

� 1

jxj
� 1

�
if x 2 B1 n B�;

c? if x 2 Rn n B1;

(5.11)

where  > 0 and

c? WD �
mCm0

m0
: (5.12)

We observe that, since m0 2 .�m; 0/, we have c? > 0.
Also, we set

D WD B�: (5.13)

The idea to prove Theorem 1.7 is to use the function ' in (5.11) and the resourcem D
xm�D �m��nD , with D as in (5.13), as competitors for the minimization of � in (1.17).

In this setting, we notice that, since m 2 zM, recalling (5.1),

�njB1j D jB�j D jDj D
mCm0

mC xm
j�j:
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This says that
sending xm%C1 is equivalent to sending �& 0, (5.14)

m, m0 and j�j being fixed quantities in this argument.
In light of these observations, the next lemmata will be devoted to estimate in terms of

� the quantities involving ' that appear in the minimization of �.
We point out that, in dimension n D 2, the argument to prove Theorem 1.7 will be

similar, but we will need to introduce a logarithmic-type function as in (A.1) instead of a
polynomial-type function as in (5.11) (as often happens when passing from dimension 2
to higher dimensions).

The first result that we have in this setting deals with the H 1-seminorm of ':

Lemma 5.3. Let n > 3 and ' be as in (5.11). Then

lim
�&0

Z
�

jr'j2 dx D 0:

Proof. By the definition of ' in (5.11), we have r' ¤ 0 only if x 2B1 nB�. Accordingly,
using polar coordinates,Z

�

jr'j2 dx D 2
� �

1 � �

�2 Z
B1nB�

1

jxj2C2
dx

D j@B1j
2
� �

1 � �

�2 Z 1

�

rn�2�3 dr: (5.15)

Now we point out that

Z 1

�

rn�2�3 dr 6

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1

n � 2 � 2
if  <

n � 2

2
;

� log � if  D
n � 2

2
;

�
�n�2�2

n � 2 � 2
if  >

n � 2

2
:

(5.16)

This and (5.15) entail that, for every  > 0,

lim
�&0

Z
�

jr'j2 dx D 0;

which concludes the proof.

Now we deal with the Gagliardo seminorm of '. For this, we point out the following
useful inequality:

Lemma 5.4. Let x, y 2 Rn n ¹0º and  > 0. Then there exists C > 0 such thatˇ̌̌ 1

jxj
�

1

jyj

ˇ̌̌
6 C

ˇ̌
jxj � jyj

ˇ̌
min¹jxjC1; jyjC1º

: (5.17)
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Proof. We can assume that jxj > jyj, the other case being analogous. In this way, for-
mula (5.17) boils down to

1

jyj
�

1

jxj
6 C

jxj � jyj

jyjC1
: (5.18)

To prove (5.18), we first claim that, for every t > 1,

1 �
1

t
6 C .t � 1/ (5.19)

for a suitable C > 0. Indeed, we set

f .t/ WD Ct C
1

t
� .C C 1/

for some positive constant C (to be chosen in what follows), and we observe that

f .1/ D 0; (5.20)

and
f 0.t/ D C �



tC1
> C � 

for any t > 1. As a result, taking C WD  C 1, we obtain f 0.t/ > 0. This and (5.20) give
that f .t/ > 0 for every t > 1, which implies (5.19).

Taking t WD jxj
jyj

in (5.19), we obtain

1 �
jyj

jxj
6 C

�
jxj

jyj
� 1

�
:

Multiplying this inequality by 1
jyj

we deduce (5.18), as desired.

With this, we now estimate the Gagliardo seminorm of ' as follows:

Lemma 5.5. Let n > 3 and ' be as in (5.11). Then

lim
�&0

“
Q

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0:

We give here a proof of Lemma 5.5 based on direct (albeit a bit long) calculations. A
shorter proof based on interpolation theory will be provided in Appendix B.

Proof of Lemma 5.5. In what follows, we will assume that � 6 1=4. By the definition of
' in (5.11), it plainly follows that“

B��B�

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0 (5.21)
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and “
.RnnB1/�.RnnB1/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0: (5.22)

Moreover, by the change of variable z WD y � x,“
B��.RnnB1/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D

“
B��.RnnB1/

1

jx � yjnC2s
dx dy

6
Z
B�

dx

Z
RnnB 1

2

1

jzjnC2s
dz

6 C

Z
B�

dx D C�n

for some C > 0. As a consequence,

lim
�&0

“
B��.RnnB1/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0: (5.23)

Now, if x 2 B1 n B� and y 2 B�, from (5.11) we have

j'.x/ � '.y/j2 D
� �

1 � �

�2� 1

jxj
�
1

�

�2
:

Hence, also utilizing (5.17) (applied here with jyj WD �),“
.B1nB�/�B�

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

D

� �

1 � �

�2“
.B1nB�/�B�

� 1

jxj
�
1

�

�2 1

jx � yjnC2s
dx dy

6
C

�2C2

� �

1 � �

�2“
.B1nB�/�B�

.jxj � �/2

jx � yjnC2s
dx dy: (5.24)

We observe that, since x 2 B1 n B� and y 2 B�,

jxj � � 6 jxj � jyj 6 jx � yj;

and therefore, plugging this information into (5.24),“
.B1nB�/�B�

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

6
C

�2C2

� �

1 � �

�2“
.B1nB�/�B�

jx � yj2�n�2s dx dy

6
C

�2C2

� �

1 � �

�2 Z
B�

dy

Z
B2

jzj2�2s�n dz

6
C

�2C2

� �

1 � �

�2 Z
B�

dy

6 C�n�2;
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up to renaming C > 0 from line to line. As a result,

lim
�&0

“
.B1nB�/�B�

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0: (5.25)

In addition, since Rn n��Rn nB2 (recall (5.10)), changing variable z WD y � x and
using polar coordinates,“

.B1nB�/�.Rnn�/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

D

� �

1 � �

�2“
.B1nB�/�.Rnn�/

� 1

jxj
� 1

�2 1

jx � yjnC2s
dx dy

6
� �

1 � �

�2 Z
B1nB�

� 1

jxj
� 1

�2
dx

Z
RnnB1

1

jzjnC2s
dz

6 C
� �

1 � �

�2 Z
B1nB�

� 1

jxj
� 1

�2
dx

D C
� �

1 � �

�2 Z
B1nB�

� 1

jxj2
�

2

jxj
C 1

�
dx

6 C
� �

1 � �

�2 Z 1

�

.rn�2�1 C rn�1/ dr

6 C
� �

1 � �

�2�
1C

Z 1

�

rn�2�1 dr

�
; (5.26)

possibly changing C > 0 from line to line. We also remark that

Z 1

�

rn�2�1 dr 6

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1

n � 2
if  <

n

2
;

� log � if  D
n

2
;

�
�n�2

n � 2
if  >

n

2
:

This and (5.26) imply that

lim
�&0

“
.B1nB�/�.Rnn�/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0: (5.27)

Furthermore, recalling (5.11) and making use of (5.17), we have“
.B1nB�/�.�nB1/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

D

� �

1 � �

�2“
.B1nB�/�.�nB1/

� 1

jxj
� 1

�2 1

jx � yjnC2s
dx dy

6 C
� �

1 � �

�2“
.B1nB�/�.�nB1/

.1 � jxj/2

jxj2C2jx � yjnC2s
dx dy:
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Hence, noticing that, for every x 2 B1 n B� and every y 2 � n B1,

1 � jxj 6 jyj � jxj 6 jx � yj;

we conclude that“
.B1nB�/�.�nB1/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

6 C
� �

1 � �

�2“
.B1nB�/�.�nB1/

1

jxj2C2jx � yjnC2s�2
dx dy

6 C
� �

1 � �

�2 Z
B1nB�

1

jxj2C2
dx

6 C
� �

1 � �

�2 Z 1

�

rn�2�3 dr:

Accordingly, recalling (5.16), we conclude that

lim
�&0

“
.B1nB�/�.�nB1/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0: (5.28)

We now claim that

lim
�&0

“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0: (5.29)

For this, we observe that by (5.11),“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

D

� �

1 � �

�2“
.B1nB�/�.B1nB�/

� 1

jxj
�

1

jyj

�2 dx dy

jx � yjnC2s

D 2
� �

1 � �

�2“
.B1nB�/�.B1nB�/

¹jxj6jyjº

� 1

jxj
�

1

jyj

�2 dx dy

jx � yjnC2s
:

Hence, from (5.17) we get“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

6 C
� �

1 � �

�2“
.B1nB�/�.B1nB�/

¹jxj6jyjº

jx � yj2�n�2s

jxj2C2
dx dy;

up to renaming C > 0.
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Since � 2 .0; 1/, we can take an integer k such that

1

2kC1
< � 6

1

2k
: (5.30)

In this way, we have“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

6 C
� �

1 � �

�2“
.B1nB1=2kC1 /�.B1nB1=2kC1 /

¹jxj6jyjº

jx � yj2�n�2s

jxj2C2
dx dy

6 C�2
kX

i;jD0

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj6jyjº

jx � yj2�n�2s

jxj2C2
dx dy: (5.31)

We also observe that when x 62 B1=2iC1 , y 2 B1=2j and jxj 6 jyj, we have

1

2iC1
6 jxj 6 jyj 6

1

2j
;

and accordingly j 6 i C 1. This implies that“
.B1nB�/�.B1nB�/

¹jxj6jyjº

jx � yj2�n�2s

jxj2C2
dx dy

6
kX
iD0

iC1X
jD0

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj>jyjº

jx � yj2�n�2s

jxj2C2
dx dy

6
kX
iD0

iC1X
jD0

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

2.2C2/.iC1/jx � yj2�n�2s dx dy

6
kX
iD0

iC1X
jD0

Z
B
1=2i
nB

1=2iC1

2.2C2/.iC1/ dx

Z
B 1
2i
C 1

2j

jzj2�n�2s dz

6 C

kX
iD0

iC1X
jD0

2�niC.2C2/iC.2s�2/j

6 C

kX
iD0

2.2C2�n/i

6

8̂̂<̂
:̂
C if  < n�2

2
;

Ck if  D n�2
2
;

C2.2C2�n/k if  > n�2
2
;

6

8̂̂<̂
:̂
C if  < n�2

2
;

C jlog �j if  D n�2
2
;

C�n�2�2 if  > n�2
2
;

up to renaming C > 0, where we used (5.30).
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Plugging this information into (5.31), we obtain (5.29).

