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1 Introduction

The origin of this paper lies in the questions on �etale cohomology for rigid analytic

spaces posed in [S-S]. In that paper an �etale site and a corresponding cohomology the-

ory for analytic varieties are de�ned. We prove here that the axioms for an `abstract

cohomology' (as stated in [S-S]) hold for this cohomology theory. In addition, we prove

a (quasi-compact) base change theorem for rigid �etale cohomology and a comparison

theorem comparing rigid and algebraic �etale cohomology of algebraic varieties.

The main tools in this paper are analytic (resp. �etale) points and rigid (resp.

�etale) overconvergent sheaves. The rigid overconvergent sheaves on a�noids were �rst

introduced in [P82] and were called constructible in that paper. They were further

studied in [S93] and were called conservative there. The term `overconvergent', also

used by P. Berthelot in recent work, seemed more appropriate this time.

In Section 2 we (re)introduce some basic notations concerning analytic points and

rigid overconvergent sheaves, which are needed later on. We (re)prove a number of

folklore results, most importantly: 1) Rigid cohomology agrees with

�

Cech cohomology

on quasi-compact spaces. 2) The cohomological dimension of a paracompact space
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2 Johan de Jong and Marius van der Put

is at most its dimension. 3) A base change theorem for rigid spaces which is more

general than the results of [P82] or [S93].

The rest of the paper deals with �etale sites and �etale cohomology.

�

Etale points

and �etale overconvergent sheaves are introduced. A key point is the introduction of

special �etale morphisms of a�noids U ! X , analogous to rational subdomains in the

rigid case. Included in the paper is the proof by R. Huber that any �etale morphism of

a�noids is special �etale. This simpli�es the original exposition somewhat. A structure

theorem for �etale morphisms (3.1.2) allows us to give a proof of the �etale base change

theorem following closely the proof in the rigid case. We calculate the cohomology

groups of one dimensional spaces in Section 4. This allows us to prove the basic

results mentioned at the beginning of this introduction (Sections 5, 6 and 7).

We have tried to be complete in the proofs of various statements. We hope that

this paper may serve as an introduction to rigid and �etale cohomology of rigid analytic

spaces.

Berkovich, in the paper [B93], develops an �etale cohomology theory for analytic

spaces. The category of analytic spaces used there was introduced in [B90] and

extended in [B93]. It is di�erent from the category of rigid analytic spaces. For

this reason we have not borrowed from his work. However, we have to mention that

the approach taken here, in some sense, does not di�er from his (although in this

paper we have to deal with non-overconvergent sheaves also, which do not correspond

to sheaves on the Berkovich analytic spaces). For example, Lemma 2.1.1, which

controls the �etale stalk functors, is more or less equivalent to Theorems 2.1.5 & 2.3.3

of [B93]. Furthermore, using the equality of Berkovich cohomology with ours in the

case of paracompact varieties (see [Hu, Section 8.3]), all our results on cohomology

of overconvergent sheaves are in principle deducible from the references [B93, B94a,

B94b, B94c].

�

Etale cohomology theories for rigid analytic spaces were developed by O. Gabber

(unpublished) and K. Fujiwara, who proved Deligne's conjecture using his theory.

As mentioned above R. Huber constructed an �etale cohomology theory for his adic

spaces, this specializes to give a theory for rigid analytic spaces also.

We thank P. Schneider for sending his informal notes [S91] to the authors for

consultation.

1.1 Notations and conventions

� Unless stated otherwise k will be a complete non Archimedean valued �eld.

� As general reference for the basic facts and de�nitions concerning rigid analytic

varieties we take [BGR].

� All rigid analytic varieties occurring in this work will be quasi-separated analytic

varieties. This means that the diagonal morphismX ! X�X is quasi-compact,

or equivalently that the intersection of any two a�noid subvarieties of X is a

�nite union of a�noid subvarieties of X . It is clear that �bre products of such

are still quasi-separated.

