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On symmetric div-quasiconvex hulls and
divsym-free L1-truncations

Linus Behn, Franz Gmeineder, and Stefan Schiffer

Abstract. We establish that for any non-empty, compact set K � R3�3sym the 1- and1-symmetric
div-quasiconvex hulls K.1/ and K.1/ coincide. This settles a conjecture in a recent work of Conti,
Müller & Ortiz [Arch. Ration. Mech. Anal. 235 (2020)] in the affirmative. As a key novelty, we
construct an L1-truncation that preserves both symmetry and solenoidality of matrix-valued maps
in L1. For comparison, we moreover give a construction of A-free truncations in the regime 1 <
p <1 which, however, does not apply to the case p D 1.

1. Introduction

1.1. Aim and scope

One of the key problems in continuum mechanics is the mathematical description of the
plasticity behaviour of solids. Such solids are usually modelled by reference configura-
tions � � R3 subject to loads or forces and corresponding velocity fields vW� ! R3.
The (elasto)plastic behaviour of the material is mathematically described in terms of
the stress tensor � W� ! R3�3sym and is dictated by the precise target K � R3�3sym where
it takes values; K is usually referred to as the elastic domain. When ideal plasticity is
assumed and potential hardening effects are excluded, K is a compact set in R3�3sym with
non-empty interior. As prototypical examples, in the von Mises or Tresca models used for
the description of metals or alloys, we haveK D ¹� 2R3�3sym W f.�D/� �º with a threshold
� > 0, the deviatoric stress �D WD � � 1

3
tr.�/E3�3 and convex fWR3�3sym ! R. General-

ising this toK D ¹� 2R3�3sym W f.�D/C # tr.�/� �º for # > 0 as in the Drucker–Prager or
Mohr–Coulomb models for concrete or sand (cf. [13, 27]), such models take into account
persisting volumetric changes induced by the hydrostatic pressure as plasticity effects. In
all of these models, K is a convex set. This opens the gateway to the techniques from
convex analysis, and we refer to [21, 27] for more detail.

As the main motivation for the present paper, the convexity assumption on the elastic
domainK is not satisfied by all materials. A prominent example where the non-convexity
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Figure 1. Molecular dynamics computations for fused silica glass linking pressure and shear yield
stress, taken from Schill et al. [38, Fig. 17(b)]. Within the framework of limit analysis [27], the non-
convexity of the critical state line (thick line) is linked to the instability for microstructure formation
(cf. [38, Sec. 4]) and so a suitable relaxation is required.

of K can be observed explicitly is fused silica glass (cf. Meade & Jeanloz [30]). Slightly
more generally, for amorphous solids being deformed subject to shear, experiments on
the molecular dynamics (cf. Maloney & Robbins [28]) exhibit the formation of charac-
teristic patterns in the underlying deformation fields. As a possible explanation of this
phenomenon, the emergence of such patterns on the microscopic level displays the effort
of the material to cope with the enduring macroscopic deformations. Within the frame-
work of limit analysis [27], Schill et al. [38] offer a link between the non-convexity of
K and the appearance of such fine microstructure; cf. Figure 1. Working from plastic
dissipation principles, the corresponding static problem is identified in [38] as

sup
�

inf
v

²Z
�

� � rv dx W � 2 L1div.�IK/; v 2W1;1.�IRn/; v D g on @�
³

(1.1)

for given boundary data gW@�!R3. Here, L1div.�IK/ is the space of all L1.�IK/-maps
which are rowwise divergence-free (or solenoidal) in the sense of distributions; note that,
even if we admitted general � 2 L1.�IK/ in (1.1), the variational principle would be
non-trivial only for � 2 L1div.�IK/. Stability under microstructure formation, in turn, is
linked to the existence of solutions of (1.1); cf. Müller [32] for a discussion of the under-
lying principles. Regarding the existence of solutions, the direct method of the calculus of
variations requires semicontinuity, and it is here where the set K must be relaxed. By the
constraints on � , this motivates the passage to the symmetric div-quasiconvex hull ofK as
studied by Conti, Müller & Ortiz [10]. In the present paper, we complete the characterisa-
tion of such hulls (cf. Theorem 1.1 below) and thereby answer a conjecture posed in [10]
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in the affirmative. To state our result, we pause and introduce the requisite terminology
first.

1.2. Divsym-quasiconvexity and the main result

Following [10], we call a Borel measurable, locally bounded function F WRn�nsym ! R sym-
metric div-quasiconvex if

F.�/ �

Z
Tn

F.� C '.x// dx (1.2)

holds for all � 2 Rn�nsym and all admissible test maps

' 2 T WD
®
' 2 C1.TnIRn�nsym / W div.'/ D 0;

R
Tn
' dx D 0

¯
; (1.3)

where Tn denotes the n-dimensional torus. Here, the divergence is understood in the row-
wise (or equivalently, columnwise) manner. Accordingly, the symmetric div-quasiconvex
(or divsym-quasiconvex) envelope of a Borel measurable, locally bounded function
F WRn�nsym ! R is defined as the largest symmetric div-quasiconvex function below F ;
more explicitly,

QsdqcF.�/ WD inf
®R

Tn
F.� C '.x// dx W ' 2 T

¯
: (1.4)

Divsym-quasiconvexity is a strictly weaker notion than convexity, which can be seen by
Tartar’s [43] example f WRn�nsym 3 � 7! .n � 1/j�j2 � tr.�/2. The discussion in Section 1.1
necessitates a notion of divsym-quasiconvexity for sets. Inspired by the separation the-
ory from convex analysis, we call a compact set K � Rn�nsym symmetric div-quasiconvex
provided that, for each � 2 Rn�nsym n K, there exists a symmetric div-quasiconvex g 2
C.Rn�nsym I Œ0;1// such that g.�/ > maxK g. The relaxation of the elastic domains K �
Rn�nsym in turn is defined in terms of the symmetric div-quasiconvex envelopes of distance
functions. For a compact subset K � Rn�nsym and 1 � p <1, put fp.�/ WD distp.�; K/.
The p-symmetric div-quasiconvex hull of K then is defined by

K.p/ WD
®
� 2 Rn�nsym W Qsdqcfp.�/ D 0

¯
; (1.5)

whereas we set for p D1,

K.1/ WD
®
� 2 Rn�nsym W g.�/ � maxK g for all symmetric

div-quasiconvex g 2 C.Rn�nsym I Œ0;1//
¯
: (1.6)

Both (1.5) and (1.6) are the natural generalisations of the usual convex hulls to the sym-
metric div-quasiconvex context, and one easily sees that K.1/ is the smallest symmetric
div-quasiconvex, compact set containing K. If the distance function to K is nicely coer-
cive, which is in particular satisfied for compact sets, then the definition of K.1/ can be
viewed as the limiting object of K.p/, since in this case

K.p/ D
®
� 2 Rn�nsym W g.�/ � maxK g for all symmetric div-quasiconvex

g 2 C.Rn�nsym I Œ0;1// with g.z/ � C.1C jzjp/ for all z 2 Rn�nsym

¯
:
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By our discussion in Section 1.1, it is particularly important to understand the properties
of the symmetric div-quasiconvex hulls. In [10], Conti, Müller & Ortiz established that
K.p/ is independent of 1 < p <1. Specifically, they conjectured in [10, Rem. 3.9] that
K.1/ D K.1/ in analogy with the usual quasiconvex envelopes (see Zhang [49] or Müller
[32, Thm. 4.10]). The present paper answers this question in the affirmative, leading us to
our main result:

Theorem 1.1 (Main result). Let K � R3�3sym be compact. Then K.1/ D K.1/ and so

K.p/ D K.1/ D K.1/ for all 1 � p � 1: (1.7)

Let us note that the p-symmetric div-quasiconvex hulls satisfy the antimonotonicity
property with respect to inclusions, i.e., if 1 � p � q � 1, then K.q/ � K.p/. For The-
orem 1.1, it thus suffices to establish K.1/ � K.1/, and this is exactly what will be
achieved in Section 5. We wish to point out that, for the present paper, our focus is on
compact sets K and not on potentially unbounded ones, for which even in the usual
quasiconvex case only a few contributions are available; see, e.g., [16, 33, 45, 46, 50].

From a proof perspective, any underlying argument must use an L1-truncation of
suitable recovery sequences, simultaneously keeping track of the differential constraint.
Contrary to routine mollification, truncations leave the input functions unchanged on a
large set and display an important tool in the study of non-linear problems [1, 3, 19, 20,
31, 47]. It is here where Theorem 1.1 cannot be established by analogous means to [10,
Sec. 3], where a higher-order truncation argument in the spirit of Acerbi & Fusco [2]
and Zhang [48] is employed. More precisely, for 1 < p < q <1, the critical inclusion
K.p/ � K.q/ is established in [10] by passing to the corresponding potentials of divsym-
free fields, and as these potentials are of second order, performing a W2;1-truncation on
the potentials; this will be referred to as potential truncation. The underlying potential
operators are obtained as suitable Fourier multiplier operators, which is why they only
satisfy strong Lp–Lp-bounds for 1 < p <1 (cf. Lemma 2.2 below). It is well known that
such Fourier multiplier operators do not map L1 ! L1 boundedly (cf. Ornstein [35] and,
more recently, [9, 17, 26]), and so this approach is bound to fail in view of Theorem 1.1.
In the regime 1 < p <1, this strategy can readily be employed in the general context
of A-quasiconvex hulls in the sense of Fonseca & Müller [18] (cf. Proposition 6.1 and
Section 6) but is not even required for the inclusion K.p/ � K.q/, p < q, and can be
established by more elementary means; cf. Lemma 5.2 and its proof for the simplifying
argument.

1.3. A truncation theorem and its context

The key tool in establishing Theorem 1.1 therefore consists in the following truncation
result, allowing us to truncate a div-free L1-map uWR3 ! R3�3sym while still preserving the
constraint div.u/ D 0:
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Theorem 1.2 (Main truncation theorem). There exists a constant C > 0 solely depend-
ing on the underlying space dimension n D 3 with the following property: for all u 2
L1.R3IR3�3sym /with div.u/D 0 in D0.R3IR3/ and all �> 0 there exists u� 2L1.R3IR3�3sym /

satisfying the

(a) L1-bound:
ku�kL1.R3/ � C�I

(b) strong stability:

ku � u�kL1.R3/ � C

Z
¹juj>�º

juj dxI

(c) small change:

L3.¹u ¤ u�º/ � C�
�1

Z
¹juj>�º

juj dxI

(d) differential constraint: div.u�/ D 0 in D0.R3IR3/.

The same remains valid when replacing the underlying domain R3 by the torus T3.

The way in which Theorem 1.2 implies Theorem 1.1 can be accomplished by analog-
ous means to [10] (also see the discussion by the third author [37]), and is sketched for the
reader’s convenience in Section 5. Here we heavily rely on the strong stability property
from item (b), without which the proof of Theorem 1.1 is not clear to us. The detailed
construction that underlies the proof of Theorem 1.2, reminiscent of a geometric version
of the Whitney smoothing or extension procedure [44], is explained in Section 3 and car-
ried out in detail in Section 4. Here we understand by geometric that the construction is
directly tailored to the problem at our disposal, meaning that the solenoidality constraint
div.u/ D 0 is visible in our construction in terms of the Gauß–Green theorem on cer-
tain simplices. The line of argument employed in the proof can also be applied to higher
dimensions, but to focus on the essentials for the physically relevant case we here stick to
n D 3 dimensions for expository reasons.

Working on a higher a priori regularity level, Lipschitz truncations that preserve
solenoidality constraints are not new and have been studied most notably by Breit et al.
[6, 8], originally developed for problems from mathematical fluid mechanics and since
then have been fruitfully used in a variety of related problems; see, e.g., Süli et al. [12,42].
Let us note that the two key approaches in [6, 8] either hinge on locally correcting diver-
gence contributions on certain bad sets [6] or performing the potential truncation [8].
Whereas the ansatz in [6] in principle may be expected to work in the present setting apart
from technical intricacies (cf. Remark 6.3), the key drawback of the potential truncation
is the non-availability of the strong stability estimate. This is essentially a consequence
of singular integrals only mapping L1 ! BMO in general but not L1 ! L1; see Sec-
tion 6 and Proposition 6.1, where the corresponding potential truncations are revisited and
discussed in the general framework of constant rank operators A a lá Schulenberger &
Wilcox [39] or Murat [34]. A related result in this context can be found in the work of
Gallenmüller [22] which, however, works subject to different hypotheses from ours. Note
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that although the potential truncation does not yield the strong stability, the techniques
developed in the framework of Theorem 1.2 suggest that a refinement of the method could
make strong stability estimates work for a large class of operators; see Conjecture 6.4 for
the precise statement.

To conclude, let us note that by Müller’s improvement [31, Thm. 2] of the afore-
mentioned Zhang truncation lemma [48, Lem. 3.1] for convex sets, one might wonder
whether an analogous result can be achieved in the framework discussed in the present
paper. Even though the underlying mollification strategy in [31] should be compatible
with our approach, the precise technical implementation needs some refinement and will
be deferred to future work. Still, such a result will only concern convex (and not symmet-
ric div-quasiconvex) sets, as even Müller’s original result for convex sets seems to be open
for quasiconvex sets.

1.4. Organisation of the paper

Apart from this introductory section, the paper is organised as follows. In Section 2 we fix
notation and gather auxiliary material on maximal operators and basic facts from harmonic
analysis. Section 3 then explains the idea underlying the construction employed in the
proof of Theorem 1.2, and is then carried out in detail in Section 4. Section 5 is devoted to
the proof of Theorem 1.1, and the paper is concluded in Section 6 by revisiting potential
truncations. The appendix gathers various instrumental computations that underlie some
of the results presented in Section 4.