Putting together (5.21), (5.22), (5.23), (5.25), (5.27), (5.28) and (5.29), we obtain the
desired result.

We now estimate the weighted L2-norm of the auxiliary function ':

Lemma 5.6. Let n > 3 and ' be as in (5.11). Then

lim
�&0
xm

Z
D

'2 dx �m

Z
�nD

'2 dx D �
m.mCm0/

m0
j�j > 0:

Proof. Recalling (5.12), (5.13) and (5.1), we see that

xm

Z
D

'2 dx D xm.c? C 1/
2
jDj D xm

�
�
mCm0

m0
C 1

�2mCm0
mC xm

j�j

D
xmm2.mCm0/

m20.mC xm/
j�j: (5.32)

Moreover, we observe that

�

1 � �
1

jxj
�B1nB� 6

1

1 � �
6 2; (5.33)

as long as � is small enough. As a consequence, recalling (5.11) and (5.13), and using the
dominated convergence theorem, we find that

lim
�&0

m

Z
�nD

'2 dx D lim
�&0

m

Z
�nB1

c2? dx Cm

Z
B1nB�

h
c? C

�

1 � �

� 1

jxj
� 1

�i2
dx

D mc2?j� n B1j Cmc
2
?jB1j

D mc2?j�j D m
�mCm0

m0

�2
j�j:

From this and (5.32), and recalling (5.14), we conclude that

lim
�&0
xm

Z
D

'2 dx �m

Z
�nD

'2 dx D lim
xm%C1

xmm2.mCm0/

m20.mC xm/
j�j �m

�mCm0
m0

�2
j�j

D
m2.mCm0/

m20
j�j �m

�mCm0
m0

�2
j�j

D
m.mCm0/

m20
Œm � .mCm0/�j�j

D �
m.mCm0/

m0
j�j;

which is positive, since m0 2 .�m; 0/, as desired.

We are now in position to give the proof of Theorem 1.7 for n > 3.
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Proof of Theorem 1.7 when n > 3. The strategy of the proof is to use the auxiliary func-
tion ' as defined in (5.11) and the resource m WD xm�D �m��nD , with D as in (5.13), as
a competitor in the minimization problem (1.17). Indeed, in this way we find that

�. xm;m;m0/ 6
˛
R
�
jr'j2 dx C ˇ

’
Q
j'.x/�'.y/j2

jx�yjnC2s
dx dy

xm
R
D
j'j2 dx �m

R
�nD
j'j2 dx

:

Moreover, Lemmata 5.3 and 5.5 give

lim
�&0

˛

Z
�

jr'j2 dx C ˇ

“
Q

j'.x/ � '.y/j2

jx � yjnC2s
dx dy D 0:

This, combined with (5.14) and Lemma 5.6, gives the desired result.

Now we deal with the proof of Theorem 1.8. The main strategy is similar to that of the
proof of Theorem 1.7, but in this setting we introduce a different auxiliary function (and
this of course impacts the technical computations needed to obtain the desired results).
Namely, we define

 .x/ WD

8̂̂̂<̂
ˆ̂:
c] � 1 if x 2 B�;

c] �
�

1 � �

� 1

jxj
� 1

�
if x 2 B1 n B�;

c] if x 2 Rn n B1;

(5.34)

where
c] WD

m0 � xm

m0
: (5.35)

We point out that c] > 0, since m0 < 0 < xm. We also set

D WD � n B�: (5.36)

We remark that, in this setting, since m 2 zM, recalling (5.1),

j�j � jB�j D j� n B�j D jDj D
mCm0

mC xm
j�j:

This says that
sending m%C1 is equivalent to sending �& 0, (5.37)

xm,m0 and j�j being fixed quantities in this argument. The reader may compare the setting
in (5.13) and (5.14) with the one in (5.36) and (5.37) to appreciate the structural difference
between the two frameworks.

Now we list some useful properties of the auxiliary function  . Noticing that the
function  in (5.34) differs by a constant from the function �' in (5.11), we obtain the
following two results directly from Lemmata 5.3 and 5.5:



S. Dipierro, E. Proietti Lippi, and E. Valdinoci 36

Lemma 5.7. Let n > 3 and  be as in (5.34). Then

lim
�&0

Z
�

jr j2 dx D 0:

Lemma 5.8. Let n > 3 and  be as in (5.34). Then

lim
�&0

“
Q

j .x/ �  .y/j2

jx � yjnC2s
dx dy D 0:

We now deal with the weighted L2-norm of the auxiliary function  :

Lemma 5.9. Let n > 3 and  be as in (5.34). Then

lim
�&0
xm

Z
D

 2 dx �m

Z
�nD

 2 dx D �
xm. xm �m0/

m0
j�j > 0:

Proof. Recalling (5.34) and (5.36), we find that

xm

Z
D

 2 dx D xm

Z
�nB1

c2] dx C xm

Z
B1nB�

h
c] �

�

1 � �

� 1

jxj
� 1

�i2
dx:

Hence, recalling (5.33) and using the dominated convergence theorem and (5.35), we
deduce that

lim
�&0
xm

Z
D

 2 dx D xmc2] j� n B1j C xmc
2
] jB1j D xmc

2
] j�j D xm

�m0 � xm
m0

�2
j�j: (5.38)

Moreover, recalling (5.36), (5.1) and (5.35),

m

Z
�nD

 2 dx D m.c] � 1/
2
j� nDj

D m
�m0 � xm

m0
� 1

�2 xm �m0
mC xm

j�j

D
m xm2. xm �m0/

m20.mC xm/
j�j:

As a consequence of this and (5.38), and recalling (5.37), we have

lim
�&0
xm

Z
D

 2 dx �m

Z
�nD

 2 dx D xm
�m0 � xm

m0

�2
j�j � lim

m%C1

m xm2. xm �m0/

m20.mC xm/
j�j

D xm
�m0 � xm

m0

�2
j�j �

xm2. xm �m0/

m20
j�j

D
xm. xm �m0/

m20
Œ. xm �m0/ � xm�j�j

D �
xm. xm �m0/

m0
j�j;

which is positive, since m0 < 0 < xm.
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Now we are ready to give the proof of Theorem 1.8 for n > 3.

Proof of Theorem 1.8. The strategy of the proof is to use the auxiliary function  as
defined in (5.34) and the resource m WD xm�D �m��nD , with D as in (5.36), as a com-
petitor in the minimization problem (1.17). Indeed, in this way we find that

�. xm;m;m0/ 6
˛
R
�
jr j2 dx C ˇ

’
Q
j .x/� .y/j2

jx�yjnC2s
dx dy

xm
R
D
j j2 dx �m

R
�nD
j j2 dx

:

Moreover, from Lemmata 5.7 and 5.8 we have

lim
�&0

˛

Z
�

jr j2 dx C ˇ

“
Q

j .x/ �  .y/j2

jx � yjnC2s
dx dy D 0:

This, combined with (5.37) and Lemma 5.9, implies the desired result.

Having completed the cases n > 3 and deferred the case n D 2 to Appendix A, we
now focus on the case n D 1, by providing the proofs of Theorems 1.9 and 1.10.

For this, when n D 1 we first establish the following lower bound for � (as defined
in (1.17)):

Lemma 5.10. Let n D 1 and ˛ > 0. Then

�. xm;m;m0/ > �
Cm30.mC xm/

4

xmm3. xm �m0/2. xm.2mCm0/ �mm0/
; (5.39)

for some C D C.˛; ˇ;�/ > 0.

Proof. Without loss of generality, we can set ˛ D 2. We take an arbitrary resource m in
the set zM defined in (5.2). Moreover, we denote by e an eigenfunction associated to the
first eigenvalue of problem (1.13), that is,

�1.m/ D

R
�
je0j2 dx C ˇ

4

’
Q
je.x/�e.y/j2

jx�yjnC2s
dx dy

xm
R
D
e2 dx �m

R
�nD

e2 dx
: (5.40)

In light of Proposition 4.2 here and [42, Corollary 1.4], up to a sign change, we know that
e is nonnegative and bounded, and therefore we set

a WD inf
�
e and b WD sup

�

e:

By construction, we have a 2 Œ0; b�, and we can also normalize e such that b D 1; in this
way

e.x/ 6 1 for each x 2 �: (5.41)

We also take xk , yk 2 � such that

e.xk/! a and e.yk/! 1

as k %C1.
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We observe that

if there exist Nx and Ny such that je. Nx/ � e. Ny/j > 1�a
10

which belong to the

same connected component of �, then

.1 � a/2 6 C

Z
�

je0j2 dx for some C > 0. (5.42)

Indeed, for Nx and Ny as in the assumption of (5.42) we have

.e. Ny/ � e. Nx//2 D

�Z Ny
Nx

e0.t/ dt

�2
6 C

Z
�

je0.t/j2 dt

for some positive C . Accordingly, we obtain the desired result in (5.42).
Now we claim that

.1 � a/4 6 C

�Z
�

je0j2 dx C ˇ

“
Q

je.x/ � e.y/j2

jx � yjnC2s
dx dy

�
(5.43)

for a suitable C > 1.
To prove this claim, we need to consider different possibilities according to the possi-

ble lack of connectedness of �. For this, we first remark that, with no loss of generality,
we can suppose that

a < 1; (5.44)

otherwise (5.43) is obviously satisfied.
Furthermore,� being a bounded set with C 1 boundary, necessarily it can have at most

a finite number of connected components (otherwise, there would be accumulating com-
ponents, violating the assumption in (1.1)). Hence, if � is not connected, we can define
d0 to be the smallest distance between the different connected components of �. We also
let d1 be the diameter of � and d2 the smallest diameter of all the connected components
of� (of course, d0, d1 and d2 are structural constants, and the other constants are allowed
to depend on them, but we will write d0, d1 and d2 explicitly in the forthcoming compu-
tations whenever we need to emphasize their roles). To prove (5.43), we distinguish two
cases: the first case is when

� has one connected component, or it has more than one connected component, with

sup
x;y2�

je.x/�e.y/j> 1�a
10

je.x/ � e.y/j

jx � yj
>
4

d0
; (5.45)

and the second case is when

� has more than one connected component, with

sup
x;y2�

je.x/�e.y/j> 1�a
10

je.x/ � e.y/j

jx � yj
<
4

d0
: (5.46)



(Non)local logistic equations with Neumann conditions 39

Let us first discuss case (5.45). If � has one connected component, then we can exploit
(5.42) with Nx WD xk and Ny WD yk with k sufficiently large, and the claim in (5.43) plainly
follows. Thus, to complete the study of (5.45), we suppose that� is not connected and, in
the setting of (5.45), we find Nx, Ny 2 � with

je. Nx/ � e. Ny/j >
1 � a

10
and

je. Nx/ � e. Ny/j

j Nx � Nyj
>
3

d0
: (5.47)

In this framework, we have

Nx and Ny belong to the same connected component. (5.48)

Indeed, if not, we would have j Nx � Nyj > d0, and thus, by (5.41),

je. Nx/ � e. Ny/j

j Nx � Nyj
6
je. Nx/j C je. Ny/j

d0
6
2

d0
;

which is in contradiction with (5.47), thus proving (5.48).
Then, by (5.48), we can exploit (5.42), from which one deduces (5.43) in this case.
Having completed the analysis of case (5.45), we now focus on the setting provided

by case (5.46) and we define

r WD
1

100.1C 4
d0
/

min¹1 � a; d2º: (5.49)

We observe that, r > 0, due to (5.44), and, if # 2 � with j# � xkj 6 r , then

je.#/ � e.xk/j 6
1 � a

10
: (5.50)

Indeed, suppose not. Then the assumption in (5.46) guarantees that

4

d0
>
je.#/ � e.xk/j

j# � xkj
>
je.#/ � e.xk/j

r
;

and therefore

je.#/ � e.xk/j 6
4r

d0
6

4
d0

100.1C 4
d0
/
.1 � a/ 6

1 � a

100
;

against the contradiction assumption.
This proves (5.50) and similarly one can show that if � 2 � with j� � ykj 6 r , then

je.#/ � e.yk/j 6
1 � a

10
: (5.51)

Combining (5.50) and (5.51), we find that, for all # , � 2 � with j# � xkj 6 r and
j� � ykj 6 r ,

je.#/ � e.�/j > je.xk/ � e.yk/j � je.#/ � e.xk/j � je.�/ � e.yk/j

>
1 � a

2
�
1 � a

5
>
1 � a

4
:
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For this reason, letting �1 WD Br .xk/ \� and �2 WD Br .yk/ \�, we have“
Q

je.x/ � e.y/j2

jx � yjnC2s
dx dy >

“
���

je.x/ � e.y/j2

jx � yjnC2s
dx dy

>
“

�1��2

je.#/ � e.�/j2

j# � � jnC2s
d# d�

>
“

�1��2

.1 � a/2

16dnC2s1

d# d�

D
.1 � a/2j�1j j�2j

16dnC2s1

>
.1 � a/2r2

64dnC2s1

: (5.52)

We also recall that in the case (5.46), we have that � is not connected and consequently
ˇ ¤ 0, due to (1.5). From this and (5.52), up to renaming constants, we deduce thatZ

�

je0j2 dx C ˇ

“
Q

je.x/ � e.y/j2

jx � yjnC2s
dx dy >

.1 � a/2r2

C
;

which, together with (5.49), proves (5.43), as desired.
We also remark that, testing the weak formulation of (1.13) against a constant function,

one sees that Z
�

me dx D 0;

and therefore, recalling (5.41),

xmjDj > xm
Z
D

e dx D m

Z
�nD

e dx > amj� nDj: (5.53)

Recalling (5.1), we see that

j� nDj D
xm �m0

mC xm
j�j; (5.54)

and therefore

xm

Z
D

e2 dx �m

Z
�nD

e2 dx 6 xmjDj � a2mj� nDj

D xm
mCm0

mC xm
j�j � a2m

xm �m0

mC xm
j�j

D
xmm.1 � a2/Cm0. xmC a

2m/

mC xm
j�j

<
xmm

mC xm
.1 � a2/j�j; (5.55)

since m0 < 0 and xm, m > 0. Using this inequality and (5.43) in (5.40), we conclude that

C�1.m/ >
mC xm

xmm
�
.1 � a/4

1 � a2
D
mC xm

xmm
�
.1 � a/3

1C a
; (5.56)

up to renaming C > 0.
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Furthermore, from (5.53) we know that

a 6
xm

m
�
mCm0

xm �m0
:

Consequently, since the map Œ0; 1� 3 t WD .1�t/3

1Ct
is decreasing, we discover that

.1 � a/3

1C a
>
.1 � xm

m
�
mCm0
xm�m0

/3

1C xm
m
�
mCm0
xm�m0

D �
m30.mC xm/

3

m2. xm �m0/2
�

1

2 xmmCm0. xm �m/
:

Combining this information and (5.56), we deduce that

C�1.m/ > �
mC xm

xmm
�
m30.mC xm/

3

m2. xm �m0/2
�

1

2 xmmCm0. xm �m/

D �
m30.mC xm/

4

xmm3. xm �m0/2.2 xmmCm0. xm �m//
:

Taking the infimum of this expression, we find the desired result.

With this, we are in position to give the proof of Theorem 1.9.

Proof of Theorem 1.9. For any m > 0 and any m0 2 .�m; 0/, we define the function
gm;m0 W .0;C1/! .0;C1/ as

gm;m0.m/ WD �
m30.mC m/

4

mm3.m �m0/2.m.2mCm0/ �mm0/
:

We observe that

lim
m%C1

gm;m0.m/ D �
m30

m3.2mCm0/
> 0;

and
lim
m&0

gm;m0.m/ D C1: (5.57)

In particular,
inf

m2.0;C1/
gm;m0.m/ > 0: (5.58)

Now, by Lemma 5.10, we know that

�.m; m;m0/ > Cgm;m0.m/: (5.59)

As a result, (1.19) follows from (5.58) and (5.59). Moreover, from (5.57) and (5.59) we
obtain (1.20).

To prove (1.21), for any xm> 0 andm0 < 0, we define the function Qg xm;m0 W .�m0;C1/
! .0;C1/ as

Qg xm;m0.m/ WD �
m30.mC xm/

4

xmm3. xm �m0/2. xm.2mCm0/ � mm0/
:
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We notice that
lim

m&�m0
Qg xm;m0.m/ D �

xm �m0

xmm0
> 0

and that

lim
m%C1

Qg xm;m0.m/ D �
m30

xm. xm �m0/2.2 xm �m0/
> 0:

Accordingly,
inf

m2.�m0;C1/
Qg xm;m0.m/ > 0:

Using this and the fact that, by Lemma 5.10,

�. xm;m; m0/ > C Qg xm;m0.m/;

we obtain the desired result in (1.21).

Having established Theorem 1.9, we now deal with the case in which ˛ D 0, namely
when only the nonlocal dispersal is active. This case is considered in Theorem 1.10,
according to two different ranges of the fractional parameter s. For this, we divide the
proof of Theorem 1.10 into two parts.

Proof of Theorem 1.10 when s 2 .1=2; 1/. We denote by e the eigenfunction associated
to the first eigenvalue of problem (1.13), normalized such that

a WD inf
�
e > 0 and sup

�

e D 1: (5.60)

We recall (5.53), (5.54) and (5.55) to write

a 6
xm

m
�
mCm0

xm �m0
(5.61)

and
xm

Z
D

e2 dx �m

Z
�nD

e2 dx 6
xmm

mC xm
.1 � a2/j�j: (5.62)

We stress that, in view of (5.61),

ı0 WD 1 � a > 1 �
xm

m
�
mCm0

xm �m0
D �

m0.mC xm/

m. xm �m0/
> 0: (5.63)

In particular, by (5.60), we can find Nx and Ny in � such that

e. Nx/ 6 aC
ı0

100
and e. Ny/ > 1 �

ı0

100
: (5.64)

Now we claim that “
Q

.e.x/ � e.y//2

jx � yj1C2s
dx dy > c.1 � a/

4sC2
2s�1 (5.65)
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for some c 2 .0; 1/ depending only on s and � (in particular, this c is independent of
m). Indeed, if the left-hand side of (5.65) is larger than 1, we are done; therefore we can
suppose, without loss of generality, that“

Q

.e.x/ � e.y//2

jx � yj1C2s
dx dy 6 1:

As a result, “
���

.e.x/ � e.y//2

jx � yj1C2s
dx dy C kek2

L2.�/
6 1C j�j;

and consequently we can exploit [41, Theorem 8.2] and conclude that kek
C
2s�1
2 .�/

6 C0,
for some C0 > 0 depending only on s and �.

We let d1 be the diameter of � and d2 be the smallest diameter of all the connected
components of �. We also define

r0 WD min
°� ı0

100C0

� 2
2s�1

;
d2

100

±
; (5.66)

and we observe that, for each x 2 � \ Br0. Nx/,

e.x/ 6 e. Nx/C je.x/ � e. Nx/j 6 e. Nx/C C0jx � Nxj
2s�1
2

6 aC
ı0

100
C C0r

2s�1
2

0 6 aC
ı0

50
;

thanks to (5.64).
Similarly, for each y 2 � \ Br0. Ny/,

e.y/ > 1 �
ı0

50
;

and consequently“
.�\Br0 . Nx//�.�\Br0 . Ny//

.e.x/ � e.y//2

jx � yj1C2s
dx dy

>
�
1 � a �

ı0

25

�2“
.�\Br0 . Nx//�.�\Br0 . Ny//

dx dy

jx � yj1C2s

>
�
1 � a �

ı0

25

�2 j� \ Br0. Nx/j j� \ Br0. Ny/j
d1C2s1

>
.1 � a/2

4d2C2s1

j� \ Br0. Nx/j j� \ Br0. Ny/j

>
.1 � a/2r20

4d2C2s1

:

From this and (5.66), noticing that 4sC2
2s�1

> 2, we obtain (5.65), as desired.
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Gathering (5.65) and (5.62) we find that

�1.m/ D

ˇ
4

’
Q
je.x/�e.y/j2

jx�yjnC2s
dx dy

xm
R
D
e2 dx �m

R
�nD

e2 dx
>
mC xm

xmm
�
C.1 � a/

4sC2
2s�1

1 � a2
(5.67)

for some C > 0.
We also notice that, in view of (5.63),

.1 � a/
4sC2
2s�1

1 � a2
D

.1 � a/
4sC2
2s�1

.1 � a/.1C a/

D
.1 � a/

2sC3
2s�1

1C a

>
1

2
.1 � a/

2sC3
2s�1

>
1

2

�
�
m0.mC xm/

m. xm �m0/

� 2sC3
2s�1

:

By inserting this inequality into (5.67), we conclude that

�1.m/ >
C.mC xm/

xmm
�

�
�
m0.mC xm/

m. xm �m0/

� 2sC3
2s�1

; (5.68)

up to renaming C .
Now, for any m0 < 0 and any m > �m0, we define the function Ngm;m0 W .0;C1/!