2. Preliminaries

2.1. Notation

The linear operators between two finite-dimensional real vector spaces V , W are denoted
L.V IW /. We denote by Ln and Hn�1 the n-dimensional Lebesgue or .n � 1/-dimen-
sional Hausdorff measures, respectively. For notational brevity, we will also write dn�1 D
dHn�1. Given n- or .n� 1/-dimensional measurable subsets� and† of Rn with Ln.�/;

Hn�1.†/ 2 .0;1/, respectively, we use the shorthand−
�

u dx WD
1

Ln.�/

Z
�

u dx and
−
†

v dn�1x WD
1

Hn�1.†/

Z
†

v dn�1x

for Ln- or Hn�1-measurable maps uW� ! Rm and vW† ! Rm. As we will mostly
assume n D 3, we denote by Br .z/ the open ball of radius r centred at z 2 R3, whereas
we reserve the notation Br .z/ to denote the corresponding open balls in the symmetric
.3 � 3/-matrices R3�3sym ; moreover, we put !3 WD L3.B1.0//. By cubes Q we understand
non-degenerate cubes throughout, and use `.Q/ to denote their side length. Lastly, for
x1; : : : ; xj 2 R3, we denote by hx1; : : : ; xj i the convex hull of the vectors x1; : : : ; xj , and
if x1, x2, x3 do not lie on a joint line, by aff.x1; x2; x3/ the affine hyperplane containing
x1, x2, x3.
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2.2. Maximal operator, bad sets and Whitney covers

For a finite-dimensional real vector space V , w 2 L1.RnI V / and R > 0, we recall the
(restricted) centred Hardy–Littlewood maximal operators to be defined by

MRw.x/ WD sup
0<r<R

−
Br .x/

jwj dy; x 2 Rn;

Mw.x/ WD sup
r>0

−
Br .x/

jwj dy; x 2 Rn:
(2.1)

Note that, by lower semicontinuity of MRw, the superlevel sets ¹MRw > �º are open for
all � > 0. Moreover, we record that M is of weak-.1; 1/ type, meaning that there exists
c D c.n/ > 0 such that

Ln.¹Mw > �º/ �
c

�
kwkL1.Rn/ for all w 2 L1.RnIV /: (2.2)

See [25,41] for more background information. Now let��Rn be open. Then there exists
a Whitney cover W D .Qj / for �. By this we understand a sequence of open cubes Qj
with the following properties:

(W1) � D
S
j2N Qj .

(W2) 1
5
`.Qj / � dist.Qj ; �{/ � 5`.Qj / for all j 2 N.

(W3) Finite overlap: there exists a number ND N.n/ > 0 such that at most N elements
of W overlap; i.e., for each i 2 N,ˇ̌®

j 2 N W Qj 2W and Qi \Qj ¤ ;
¯ˇ̌
� N:

(W4) Comparability for touching cubes: there exists a constant c.n/ > 0 such that if
Qi ;Qj 2W satisfy Qi \Qj ¤ ;, then

1

c.n/
`.Qi / � `.Qj / � c.n/`.Qi /:

Whenever such a Whitney cover is considered, we tacitly understand xj to be the centre
of the corresponding cube Qj . Based on the Whitney cover W from above, we choose a
partition of unity .'j / subject to W with the following properties:

(P1) For any j 2 N, 'j 2 C1c .Qj I Œ0; 1�/.

(P2)
P
j2N 'j D 1 in �.

(P3) For each l 2 N, there exists a constant c D c.n; l/ > 0 such that

jr
l'j j �

c

`.Qj /l
for all j 2 N:

2.3. Differential operators and projection maps

For the following sections, we require some terminology for differential operators and a
suitable projection property to be gathered in the sequel. Let A be a constant coefficient,
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linear and homogeneous differential operator of order k 2 N on Rn (or Tn) between Rd

and RN , so A has a representation

Au D
X
j˛jDk

A˛@
˛u; uWRn ! Rd ; (2.3)

with fixed A˛ 2 L.Rd IRN / for j˛j D k. Following [34, 39] we say that A has constant
rank (in R) provided the rank of the Fourier symbol

AŒ�� D
X
j˛jDk

A˛�
˛
WRd ! RN

is independent of � 2 Rn n ¹0º. A constant coefficient differential operator A of order
j 2N on Rn (or Tn) between R` and Rd consequently is called a potential of A provided,
for each � 2 Rn n ¹0º, the Fourier symbol sequence

R`
AŒ��
���! Rd

AŒ��
���! RN

is exact at every � 2 Rn n ¹0º, i.e., AŒ��.R`/ D ker.AŒ��/ for each such � . We moreover
say that A has constant rank (in C) provided AŒ��WCd ! CN has rank independent of
� 2 Cn n ¹0º. If we only speak of constant rank, then we tacitly understand constant
rank in R. In Section 6 we require the following two auxiliary results, ensuring both the
existence of potentials and suitable projection operators.

Lemma 2.1 (Existence of potentials, [36, Thm. 1, Lem. 5]). Let A be a differential
operator with constant rank over R. Then A possesses a potential A. Moreover, if u 2
C1.TnIRd / satisfies

R
Tn
udxD 0 and AuD 0, there exists v 2C1.TnIR`/with AvDu.

Equally, for each u 2 S.RnIRd / with Au D 0 there exists v 2 S.RnIR`/ with Av D u.

Lemma 2.2 (Projection maps on the torus, [18, Lem. 2.14]). Let 1 < p <1 and let A be
a differential operator of order k with constant rank in R. Then there is a bounded, linear
projection map PAWLp.TnIRd /! Lp.TnIRd / with the following properties:

(a) PAu 2 kerA and PA ı PA D PA.

(b) ku � PAukLp.Tn/ � CA;pkAukW�k;p.Tn/ whenever
¬

Tn
u dx D 0.

(c) If .uj / � Lp.TnIRd / is bounded and p-equiintegrable, i.e.,

lim
"&0

�
sup
j2N

sup
E WLn.E/<"

Z
E

juj j
p dx

�
D 0;

then also .PAuj / is p-equiintegrable.

As alluded to in the introduction, Lemma 2.2 does not extend to p D 1 in gen-
eral, the reason being Ornstein’s non-inequality [35]; also see [9, 17, 26] for more recent
approaches to the matter and Grafakos [25, Thm. 4.3.4] for a full characterisation of
L1-multipliers.
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3. On the construction of divsym-free truncations

Before embarking on the proof of Theorem 1.2 in Section 4, we comment on the underly-
ing idea and how it is implemented in conceptually easier settings (see Sections 3.2 and 3.3
below). To elaborate on the connections to divsym-truncations, we premise a discussion
of the general framework first.

3.1. Potential truncations versus A-free truncations

We start by streamlining terminology as follows: Let � either be Tn or Rn. Given a
constant rank differential operator A on� between R` and Rd and 1� p �1, we define
Sobolev-type spaces

WA;p.�/ WD ¹u 2 Lp.�IR`/ W Au 2 Lp.�IRd /º:

A family of operators .S�/�>0 with S�WWA;p.�/!WA;1.�/ is called a WA;p–WA;1-
truncation provided there exists a constant cD c.A;p/ > 0 such that, for all u 2WA;p.�/

and � > 0,

(a) kS�ukL1.�/ C kAS�ukL1.�/ � c�;

(b) ku � S�ukLp.�/ C kAu �AS�ukLp.�/ � c
R
¹jujCjAuj>�º juj

p C jAujp dx;

(c) Ln.¹u ¤ S�uº/ �
c
�p

R
¹jujCjAuj>�º juj

p C jAujp dx.

If A D rk , then we simply speak of a Wk;p–Wk;1-truncation. Conversely, if A is a
potential of the differential operator A having form (2.3) and 1 � p � 1, we define
LpA.�/ WD ¹u 2 Lp.�IRd / WAuD 0º. A family of operators .T�/�>0 with T�WL

p
A.�/!

L1A .�/ is called an A-free Lp–L1-truncation (or simply A-free L1-truncation) provided
there exists c D c.A; p/ > 0 such that the following hold for all u 2 L1A .�/ and � > 0:

(a) kT�ukL1.�/ � c�.

(b) ku � T�ukLp.�/ � c
R
¹juj>�º

jujp dx.

(c) Ln.¹u ¤ T�uº/ �
c
�p

R
¹juj>�º

jujp dx.

The original W1;p–W1;1-truncations as in Acerbi & Fusco [2] leave u 2 W1;p.�/

unchanged on ¹Mu� �º \ ¹M.ru/� �º. Here, the functions satisfy the Lipschitz estim-
ate

ju.x/ � u.y/j . jx � yj.M.ru/.x/CM.ru/.y//

. �jx � yj

for Ln-a.e. x;y 2 ¹M.ru/ � �º and thus can be extended to a c�-Lipschitz function S�u
by virtue of McShane’s extension theorem [15, Chap. 3.1.1., Thm. 1]. Note that, if u is
divergence-free, then S�u is not in general. In view of preserving differential constraints,
this necessitates a more flexible approach that allows the action of differential operators
to be handled geometrically. Instead of appealing to the McShane extension, one may
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directly perform a Whitney-type extension [44] and truncate u 2 W1;1.�/ on the bad set
O� D ¹Mu > �º [ ¹M.ru/ > �º via

zS�u.x/ D

´P
j2N 'j .u/Qj ; x 2 O�;

u.x/; x 2 O{

�
;

or S�u.x/ D

´P
j2N 'ju.yj /; x 2 O�;

u.x/; x 2 O{

�
;

(3.1)

where yj 2 O{

�
are chosen suitably and .'j / is a partition of unity subordinate to the

Whitney covering of O� (cf. Section 2.2). Then zS� and S� define W1;1–W1;1-truncations;
cf. [11,41]. Setting vDru, this formula gives a curl-free L1–L1-truncation, as curl.v/D
0, v D ru for some function u. Using (P1)–(P3), we can, however, rewrite Qv WD rS�u
purely in terms of v, i.e.,

Qv.x/ D

8̂̂<̂
:̂
X
i;j2N

'ir'j

Z 1

0

v.tyj C .1 � t /yi / � .yj � yi / dt ; x 2 O�;

v.x/; x 2 O{

�:

(3.2)

To see the validity of (3.2), we first note that .'i / is a partition of unity on O�, i.e.,P
i2N 'i .y/ D 1 for y 2 O� and also that, due to the same fact,

P
j2N r'j .y/ D 0 for

any y 2 O�. Using this fact at .�/, we conclude

Qv.x/ D rS�u.x/ D
X
j2N

r'ju.yj /

.�/
D

X
i;j2N

'ir'j .u.yj / � u.yi //

D

X
i;j2N

'ir'j

Z 1

0

ru.tyj C .1 � t /yi / � .yj � yi / dt

ruDv
D

X
i;j2N

'ir'j

Z 1

0

v.tyj C .1 � t /yi / � .yj � yi / dt; (3.3)

which is (3.2). The previous calculation yields that we may skip the step of going to the
potential u of v, as the truncation Qv does not depend on the choice of u.

3.2. The construction of divergence-free truncations

In an intermediate step, we explain how (3.2) gives rise to divergence-free L1–L1-trun-
cations. Here, given a divergence-free map w 2 .L1 \C1/.�IR3/, we may write w D
curl.v/ for some v 2Wcurl;1.�/.

The key observation is that the truncation formula (3.2) does not only give a curl-free
L1–L1-truncation, but is stronger and gives a Wcurl;1–Wcurl;1-truncation, if we redefine
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the bad set to be zO� WD ¹Mv > �º [ ¹M curl.v/ > �º. Temporarily accepting this fact
and hereafter that

S curl
� v D

8̂̂<̂
:̂
X
i;j2N

'ir'j

Z 1

0

v.tyj C .1 � t /yi / � .yj � yi / dt; x 2 zO�;

v.x/; x 2 zO{

�;

(3.4)

defines a Wcurl;1–Wcurl;1-truncation of v 2 Wcurl;1.�IR3/, we may then apply S curl
�

to
v. Most importantly, we here directly truncate the curl instead of the full gradients, and
so are in a position to use that w D curl.v/ 2 L1, which is a crucial difference from the
potential truncation displayed in Section 6 below. Returning to zw WD curl.S curl

�
v/, we then

arrive at the requisite truncation. For n D 3, this can be written explicitly for y 2 O� via

zw.y/ D . zw1.y/; zw2.y/; zw3.y//

D curl.S curl
� v/.y/

D

X
i;j2N

curl.'r'j /
Z 1

0

v.tyj C .1 � t /yi / � .yj � yi / dt; (3.5)

and for future comparison with divsym-free truncations, we carry out the computation for
zw1. For brevity, we put A.i; j / WD

R 1
0
v.tyj C .1 � t /yi / � .yj � yi / dt . Then, artificially

introducing a third variable k, we obtain

zw1.y/

D

X
i;j2N

�
@2.'i@3'j / � @3.'i@2'j /

�
A.i; j /

D 2
X
i;j2N

@2'i@3'jA.i; j / .permuting i $ j and using A.i; j / D �A.j; i//

D 2
X

i;j;k2N

'k@2'i@3'j .A.i; j /CA.j; k/CA.k; i// .by
P
l r'lD0, l 2¹i; j; kº/:

Instead of using the fundamental theorem of calculus, we use Stokes’ theorem to write

.A.i; j /C A.j; k/C A.k; i// D

−
hxi ;xj ;xki

curl v � ..yi � yj / � .yj � yk// dH2

for the triangle hxi ; xj ; xki with vertices xi , xj and xk . Since curl v D w, we then arrive
at

zw1.y/ D
X

i;j;k2N

'k@2'i@3'j

−
hxi ;xj ;xki

w � ..yi � yj / � .yj � yk// dH2: (3.6)

Using formula (3.6), instead of going to the potential of div, we may directly construct
truncations of div-free functions.
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Pursuing the strategy explained above, the reader might notice that the effective dif-
ficulty for div-free fields is to verify that (3.4) defines a Wcurl;1–Wcurl;1-truncation. For
divsym-free L1-fields, the main argument (to be explained in Section 3.3 and carried out
in detail in Section 4) will be centred around constructing the more involved Wcurl curl>;1–
Wcurl curl>;1-truncations rather than Wcurl;1–Wcurl;1-truncations; see Section 3.3 below
for the definition of curl curl>. To motivate the need for such truncations, a quick homo-
logical discussion in the div-free case is in order. By the construction in (3.4)ff., we are
able to formulate an A-free L1–L1-truncation of the annihilator A of curl, which is div
in three dimensions. As discussed by the third author [37], this approach works for all
potential–annihilator pairs along the exact sequence of exterior derivatives. This is the
exact sequence of differential operators starting with r, that is,

0! C1;0.TnIR/
r
�! C1;0.TnIRn/

curl
��! C1;0.TnIRn�nskew/! � � �

! C1;0.TnIRn/
div
�! C1;0.TnIR/! 0;

where C1;0.TnIRm/ denotes the space of smooth functions on the torus with average 0.
To summarise the above procedure for div-free fields, one

(D1) first picks a suitable Wr;1–Wr;1-truncation as in (3.1);

(D2) second rewrites it by considering gradients only as in (3.2);

(D3) third shows that the resulting operator as in (3.4) defines a Wcurl;1–Wcurl;1-
truncation.

This consequently gives rise to a div-free L1–L1-truncation.