.0;C1/ given by

Ngm;m0.m/ WD
mC m
mm

�

�
�
m0.mC m/
m.m �m0/

� 2sC3
2s�1

:

We remark that

lim
m&0

Ngm;m0.m/ D C1 and lim
m%C1

Ngm;m0.m/ D
1

m
�

�
�
m0

m

� 2sC3
2s�1

> 0;

and consequently
inf

m2.0;C1/
Ngm;m0.m/ > 0: (5.69)

Also, by (5.68), and making use of (5.2) and Proposition 5.2, we find that

�.m; m;m0/ D inf
m2 zM.m;m;m0/

�1.m/ > C Ngm;m0.m/:

In particular,
�.m; m;m0/ > C inf

m2.0;C1/
Ngm;m0.m/;

which, combined with (5.69), proves (1.22).
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Similarly, we see that

lim
m&0

�.m; m;m0/ > C lim
m&0

Ngm;m0.m/ D C1;

which establishes (1.23).
In addition, given m0 < 0 and xm > 0, if we consider the auxiliary function g?

xm;m0
W

.�m0;C1/! .0;C1/ defined by

g?xm;m0.m/ WD
mC xm
xmm

�

�
�
m0.mC xm/
m. xm �m0/

� 2sC3
2s�1

;

we see that

lim
m&�m0

g?xm;m0.m/ D �
�m0 C xm

xmm0
> 0

and

lim
m%C1

g?xm;m0.m/ D
1

xm
�

�
�
m0

xm

� 2sC3
2s�1

> 0;

and these observations allow us to conclude that

inf
m2.�m0;C1/

g?xm;m0.m/ > 0: (5.70)

Moreover, we deduce from Proposition 5.2, (5.2) and (5.68) that

�. xm;m; m0/ D inf
m2 zM. xm;m;m0/

�1.m/ > Cg?xm;m0.m/:

Therefore,
�. xm;m; m0/ > C inf

m2.�m0;C1/
g?xm;m0.m/;

which, together with (5.70), proves (1.24).

Now we prove Theorem 1.10 in the case s 2 .0; 1=2�. This case is somehow concep-
tually related to the case n > 2, since the problem boils down to a subcritical situation.

We suppose without loss of generality that

.�2; 2/ D B2 � �; (5.71)

and we define the function

'.x/ WD

8̂̂̂<̂
ˆ̂:
c? C 1 if x 2 B�;

c? C
logjxj
log �

if x 2 B1 n B�;

c? if x 2 R n B1:

(5.72)

Here, c? > 0 is the constant introduced in (5.12), and we set

D WD B�: (5.73)

For our purposes, we recall the following basic inequality:
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Lemma 5.11. For every x, y 2 Rn n ¹0º we haveˇ̌
logjxj � logjyj

ˇ̌
6

ˇ̌
jxj � jyj

ˇ̌
min¹jxj; jyjº

: (5.74)

Proof. Without loss of generality, we assume that jyj 6 jxj. To check (5.74), we take
t WD jxj

jyj
� 1, and we see thatˇ̌

logjxj � logjyj
ˇ̌
D logjxj � logjyj D log

jxj

jyj
D log.1C t / 6 t D

jxj

jyj
� 1 D

jxj � jyj

jyj
;

as desired.

With this, we now list some properties of the auxiliary function ' in (5.72).

Lemma 5.12. Let n D 1, s 2 .0; 1=2� and ' be as in (5.72). Then

lim
�&0

“
Q

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0:

Proof. Without loss of generality, we suppose that � < 1=4. We observe that“
B��B�

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0 (5.75)

and “
.RnnB1/�.RnnB1/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0: (5.76)

Moreover,

lim
�&0

“
B��.RnnB1/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D lim

�&0

“
B��.RnnB1/

dx dy

jx � yj1C2s

6 lim
�&0

Z
B�

dx

Z
RnnB 1

2

1

jzj1C2s
dz

6 lim
�&0

C� D 0: (5.77)

Now we observe that if x 2 B1 n B� and y 2 B�, then

j'.x/ � '.y/j2 D
1

.log �/2
ˇ̌
logjxj � log �

ˇ̌2
:

As a consequence, changing variables X WD x=� and Y WD y=�, and taking k 2 N such
that 2k�1 6 1=� 6 2k , we see that“

.B1nB2�/�B�

j'.x/ � '.y/j2

jx � yj1C2s
dx dy

D
1

.log �/2

“
.B1nB2�/�B�

ˇ̌
logjxj � log �

ˇ̌2
jx � yj1C2s

dx dy
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D
�1�2s

.log �/2

“
.B1=�nB2/�B1

ˇ̌
log jX j

ˇ̌2
jX � Y j1C2s

dX dY

6
�1�2s

.log �/2

kX
jD2

“
.B
2j
nB

2j�1
/�B1

jlog.2j /j2

.2j�1 � 1/1C2s
dX dY

6
C�1�2s

.log �/2

kX
jD2

2j j 2

2j.1C2s/

6
C�1�2s

.log �/2

kX
jD1

j 2

22sj

6
C�1�2s

.log �/2
; (5.78)

up to renaming C > 0.
In addition, using (5.74) (with jyj WD �) and changing variable z WD x � y,“
.B2�nB�/�B�

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D

1

.log �/2

“
.B2�nB�/�B�

ˇ̌
logjxj � log �

ˇ̌2
jx � yj1C2s

dx dy

6
1

.log �/2

“
.B2�nB�/�B�

.jxj � �/2

�2jx � yj1C2s
dx dy

6
1

.log �/2

“
.B2�nB�/�B�

jx � yj1�2s

�2
dx dy

6
1

.log �/2

“
B3��B�

jzj1�2s

�2
dz dy

D
C�1�2s

.log �/2
;

for some C > 0.
From this and (5.78), we deduce that

lim
�&0

“
.B1nB�/�B�

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0: (5.79)

Moreover, recalling (5.71),“
.B1nB�/�.Rnn�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy

D
1

.log �/2

“
.B1nB�/�.Rnn�/

ˇ̌
logjxj

ˇ̌2
jx � yj1C2s

dx dy

6
1

.log �/2

Z
B1nB�

ˇ̌
logjxj

ˇ̌2
dx

Z
RnnB1

dz

jzj1C2s
6

C

.log �/2
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for some C > 0. This implies

lim
�&0

“
.B1nB�/�.Rnn�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0: (5.80)

Now we observe that“
.B1=2nB�/�.�nB1/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy

D
1

.log �/2

“
.B1=2nB�/�.�nB1/

ˇ̌
logjxj

ˇ̌2
jx � yj1C2s

dx dy

6
1

.log �/2

Z
B1=2nB�

ˇ̌
logjxj

ˇ̌2
dx

Z
�nB1

1

jzj1C2s
dz 6

C

.log �/2
(5.81)

for a suitable C > 0.
Furthermore, taking R > 0 such that � � BR,“

.B1nB1=2/�.�nB1/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy

D
1

.log �/2

“
.B1nB1=2/�.�nB1/

ˇ̌
logjxj

ˇ̌2
jx � yj1C2s

dx dy

6
4.log 2/2

.log �/2

Z 1

1
2

Z R

1

.y � x/�1�2s dx dy

D
2.log 2/2

s.log �/2

Z 1

1
2

Œ.1 � x/�2s � .R � x/�2s� dx

D
2.log 2/2

s.1 � 2s/.log �/2

h
.R � 1/1�2s C

�1
2

�1�2s
�

�
R �

1

2

�1�2si
:

This and (5.81) give

lim
�&0

“
.B1nB�/�.�nB1/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0: (5.82)

Now we take k 2 N such that

1

2kC1
< � 6

1

2k
; (5.83)

and we observe that“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy

D
1

.log �/2

“
.B1nB�/�.B1nB�/

ˇ̌
logjxj � logjyj

ˇ̌2
jx � yj1C2s

dx dy
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D
2

.log �/2

“
.B1nB�/�.B1nB�/

¹jxj>jyjº

ˇ̌
logjxj � logjyj

ˇ̌2
jx � yj1C2s

dx dy

6
2

.log �/2

“
.B1nB1=2kC1 /�.B1nB1=2kC1 /

¹jxj>jyjº

ˇ̌
logjxj � logjyj

ˇ̌2
jx � yj1C2s

dx dy

D
2

.log �/2

kX
i;jD0

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj>jyjº

ˇ̌
logjxj� logjyj

ˇ̌2
jx � yj1C2s

dx dy: (5.84)

Moreover, we remark that if x 2 B1=2i , y 62 B1=2jC1 and jxj > jyj, we have

1

2i
> jxj > jyj >

1

2jC1
;

and accordingly i 6 j C 1.
This observation and (5.84) yield

.log �/2

2

“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy

6
kX

jD0

jC1X
iD0

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj>jyjº

ˇ̌
logjxj � logjyj

ˇ̌2
jx � yj1C2s

dx dy

6 I1 C I2; (5.85)

where

I1 WD

kX
jD0

X
j�46i6jC1

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj>jyjº

ˇ̌
logjxj � logjyj

ˇ̌2
jx � yj1C2s

dx dy

and

I2 WD

kX
jD0

X
06i6j�4

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj>jyjº

ˇ̌
logjxj � logjyj

ˇ̌2
jx � yj1C2s

dx dy:

We point out that, if x 2 B1=2i and jyj 6 jxj, then

jx � yj 6 jxj C jyj 6 2jxj 6
1

2i�1
:

In light of this fact and (5.74), we have

I1 6
kX

jD0

X
j�46i6jC1

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

¹jxj>jyjº

jx � yj1�2s

jyj2
dx dy

6
kX

jD0

X
j�46i6jC1

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

2.1�i/.1�2s/

2�2.jC1/
dx dy
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D

kX
jD0

X
j�46i6jC1

2�i2�j 2.1�i/.1�2s/

2�2.jC1/

D 23�2s
kX

jD0

X
j�46i6jC1

2�2i.1�s/2j

6 3 � 24�2s
kX

jD0

2�2.j�4/.1�s/2j

D 3 � 212�10s
kX

jD0

2.2s�1/j : (5.86)

In addition, if x 2 B1=2i and y 62 B1=2jC1 and jxj > jyj,ˇ̌
logjxj � logjyj

ˇ̌
D logjxj � logjyj 6 log

1

2i
� log

1

2jC1
D .j � i C 1/ log 2:

As a result,

I2 6 log2 2
kX

jD0

X
06i6j�4

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

.j � i C 1/2

jx � yj1C2s
dx dy: (5.87)

Furthermore, if x 2 B1=2i n B1=2iC1 and y 2 B1=2j , with i 6 j � 4, we see that

jx � yj > jxj � jyj >
1

2iC1
�
1

2j
D

1

2iC1

�
1 �

1

2j�i�1

�
>

1

2iC2
>
jxj

4
:

Then we insert this information into (5.87) and we conclude that

I2 6 41C2s log2 2
kX

jD0

X
06i6j�4

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

.j � i C 1/2

jxj1C2s
dx dy

6 41C2s log2 2
kX

jD0

X
06i6j�4

“
.B
1=2i
nB

1=2iC1
/�.B

1=2j
nB

1=2jC1
/

.j � i C 1/2

2�.iC1/.1C2s/
dx dy

D 41C2s log2 2
kX

jD0

X
06i6j�4

2�i2�j .j � i C 1/2

2�.iC1/.1C2s/

D 23.1C2s/ log2 2
kX

jD0

X
06i6j�4

22si2�j .j � i C 1/2

D 23.1C2s/C1 log2 2
kX

jD0

X
06i6j�4

2.2s�1/i2i�j�1.j � i C 1/2:
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Hence, changing the index of summation by posing ` WD j � i C 1,

I2 6 23.1C2s/C1 log2 2
kX
iD0

X
`>5

2.2s�1/i2�``2

6 xC
kX
iD0

2.2s�1/i ;

where

xC WD 23.1C2s/C1 log2 2
C1X
`D0

2�``2:

We plug this information and (5.86) into (5.85) and we find that

.log �/2
“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy 6 C?

kX
mD0

2.2s�1/m; (5.88)

where C? WD 2. xC C 3 � 212�10s/.
We observe that

kX
mD0

2.2s�1/m D k if s D
1

2
;

while
kX

mD0

2.2s�1/m 6
C1X
mD0

2.2s�1/m DW C] if s 2
�
0;
1

2

�
;

and consequently, by (5.88),

.log �/2
“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy 6

´
C?k if s D 1

2
;

C?C] if s 2 .0; 1
2
/:

From this and (5.83), it follows that

.log �/2
“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy 6

8<:C?
jlog �j
log 2

if s D 1
2
;

C?C] if s 2 .0; 1
2
/:

This implies that

lim
�&0

“
.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj1C2s
dx dy D 0:

From this, (5.75), (5.76), (5.77), (5.79), (5.80) and (5.82) we obtain the desired result.

An additional useful property of the function ' defined in (5.72) is the following:
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Lemma 5.13. Let n D 1, s 2 .0; 1=2� and ' be as in (5.72). Then

lim
�&0
xm

Z
D

'2 dx �m

Z
�nD

'2 dx D �
m.mCm0/

m0
j�j > 0:

Proof. From (5.72) and (5.73), and exploiting (5.1) and (5.12), we see that

xm

Z
D

'2 dx D xm.c? C 1/
2
jDj D xm.c? C 1/

2mCm0

mC xm
j�j D

xmm2.mCm0/

m20.mC xm/
j�j

and that

m

Z
�nD

'2 dx D m

Z
B1nB�

'2 dx Cm

Z
�nB1

'2 dx

D m

Z
B1nB�

�
c? C

logjxj
log �

�2
dx Cm

Z
�nB1

c2? dx:

We also remark that � logjxj
log �

�2
�B1nB� 6 1: (5.89)

Therefore, by the dominated convergence theorem, and recalling (5.14),

lim
�&0
xm

Z
D

'2 dx �m

Z
�nD

'2 dx

D lim
xm%C1

xmm2.mCm0/

m20.mC xm/
j�j

� lim
�&0

�
m

Z
B1nB�

�
c? C

logjxj
log �

�2
dx Cm

Z
�nB1

c2? dx

�
D
m2.mCm0/

m20
j�j �mc2?j�j

D
m2.mCm0/

m20
j�j �m

�mCm0
m0

�2
j�j

D
m.mCm0/

m20
.m � .mCm0//j�j

D �
m.mCm0/

m0
j�j;

which is positive, since m0 2 .�m; 0/, as desired.

In the case s 2 .0; 1
2
�, it is also convenient to introduce the function

 .x/ WD

8̂̂̂<̂
ˆ̂:
c] � 1 if x 2 B�;

c] �
logjxj
log �

if x 2 B1 n B�;

c] if x 2 R2 n B1;

(5.90)
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where c] is defined in (5.35). We also set

D WD � n B�; (5.91)

and we study the main properties of the auxiliary function  .
Comparing (5.72) with (5.90), we observe that j .x/ �  .y/j D j'.x/ � '.y/j, and

therefore, from Lemma 5.12, we obtain the following lemma:

Lemma 5.14. Let n D 1, s 2 .0; 1=2� and  be as in (5.90). Then

lim
�&0

“
Q

j .x/ �  .y/j2

jx � yj1C2s
dx dy D 0:

We also have the following result:

Lemma 5.15. Let n D 1, s 2 .0; 1=2� and  be as in (5.90). Then

lim
�&0

Z
D

 2 dx �m

Z
�nD

 2 dx D �
xm. xm �m0/

m0
j�j > 0:

Proof. In view of (5.90), (5.91), (5.35) and (5.1),

m

Z
�nD

 2 dx D m.c] � 1/
2
j� nDj D m

�m0 � xm
m0

� 1
�2 xm �m0
mC xm

j�j

D
m xm2. xm �m0/

m20.mC xm/
j�j

and

xm

Z
D

 2 dx D xm

Z
B1nB�

�
c] �

logjxj
log �

�2
dx C xm

Z
�nB1

c2] dx:

Hence, recalling (5.37) and (5.89), and using the dominated convergence theorem,

lim
�&0
xm

Z
D

 2 dx �m

Z
�nD

 2 dx

D lim
�&0
xm

Z
B1nB�

�
c] �

logjxj
log �

�2
dx

C xm

Z
�nB1

c2] dx � lim
m%C1

m xm2. xm �m0/

m20.mC xm/
j�j

D xmc2] j�j �
xm2. xm �m0/

m20
j�j

D
xm.m0 � xm/

2

m20
j�j �

xm2. xm �m0/

m20
j�j

D
xm. xm �m0/

m20
.. xm �m0/ � xm/j�j

D �
xm. xm �m0/

m0
j�j;

which is positive since m0 < 0 < xm.
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We are now ready to complete the proof of Theorem 1.10 in the case s 2 .0; 1=2�.

Proof of Theorem 1.10 when s 2 .0; 1=2�. To prove (1.25), we exploit the auxiliary func-
tion ' introduced in (5.72) and the choice of the resourcem 2 zM, as defined in (5.2), with
D as in (5.73).

In this way, in light of (1.17),

�. xm;m;m0/ 6
ˇ
4

’
Q
j'.x/�'.y/j2

jx�yj1C2s
dx dy

xm
R
D
'2 dx �m

R
�nD

'2 dx
:

Hence, taking m WD xm and utilizing Lemmata 5.12 and 5.13, we find that

lim
m%C1

�.m; m;m0/ 6 lim
�&0

ˇ
4

’
Q
j'.x/�'.y/j2

jx�yj1C2s
dx dy

m
R
D
'2 dx �m

R
�nD

'2 dx
D 0:

This proves (1.25), and we now focus on the proof of (1.26). To this end, we exploit the
auxiliary function  introduced in (5.90) and the choice of the resourcem 2 zM, as defined
in (5.2), with D as in (5.91).

In this framework, in light of (1.17),

�. xm;m;m0/ 6
ˇ
4

’
Q
j .x/� .y/j2

jx�yj1C2s
dx dy

xm
R
D
 2 dx �m

R
�nD

 2 dx
:

As a result, taking m WD m and utilizing Lemmata 5.14 and 5.15, we conclude that

lim
m%C1

�. xm;m; m0/ 6 lim
�&0

ˇ
4

’
Q
j .x/� .y/j2

jx�yj1C2s
dx dy

xm
R
D
 2 dx � m

R
�nD

 2 dx
D 0;

thus establishing (1.26).

6. Badly displayed resources, hectic oscillations and proof of
Theorem 1.11

This section contains the proof of Theorem 1.11, relying on an explicit example of a
sequence of highly oscillating resources which make the first eigenvalue diverge. The
technical details go as follows.

Proof of Theorem 1.11. We suppose that B4 � � and we consider � 2 C10 .B3=2; Œ0; 1�/
with � D 1 in B1 and k�kC 1.Rn/ 6 8. We let

m! WD m0 �
ƒ

j�j

Z
�

�.x/ sin.!x1/ dx
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and

m.x/ WD m! Cƒ�.x/ sin.!x1/;

with ! > 0 to be taken arbitrarily large in what follows.
We remark that

1

j�j

Z
�

m.x/ dx D m! C
ƒ

j�j

Z
�

�.x/ sin.!x1/ dx D m0: (6.1)

Moreover, integrating by parts,

jm! �m0j D
ƒ

j�j

ˇ̌̌̌Z
�

�.x/ sin.!x1/ dx
ˇ̌̌̌
D

ƒ

j�j!

ˇ̌̌̌Z
�

�.x/
d

dx1
cos.!x1/ dx

ˇ̌̌̌
D

ƒ

j�j!