3.3. Truncations involving the symmetric gradient

Let nD 3. Regarding divsym-free L1–L1-truncations, we now aim to modify the proced-
ure (D1)–(D3) above. Here we work from the exact sequence

0! C1;0.T3IR3/
"
�! C1;0.T3IR3�3sym /

curl curl>
�����! C1;0.T3IR3�3sym /

div
�! C1;0.T3IR3/! 0; (3.7)

where curl curl> is the potential of the divergence of symmetric matrices, defined in nD 3
dimensions by

curl curl> v D

0@w2323 w2331 w2312
w3123 w3131 w3112
w1223 w1231 w1212

1A for v 2 C2.R3IR3�3sym /;

where

wabcd WD @a@cvbd C @b@dvac � @a@dvbc � @b@cvad :
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Note that in dimension n D 3, the exact sequence starting with symmetric gradients has
three non-zero elements (", curl curl> and the symmetric divergence); in higher dimen-
sions it is longer, and for simplicity we therefore restrict ourselves to n D 3. We then
proceed by analogy with (D1)–(D3), namely

(DS1) first pick a suitable W";1–W";1-truncation;

(DS2) second rewrite it by considering symmetric gradients only;

(DS3) third show that the resulting operator defines a Wcurl curl>;1–Wcurl curl>;1-trun-
cation.

Regarding (DS1), we note that WA;1–WA;1-truncations are also known in settings where
A ¤ r. In this work, we use that such a truncation exists for the symmetric gradient, i.e.,
A D " D 1

2
.r C r>/ (cf. [4, 14]). As an analogue of formula (3.1), we now use

S"�u.x/ D

´P
j2N 'j .x/Pju.x/; x 2 O�;

u.x/; x 2 O{

�
;

(3.8)

with suitable projections Pj onto the rigid deformations, so the nullspace of the symmetric
gradient ". Such projections can be obtained via

Pju.x/ D

−
Qj

u.�/C 1
2
.r � r>/u.�/.x � �/ d�j .�/

for suitable measures �j , so that .r � r>/ becomes invisible after integrating by parts.
As an adaptation of (3.3) and hereafter (3.4), one may then follow (DS2) to obtain

S curl curl>
� v.x/ab D

8̂̂<̂
:̂
1
2

P
i;j2N 'i@a'j .Gb.i; j /CHb.i; j //

C'i@b'j .Ga.i; j /CHa.i; j //; x 2 O�;

vab.x/; x 2 O{

�
;

for a; b 2 ¹1; 2; 3º as a substitute for (3.4), where Ga, Gb and Ha, Hb are defined in
terms of v and the previously mentioned measures �j . In view of (DS3), we then need
to establish that the resulting operator in fact yields a Wcurl curl>;1–Wcurl curl>;1-truncation,
and this is in essence what we establish in Section 4. More precisely, we directly prove
that when applying curl curl> to S curl curl>

�
v and rewriting the result purely in terms of

w D curl curl>.v/ (just as (3.6) rewrites curl.S curl
�
v/ purely in terms of w), we obtain the

requisite truncation operator. Omitting the details of the derivation, the truncation operator
is written down explicitly in (4.5), and the entire Section 4 is centred around establishing
that it features the desired properties.

4. Construction of the truncation and the proof of Theorem 1.2

In this section we establish Theorem 1.2. As a main ingredient, we will prove the following
variant for smooth maps that will be shown to imply Theorem 1.2 in Section 4.7:
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Proposition 4.1. Let w 2 .C1 \L1/.R3IR3�3sym / satisfy div.w/ D 0. Then there exists a
constant c > 0 such that for all � > 0 there exists an open set U� � R3 and a function
w� 2 .L1\L1/.R3IR3�3sym / with the following properties:

(a) w D w� on U{

�
and L3.¹w ¤ w�º/ <

c
�

R
¹jwj> �

2 º
jwj dx.

(b) div.w�/ D 0 in D0.R3IR3/.

(c) kw�kL1.R3/ � c�.

4.1. A short outline of the proof of Proposition 4.1

As the proof of Proposition 4.1 involves several rather technical steps, let us briefly outline
its strategy:

(a) In Section 4.2 we define the truncation pointwise (which is derived by following
the steps explained in Sections 3.2 and 3.3) and collect auxiliary properties of the
terms involved in Lemma 4.2.

(b) Lemma 4.3 is designed to bound single terms appearing as a summand when
proving in Lemma 4.4 that our truncation actually maps into L1.

(c) We then show that the truncation is actually a smooth function on the bad set O�.
Therefore, we can check the constraint div.T�w/D 0 pointwise in O� (cf. Lemma
4.5), which involves a technical computation given in the appendix.

(d) Consequently, the truncation is div-free both in the interior of O� and its comple-
ment. To show global solenoidality, we verify that the distributional divergence
is actually an L1-function; cf. Lemma 4.6. We then conclude that div.T�w/ 2 L1

and div.T�w/ D 0 almost everywhere, hence div.T�w/ D 0.

(e) Finally, we conclude by estimating the measure of the bad set to get a bound on
the measure of the set ¹w ¤ T�wº; cf. Lemma 4.8.

4.2. Definition of T�

Let w D .w1; w2; w3/ 2 .C1 \ L1/.R3IR3�3sym / satisfy div.w/ D 0. In view of locally
redefining our given map w on O� D ¹Mw > �º, we put

A˛;ˇ .i; j; k/.y/ WD

−
hxi ;xj ;xki

..y � �/ˇw˛.�/ � .y � �/˛wˇ .�//�ijk d2�;

B˛.i; j; k/ WD

−
hxi ;xj ;xki

w˛.�/ � �ijk d2�
(4.1)

provided the simplex hxi ; xj ; xki (i.e., the convex hull of xi ; xj ; xk) is non-degenerate; if
it is degenerate, we then define A˛;ˇ .i; j; k/ WD 0 and B˛.i; j; k/ WD 0. Here and in what
follows, we use

�xi ;xj ;xk WD �ijk WD
1
2
.xi � xj / � .xk � xj /; (4.2)
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provided the simplex hxi ; xj ; xki is non-degenerate. Consider a three-tuple

.˛; ˇ; / 2 ¹.1; 2; 3/; .2; 3; 1/; .3; 1; 2/º:

For .i; j; k/ 2 N3 and centre points xl 2 Ql for l 2 ¹i; j; kº, we then define

zw
.k/

˛ˇ
D 3

X
i;j2N

.@'j @˛'iB˛.i; j; k/C @ˇ'j @'iBˇ .i; j; k//

C

X
i;j2N

.@ˇ'j @'i � @'j @ˇ'i /Aˇ; .i; j; k/

C

X
i;j2N

.@˛'j @'i � @'j @˛'i /A;˛.i; j; k/

C

X
i;j2N

.@˛'j @ˇ'i C @ˇ'j @˛'i � 2@˛ˇ'j @'i /A˛;ˇ .i; j; k/: (4.3)

We define zw.k/
ˇ˛
D zw

.k/

˛ˇ
by symmetry. For the diagonal terms, we put

zw.k/˛˛ D 6
X
i;j2N

@ˇ'j @'iB˛.i; j; k/

C 2
X
i;j2N

.@'j @ˇ'i � @ˇ'j @'i /A;˛.i; j; k/

C 2
X
i;j2N

.@ˇˇ'j @'i � @ˇ'j @ˇ'i /A˛;ˇ .i; j; k/: (4.4)

Note that, since by (W3) at most N cubesQj overlap, each of the sums in (4.3) and (4.4) is,
in a neighbourhood of each point x 2O�, actually a finite sum and hence zw.k/ WD .w.k/

˛ˇ
/˛ˇ

is well defined. Based on (4.3), we define the truncation operator T� by

T�w WD w �
X
k

'k.w � zw
.k// D

8̂<̂
:
w in O{

�;X
k

'k zw
.k/ in O�:

(4.5)

Note that on O�, T�w is a locally finite sum of C1-maps and thus equally is of class
C1.O�IR3�3sym /.

4.3. Auxiliary properties of A˛;ˇ and B˛

In this section we record some useful properties and auxiliary bounds on the maps
A˛;ˇ .i; j; k/ and the (constant) maps B˛.i; j; k/ that will play an instrumental role in
the proof of Proposition 4.1. We begin by gathering elementary properties of A˛;ˇ and
B˛ to be utilised crucially when performing index permutations for the sums appearing
in (4.5):
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Lemma 4.2. Letw 2 C1.R3IR3�3sym / satisfy div.w/D 0, i; j; k; l 2N and define A˛ˇ , B˛

for ˛; ˇ 2 ¹1; 2; 3º by (4.1). Then the following hold:

(a) @˛A˛;ˇ .i; j; k/ D �Bˇ .i; j; k/.

(b) @ˇA˛;ˇ .i; j; k/ D B˛.i; j; k/.

(c) Antisymmetry of A˛;ˇ : A˛;ˇ .i; j; k/ D �A˛;ˇ .j; i; k/ D A˛;ˇ .j; k; i/.

(d) Antisymmetry of B˛: B˛.i; j; k/ D �B˛.j; i; k/ D B˛.j; k; i/.

(e) div�..y � �/ˇw˛.�/ � .y � �/˛wˇ .�// D 0.

(f) B˛.i; j; k/ �B˛.l; j; k/ �B˛.i; l; k/ �B˛.i; j; l/ D 0:

(g) A˛;ˇ .i; j; k/ �A˛;ˇ .l; j; k/ �A˛;ˇ .i; l; k/ �A˛;ˇ .i; j; l/ D 0:

Proof. Properties (a)–(d) are immediate consequences of the definitions. Property (e)
holds, since

div�..y � �/ˇw˛.�/ � .y � �/˛wˇ .�//

D �w˛ˇ .�/ � �ˇ div.w˛/C wˇ˛.�/C �˛ div.wˇ /

D 0:

To prove (f) we use that by the definition of B˛ and the Gauß–Green theorem we have

B˛.i; j; k/ �B˛.l; j; k/ �B˛.i; l; k/ �B˛.i; j; l/

D

Z
hxi ;xj ;xk ;xmi

div.w˛/ dx

D 0:

Note that this calculation also holds in the case that one or multiple simplices are degen-
erate. Analogously, we can prove (g) by applying the Gauß–Green theorem as well as (e)
to get

A˛;ˇ .i; j; k/ �A˛;ˇ .l; j; k/ �A˛;ˇ .i; l; k/ �A˛;ˇ .i; j; l/

D

Z
hxi ;xj ;xk ;xmi

div�..y � �/ˇw˛.�/ � .y � �/˛wˇ .�// dx

D 0:

The proof is complete.

Lemma 4.3. Let u 2 .L1\C1/.R3IR3/ satisfy div.u/D 0 and z0 2 ¹M2Ru � �º, where
R > 0. In addition, let x1; x2; x3 2 BR.z0/. Thenˇ̌̌̌−

hx1;x2;x3i

u.�/ � �123 d2�
ˇ̌̌̌
� C�R2: (4.6)

Moreover, if w 2 .L1 \C1/.R3IR3�3sym / satisfies div.w/ D 0 and the cubes Qi , Qj , Qk
have non-empty intersection, y 2Qi \Qj \Qk , we have for A˛;ˇ and B˛ as defined in
(4.1),
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2R

2R

2R

•
z0 2 O{

�
xi•

•
xj

•xk
O�

QR

Figure 2. The construction in the proof of Lemma 4.3. The point z0 2 O{

�
is chosen such that it is

close to xi , xj and xk respectively. Instead of estimating the integral on the triangle with vertices
xi , xj and xk directly, we estimate integrals along triangles with vertices xi , xj and z 2 QR.z0/
(the triangles with red dashed lines) and use Gauß’s theorem.

(a) jA˛;ˇ .i; j; k/.y/j � C�`.Qi /3;

(b) jB˛.i; j; k/j � C�`.Qi /
2.

The constant C D C.3/ is a dimensional constant that does not depend on u, i , j , k and
the shape of O�.

Proof. Let x1; x2; x3; z0 2 R3 be according to the assumption, z0 D .z10 ; z
2
0 ; z

3
0/. Then,

using that divu D 0, we find by Gauß’s theorem for an arbitrary � 2 R3,ˇ̌̌̌−
hx1;x2;x3i

u � �123 d2�
ˇ̌̌̌
�

�Z
h�;x2;x3i

C

Z
hx1;�;x3i

C

Z
hx1;x2;�i

�
juj d2�: (4.7)

Recalling from Section 2.1 that aff.xi ; xj ; xk/ denotes the affine hyperplane containing xi ,
xj , xk , we now establish the existence of some � 2R3 n aff.xi ; xj ; xk/ such that the right-
hand side of (4.7) is bounded byCR2� for someC >0 solely depending on the underlying
space dimension nD 3. Denote byQR.z0/ the cube centred at z0 with faces parallel to the
coordinate planes and side length 2R so thatBR.z0/�QR.z0/�Bp3R.z0/; cf. Figure 2.
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Then, with the maximal operator M2R from (2.1),Z
BR.z0/

Z
hx1;x2;zi

ju.�/j d2� dz

�

Z
QR.z0/

Z
hx1;x2;zi

ju.�/j d2� dz

D

Z z10CR

z10�R

Z z20CR

z20�R

Z z30CR

z30�R

Z
hx1;x2;.z1;z2;z3/i

ju.�/j d2� dz3 dz2 dz1

�

Z z10CR

z10�R

Z z20CR

z20�R

Z
QR.z0/

juj dx dz2 dz1

� !3.
p
3R/3

Z z10CR

z10�R

Z z20CR

z20�R

−
Bp3R.z0/

juj dx dz2 dz1

� !3.2R/
3.2R/2M2Ru.z0/

� c�R5: (4.8)

Here c > 0 is a constant solely depending on the space dimension nD 3. In consequence,
by Markov’s inequality,

L3.Ux1;x2;�Œu; �
0
IBR.z0/�/ WD L3

�®
z 2 BR.z0/ W

R
hx1;x2;zi

ju.�/j d2� > �0
¯�

(4.8)
� c

�

�0
R5 for any �0 > 0;

where Ux1;x2;�Œu;�
0IBR.z0/� is defined in the obvious manner. The same argument works

equally well for the remaining simplices that appear in (4.7), and therefore, setting

U WD Ux1;x2;�Œu; �
0
IBR.z0/� [U�;x2;x3 Œu; �

0
IBR.z0/� [Ux1;�;x3 Œu; �

0
IBR.z0/�;

with an obvious definition of the sets appearing on the right-hand side, we obtain

L3.U/ �
4c�

�0
R5:

We still have the freedom to choose �0 > 0 and consequently put �0 WD 16
!3
c�R2 so that

L3.U{/� 3
4
L3.BR.z0//. We may thus pick �2BR.z0/ n aff.xi ;xj ;xk/ such that �2U{,

and by definition of U, this choice of � givesˇ̌̌̌−
hx1;x2;x3i

u � �123 d2�
ˇ̌̌̌
� c�R2

with some purely dimension-dependent constant c > 0. This completes the proof of (4.6).
The estimates in (a) and (b) are consequences of (4.6). For (a) note that there is z0 2
O{

�
with dist.z0; Qi / � C`.Qi / and Qi \Qj \Qk � BC`.Qi /.z0/ by (W2) and (W4).