ˇ̌̌̌Z
�

@1�.x/ cos.!x1/ dx
ˇ̌̌̌

6
8ƒ

!
;

which is arbitrarily small provided that ! is large enough: in particular, we can suppose
that

2m0 6 m! 6
m0

2
: (6.2)

Also, for every x 2 �,

jm.x/j 6 jm! j Cƒ 6 2jm0j Cƒ 6 2ƒ: (6.3)

Furthermore, for large ! we have

p˙ WD
�
˙
�

2!
; 0; : : : ; 0

�
2 B1 � � \ ¹� D 1º:

Therefore,

sup
�

m > m.pC/ D m! Cƒ > ƒ � 2jm0j >
ƒ

2
;

inf
�
m 6 m.p�/ D m! �ƒ 6 �ƒ:

(6.4)

In view of (1.27), (6.1), (6.3) and (6.4), we obtain

m 2M
]
ƒ;m0

: (6.5)

Now we take into account a function ' 2 X˛;ˇ such thatZ
�

m.x/'2.x/ dx D 1:

Then, integrating by parts, we see that

1 D

Z
�

.m! Cƒ�.x/ sin.!x1//'2.x/ dx

D m!

Z
�

'2.x/ dx Cƒ

Z
Rn

�.x/ sin.!x1/'2.x/ dx
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D m!

Z
�

'2.x/ dx �
ƒ

!

Z
Rn

�.x/
d

dx1
cos.!x1/'2.x/ dx

D m!

Z
�

'2.x/ dx C
ƒ

!

Z
Rn

@1�.x/ cos.!x1/'2.x/ dx

C
2ƒ

!

Z
Rn

�.x/ cos.!x1/'.x/@1'.x/ dx

6 m!

Z
�

'2.x/ dx C
8ƒ

!

Z
Rn

'2.x/ dx C
2ƒ

!

Z
Rn

'.x/jr'.x/j dx

6 m!

Z
�

'2.x/ dx C
9ƒ

!

Z
Rn

'2.x/ dx C
ƒ

!

Z
Rn

jr'.x/j2 dx:

As a consequence, if 9ƒ
!

6 �m! (which is the case for ! large, in view of (6.2)),

1 6
ƒ

!

Z
Rn

jr'.x/j2 dx;

and accordingly
˛
2

R
�
jr'.x/j2 dxR

�
m.x/'2.x/ dx

>
˛!

2ƒ
: (6.6)

Now let � 2 .�1; 1/ and E 0 2 Rn�1 with jE 0j 6 j�j and E WD .�; E 0/ 2 Rn. We use the
trigonometric identity

cosy cos � � cos.y C �/
sin �

D siny for all � 2 R n .�Z/ and y 2 R;

together with the notation ˆ WD �'2 and the change of variable

X WD x C
1

!
.�; E 0/ D x C

E

!
;

to write

1 D

Z
�

.m! Cƒ�.x/ sin.!x1//'2.x/ dx

D m!

Z
�

'2.x/ dx Cƒ

Z
Rn

sin.!x1/ˆ.x/ dx

D m!

Z
�

'2.x/ dx C
ƒ

sin �

Z
Rn

.cos.!x1/ cos � � cos.!x1 C �//ˆ.x/ dx

D m!

Z
�

'2.x/ dx

C
ƒ

sin �

�Z
Rn

cos.!x1/ cos �ˆ.x/ dx �
Z

Rn

cos.!X1/ˆ
�
X �

E

!

�
dX

�
D m!

Z
�

'2.x/ dx

C
ƒ

sin �

Z
Rn

cos.!x1/
h
cos �ˆ.x/ �ˆ

�
x �

E

!

�i
dx
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D m!

Z
�

'2.x/ dx C
ƒ

sin �

Z
Rn

cos.!x1/.cos � � 1/ˆ.x/ dx

C
ƒ

sin �

Z
Rn

cos.!x1/
�
ˆ.x/ �ˆ

�
x �

E

!

��
dx:

Sinceˇ̌̌
ˆ.x/ �ˆ

�
x �

E

!

�ˇ̌̌
6 '2.x/

ˇ̌̌
�.x/ � �

�
x �

E

!

�ˇ̌̌
C �

�
x �

E

!

�ˇ̌̌
'2.x/ � '2

�
x �

E

!

�ˇ̌̌
6
8'2.x/jEj

!
C

ˇ̌̌
'2.x/ � '2

�
x �

E

!

�ˇ̌̌
;

we thereby discover that, if E 2 B1 and ! > 2,

1 6
�
m! C

8ƒjEj

!j sin �j

� Z
�

'2.x/ dx

C
ƒ

j sin �j

Z
�

�
1 � cos �

�
'2.x/ dx

C
ƒ

j sin �j

Z
B2

ˇ̌̌
'2.x/ � '2

�
x �

E

!

�ˇ̌̌
dx

6
�
m! C

Cƒ

!

� Z
�

'2.x/ dx C Cƒj�j

Z
�

'2.x/ dx

C
Cƒ

j�j

Z
B2

ˇ̌̌
'2.x/ � '2

�
x �

E

!

�ˇ̌̌
dx

for some C > 0.
In particular, recalling (6.2) also, it follows that there exists r0 2 .0; 1/, possibly

depending on m0, ƒ and n, such that, if � 2 .�r0; r0/ and ! is sufficiently large,

1 6
m!

2

Z
�

'2.x/ dx C
Cƒ

j�j

Z
B2

ˇ̌
'2.x/ � '2

�
x �

E

!

�ˇ̌̌
dx: (6.7)

We also observe that, given an additional parameter � > 0, to be taken conveniently small
in what follows,

2
ˇ̌̌
'2.x/ � '2

�
x �

E

!

�ˇ̌̌
D 2

ˇ̌̌
'.x/C '

�
x �

E

!

�ˇ̌̌ ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌
6 �j�jnC2s�1

ˇ̌̌
'.x/C '

�
x �

E

!

�ˇ̌̌2
C ��1j�j1�n�2s

ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌2
6 4�j�jnC2s�1'2.x/C 4�j�jnC2s�1'2

�
x �

E

!

�
C ��1j�j1�n�2s

ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌2
:
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Then we plug this information into (6.7) and we conclude that, if r0 is small enough and
! is large enough,

1 6
m!

2

Z
�

'2.x/ dx C
Cƒ

j�j

�
�

Z
B2

j�jnC2s�1'2.x/ dx

C �

Z
B2

j�jnC2s�1'2
�
x �

E

!

�
dx

C
1

�

Z
B2

j�j1�n�2s
ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌2
dx

�
6
m!

2

Z
�

'2.x/ dx C
Cƒ

j�j

�
2�j�jnC2s�1

Z
B4

'2.x/ dx

C
1

�

Z
B2

j�j1�n�2s
ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌2
dx

�
: (6.8)

We also remark that, in our notation, E1 D �, and accordingly,“
B4�.Br0\¹jE

0j6jE1jº/

j�jnC2s�2'2.x/ dx dE 6
“
B4�Br0

jE1j
nC2s�2'2.x/ dx dE

6 zCr2nC2s�20

Z
B4

'2.x/ dx

for some zC > 0.
For this reason, letting � be the measure of the set ¹x D .x1; x0/ 2 B1 s.t. jx0j 6 jx1jº,

we obtain

m!

2

“
��.Br0\¹jE

0j6jE1jº/

'2.x/ dx dE

C 2C�ƒ

“
B4�.Br0\¹jE

0j6jE1jº/

j�jnC2s�2'2.x/ dx dE

6
m! �r

n
0

2

Z
�

'2.x/ dx C 2C zC�ƒr2nC2s�20

Z
B4

'2.x/ dx 6 0;

by choosing
� WD min

°
1;�

m! �

C zCƒrnC2s�20

±
:

Therefore, we can integrate (6.8) over E 2 Br0 \ ¹jE
0j 6 jE1jº and up to renaming con-

stants we find that

rn0 6 Cƒ

“
B2�.Br0\¹jE

0j6jE1jº/

jE1j
�n�2s

ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌2
dx dE

6 Cƒ

“
B2�.Br0\¹jE

0j6jE1jº/

jEj�n�2s
ˇ̌̌
'.x/ � '

�
x �

E

!

�ˇ̌̌2
dx dE
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D Cƒ!�2s
“
B2�.Br0=!\¹jz

0j6jz1jº/

jzj�n�2sj'.x/ � '.x � z/j2 dx dz

6 Cƒ!�2s
“
B2�Rn

j'.x/ � '.x � z/j2

jzjnC2s
dx dz

6 Cƒ!�2s
“

Q

j'.x/ � '.y/j2

jx � yjnC2s
dx dy;

and consequently,
ˇ
4

’
Q
j'.x/�'.y/j2

jx�yjnC2s
dx dyR

�
m.x/'2.x/ dx

>
ˇrn0!

2s

Cƒ
;

up to renaming C > 0.
This and (6.6), recalling (6.5), give

�1.m/ >
˛!

2ƒ
C
ˇrn0!

2s

Cƒ
;

which, taking ! as large as we wish, yields the desired result.

A. Proofs of Theorems 1.7 and 1.8 when n D 2

The main strategy followed in this part is similar to the case n > 3, but when n D 2 we
have to define different auxiliary functions. We start with the proof of Theorem 1.7. For
this, we recall the setting in (5.10) and (5.12), and we define

'.x/ WD

8̂̂̂<̂
ˆ̂:
c? C 1 if x 2 B�;

c? C
logjxj
log �

if x 2 B1 n B�;

c? if x 2 R2 n B1:

(A.1)

We set
D WD B� (A.2)

and we list below some interesting properties of ':

Lemma A.1. Let n D 2 and ' be as in (A.1). Then

lim
�&0

Z
�

jr'j2 D 0:

Proof. We compute

1

.log �/2

Z
B1nB�

1

jxj2
dx D

2�

.log �/2

Z 1

�

1

r
dr D �

2�

log �
! 0

as �& 0.
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Lemma A.2. Let n D 2 and ' be as in (A.1). Then

lim
�&0

“
Q

j'.x/ � '.y/j2

jx � yj2C2s
dx dy D 0:

As for Lemma 5.5, we provide here a proof based on direct calculations. A proof based
on interpolation theory will be provided in Appendix B.