Moreover, Mw.z0/ � � by definition of O� and therefore, for fixed y 2 Qi ,

M2R..y � �/ˇw˛.�/ � .y � �/˛wˇ /.z0/ � 2 sup
z2B2R.z0/

jy � zj �Mw.z0/:
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Setting R D C`.Qi / and using Lemma 4.2 (e) yields estimate (b). The estimate for B˛

directly uses the existence of a point z0 2 O{

�
, such that Qi ; Qj ; Qk � BC`.Qi /.z0/ and

that w˛ is divergence-free. Applying (4.6) in this setting yields (b).

4.4. Elementary properties of T�

We now record various properties of T� that play an instrumental role in the proof of
Theorem 1.2. Throughout this section, we tacitly suppose thatw 2 .C1\L1/.R3IR3�3sym /,
and begin by providing the corresponding L1-bounds.

Lemma 4.4. There exists a purely dimensional constant c > 0 such that

kT�wkL1.R3/ � c� holds for all � > 0: (4.9)

Proof. Since jwj � � on O{

�
, it suffices to prove kT�wkL1.O�/ � c� for some suitable

c > 0. Hence let x 2 O�. Then, by (W1) and (W3), x 2 Qk for some k 2 N, and there
are only finitely many cubes Qi , Qj such that Qi \Qj \Qk ¤ ;; note that the number
of such cubes solely depends on the underlying space dimension nD 3. For any choice of
˛0; ˇ0;  0 2 ¹1; 2; 3º and `1 C `2 D 2 we have

j'k@
`1
ˇ 0
'i@

`2
 0'j j � c

1Qi\Qj\Qk
`.Qk/2

(4.10)

and similarly, if `1 C `2 D 3,

j'k@
`1
ˇ 0
'i@

`2
 0'j j � c

1Qi\Qj\Qk
`.Qk/3

; (4.11)

which is seen by combining (W4) and (P3). Again, c > 0 is a purely dimensional constant.
By definition of zw.k/ (cf. (4.3) and (4.4)), on O� every summand in (4.5) containing some
Bı.i; j; k/, ı 2 ¹˛; ˇ; º is of the form 'k@

`1
ˇ 0
'i@

`2
 0'jBı.i; j; k/ with `1 C `2 D 2. Here

we may invoke Lemma 4.3 (b) in conjunction with (4.10) to find

j'k@
`1
ˇ 0
'i@

`2
 0'jBı.i; j; k/j � c�:

Conversely, every summand in (4.5) on O� that contains some Aı;�.i;j;k/, ı;� 2 ¹˛;ˇ;º
is of the form 'k@

`1
ˇ 0
'i@

`2
 0'jAı;�.i; j; k/ with `1C `2 D 3, and in this case Lemma 4.3 (a)

in conjunction with (4.11) yields

j'k@
`1
ˇ 0
'i@

`2
 0'jAı;�.i; j; k/j � c�:

By the uniformly finite overlap of the cubes (cf. (W3)), this completes the proof.

Lemma 4.5. For every ˛ 2 ¹1; 2; 3º, T�.w˛1; w˛2; w˛3/ is solenoidal on O�.

The proof of this lemma relies on a slightly elaborate computation, mutually hinging
on index permutations and the properties of the maps A˛;ˇ and B˛ as gathered in Lemma
4.2. For expository purposes, we thus accept Lemma 4.5 for the time being and refer the
reader to Appendix A.1 for its proof.
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4.5. Global divsym-freeness

As the last ingredient towards Proposition 4.1, we next address the regularity of div.T�w/.
Here, we do not assert that T�w belongs to the Sobolev space W1;1.R3IR3�3sym /; this is so
because T�w is precisely constructed in a way such that the handling of the divergence is
possible (cf. Lemma 4.6 below), whereas the control of the full gradients does not come
up as a consequence of Lemma 4.3; in particular, there seems to be no reason for the series
in (4.5) to converge in W1;1

0 .R3IR3�3sym /. Note that if it did, we could directly infer from
Lemma 4.5 that div.T�w/ D 0.

Lemma 4.6. Let w 2 .C1\L1/.R3IR3�3sym / satisfy div.w/D 0 and define T�w for � > 0
by (4.5). Then the distributional divergence of T�w is an R3-valued regular distribution,
that is, div.T�w/ 2 L1.R3IR3/.

Proof. We focus on the first column .T�w/1 of T�w; the other columns are treated by
analogous means. Let  2 C1c .R

3/. By a technical, yet elementary computation to be
explained in detail in Appendix A.2, we haveZ

O�

.T�w/1 � r dx D 2
X
i;j;k

Z
O�

'k.@2'j /.@3'i /B1.i; j; k/@1 dx

C 2
X
i;j;k

Z
O�

'k.@3'j /.@1'i /B1.i; j; k/@2 dx

C 2
X
i;j;k

Z
O�

'k.@1'j /.@2'i /B1.i; j; k/@3 dx

DW IC IIC III: (4.12)

We focus on term I first and consider the functions

vI;.1/.y/ WD
X
i;j;k

v
ijk
I .y/ WD

X
i;j;k

'k.@2'j /.@3'i /.B1.i; j; k/ � w1.y/ � �ijk/;

wI.y/ WD
X
i;j;k

w
ijk
I .y/ WD

X
i;j;k

'k.@2'j /.@3'i /.w1.y/ � �ijk/:
(4.13)

We claim that vI;.1/ 2 W1;1
0 .O�/. Note that each summand belongs to C1c .O�/, and so it

suffices to establish that the overall sum in (4.13) converges absolutely in W1;1.O�/. We
give bounds on the single summands: for i; j; k 2 N, note that whenever y 2 Qi \Qj \
Qk , then

jB1.i; j; k/ � w1.y/ � �ijkj �

−
hxi ;xj ;xki

jw1.�/ � w1.y/j j�ijkj d2�

� ckrw1kL1.R3/`.Qk/
3 (4.14)
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as a consequence of the usual Lipschitz estimate, dist.y; hxi ; xj ; xki/ � c`.Qk/ and
j�ijkj � c`.Qk/

2 by (W4). Now, by (W4) and (P3), we consequently obtain by (4.14),

kv
ijk
I kL1.Qk/ � c`.Qk/

4
krw1kL1.R3/;

krv
ijk
I kL1.Qk/ � c`.Qk/

3
krw1kL1.R3/;

so that, by the uniformly finite overlap of the cubes,X
i;j;k

kv
ijk
I kW1;1.O�/

� c
X
k

.`.Qk/
4
C `.Qk/

3/krw1kL1.R3/

� c.1C L3.O�/
1
3 /
X
k

`.Qk/
3
krw1kL1.R3/

� c.1C L3.O�/
1
3 /L3.O�/krw1kL1.R3/ <1:

Hence, vI;.1/2W1;1
0 .O�/. Extend vI;.1/ by zero to the entire R3 to obtain vI;.2/2W1;1

0 .R3/.
Then an integration by parts yields

I D 2
Z

O�

vI;.1/@1 dy C 2
Z

O�

wI@1 dy

D 2

Z
R3

vI;.2/@1 dy C 2
Z

O�

wI@1 dy

vI;.2/2W1;1
0 .R3/
D �2

Z
R3

.@1vI;.2// dy C 2
Z

O�

wI@1 dy DW I1 C I2; (4.15)

and @1vI;.2/ 2 L1.R3/. Regarding term I2, observe that for all y 2 R3,

�2�ijk D �.xi � xj / � .xk � xj /

D .y � xj / � .xj � xk/C .xi � y/ � .y � xk/

C .xi � xj / � .xj � y/; (4.16)

which follows by direct computation using that .xj � y/ � .y � xj / D 0. Working from
the definition of wI as in (4.13), we consequently find by (4.16),

I2 D 2
Z

O�

wI.y/@1 dy

D 2

Z
O�

X
i;j;k

'k.@2'j /.@3'i /.w1.y/ � �y;xj ;xk /@1 dy .D 0/

C 2

Z
O�

X
i;j;k

'k.@2'j /.@3'i /.w1.y/ � �xi ;y;xk /@1 dy .D 0/

C 2

Z
O�

X
i;j

.@2'j /.@3'i /.w1.y/ � �xi ;xj ;y/@1 dy DW I3;
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where we have used that
P
i @3'i D 0 on O� for the first,

P
j @2'j D 0 on O� for the

second and
P
k 'k D 1 on O� for the final term. By a similar argument to above, the sum

in the integrand of I3 has an integrable majorant, whereby we may change the sum and
the integral. Hence, integrating by parts with respect to @2,

I3 D I13 WD 2
X
ij

Z
O�

@2.'j .@3'i /.w1.y/ � �xi ;xj ;y/@1 / dy .D T1/

� 2
X
ij

Z
O�

.'j .@23'i /.w1.y/ � �xi ;xj ;y/@1 / dy .D T2/

� 2
X
ij

Z
O�

.'j .@3'i /.@2w1.y/ � �xi ;xj ;y/@1 / dy .D T3/

� 2
X
ij

Z
O�

.'j .@3'i /.w1.y/ � @2�xi ;xj ;y/@1 / dy .D T4/

� 2
X
ij

Z
O�

.'j .@3'i /.w1.y/ � �xi ;xj ;y/@12 / dy .D T5/;

but on the other hand, now integrating by parts with respect to @3,

I3 D I23 WD 2
X
ij

Z
O�

@3.'i .@2'j /.w1.y/ � �xi ;xj ;y/@1 / dy .D T6/

� 2
X
ij

Z
O�

.'i .@23'j /.w1.y/ � �xi ;xj ;y/@1 / dy .D T7/

� 2
X
ij

Z
O�

.'i .@2'j /.@3w1.y/ � �xi ;xj ;y/@1 / dy .D T8/

� 2
X
ij

Z
O�

.'i .@2'j /.w1.y/ � @3�xi ;xj ;y/@1 / dy .D T9/

� 2
X
ij

Z
O�

.'i .@2'j /.w1.y/ � �xi ;xj ;y/@13 / dy .D T10/:

We then have I3 D 1
2
.I13 C I23/. To proceed further, note that T1 D T6 D 0 by the funda-

mental theorem of calculus. Moreover, 1
2
.T2 C T7/ D 0, which follows from permuting

indices i $ j in T2 and using the antisymmetry property �xi ;xj ;y D ��xj ;xi ;y :

T2 D �2
X
j i

Z
O�

.'i .@23'j /.w1.y/ � �xj ;xi ;y/@1 / dy

D 2
X
j i

Z
O�

.'i .@23'j /.w1.y/ � �xi ;xj ;y/@1 / dy D �T7:
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To treat terms T3 and T8, define the smooth function vI;.3/WO� ! R by

vI;.3/ WD
X
ij

.'j .@3'i /.@2w1.y/ � �xi ;xj ;y//C .'i .@2'j /.@3w1.y/ � �xi ;xj ;y//: (4.17)

By an argument similar to the one employed in (4.13)ff., we have vI;.3/ 2W1;1
0 .O�/. More

precisely, for all finite index sets 	;J � N, the functions

z	;J WD

X
i2	
j2J

zij WD
X
i2	
j2J

.'j .@3'i /.@2w1.y/ � �xi ;xj ;y//C .'i .@2'j /.@3w1.y/ � �xi ;xj ;y//

are finite sums of C1c .O�/-functions. By the Leibniz rule in conjunction with (W2)–(W4)
and (P3), we obtainX

i2	
j2J

kzij kW1;1.O�/
D

X
i2	
j2J

kzij kL1.O�/ C krzij kL1.O�/

� c
X
i2	

`.Qi /
4
krw1kL1.R3/

C c
X
i2	

�
`.Qi /

3
krw1kL1.R3/ C `.Qi /

4
kr

2w1kL1.R3/

�
� .1C L3.O�/

1
3 /kw1kW2;1.R3/;

where c is a purely dimensional constant. Since the final term in the previous estimation
is independent of 	 and J, we conclude that the sum in (4.17) converges absolutely in the
Banach space W1;1

0 .O�/. Hence, in particular, it converges in W1;1
0 .O�/ and so vI;.3/ 2

W1;1
0 .O�/.