Proof of Lemma A.2. As for the proof of Lemma 5.5, we have to consider several integral
contributions (given the different expressions of the competitors, the technical computa-
tions here are different from those in Lemma 5.5). First of all, we have“

B��B�

j'.x/ � '.y/j2

jx � yj2C2s
dx dy D 0

and “
.R2nB1/�.R2nB1/

j'.x/ � '.y/j2

jx � yj2C2s
dx dy D 0:

Moreover, assuming � < 1=4,“
B��.R2nB1/

j'.x/ � '.y/j2

jx � yj2C2s
dx dy D

“
B��.R2nB1/

1

jx � yj2C2s
dx dy

6
Z
B�

dx

Z
R2nB 1

2

1

jzj2C2s
dz 6 C jB1j�

2
! 0

as �& 0.
Furthermore, if .x; y/ 2 .B1 n B�/ � B� we have

j'.x/ � '.y/j2 D
1

.log �/2
ˇ̌
logjxj � log �

ˇ̌2
:

Consequently, from (5.74) (used here with jyj D �),“
.B1nB�/�B�

j'.x/ � '.y/j2

jx � yj2C2s
dx dy D

1

.log �/2

“
.B1nB�/�B�

ˇ̌
logjxj � log �

ˇ̌2
jx � yj2C2s

dx dy

6
1

�2.log �/2

“
.B1nB�/�B�

.jxj � �/2

jx � yj2C2s
dx dy

6
1

�2.log �/2

“
.B1nB�/�B�

jx � yj�2s dx dy

6
1

�2.log �/2

Z
B�

dy

Z
B2

jzj�2s dz

6
C

.log �/2
! 0

as �& 0.
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Also, exploiting (5.10), we have“
.B1nB�/�.R2n�/

j'.x/ � '.y/j2

jx � yj2C2s
dx dy

D
1

.log �/2

“
.B1nB�/�.R2n�/

.logjxj/2

jx � yj2C2s
dx dy

6
1

.log �/2

Z
B1nB�

.logjxj/2 dx
Z

R2nB1

1

jzj2C2s
dz

6
C

.log �/2

Z
B1nB�

.logjxj/2 dx

6
C

.log �/2
! 0

as �& 0.
Now from (5.74), used here with jyj D 1, we have“

.B1nB�/�.�nB1/

j'.x/ � '.y/j2

jx � yj2C2s
dx dy

D
1

.log �/2

“
.B1nB�/�.�nB1/

.logjxj/2

jx � yj2C2s
dx dy

6
1

.log �/2

“
.B1nB�/�.�nB1/

.1 � jxj/2

jxj2jx � yj2C2s
dx dy

6
1

.log �/2

Z
B1nB�

1

jxj2
dx

Z
BRC1

jzj�2s dz

6
C

.log �/2

Z
B1nB�

1

jxj2
dx D �

C

log �
! 0

as �& 0, where we took R > 2 sufficiently large such that � � BR.
In addition, utilizing (5.74) again, we first notice that“

.B1nB�/�.B1nB�/

j'.x/ � '.y/j2

jx � yj2C2s
dx dy

D
1

.log �/2

“
.B1nB�/�.B1nB�/

.logjxj � logjyj/2

jx � yj2C2s
dx dy

D
2

.log �/2

“
.B1nB�/�.B1nB�/

jxj6jyj

.logjxj � logjyj/2

jx � yj2C2s
dx dy:

6
2

.log �/2

“
.B1nB�/�.B1nB�/

jxj6jyj

jx � yj2

jxj2jx � yj2C2s
dx dy
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6
2

.log �/2

Z
B1nB�

1

jxj2
dx

Z
B2

jzj�2s dz

6
C

.log �/2

Z
B1nB�

1

jxj2
dx D �

C

log �
! 0

as �& 0, which concludes the proof.

Lemma A.3. Let n D 2 and ' be as in (A.1). Then

lim
�&0
xm

Z
D

'2 dx �m

Z
�nD

'2 dx D �
m.mCm0/j�j

m0
> 0:

Proof. By (A.1) and (A.2), and recalling (5.1), we have

xm

Z
D

'2 dx D xm.c? C 1/
2
jB�j D xm.c? C 1/

2mCm0

mC xm
j�j:

Hence, in light of (5.12) and (5.14),

lim
�&0
xm

Z
D

'2 dx D lim
xm%C1

xm
�
�
mCm0

m0
C 1

�2mCm0
mC xm

j�j

D

�
�
mCm0

m0
C 1

�2
.mCm0/j�j:

Moreover, by (5.12) and the dominated convergence theorem,

m

Z
�nD

'2 dx D m

Z
B1nB�

�
c? C

logjxj
log �

�2
dx Cmc2?j� n B1j

! m

Z
B1

�
�
mCm0

m0

�2
dx Cm

�
�
mCm0

m0

�2
j� n B1j

D m
�
�
mCm0

m0

�2
j�j

as �& 0.
As a result,

lim
�&0
xm

Z
D

'2 dx �m

Z
�nD

'2 dx

D

h�
�
mCm0

m0
C 1

�2
.mCm0/ �m

�
�
mCm0

m0

�2i
j�j

D Œm2.mCm0/ � .mCm0/
2m�
j�j

m20

D Œm � .mCm0/�
m.mCm0/j�j

m20

D �
m.mCm0/j�j

m0
;

which is positive, since m0 2 .�m; 0/.
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With this preliminary work, we can complete the proof of Theorem 1.7 in dimension
n D 2, by arguing as follows:

Proof of Theorem 1.7 when n D 2. We use the function ' in (A.1) and the resource m WD
xm�D �m��nD , withD as in (A.2), as competitors in the minimization problem in (1.17).
In this way, we find that

�. xm;m;m0/ 6
˛
R
�
jr'j2 dx C ˇ

’
Q
j'.x/�'.y/j2

jx�yj2C2s
dx dy

xm
R
D
'2 dx �m

R
�nD

'2 dx
: (A.3)

From Lemmata A.1 and A.2 we have

lim
�&0

˛

Z
�

jr'j2 dx C ˇ

“
Q

j'.x/ � '.y/j2

jx � yj2C2s
dx dy D 0:

Combining this with Lemma A.3 and (5.14), we obtain the desired result in Theorem 1.7.

We now focus on the proof of Theorem 1.8 when n D 2. For this, we introduce the
function

 .x/ WD

8̂̂̂<̂
ˆ̂:
c] � 1 if x 2 B�;

c] �
logjxj
log �

if x 2 B1 n B�;

c] if x 2 R2 n B1;

(A.4)

where c] is the constant introduced in (5.35). Moreover, we set

D WD � n B�: (A.5)

The proofs of the next two results follow directly from Lemmata A.1 and A.2, since,
comparing (A.1) and (A.4),

jr'j2 D jr j2 and j'.x/ � '.y/j2 D j .x/ �  .y/j2:

Lemma A.4. Let n D 2 and  be as in (A.4). Then

lim
�&0

Z
�

jr j2 D 0:

Lemma A.5. Let n D 2 and  be as in (A.4). Then

lim
�&0

“
Q

j .x/ �  .y/j2

jx � yj2C2s
dx dy D 0:

Lemma A.6. Let n D 2 and  be as in (A.4). Then

lim
�&0
xm

Z
D

 2 dx �m

Z
�nD

 2 dx D
xm.m0 � xm/

m0
j�j > 0:
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Proof. By (A.4), (A.5) and (5.35), we see that

m

Z
�nD

 2 dx D m.c] � 1/
2
j� nDj D m

�m0 � xm
m0

� 1
�2
j� nDj: (A.6)

Also, recalling (5.1), we see that

j� nDj D
xm �m0

mC xm
j�j:

Plugging this information into (A.6), we conclude that

m

Z
�nD

 2 dx D m
�m0 � xm

m0
� 1

�2 xm �m0
mC xm

j�j D
m xm2. xm �m0/

m20.mC xm/
j�j: (A.7)

In addition, by the dominated convergence theorem and (5.37),

lim
�&0

Z
D

 2 dx D lim
�&0

Z
B1nB�

�
c] �

logjxj
log �

�2
dx C

Z
�nB1

c2] dx

D c2] jB1j C c
2
] j� n B1j

D c2] j�j

D
.m0 � xm/

2

m20
j�j:

This and (A.7) give

lim
�&0
xm

Z
D

 2 dx �m

Z
�nD

 2 dx

D
xm.m0 � xm/

2

m20
j�j � lim

m%C1

m xm2. xm �m0/

m20.mC xm/
j�j

D
xm.m0 � xm/

2

m20
j�j �

xm2. xm �m0/

m20
j�j

D
xm. xm �m0/

m20
.. xm �m0/ � xm/j�j

D �
xm. xm �m0/

m0
j�j;

which is positive since m0 < 0 < xm.

With this preliminary work, we are in the position of completing the proof of Theo-
rem 1.8 in the case n D 2.

Proof of Theorem 1.8 when n D 2. We use the function  in (A.4) and the resourcem WD
xm�D �m��nD , withD as in (A.5), as a competitor in the minimization problem in (1.17),
thus obtaining

�. xm;m;m0/ 6
˛
R
�
jr j2 dx C ˇ

’
Q
j .x/� .y/j2

jx�yj2C2s
dx dy

xm
R
D
 2 dx �m

R
�nD

 2 dx
: (A.8)
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From Lemmata A.4 and A.5, and recalling (5.37), we have

lim
m%C1

˛

Z
�

jr j2 dx C ˇ

“
Q

j .x/ �  .y/j2

jx � yj2C2s
dx dy D 0:

This, together with Lemma A.6, gives the desired result.

B. Another proof of Lemmata 5.5 and A.2 based on
interpolation theory

We give here a different proof of Lemmata 5.5 and A.2, relying on the following argument
of interpolation type. Given f 2 C10 .R

n/, we use the Hölder inequality with exponents
1
s

and 1
1�s

to see thatZ
Rn

j�j2sj Of .�/j2 d� D

Z
Rn

.j�j j Of .�/j/2sj Of .�/j2.1�s/ d�

c 6
�Z

Rn

j�j2j Of .�/j2 d�

�s�Z
Rn

j Of .�/j2 d�

�1�s
:

Here, as is customary, we have utilized the notation Of to denote the Fourier transform of
f . Thus, from the latter equation and Plancherel’s theorem we arrive atZ

Rn

j�j2sj Of .�/j2 d� 6 C1

�Z
Rn

jrf .x/j2 dx

�s�Z
Rn

jf .x/j2 dx

�1�s
for some C1 > 0.

As a result, using the equivalence of various fractional norms (see e.g. [41, Proposi-
tion 3.4]), we find that“

Rn

jf .x/ � f .y/j2

jx � yjnC2s
dx dy 6 C2

�Z
Rn

jrf .x/j2 dx

�s�Z
Rn

jf .x/j2 dx

�1�s
for some C2 > 0.

By density, this inequality holds true for all f 2 H 1.Rn/ and thus, choosing f WD
' � c?, “

Q

j'.x/ � '.y/j2

jx � yjnC2s
dx dy

D

“
Q

j.' � c?/.x/ � .' � c?/.y/j
2

jx � yjnC2s
dx dy

D

“
Rn

j.' � c?/.x/ � .' � c?/.y/j
2

jx � yjnC2s
dx dy
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6 C2

�Z
Rn

jr.' � c?/.x/j
2 dx

�s�Z
Rn

j.' � c?/.x/j
2 dx

�1�s
D C2

�Z
�

jr'.x/j2 dx

�s�Z
�

j.' � c?/.x/j
2 dx

�1�s
:

Consequently, since, by either (5.11) or (A.1),

j.' � c?/.x/j 6 1;

we conclude that“
Q

j'.x/ � '.y/j2

jx � yjnC2s
dx dy 6 C3

�Z
�

jr'.x/j2 dx

�s
:

From this and Lemma 5.3 we obtain the desired claim in Lemma 5.5. Instead, using
Lemma A.1, one obtains the claim in Lemma A.2.

C. Probabilistic motivations for the superposition of elliptic operators
with different orders

The goal of this appendix is to provide a natural framework in which sums of local/non-
local operators naturally arise. Though the argument provided can be extended to more
general superpositions of operators, for the sake of concreteness we limit ourselves to the
operator in (1.9).

For this, extending a presentation in [68], we consider a discrete stochastic process on
the lattice hZn, with time increment � . The space scale h > 0 and the time step � > 0 will
be conveniently chosen to be infinitesimal in what follows.

We denote by B0 WD ¹e1; : : : ; enº the standard Euclidean basis of Rn, we let B WD

B0 [ .�B0/ D ¹e1; : : : ; en;�e1; : : : ;�enº and we suppose that a particle moves on hZn

and, given p 2 Œ0; 1�, � 2 N and s 2 .0; 1/, its probability of jumping from a point hk to
h Qk (with k, Qk 2 Zn) is given by

P .k; Qk/ WD
p

cjk � QkjnC2s
C
.1 � p/U.k � Qk/

2n
; (C.1)

where
c WD

X
j2Znn¹0º

1

jj jnC2s

and

U.j / WD

´
1 if j 2 �B D ¹�e1; : : : ; �en;��e1; : : : ;��enº;

0 otherwise:
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We point out that P . Qk; k/ D P .k; Qk/ D P .k � Qk; 0/ D P . Qk � k; 0/, and thatX
j2Znn¹0º

P .j; 0/ D
X

j2Znn¹0º

� p

cjj jnC2s
C
.1 � p/U.j /

2n

�
D p C

X
j2�B

.1 � p/

2n
D p C .1 � p/ D 1: (C.2)

The heuristic interpretation of the probability described in (C.1) is that, at any time step,
the particle has a probability p of following a jump process, and a probability 1 � p of
following a classical random walk. Indeed, with probability p, the particle experiences a
jump governed by the power law 1

cjj jnC2s
, while with probability 1 � p it walks to one

of the closest neighbors scaled by the additional parameter � (all closest neighbors being
equally probable, and the probability of the particle of not moving at all being equal to
zero).

Therefore, given x 2 hZn and t 2 �N, we define u.x; t/ to be the probability den-
sity of the particle being at point x at time t , and we write that the probability of being
somewhere, say at x, at the subsequent time step is equal to the superposition of the prob-
abilities of being at another point of the lattice, say xC hj , at the previous time step times
the probability of going from x C hj to x, namely, letting k WD x

h
2 Zn,

u.x; t C �/ D
X

j2Znn¹0º

u.x C hj; t/P .k; k C j / D
X

j2Znn¹0º

u.x C hj; t/P .j; 0/:

As a result, in view of (C.2),

u.x; t C �/ � u.x; t/

D

X
j2Znn¹0º

.u.x C hj; t/ � u.x; t//P .j; 0/

D

X
j2Znn¹0º

.u.x C hj; t/ � u.x; t//
� p

cjj jnC2s
C
.1 � p/U.j /

2n

�
D
p

c

X
j2Znn¹0º

u.x C hj; t/ � u.x; t/

jj jnC2s
C
1 � p

2n

X
j2�B

.u.x C hj; t/ � u.x; t//

D
p

2c

X
j2Znn¹0º

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/

jj jnC2s

C
1 � p

4n

X
j2�B

.u.x C hj; t/C u.x � hj; t/ � 2u.x; t//: (C.3)

Now we consider two specific situations, namely the one in which

� WD h2s; � WD hs�1 2 N (C.4)



S. Dipierro, E. Proietti Lippi, and E. Valdinoci 68

and p is independent of the time step, and the one in which

� D h2; p WD ˛h2�2s and � WD 1; (C.5)

for a given ˛ > 0, independent of the time step.
We observe that the case in (C.4) corresponds to having the closest neighborhood walk

scaled by a suitably large factor (for small h), while the case in (C.5) corresponds to having
the usual notion of closest neighborhood random walk, with the probability 1� p that the
particle follows it being large (for small h).

In case (C.4), we considerN 2N and define h WDN
1
s�1 . In this way, takingN %C1,

one has that h& 0, and thus we deduce from (C.3) that

u.x; t C �/ � u.x; t/

�

D
phn

2c

X
j2Znn¹0º

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/

jhj jnC2s

C
1 � p

4n

X
j2hs�1B

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/

h2s
: (C.6)

With a formal Taylor expansion, we observe that

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/ D h2D2
xu.x; t/j � j CO.h

3/I

therefore the latter sum in (C.6) can be written asX
j2hs�1B

h2.1�s/D2
xu.x; t/j � j CO.h

3�2s/

D

X
j2NB

D2
xu.x; t/

j

N
�
j

N
CO

� 1

N
3�2s
1�s

�
D

X
i2B

D2
xu.x; t/i � i C o.1/ D 2�u.x; t/C o.1/

as N %C1 (i.e. as h& 0).
Hence, recognizing a Riemann sum in the first term of the right-hand side of (C.6),

taking the limit as h& 0 (that is � & 0), we formally conclude that

@tu.x; t/ D
p

2c

Z
Rn

u.x C y; t/C u.x � y; t/ � 2u.x; t/

jyjnC2s
dy C

1 � p

2n
�u.x; t/;

which is precisely the heat equation associated to the operator in (1.9) (up to defining the
structural constants correctly).
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A similar argument can be carried out in case (C.5). Indeed, in this situation one
deduces from (C.3) that

u.x; t C �/ � u.x; t/

�
D
˛hn

2c

X
j2Znn¹0º

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/

jhj jnC2s

C
1 � ˛h2�2s

4n

X
j2B

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/

h2
:

Hence, sinceX
j2B

u.x C hj; t/C u.x � hj; t/ � 2u.x; t/

h2
D

X
j2B

D2
xu.x C hj; t/j � j CO.h/

D 2�u.x; t/C o.1/

as h& 0, we conclude that in this case

@tu.x; t/ D
˛

2c

Z
Rn

u.x C y; t/C u.x � y; t/ � 2u.x; t/

jyjnC2s
dy C

1

2n
�u.x; t/;

which, once again, constitutes the parabolic equation associated to the operator in (1.9)
(up to renaming the structural constants).
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[70] Z. Vondraček, A probabilistic approach to a non-local quadratic form and its connection to the
neumann boundary condition problem. Math. Nachr. 294 (2021), no. 1, 177–194

[71] R. L. Wheeden and A. Zygmund, Measure and integral. 2nd edn., Pure Appl. Math. (Boca
Raton), CRC Press, Boca Raton, FL, 2015 MR 3381284

https://mathscinet.ams.org/mathscinet-getitem?mr=1415616
https://zbmath.org/?q=an:1456.49041&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4203677
https://zbmath.org/?q=an:1185.35059&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2281509
https://zbmath.org/?q=an:1362.35312&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3590678
https://zbmath.org/?q=an:1448.35135&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4123755
https://zbmath.org/?q=an:1480.49047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4359450
https://zbmath.org/?q=an:1458.35425&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4205675
https://zbmath.org/?q=an:1274.35401&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3082317
https://zbmath.org/?q=an:1398.35091&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3795212
https://zbmath.org/?q=an:1390.35404&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3771424
https://zbmath.org/?q=an:0043.14401&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=43440
https://zbmath.org/?q=an:1394.49033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3590646
https://zbmath.org/?q=an:1242.60047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2584076
https://mathscinet.ams.org/mathscinet-getitem?mr=3381284


S. Dipierro, E. Proietti Lippi, and E. Valdinoci 74

Received 7 October 2020; revised 21 December 2021; accepted 24 January 2022.

Serena Dipierro
Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy,
Crawley WA 6009, Australia; serena.dipierro@uwa.edu.au

Edoardo Proietti Lippi
Department of Mathematics and Computer Science, University of Florence, Viale Morgagni 67/A,
50134 Firenze, Italy; edoardo.proiettilippi@unifi.it

Enrico Valdinoci
Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy,
Crawley WA 6009, Australia; enrico.valdinoci@uwa.edu.au

mailto:serena.dipierro@uwa.edu.au
mailto:edoardo.proiettilippi@unifi.it
mailto:enrico.valdinoci@uwa.edu.au

	Contents
	1. Introduction
	2. Functional analysis setting
	3. Existence results and proofs of Theorems 1.1 and 1.2
	4. Analysis of the eigenvalue problem in (1.13) and proof of Theorem 1.4
	5. Optimization on m and proofs of Theorems 1.5, 1.7, 1.8, 1.9 and 1.10
	6. Badly displayed resources, hectic oscillations and proof of Theorem 1.11
	A. Proofs of Theorems 1.7 and 1.8 when n=2
	B. Another proof of Lemmata 5.5 and A.2 based on interpolation theory
	C. Probabilistic motivations for the superposition of elliptic operators with different orders
	References