Extending vI;.3/ by zero to vI;.4/ 2W1;1
0 .R3/, we then obtain

1
2
.T3 C T8/ D

Z
R3

.@1vI;.4// dy: (4.18)

Since I3 D 1
2
.I13 C I23/, the above arguments, permuting i $ j in I 23 and (4.18) combine

to

I3 D �
1

2

X
ij

Z
O�

.'j .@3'i /.w1.y/ � ..xi � xj / � e2//@1 / dy .D 1
2
T4/

C
1

2

X
ij

Z
O�

.'j .@2'i /.w1.y/ � ..xi � xj / � e3//@1 / dy .D 1
2
T9/

�

X
ij

Z
O�

.'j .@3'i /.w1.y/ � �xi ;xj ;y/@12 / dy .D 1
2
T5/

C

X
ij

Z
O�

.'j .@2'i /.w1.y/ � �xi ;xj ;y/@13 / dy .D 1
2
T10/

C

Z
R3

.@1vI;.4// dy:
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Next note that, expanding and using
P
i 'i D 1 as well as

P
i @3'i D 0 on O�,

1

2
T4 D �

1

2

X
ij

Z
O�

.'j .@3'i /.w1.y/ � ..xi � y/ � e2//@1 / dy

�
1

2

X
ij

Z
O�

.'j .@3'i /.w1.y/ � ..y � xj / � e2//@1 / dy .D 0/

D �
1

2

X
i

Z
O�

..@3'i /.w1.y/ � ..xi � y/ � e2//@1 / dy

D
1

2

X
i

Z
O�

.'i@3w1.y/ � ..xi � y/ � e2//@1 / dy

C
1

2

Z
O�

.w1.y/ � .�e3 � e2/@1 / dy

C
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e2/@13 / dy: (4.19)

By a similar argument to (4.17)ff., we use w 2 C1.R3IR3�3sym / to see that the function

vI;.5/.y/ WD �
1

2

X
i

'i@3w1.y/ � ..xi � y/ � e2/ (4.20)

belongs to W1;1
0 .O�/, and hence, again denoting its trivial extension to R3 by vI;.6/ and

recalling that e2 � e3 D e1,

1

2
T4 D

Z
R3

.@1vI;.6// dx C
1

2

Z
O�

.w11.y/@1 / dy

C
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e2/@13 / dy: (4.21)

We handle the term 1
2
T9 in the same fashion (swapping the roles of the indices 2 and 3):

introducing vI;.7/ 2W1;1
0 .O�/ as

vI;.7/.y/ WD
1

2

X
i

'i@2w1.y/ � ..xi � y/ � e3/

as a substitute for (4.20) and denoting its trivial extension to R3 by vI;.8/, we arrive at

1

2
T9 D

Z
R3

.@1vI;.8// dx C
1

2

Z
O�

.w11.y/@1 / dy

�
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e3/@12 / dy: (4.22)
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Working from (4.21) and (4.22), we then arrive at

1

2
.T4 C T9/ D

Z
R3

@1.vI;.6/ C vI;.8// dy C
Z

O�

.w11.y/@1 / dy

C
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e2/@13 / dy

�
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e3/@12 / dy: (4.23)

To summarise, by (4.12), (4.15) and (4.23), there exists vI 2W1;1
0 .R3/, such that

I D
Z

R3

.@1vI/ dx C
Z

O�

.w11.y/@1 / dy

C
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e2/@13 / dy

�
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e3/@12 / dy

�

X
ij

Z
O�

.'j .@3'i /.w1.y/ � �xixj y/@12 / dy

C

X
ij

Z
O�

.'j .@2'i /.w1.y/ � �xixj y/@13 / dy: (4.24)

The same calculations with the coordinates 1! 2! 3! 1 permuted imply that there
exist vII; vIII 2W1;1

0 .R3/ such that

II D
Z

R3

.@2vII/ dx C
Z

O�

.w12.y/@2 / dy

C
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e3/@21 / dy

�
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e1/@23 / dy

�

X
ij

Z
O�

.'j .@1'i /.w1.y/ � �xixj y/@23 / dy

C

X
ij

Z
O�

.'j .@3'i /.w1.y/ � �xixj y/@21 / dy (4.25)
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and

III D
Z

R3

.@3vIII/ dx C
Z

O�

.w13.y/@3 / dy

C
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e1/@32 / dy

�
1

2

X
i

Z
O�

.'iw1.y/ � ..xi � y/ � e2/@31 / dy

�

X
ij

Z
O�

.'j .@2'i /.w1.y/ � �xixj y/@31 / dy

C

X
ij

Z
O�

.'j .@1'i /.w1.y/ � �xixj y/@32 / dy; (4.26)

and @1vI, @2vII, @3vIII all vanish outside O�. Combining (4.24), (4.25) and (4.26), we get
that there is h 2 L1.O�/, h D @1vI C @2vII C @3vIII, such thatZ

O�

.T�w/1 � r dx D
Z

O�

h dx C
Z

O�

w1 � r dx: (4.27)

Recall that w satisfies div.w/ D 0 and that T�w D w on O{

�
. Therefore,Z

R3

.T�w/1 � r dx D
Z

O{

�

.T�w/1 � r dx C
Z

O�

.T�w/1 � r dx

D

Z
O{

�

w1 � r dx C
Z

O�

w1 � r dx C
Z

O�

h dx

D

Z
O�

h dx:

Therefore, div..T�w/1/2L1.R3/. Arguing in the exactly same way for the other columns,
div.T�w/ 2 L1.R3IR3/, and the proof is complete.

As an immediate consequence of Lemmas 4.5 and 4.6, we obtain the following:

Corollary 4.7. Let w 2 .C1 \ L1/.R3IR3�3sym / satisfy div.w/ D 0 and define T�w for
� > 0 by (4.5). Then for L1-almost every � > 0, div.T�w/ D 0 in D0.R3IR3/.

Proof. Observe that on R3 n @O� the function T�w is strongly differentiable and, as w is
(rowwise) solenoidal on R3 and div.T�w/D 0 on O� (Lemma 4.5), div.T�w/D 0 on the
open set R3 n @O�. As w 2 C1, Mw 2 C.R3/ and the set®

� > 0 W L3.@O�/ ¤ 0
¯
�
®
� > 0 W L3.¹Mw D �º/ ¤ 0

¯
is an L1-null set. Hence, for all � not contained in this set, div.T�w/ 2 L1.R3IR3/ and
div.T�w/ D 0L3-a.e. Thus, for L1-almost every �, div.T�w/ D 0 in D0.R3IR3/.



On symmetric div-quasiconvex hulls and divsym-free L1-truncations 27

4.6. Strong stability and proof of Proposition 4.1

In view of Lemma 4.4 and Corollary 4.7, Proposition 4.1 will follow provided we can
prove the strong stability (cf. Proposition 4.1 (a)). With this aim, we begin with the fol-
lowing lemma:

Lemma 4.8. Then there exists a purely dimensional constant C > 0 such that, for each
w 2 L1.R3IR3�3sym / and each � > 0, we have

L3.¹Mw > �º/ �
C

�

Z
¹jwj>�=2º

jw.x/j dx:

The rough idea of the proof of this statement is to use the weak-.1; 1/ estimate for the
Hardy–Littlewood maximal operator M (cf. (2.1)) for the function h defined via

h.x/ D max¹0; jw.x/j � �=2ºI (4.28)

see Zhang [48] for the details. As an important consequence of Lemma 4.8 and the L1-
bound of w� is the following:

Corollary 4.9. Let w 2 L1.R3IR3�3sym / satisfy div.w/D 0. Moreover, for � > 0, let w� WD
T�w be as in (4.5). Then we have with a purely dimensional constant C > 0

kw � w�kL1.R3/ � C

Z
¹jwj>�=2º

jwj dx: (4.29)

Proof. Recall that O� WD ¹Mw > �º. By construction, w D w� on O{

�
. Therefore,

kw � w�kL1.R3/ �

Z
O�

jw � w�j dx

�

Z
O�

jwj dx C
Z

O�

jw�j dx: (4.30)

On the one hand, Lemma 4.8 gives usZ
O�

jwj dx � �L3.O�/C
Z
¹jwj>�º

jwj dx

� C

Z
¹jwj>�=2º

jwj dx; (4.31)

and, on the other hand, using Lemmas 4.4 and 4.8,Z
O�

jw�j dx � kw�kL1.R3/L
3.O�/

� C

Z
¹jwj>�=2º

jwj dx; (4.32)

C > 0 still being a purely dimensional constant. In view of (4.30), (4.31) and (4.32), we
obtain (4.29), and this completes the proof.
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Proof of Proposition 4.1. Letw 2 .C1\L1/.R3IR3�3sym / satisfy div.w/D 0 and let �> 0.
Pick some Q� 2 .�; 2�/ such that L3.@OQ�/ D 0 and define w� WD TQ�w and U� WD OQ�.
Then

(a) w D w� on U{

�
by construction;

(b) Lemma 4.8 implies that

L3.¹w ¤ w�º/ �
c

Q�

Z
¹jwj>Q�=2º

jwj dx �
c

�

Z
¹jwj>�=2º

jwj dxI

(c) div.w�/ D 0 in D0.R3IR3/ by Corollary 4.7;

(d) kw�kL1.R3/ � c
Q� � 2c� by Lemma 4.4.

To summarise, w� satisfies all the required properties, and the proof is complete.

4.7. Proof of Theorem 1.2

We now establish Theorem 1.2, and hence let � > 0 be given. Let u 2 L1.R3IR3�3sym /

satisfy div.u/ D 0 and pick a sequence .wj / � .C1\L1/.R3IR3�3sym / such that wj ! u

strongly in L1.R3IR3�3sym / as j !1, still satisfying div.wj / D 0 for each j 2 N. Such a
sequence can be constructed by convolution with smooth bumps.

For � > 0, consider the truncation wj
4�

of wj according to Proposition 4.1. Note that
this sequence is uniformly bounded in L1 by 4c�. Therefore, a suitable, non-relabelled
subsequence converges in the weak�-sense to some u� in L1.R3IR3�3sym /. First of all,

ku�kL1.R3/ � sup
j2N
kw

j

4�
kL1.R3/ � 4c�; div.u�/ D 0:

We claim thatwj
4�
! u strongly in L1 on the set ¹Mu� 2�º as j !1, and hence u�D u

on ¹Mu � 2�º. If this claim is proven, then Lemma 4.8 and Corollary 4.9 imply the small
change and strong stability properties (b), (c) of Theorem 1.2. Therefore, u� will satisfy
all properties displayed in Theorem 1.2 and thus finish the proof.

It remains to show the claim. Recall that the maximal function M is sublinear. Thus,

¹Mwj > 4�º n ¹M.wj � u/ > 2�º � ¹Mu > 2�º: (4.33)

Note that L3.¹M.wj � u/ > 2�º/ converges to zero as j !1 since wj � u! 0 in L1

and M is weak-.1; 1/. After picking a suitable, non-relabelled subsequence of .wj /, we
may suppose that kwj � ukL1.R3/ � 2

�j� for all j 2 N and hence

L3¹M.wj � u/ > 2�º � C2�j for all j 2 N:

Therefore, for each J 2 N, the L3-measure of the set

EJ WD
[
j>J

¹M.wj � u/ > 2�º
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can be bounded by C2�J . Due to (4.33), we have ¹Mu � 2�º n EJ � ¹Mwj � 4�º for
j > J . Let us fix J 2 N and bound the L1-norm of wj

4�
� u on ¹Mu � 2�º for j > J :Z

¹Mu�2�º

jw
j

4�
� uj dx �

Z
EJ

jw
j

4�
� uj dx C

Z
¹Mu�2�ºnEJ

jw
j

4�
� uj dx

�

Z
EJ

jw
j

4�
j C juj dx C

Z
¹Mwj�4�º

jw
j

4�
� uj dx

� C2�J�C

Z
EJ

juj dx C
Z
¹Mwj�4�º

jwj � uj dx

� C2�J�C

Z
EJ

juj dx C kwj � ukL1.R3/:

Letting J !1 yields wj
4�
� u! 0 in L1.¹Mu � 2�º/. As .wj

4�
/ weakly� converges to

u� in L1.R3;R3�3sym /, we conclude that u D u� on ¹Mu � 2�º, proving the claim. �

5. Proof of Theorem 1.1

The proof of Theorem 1.1 heavily depends on the validity of the truncation theorem, The-
orem 1.2. In fact, Theorem 1.1 has been proven in a different setting, where the divergence
is replaced by some other differential operator (e.g., [37, 49]). For the convenience of the
reader, let us briefly present the argument here. First of all, note that the statement of
Theorem 1.2 also holds if we consider functions u 2 L1.T3IR3�3sym / instead of functions
defined on R3.

Proposition 5.1. There existsC > 0 with the following property: for all u2 L1.T3IR3�3sym /

with div.u/ D 0 in D0.T3IR3/ and � > 0, there is u� 2 L1.T3IR3�3sym / satisfying

(a) ku�kL1 � C� (L1-bound);

(b) ku � u�kL1 � C
R
¹juj>�º

juj dx (strong stability);

(c) L3.¹u ¤ u�º/ � C�
�1
R
¹juj>�º

juj dx (small change);

(d) div.u�/ D 0, i.e., the differential constraint is still satisfied.

To see this, one can either repeat the proof presented in Section 4 or write u 2 L1.T3I
R3�3sym / as a Z3-periodic function on R3 and apply the obvious L1loc-version of Theorem 1.2.

Proof of Theorem 1.1. As Qsdqcf1 is a continuous symmetric div-quasiconvex function
vanishing on K, all y 2 K.1/ are by definition also in K.1/. It remains to show the other
direction. Suppose that � 2 K.1/ and .um/ � L1.T3IR3�3sym / \ T is a test sequence with

0 D Qsdqcf1.�/ D lim
m!1

Z
T3

f1.� C um.x// dx: (5.1)
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As K is a compact set, we find R > 0 with K � BR.0/ and � 2 BR.0/. Thus, by (5.1),

lim
m!1

Z
¹jumj>3Rº

jumj dx D 0: (5.2)

Applying Proposition 5.1 gives a sequence Qvm 2 L1.T3IR3�3sym /, such that

(a) div. Qvm/ D 0;

(b) k Qvm � umkL1.T3/ ! 0 as m!1;

(c) k QvmkL1.T3/ � CR.

Mollification and subtracting the average gives a sequence .vm/ � L1.T3IR3�3sym / \ T

also satisfying properties (a)–(c). Hence,

0 D Qsdqcf1.�/ D lim
m!1

Z
T3

f1.� C vm.x// dx: (5.3)

Now take a symmetric div-quasiconvex function g 2 C.R3�3sym /. We may suppose that
max g.K/ D 0 and, as max ¹0; gº is again symmetric div-quasiconvex, that g � 0 on
K. Using uniform boundedness of vm we may estimate with C > 0 as in (c),

jg.� C vm.x//j � sup
�2B.2CC1/R.0/

jg.�/j <1: (5.4)

Due to (5.3), dist.� C vm; K/! 0 in measure, and by passing to a non-relabelled sub-
sequence, we may assume that dist.� C vm;K/! 0L3-a.e. As g is uniformly continuous
on B.2CC1/R.0/, we get by (5.4) and dominated convergence,

g.�/ � lim
m!1

Z
T3

g.� C vm.x// dx �
Z

T3

lim
m!1

g.� C vm.x// dx D 0: (5.5)

Therefore, � 2 K.1/. The proof is complete.

Let us, for the sake of completeness, also discuss a proof of the statementK.p/DK.q/,
1 < p; q <1, which can be easily adapted to general constant rank operators A of the
form (2.3). To this end, recall that a Borel measurable function F WRd ! R is called A-
quasiconvex provided it satisfies (1.2) for all � 2 Rd and ' 2 T , where T D TA is now
the set of all ' 2 C1.TnIRd / with zero mean and A' D 0. The A-quasiconvexifications
QAf of functions f and, for non-empty, compact sets K � Rd , the corresponding sets
K.p/ for 1 � p � 1 are defined as in (1.4), now systematically replacing the divsym-
quasiconvexity by A-quasiconvexity. In contrast to [10], we do not even need to use
potentials, but can directly appeal to Lemma 2.2. Note that the construction of the projec-
tionPA from Lemma 2.2 crucially relies on Fourier multipliers and hence is not applicable
for p D 1 and p D 1. Using this projection operator PA, we can prove the following
statement.

Lemma 5.2. Let A be a constant rank operator of the form (2.3) and let K � Rd be
compact. Then, for 1 < p < q <1, K.p/ D K.q/.
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Proof. With slight abuse of notation, letK �BR.0/ WD ¹� 2Rd W j�j<Rº and y 2BR.0/.
On “K.q/ � K.p/”. Let y 2 K.q/ and let .um/ � TA be a test sequence such that

0 D QAfq.y/ D lim
m!1

Z
Tn

fq.y C um.x// dx:

As K is compact, .um/ is bounded in Lq.TnIRd / and, as q > p, also bounded in Lp.TnI
Rd /. Also note that for any " > 0, there is C" > 0 such that fp � "C C"fq . Therefore,

Qsdqcfp.y/ � lim
m!1

Z
Tn

fp.y C um.x// dx � lim
m!1

Z
Tn

"C C"fq.y C um.x// dx � ":

Thus, y 2 K.p/. The directionK.p/ � K.q/ uses a similar, yet easier truncation statement
than Theorem 1.1. Let y 2 K.p/ and let .um/ � TA be a test sequence, such that

0 D Qsdqcfp.y/ D lim
m!1

Z
Tn

fp.y C um.x// dx:

Note that .um/ is uniformly bounded in Lp.TnIRd / and that

lim
m!1

Z
Tn

distp.um.x/;B2R.0// dx D 0:

Write
Qum D 1¹jumj�2Rºum �

−
Tn

1¹jumj�2Rº.x/um.x/ dx

and define vm WD PA Qum with the projection operator PA from Lemma 2.2. Observe that

(a) Avm D 0 by Lemma 2.2 (a);

(b) . Qum/ is bounded in L1.TnIRd / and q-equiintegrable. Since 1 < q <1, the pro-
jection PAWLq.TnIRd /! Lq.TnIRd / is bounded, .vm/ is bounded in Lq.TnI
Rd /, q-equiintegrable by Lemma 2.2 (c) and, moreover, by Lemma 2.2 (b) and
1 < p <1,

kum � vmkLp.Tn/ � kum � QumkLp.Tn/ C k Qum � vmkLp.Tn/

� kum � QumkLp.Tn/ C CA;pkA. Qum � um/kW�k;p.Tn/

� CA;pkum � QumkLp.Tn/ ! 0:

Hence, also

lim
m!1

Z
Tn

fp.y C vm.x// dx D 0:

We conclude that fq.y C vm/! 0 in measure. Combining this with the Lq-boundedness
and q-equiintegrability, we obtain

lim
m!1

Z
Tn

fq.y C vm.x// dx D 0:

Therefore, y 2 K.q/, concluding the proof.
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6. Potential truncations

In this concluding section we come back to the potential truncations alluded to in the
introduction and discuss the limitations of this strategy in view of Theorems 1.1 and 1.2.
Let A be a constant rank operator in the sense of Section 2.3. Recall that the potential
truncation strategy, originally pursued in [8] for A D div, is to represent u 2 Lp.TnIRd /
with Au D 0 and

¬
Tn
u dx D 0 as u D Av for some potential A of order l 2 N (cf.

Lemma 2.1) and then performing a Wl;p–Wl;1-truncation on the potential v. We then
write, with slight abuse of notation,1 v D A�1u. Since it is of independent interest but
also motivates the need for a different strategy for Theorem 1.2 for p D 1, we record the
following proposition:

Proposition 6.1. Let A be a constant rank differential operator of order k 2 N and A
be a potential of A of order l 2 N. Let 1 < p <1. Then there exists a constant C > 0

such that the following hold: If u 2 Lp.TnIRd / \ ker A and � > 0 then there exists
u� 2 L1.TnIRd / \ kerA satisfying the

(a) L1-bound: ku�kL1.Tn/ � C�;

(b) weak stability:

ku� � uk
p

Lp.Tn/
� C

Z
¹
Pl
jD0 jr

j ıA�1uj>�º

lX
jD0

jr
j
ıA�1ujp dxI

(c) small change:

Ln.¹u� ¤ uº/ �
C

�p

Z
¹
Pl
jD0 jr

j ıA�1uj>�º

lX
jD0

jr
j
ıA�1ujp dx:

For simplicity, we state this result on Tn; a version on Rn follows by analogous means.

Proof of Proposition 6.1. We start by outlining the Wm;p–Wm;1-truncation, which seems
hard to trace in the literature; here, we choose a direct approach instead of appealing
to McShane-type extensions. Let m 2 N. Then, for v 2 Wm;p.TnI Rd /, let O� WD

¹
Pm
jD0 M.rj v/ > �º. Since the sum of lower semicontinuous functions is lower semi-

continuous, O� is open. We choose a Whitney decomposition WD .Qj / of O� satisfying
(W1)–(W4), and a partition of unity .'j / subject to W with (P1)–(P3). We note that
the Whitney cover can be arranged in a way such that Ln.Qj \Qj 0/ � c max¹Ln.Qj /;
Ln.Qj 0/º holds for some c D c.n/ > 0 and all j; j 0 2 N such that Qj \Qj 0 ¤ ;. For
each j 2 N, we then denote by �j Œv� the .m � 1/th-order averaged Taylor polynomial of

1The notation A�1 is only symbolic as A might be non-invertible.
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v over Qj ; cf. [29, Chap. 1.1.10]. In particular, we have the scaled version of Poincaré’s
inequality−

Qj

j@˛.w � �j Œw�/j
q dx � c.q;m; n/`.Qj /q.m�j˛j/

−
Qj

jr
mwjq dx (6.1)

for all 1 � q <1, w 2Wm;q.TnIRd / and j˛j � m. We then put

v� WD v �
X
j

'j .v � �j Œv�/ D

´
v in O{

�
;P

j 'j�j Œv� in O�:
(6.2)

Then v� 2Wm;p.TnIRd /, which can be seen as follows: on O�, v� is a locally finite sum
of C1-maps and hence of class C1 too. For an arbitrary j˛j � m, (6.1) yieldsX

j

k@˛.'j .v � �j Œv�//k
q

Lq.O�/

(P3)
�

X
j

X
ˇCD˛

c.n; q/

`.Qj /q.jˇ jCj j/
`.Qj /

qj j
k@ .v � �j Œv�/k

q

Lq.Qj /

� c.n;m; q/
X
j

`.Qj /
q.m�j˛j/

kr
mvk

q

Lq.Qj /

(W3)
� c.n;m; q/Ln.O�/

q.m�j˛j/
n kr

mvk
q

Lq.O�/
:

In conclusion, applying the previous inequality with q D 1 on .0; 1/n, the series in (6.2)
converges absolutely in Wm;1

0 ..0; 1/nIRd / and hence v� 2Wm;1.TnIRd /; then applying
the previous inequality with q D p yields v� 2 Wm;p.TnIRd /. Whenever x 2 Qj0 for
some j0 2N, (W2) implies that we may blow upQj0 by a fixed factor c > 0 so that cQj0 \
O{

�
¤ ;. Fix some z 2 cQj0 \ O{

�
. Then, for some c0 D c0.n/ > 0, Qj0 � Bc0`.Qj0 /.z/

and so−
Qj0

j@˛vj dx � c.n/
−
Bc0.n/`.Qj0 /

.z/

j@˛vj dx � c.n/M.r j˛jv/.z/ � c.n/� (6.3)

for all j˛j � m. Now letQj 2W be another cube withQj \Qj0 ¤ ;; by (W3), there are
only N D N.n/ <1 such cubes. Since rm�j0 Œv� D 0 and

P
j 'j D 1 on O�,

jr
mv�.x/j �

ˇ̌̌̌ X
j WQj\Qj0¤;

r
m.'j .�j Œv� � �j0 Œv�//.x/

ˇ̌̌̌
(P3)
� c

X
j WQj\Qj0¤;

j˛jCjˇ jDm

1

`.Qj /j˛j
kr
jˇ j.�j Œv� � �j0 Œv�/kL1.Qj\Qj0 /
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.�/
� c

X
j WQj\Qj0¤;

j˛jCjˇ jDm

1

`.Qj /j˛j

�−
Qj

jr
jˇ j.�j Œv� � v/j dx

C

−
Qj0

jr
jˇ j.v � �j0 Œv�/j dx

�
� c

X
j WQj\Qj0¤;

−
Qj

jr
mvj dx (by (6.1))

� c� (by (6.3) and (W3)); (6.4)

where at .�/ we have used that on the polynomials of degree at most .m � 1/ on cubes,
all norms are equivalent (in particular, the L1- and L1-norms), and scaling (recall that
Ln.Qj \Qj0/ � cmax¹Ln.Qj /;Ln.Qj0/º) wheneverQj \Qj0 ¤ ;, and (W3). Hence,

(i) krmvkL1.Tn/ � c.m; n/�;

(ii) Ln.¹u ¤ u�º/ �
c.m;n;p/
�p

Pm
jD0 kr

j vk
p

Lp.Tn/
.

We now let u 2 Lp.TnIRd / \ ker A satisfy
R
.0;1/

u dx D 0. Since A�1 has a Fourier
symbol of class C1 off zero and is homogeneous of degree .�l/, rl ıA�1 has a Fourier
symbol of class C1 off zero and is homogeneous of degree zero. By Mihlin’s theorem
(cf. [41]), applicable because 1 < p < 1 and by Poincaré’s inequality, we thus find
that A�1u 2 Wl;p.Tn/, together with kA�1ukWl;p.Tn/

� ckukLp.Tn/. We then perform
a Wl;p–Wl;1-truncation on v D A�1u as in the first part of the proof, yielding v�, and
define u� WDAv�. By the properties gathered in the first part of the proof, we may employ
Zhang’s trick (see (4.28)ff.) to conclude (b) and (c) as well. The proof is complete.

Remark 6.2 (Strong stability and 1 < p <1 versus p D 1). It is clear from the above
proof that the potential truncation only works fruitfully in the case 1 < p < 1 by the
entering of Mihlin’s theorem; indeed, the operator A�1 is defined via Fourier multipliers,
and by Ornstein’s non-inequality, we cannot conclude that A�1u 2Wl;1 provided u 2 L1.
However, the potential truncations from Proposition 6.1 do not satisfy the strong stability
property ku� u�k

p

Lp.Tn/
� C

R
¹juj>�º

jujp dx. The underlying reason is that rl ıA�1 is a
Fourier multiplication operator with symbol smooth off zero and homogeneous of degree
zero; by Ornstein’s non-inequality, we only have that rl ıA�1WL1 ! BMO in general,
and here BMO cannot be replaced by L1. The potential truncation is performed on the
sets where

Pl
jD0 M.rj ı A�1u/ > �. Thus, even if u 2 L1.TnIRd / is A-free with

kukL1.Tn/ � �, the potential truncation might modify u regardless of � > 0 and hence
strong stability cannot be achieved. As established by Conti, Müller and Ortiz [10], in the
case 1 < p <1 this issue still can be circumvented to arrive at Lemma 5.2, but in the
context of p D 1 the underlying techniques break down. In essence, this was the original
motivation for the different proof displayed in Sections 3 and 4.

We conclude the paper with other possible approaches and extensions of Theorem 1.2.
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Remark 6.3. As mentioned in the introduction, [6] constructs a divergence-free W1;p–
W1;1-truncation. Here a Whitney-type truncation is performed first, leading to a non-
divergence-free truncation. To arrive at a divergence-free truncation, the local divergence
overshoots are then corrected by subtracting special solutions of suitable divergence equa-
tions. This is achieved by invoking the Bogovskiı̆ operator [5], which selects specific
solutions of the (heavily underdetermined) divergence equation div.Y /D f with Y j@� D
0 by

Y.x/D Bog.f /.x/ WD
Z
�

f .y/
x � y

jx � yjn

Z 1
jx�yj

!R

�
y C s

x � y

jx � yj

�
sn�1 ds dy; x 2�;

provided � � Rn is star shaped with respect to a ball BR.x0/ b �, f has integral zero
over � and !R is a scaled cut-off relative to BR.x0/.

In our situation, the main drawback of the Bogovskiı̆ operator is that if equations
div.Y /D f for f W .0; 1/n! Rn are considered, then the solution Y obtained by the row-
wise application of the Bogovskiı̆ operator does not necessarily take values in Rn�nsym ; note
that passing to the symmetric part Y sym destroys the validity of the divergence equation.
While this potentially could be repaired by passing to different solution operators, the
method requires tools that are not fully clear to us in the present lower regularity context
of Theorem 1.2. With our proof in Section 4 being tailored to divergence constraints, in
principle it can be modified to yield divergence-free W1;p–W1;1-truncations as well. We
will pursue this together with possible extensions of the approach in [6] elsewhere.

We finally comment on possible extensions of the strategy explained in Section 3
in the A-free context. As discussed in Section 3, the key ingredients for the underlying
construction are the availability of a WA;1–WA;1-truncation for a suitable operator A
and the analogue of (3.2). Since for the class of C-elliptic operators,2 such truncations are
available [4] (see [7,23,24] for similar strategies in view of trace and extension operators),
this should then give truncations along the whole exact sequence starting with A. As a
consequence, we expect Theorem 1.2 to hold true for all operators with constant rank
in C:

Conjecture 6.4 (Theorem 1.2 for operators with constant rank in C). Let

0! C1;0.TnIRd0/
A1
��! C1;0.TnIRd1/

A2
��! � � �

Ak
��! C1;0.TnIRdk /

AkC1
���! � � �

be an exact sequence of differential operators with constant rank in C, in particular, A1
being C-elliptic. This is equivalent to

0! Cd0
A1Œ��
���! Cd1

A2Œ��
���! Cd2

A3Œ��
���! � � �

Ak Œ��
���! Cdk

AkC1Œ��
�����! � � �

being exact for all � 2 Cn n ¹0º. Then for any differential operator Ak contained in
this exact sequence there is Ck > 0, such that for u 2 L1.TnIRdk / with Aku D 0 in
D0.TnIRdkC1/ and � > 0, there is u� 2 L1.RnIRdk / satisfying

2This means that AŒ�� has trivial nullspace for each � 2 Cn n ¹0º; cf. Smith [40].
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(a) ku�kL1 � C� (L1-bound);

(b) ku � u�kL1 � C
R
juj>�

juj dx (strong stability);

(c) Ln.¹u ¤ u�º � C�
�1
R
juj>�

juj dx (small change);

(d) Aku� D 0, i.e., the differential constraint is still satisfied.

If any differential operator A with constant rank over C is a part of such an exact sequence,
this means that the A-free truncation is possible for every such operator.

A. Computational details

In this appendix, we give the computational details for some of the identities used in the
main part of the paper. We will need the following lemma:

Lemma A.1. Let a; b; c 2 N3 be multi-indices with jaj; jbj; jcj � 1 and ˛; ˇ 2 ¹1; 2; 3º.
Then on the set O� we haveX

ijk

@a'k@b'j @c'iB˛.i; j; k/ D 0 (A.1)

and X
ijk

@a'k@b'j @c'iA˛;ˇ .i; j; k/ D 0: (A.2)

Proof. Recall from the definition of the 'l that
P
'l � 1 on O�. We therefore haveP

@a'l D
P
@b'l D

P
@c'l D 0. We can use this to getX

ijk

@a'k@b'j @c'iB˛.i; j; k/

D

X
ijkm

@a'k@b'j @c'i
�
B˛.i; j; k/ �B˛.m; j; k/ �B˛.i; m; k/ �B˛.i; j;m/

�
:

Now (A.1) follows from Lemma 4.2 (f); (A.2) can be shown completely analogously.

A.1. Proof of Lemma 4.5

We focus on the case ˛ D 1. Thus let D WD div.T�w/1. To avoid notational overload we
omit the arguments i , j and k of A˛;ˇ .i; j; k/ and B˛.i; j; k/ in the following equation.
Thus, all A˛;ˇ and B˛ implicitly depend on the summation indices. By the definition of
T�w on O�, (4.5), we have

D D 6
X
ijk

@1.'k@2'j @3'i /B1 .D T1/

C 2
X
ijk

@1.'k.@33'j @2'i � @23'j @3'i //A3;1 .D T2/
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C 2
X
ijk

'k.@33'j @2'i � @23'j @3'i /@1A3;1 .D T3/

C 2
X
ijk

@1.'k.@22'j @3'i � @23'j @2'i //A1;2 .D T4/

C 2
X
ijk

'k.@22'j @3'i � @32'j @2'i /@1A1;2 .D T5/

C 3
X
ijk

@2.'k@3'j @1'i /B1 .D T6/

C 3
X
ijk

@2.'k@2'j @3'i /B2 .D T7/

C

X
ijk

@2.'k.@23'j @3'i � @33'j @2'i //A2;3 .D T8/

C

X
ijk

'k.@23'j @3'i � @33'j @2'i /@2A2;3 .D T9/

C

X
ijk

@2.'k.@13'j @3'i � @33'j @1'i //A3;1 .D T10/

C

X
ijk

'k.@13'j @3'i � @33'j @1'i /@2A3;1 .D T11/

C

X
ijk

@2.'k.@13'j @2'i C @23'j @1'i � 2@12'j @3'i //A1;2 .D T12/

C

X
ijk

.'k.@13'j @2'i C @23'j @1'i � 2@12'j @3'i //@2A1;2 .D T13/

C 3
X
ijk

@3.'k@2'j @3'i /B3 .D T14/

C 3
X
ijk

@3.'k@1'j @2'i /B1 .D T15/

C

X
ijk

@3.'k.@12'j @2'i � @22'j @1'i //A1;2 .D T16/

C

X
ijk

.'k.@12'j @2'i � @22'j @1'i //@3A1;2 .D T17/

C

X
ijk

@3.'k.@23'j @2'i � @22'j @3'i //A2;3 .D T18/

C

X
ijk

.'k.@23'j @2'i � @22'j @3'i //@3A2;3 .D T19/

C

X
ijk

@3.'k.@23'j @1'i C @12'j @3'i � 2@13'j @2'i //A3;1 .D T20/
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C

X
ijk

.'k.@23'j @1'i C @12'j @3'i � 2@13'j @2'i //@3A3;1 .D T21/

D

X
ijk

f
.1/

ijk
B1 C f

.2/

ijk
B2 C f

.3/

ijk
B3

C f
.1;2/

ijk
A1;2 C f

.2;3/

ijk
A2;3 C f

.3;1/

ijk
A3;1

DW .�/

for suitable coefficient maps f .�/
ijk

or f .�;�/
ijk

, respectively. To achieve this grouping we use
Lemma 4.2 (a) and (b) as well as the fact that T11 D T17 D 0. In the following we will
show that each of the six sums in .�/ vanishes individually. This is done by a very similar
calculation every time.

On f
.1/

ijk
. Here the coefficients are determined by terms T1, T6, T13, T15 and T21. There-

fore,

f
.1/

ijk
D 6@1'k@2'j @3'i C 6'k@12'j @3'i C 6'k@2'j @13'i C 3@2'k@3'j @1'i

C 3'k@23'j @1'i C 3'k@3'j @12'i C 'k@13'j @2'i C 'k@23'j @1'i

C .�2/'k@12'j @3'i C 3@3'k@1'j @2'i C 3'k@13'j @2'i C 3'k@1'j @23'i

C .�1/'k@23'j @1'i C .�1/'k@12'j @3'i C 2'k@13'j @2'i

DW P
ijk
1 C � � � C P

ijk
15 :

In the next step we group those of the P ijk
l

together that have the same structure apart
from a permutation of the indices i , j and k. For example, we have

P
ijk
1 D 2P

jki
4 D 2P

kij
10 :

We now group all the terms and then perform the corresponding index permutations:X
ijk

f
.1/

ijk
B1.i; j; k/ D

X
ijk

�
.P

ijk
1 C P

ijk
4 C P

ijk
10 /C .P

ijk
2 C P

ijk
6 C P

ijk
9 C P

ijk
14 /

C .P
ijk
3 C P

ijk
7 C P

ijk
11 C P

ijk
15 /

C .P
ijk
5 C P

ijk
8 C P

ijk
12 C P

ijk
13 /

�
B1.i; j; k/

D

X
ijk

P
ijk
1

�
B1.i; j; k/C

1
2
B1.j; k; i/C

1
2
B1.k; i; j /

�
C P

ijk
2

�
B1.i; j; k/C

1
2
B1.j; i; k/ �

1
3
B1.i; j; k/�

1
6
B1.i; j; k/

�
C P

ijk
3

�
B1.i; j; k/C

1
6
B1.j; i; k/C

1
2
B1.j; i; k/C

1
3
B1.j; i; k/

�
C P

ijk
5

�
B1.i; j; k/C

1
3
B1.i; j; k/CB1.j; i; k/ �

1
3
B1.i; j; k/

�
D 2

X
ijk

P
ijk
1 B1.i; j; k/ DW .��/;
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where we used Lemma 4.2 (d) to get the last equality. Finally, Lemma A.1 implies that
.��/ vanishes identically.

On f
.2/

ijk
. For the corresponding coefficients, only terms T5, T7 and T19 matter here.

Therefore,

f
.2/

ijk
D �2'k@22'j @3'i C 2'k@23'j @2'i C 3@2'k@2'j @3'i C 3'k@22'j @3'i

C 3'k@2'j @23'i C 'k@23'j @2'i C .�1/'k@22'j @3'i

DW Q
ijk
1 C � � � CQ

ijk
7 :

Grouping similar terms and permuting indices as above we getX
ijk

f
.1/

ijk
B2.i; j; k/ D

X
ijk

�
.Q

ijk
1 CQ

ijk
4 CQ

ijk
7 /

C .Q
ijk
2 CQ

ijk
5 CQ

ijk
6 /CQ

ijk
3

�
B2.i; j; k/

D

X
ijk

Q
ijk
1

�
B2.i; j; k/ �

3
2
B2.i; j; k/C

1
2
B2.i; j; k/

�
CQ

ijk
2

�
B2.i; j; k/C

3
2
B2.j; i; k/C

1
2
B2.i; j; k/

�
CQ

ijk
3 B2.i; j; k/

D

X
ijk

Q
ijk
3 B2.i; j; k/ D 0;

where we again used Lemma 4.2 (d) and in the last step Lemma A.1.

On f
.3/

ijk
. Here, only terms T3, T9, T14 contribute to the corresponding coefficients. Thus,

f
.3/

ijk
D 2'k@33'j @2'i C .�2/'k@23'j @3'i C .�1/'k@23'j @3'i C 'k@33'j @2'i

C 3@3'k@2'j @3'i C 3'k@23'j @3'i C 3'k@2'j @33'i

DW S
ijk
1 C � � � C S

ijk
7 :

We thus getX
ijk

f
.3/

ijk
B3.i; j; k/

D

X
ijk

�
.S
ijk
1 C S

ijk
4 C S

ijk
7 /C .S

ijk
2 C S

ijk
3 C S

ijk
6 /C S

ijk
5

�
B3.i; j; k/

D

X
ijk

S
ijk
1 .B3.i; j; k/C

1
2
B3.i; j; k/C

3
2
B3.j; i; k//

C S
ijk
2 .B3.i; j; k/C

1
2
B3.i; j; k/ �

3
2
B3.i; j; k//C S

ijk
5 B3.i; j; k/

D

X
ijk

S
ijk
5 B3.i; j; k/ D 0:
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On f
.1;2/

ijk
. These coefficients are determined by T4, T12 and T16. In consequence,

f
.1;2/

ijk
D 2@1'k@22'j @3'i C 2'k@122'j @3'i C 2'k@22'j @13'i C .�2/@1'k@23'j @2'i

C .�2/'k@123'j @2'i C .�2/'k@23'j @12'i C @2'k@13'j @2'i C'k@123'j @2'i

C 'k@13'j @22'i C @2'k@23'j @1'i C 'k@223'j @1'i C 'k@23'j @12'i

C .�2/@2'k@12'j @3'i C .�2/'k@122'j @3'i C .�2/'k@12'j @23'i

C @3'k@12'j @2'i C 'k@123'j @2'i C 'k@12'j @23'i C .�1/@3'k@22'j @1'i

C .�1/'k@223'j @1'i C .�1/'k@22'j @13'i

DW U
ijk
1 C � � � C U

ijk
21 :

Here we can first note that, by Lemma A.1, for each l 2 ¹1; 4; 7; 10; 13; 16; 19º the terms
U
ijk

l
A1;2.i; j; k/ sum to zero. We thus haveX

ijk

f
.1;2/

ijk
A1;2.i; j; k/

D

X
ijk

�
.U

ijk
2 C U

ijk
14 /C .U

ijk
3 C U

ijk
9 C U

ijk
21 /C .U

ijk
5 C U

ijk
8 C U

ijk
17 /

C .U
ijk
6 C U

ijk
12 C U

ijk
15 C U

ijk
18 /C .U

ijk
11 C U

ijk
20 /

�
A1;2.i; j; k/

D

X
ijk

U
ijk
2 .A1;2.i; j; k/ �A1;2.i; j; k//

C U
ijk
3 .A1;2.i; j; k/C

1
2
A1;2.j; i; k/ �

1
2
A1;2.i; j; k//

C U
ijk
5 .A1;2.i; j; k/ �

1
2
A1;2.i; j; k/ �

1
2
A1;2.i; j; k//

C U
ijk
6 .A1;2.i; j; k/ �

1
2
A1;2.i; j; k/CA1;2.j; i; k/ �

1
2
A1;2.j; i; k//

C U
ijk
11 .A1;2.i; j; k/ �A1;2.i; j; k// D 0:

On f
.2;3/

ijk
. Only the terms T8 and T18 matter here. In particular,

f
.2;3/

ijk
D @2'k@23'j @3'i C .�1/@2'k@33'j @2'i C @3'k@23'j @2'i

C .�1/@3'k@22'j @3'i C 2'k@23'j @23'i C .�1/'k@33'j @22'i

C .�1/'k@22'j @33'i

DW V
ijk
1 C � � � C V

ijk
7 :

We first note that the terms V ijk
l

A2;3.i; j; k/ for l 2 ¹1; 2; 3; 4º all sum to zero (Lemma
A.1). Consequently,X
ijk

f
.2;3/

ijk
A2;3.i; j; k/ D

X
ijk

�
.V

ijk
6 C V

ijk
7 /C V

ijk
5

�
A2;3.i; j; k/
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D

X
ijk

V
ijk
6 .A2;3.i; j; k/CA2;3.j; i; k//C V

ijk
5 A2;3.i; j; k/

D

X
ijk

V
ijk
5 A2;3.i; j; k/:

To see that the final term vanishes, we notice that V ijk5 D V
j ik
5 and thusX

ijk

V
ijk
5 A2;3.i; j; k/ D

X
ijk

V
ijk
5 .1

2
A2;3.i; j; k/C

1
2
A2;3.j; i; k// D 0:

On f
.3;1/

ijk
. Here, only the terms T2, T10 and T20 are relevant and therefore

f
.3;1/

ijk
D 2@1'k@33'j @2'1 C .�2/2@1'k@23'j @3'i C 2'k@133'j @2'i

C .�2/'k@123'j @3'i C 2'k@33'j @12'i C .�2/'k@23'j @13'i

C @2'k@13'j @3'i C .�1/@2'k@33'j @1'i C 'k@123'j @3'i

C .�1/'k@233'j @1'i C 'k@13'j @23'i C .�1/'k@33'j @12'i

C @3'k@23'j @1'i C @3'k@12'j @3'i C .�2/@3'k@13'j @2'i C 'k@233'j @1'i

C 'k@123'j @3'i C .�2/'k@133'j @2'i C 'k@23'j @13'i C 'k@12'j @33'i

C .�2/'k@13'j @23'i

DW W
ijk
1 C � � � CW

ijk
21 :

We first apply Lemma A.1 to see that we can ignore the terms corresponding to W ijk

l
for

l 2 ¹1; 2; 7; 8; 13; 14; 15º. For the remaining terms we calculateX
ijk

f
.3;1/

ijk
A3;1.i; j; k/

D

X
ijk

�
.W

ijk
3 CW

ijk
18 /C .W

ijk
4 CW

ijk
9 CW

ijk
17 /C .W

ijk
5 CW

ijk
12 CW

ijk
20 /

C .W
ijk
6 CW

ijk
11 CW

ijk
19 CW

ijk
21 /C .W

ijk
10 CW

ijk
16 /

�
A3;1.i; j; k/

D

X
ijk

W
ijk
3 .A3;1.i; j; k/ �A3;1.i; j; k//

CW
ijk
4 .A3;1.i; j; k/ �

1
2
A3;1.i; j; k/ �

1
2
A3;1.i; j; k//

CW
ijk
5 .A3;1.i; j; k/ �

1
2
A3;1.i; j; k/C

1
2
A3;1.j; i; k//

CW
ijk
6 .A3;1.i; j; k/ �

1
2
A3;1.j; i; k/ �

1
2
A3;1.i; j; k/CA3;1.j; i; k//

CW
ijk
10 .A3;1.i; j; k/ �A3;1.i; j; k//

D 0:

We thus have shown that D D .�/ D 0, yielding that the truncation is solenoidal on O�.
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A.2. Proof of identity (4.12)

Let  2 C1c .R
3/ be arbitrary. In order to obtain formula (4.12), we writeZ

O�

.T�w/1 � r dx D
Z

O�

T.A1;2;r / dx C
Z

O�

T.A2;3;r / dx

C

Z
O�

T.A3;1;r / dx C
Z

O�

T.B1;r / dx

C

Z
O�

T.B2;r / dx C
Z

O�

T.B3;r / dx

DW

6X
`D1

S`;

where we indicate, e.g., by T.A1;2;r /, that when writing outw1 � r directly by means
of (4.3) and (4.4), T.A1;2;r / contains all appearances of A1;2.i; j; k/, and analogously
for the remaining terms. The underlying procedure of dealing with the different terms is
analogous for the remaining columns w2 and w3, which is why we exclusively focus on
w1 but give all the details in this case.

In the following we will frequently interchange the triple sum
P
ijk and the integral

over O�, which allows us treat the single terms via integration by parts. This interchanging
of sums and integrals is allowed since every sum

P
ijk.: : :/ has an integrable majorant, in

turn being seen similarly to the reasoning that underlies the proof of Lemma 4.4.
We begin with S1. This term is constituted by three parts S11 , S21 , S31 given below,

which stem from w11@1 , w12@2 and w13@3 (in this order). Here we have

S11 D 2
X
ijk

Z
O�

'k.@22'j @3'i � @23'j @2'i /A1;2.i; j; k/@1 dx

D �2
X
ijk

Z
O�

.@2'j /.@2'k@3'iA1;2.i; j; k/@1 / dx .D T 11 /

� 2
X
ijk

Z
O�

.@2'j /.'k@23'iA1;2.i; j; k/@1 / dx .D T 12 /

� 2
X
ijk

Z
O�

.@2'j /.'k@3'i@2A1;2.i; j; k/@1 / dx .D T 13 /

� 2
X
ijk

Z
O�

.@2'j /.'k@3'iA1;2.i; j; k/@12 / dx .D T 14 /

� 2
X
i;j;k

Z
O�

'k@23'j @2'iA1;2.i; j; k/@1 dx .D T 15 /:

Permuting indices j $ k and using the antisymmetry from Lemma 4.2 (c), we obtain

T 11 D �2
X
ijk

Z
O�

.@2'j /.@2'k@3'iA1;2.i; j; k/@1 / dx
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D 2
X
ijk

Z
O�

.@2'j /.@2'k@3'iA1;2.i; k; j /@1 / dx

D 2
X
ikj

Z
O�

.@2'j /.@2'k@3'iA1;2.i; k; j /@1 / dx

D �T 11 ; (A.3)

and hence T 11 D 0. Equally, permuting i$ j , we find that T 12 C T
1
5 D 0. Therefore, using

Lemma 4.2 (b) for T 13 and integrating by parts in term T 14 with respect to @1,

S11 D T
1
3 C T

1
4 D �2

X
ijk

Z
O�

.@2'j /.'k@3'iB1.i; j; k/@1 / dx .D T 16 /

C 2
X
ijk

Z
O�

.@12'j /'k@3'iA1;2.i; j; k/@2 dx .D T 17 /

C 2
X
ijk

Z
O�

.@2'j /@1'k@3'iA1;2.i; j; k/@2 dx .D T 18 /

C 2
X
ijk

Z
O�

.@2'j /'k@13'iA1;2.i; j; k/@2 dx .D T 19 /

Lem.
4.2(a)
� 2

X
ijk

Z
O�

.@2'j /'k@3'iB2.i; j; k/@2 dx .D T 110/:

On the other hand,

S21 D
X
ijk

Z
O�

'k.@13'j @2'i /A1;2.i; j; k/@2 dx .D T 21 /

C

X
ijk

Z
O�

'k.@23'j @1'i /A1;2.i; j; k/@2 dx .D T 22 /

�

X
ijk

Z
O�

'k.2@12'j @3'i /A1;2.i; j; k/@2 dx .D T 23 /:

We finally turn to S31 . Here we have

S31 D
X
ijk

Z
O�

'k.@12'j @2'i � @22'j @1'i /A1;2.i; j; k/@3 dx

D �

X
ijk

Z
O�

@1'j @2'k@2'iA1;2.i; j; k/@3 dx .D T 31 /

�

X
ijk

Z
O�

@1'j'k@22'iA1;2.i; j; k/@3 dx .D T 32 /
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�

X
ijk

Z
O�

@1'j'k@2'i@2A1;2.i; j; k/@3 dx .D T 33 /

�

X
ijk

Z
O�

@1'j'k@2'iA1;2.i; j; k/@23 dx .D T 34 /

�

X
ijk

Z
O�

'k.@22'j @1'i /A1;2.i; j; k/@3 dx .D T 35 /:

Again, T 31 vanishes by the same argument as for (A.3), T 32 C T
3
5 D 0 by permuting indices

i $ j , and so we obtain, analogously to above,

S31 D �
X
ijk

Z
O�

@1'j'k@2'iB1.i; j; k/@3 dx .D T 36 /

C

X
ijk

Z
O�

@13'j'k@2'iA1;2.i; j; k/@2 dx .D T 37 /

C

X
ijk

Z
O�

@1'j @3'k@2'iA1;2.i; j; k/@2 dx .D T 38 /

C

X
ijk

Z
O�

@1'j'k@23'iA1;2.i; j; k/@2 dx .D T 39 /

C

X
ijk

Z
O�

@1'j'k@2'i @3A1;2.i; j; k/„ ƒ‚ …
D0

@2 dx:

Permuting indices i $ j in T 21 and T 37 yields by virtue of the antisymmetry property of
A1;2 that T 19 C T

2
1 C T

3
7 D 0, and we directly find that T 17 C T

2
3 D 0. For terms T 18 and

T 38 , we permute indices i $ j and j $ k in term T 38 to obtain

T 18 C T
3
8 D 3

X
ijk

Z
O�

.@1'k/.@2'j /.@3'i /A1;2.i; j; k/@2 dx: (A.4)

For terms T 22 and T 39 , we permute indices i $ j in T 39 to obtain T 22 C T
3
9 D 0. Having

left T 16 and T 36 untouched, we thus obtain

S1 D �2
X
ijk

Z
O�

.@2'j /.'k@3'iB1.i; j; k/@1 / dx .D T 16 /

�

X
ijk

Z
O�

@1'j'k@2'iB1.i; j; k/@3 dx .D T 36 /

� 2
X
ijk

Z
O�

.@2'j /'k@3'iB2.i; j; k/@2 dx .D T 110/
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C 3
X
ijk

Z
O�

.@1'k/.@2'j /.@3'i /A1;2.i; j; k/@2 dx .D T 18 C T
3
8 /

DW S1 C S2 C S3 C S04: (A.5)

We now claim that S04 D 0. Let us first note that the overall sum in the definition of S04
converges absolutely in L1.O�/. This can be seen similarly to the proof of Lemma 4.4,
and is a consequence of (P3), Lemma 4.3 (b) and L3.O�/ <1, together with the boundX

ijk

Z
O�

j.@1'k/.@2'j /.@3'i /A1;2.i; j; k/@2 j dx � c�krw1kL1.R3/L
3.O�/;

where cD c.3/ > 0 is a constant only depending on the underlying space dimension nD 3.
By Lemma A.1 we haveX

ijk

.@1'k/.@2'j /.@3'i /A1;2.i; j; k/@2 � 0 pointwise in O�; (A.6)

to be understood as the limit of the corresponding partial sums. Therefore,

S1 D �2
X
ijk

Z
O�

.@2'j /.'k@3'iB1.i; j; k/@1 / dx .D T 16 /

�

X
ijk

Z
O�

@1'j'k@2'iB1.i; j; k/@3 dx .D T 36 /

� 2
X
ijk

Z
O�

.@2'j /'k@3'iB2.i; j; k/@2 dx .D T 110/

DW S1 C S2 C S3: (A.7)

We now turn to S2. Our line of action is similar to that for dealing with S1 and so, integ-
rating by parts twice, we successively obtain

S2 D
X
ijk

Z
O�

'k.@23'j @3'i � @33'j @2'i /A2;3.i; j; k/@2 dx

C

X
ijk

Z
O�

'k.@23'j @2'i � @22'j @3'i /A2;3.i; j; k/@3 dx

D

X
ijk

.�1/

Z
O�

.@2'j /.@3'k@3'iA2;3.i; j; k/@2 / dx .D T1/

�

X
ijk

Z
O�

.@2'j /.'k@33'iA2;3.i; j; k/@2 / dx .D T2/

�

X
ijk

Z
O�

.@2'j /.'k@3'i@3A2;3.i; j; k/@2 / dx .D T3/
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�

X
ijk

Z
O�

.@2'j /.'k@3'iA2;3.i; j; k/@23 / dx .D T4/

�

X
ijk

Z
O�

.'k@33'j @2'i /A2;3.i; j; k/@2 dx .D T5/

�

X
ijk

Z
O�

.@3'j /.@2'k@2'iA2;3.i; j; k/@3 / dx .D T6/

�

X
ijk

Z
O�

.@3'j /.'k@22'iA2;3.i; j; k/@3 / dx .D T7/

�

X
ijk

Z
O�

.@3'j /.'k@2'i@2A2;3.i; j; k/@3 / dx .D T8/

�

X
ijk

Z
O�

.@3'j /.'k@2'iA2;3.i; j; k/@23 / dx .D T9/

�

X
ijk

Z
O�

.'k@22'j @3'i /A2;3.i; j; k/@3 dx .D T10/:

Terms T1 and T6 vanish by the same argument as in (A.3). Permuting indices i $ j ,
we then obtain T2 C T5 D 0, and in a similar manner we see that T7 C T10 D 0 and
T4 C T9 D 0. To conclude, we use Lemma 4.2 to obtain

S2 D T3 C T8 D �
X
ijk

Z
O�

.@2'j /.'k@3'iB2.i; j; k/@2 / dx

C

X
ijk

Z
O�

.@3'j /.'k@2'iB3.i; j; k/@3 / dx

DW S4 C S5: (A.8)

Term S3 is given by

S3 WD 2
X
ijk

Z
O�

.@33'j @2'i � @23'i@3'i /A3;1.i; j; k/@1 

C

X
ijk

Z
O�

.@13'j @3'i � @33'j @1'i /A3;1.i; j; k/@2 

C

X
ijk

Z
O�

.@23'j @1'i C @12'j @3'i � 2@13'j @2'i /A3;1.i; j; k/@3 

DW S13 C S
2
3 C S

3
3 :

Terms S13 and S23 are treated as term S11 , where we now integrate by parts with respect to
@3 in S13 or with respect to @1 in S23 , respectively. Similarly to the computation underlying
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S1, this gives us

S3 D 2
X
ijk

Z
O�

.@3'j /'k.@2'i /B1.i; j; k/@1 .D T 01/

C 2
X
ijk

Z
O�

.@13'j /'k@2'iA3;1.i; j; k/@3 .D T 02/

C 2
X
ijk

Z
O�

.@3'j /@1'k@2'iA3;1.i; j; k/@3 .D T 03/

C 2
X
ijk

Z
O�

.@3'j /'k@12'iA3;1.i; j; k/@3 .D T 04/

C 2
X
ijk

Z
O�

.@3'j /'k@2'iB3.i; j; k/@3 .D T 05/

C

X
ijk

Z
O�

@1'j'k@3'iB1.i; j; k/@2 dx .D T 06/

C

X
ijk

Z
O�

.@2@1'j /'k@3'iA3;1.i; j; k/@3 .D T 07/

C

X
ijk

Z
O�

.@1'j /@2'k@3'iA3;1.i; j; k/@3 .D T 08/

C

X
ijk

Z
O�

.@1'j /'k@23'iA3;1.i; j; k/@3 .D T 09/

C

X
ijk

Z
O�

'k.@23'j @1'i /A3;1.i; j; k/@3 .D T 010/

C

X
ijk

Z
O�

'k.@12'j @3'i /A3;1.i; j; k/@3 .D T 011/

� 2
X
ijk

Z
O�

'k@13'j @2'iA3;1.i; j; k/@3 .D T 012/:

By an argument analogous to (A.5)ff., T 03 D T
0
8 D 0. Moreover, permuting indices yields

as above T 04 C T
0
7 C T

0
11 D 0 and T 09 C T

0
10 D 0, whereas T 02 C T

0
12 D 0 follows directly.

Therefore,

S3 D 2
X
ijk

Z
O�

.@3'j /'k.@2'i /B1.i; j; k/@1 

C 2
X
ijk

Z
O�

.@3'j /'k@2'iB3.i; j; k/@3 
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C

X
ijk

Z
O�

@1'j'k@3'iB1.i; j; k/@2 dx

DW S6 C S7 C S8 (A.9)

Until now, we have only considered the contributions from A1;2, A3;1 and A2;3. The
contributions containing B1, B2, B3 then read as

S4 C S5 C S6 D 6
X
ijk

Z
O�

'k@2'j @3'iB1.i; j; k/@1 

C 3
X
ijk

Z
O�

'k@3'j @1'iB1.i; j; k/@2 

C 3
X
ijk

Z
O�

'k@1'j @2'iB1.i; j; k/@3 

C 3
X
ijk

Z
O�

'k@2'j @3'iB2.i; j; k/@2 

C 3
X
ijk

Z
O�

'k@2'j @3'iB3.i; j; k/@3 

D S9 C S10 C S11 C S12 C S13:

Combining this with (A.7), (A.8) and (A.9), we may then build the overall sum S1C � � � C

S6 D S1 C � � � C S13. Summing all terms, we note by an analogous permutation argument
that S3 C S4 C S12 D 0, S5 C S7 C S13 D 0, and soZ

O�

.T�w/1 � r dx D 2
X
ijk

Z
O�

'k@2'j @3'iB1.i; j; k/@1 dx .� S1 C S6 C S9/

C 2
X
ijk

Z
O�

'k@1'i@3'jB1.i; j; k/@2 dx .� S8 C S10/

C 2
X
ijk

Z
O�

'k@1'j @2'iB1.i; j; k/@3 dx .� S2 C S11/;

where we use the symbol ’�’ to indicate where the single terms stem from. This is pre-
cisely (4.12), and so the proof is complete.
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