� We work frequently with sites and associated topoi as in [SGA 4]. We recall

that a morphism of sites f : S

1

! S

2

is a continuous functor u : S

2

! S

1

(remark that u goes in the opposite direction!), which induces a morphism of
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associated topoi S

�

1

! S

�

2

(see [SGA 4, IV 4.9]). We remark that if S

2

allows

�nite projective limits then it su�ces that u is continuous and preserves �bred

products.

� A sheaf F on a site S is said to be 
abby if for any object U in S we have

H

q

(U;F) = 0 for all q > 0. It is said to be 
asque if for any morphism U ! V

the restriction map F(V )! F(U) is surjective. A 
asque sheaf is 
abby since

�

Cech cohomology may be used to determine whether a sheaf is 
abby ([M80,

III 2.12]).

2 Analytic points and rigid overconvergent sheaves

In this section we will review the base change theorem for rigid analytic spaces (see

[P82, S93]). We will introduce our basic notations and reprove the statements of

[P82] (whose proofs are perhaps somewhat sketchy). We try to avoid using results

from [B90] except for the basic fact that the space M(X) (see below) is Hausdor�

and compact (this is not hard to prove). Finally, we prove a slightly stronger version

of the base change theorem, namely that it holds for arbitrary sheaves.

2.1 Sites, sheaves and analytic points on affinoids

Let X be an a�noid space over some complete non Archimedean valued �eld k. On X

we consider the special Grothendieck topology given by the collection of �nite unions

of open a�noid subspaces and the admissible coverings. (See [FP, GP], this is a G-

topology slightly stronger than the weak G-topology of X in [BGR, 9.1.4].) We will

write X

rigid

for the following site:

1. The objects are the admissible open subsets of X . We choose here as admissible

opens the �nite unions of open a�noid subsets. These will also be called the

special subsets of X .

2. A morphism between to objects is an inclusion between the admissible subsets.

3. For an object U the elements of Cov(U) are those set-theoretical coverings of U

by admissible opens which can be re�ned to �nite coverings.

We use the special G-topology rather than the strong G-topology since it behaves

better with respect to base change and change of base �eld. We remark that this

gives the same category of sheaves.

It is sometimes easier to work with a subcategory X

rat

rigid

of X

rigid

. The objects

of X

rat

rigid

are the rational subsets of X . A rational subset of X is a set of the form

fx 2 X j jf

1

(x)j � jf

i

(x)j for all i with 1 � i � ng

where f

1

; : : : ; f

n

are elements of O(X) generating the unit ideal. We note that a

small change of the f

1

; : : : ; f

n

does not a�ect the subset above. It is known that

every open a�noid subset of X is a �nite union of rational subsets ([GG]). A rational

covering of a rational U � X is a covering of the form U = [

m

i=1

U

i

given by elements

f

1

; :::f

m

2 O(U) generating the unit ideal such that the U

i

are the rational subsets

(of U and also of X) U

i

:= fx 2 U j jf

i

(x)j � jf

j

(x)j for all jg. This de�nes for every
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object the collection of coverings. The morphism of sites X

rigid

! X

rat

rigid

(given by

the inclusion functor X

rat

rigid

! X

rigid

, see our conventions) de�nes an isomorphism

of associated topoi, this follows from the fact that any special subset of X is a �nite

union of rational subsets and any �nite a�noid covering of an a�noid variety can be

re�ned to a rational covering (see for example [BGR, 8.2.2/2]).

It is well known that the set of ordinary points of X is too small to "separate"

the sheaves on X

rigid

. For this purpose one introduces new points, called analytic

points. (See [P82, S93]). We will adopt here the terminology of [S93].

An analytic point a of X is a semi-norm j j

a

: O(X) ! R

�0

on the a�noid

algebra O(X) of X satisfying:

1. jf + gj

a

� max(jf j

a

; jgj

a

) for all f; g 2 O(X).

2. jfgj

a

= jf j

a

jgj

a

for all f; g 2 O(X).

3. For � 2 k the value j�j

a

is the absolute value of �.

4. j j

a

: O(X)! R

�0

is continuous with respect to the norm topology on O(X).

The �lter of the analytic point a consist of the a�noid subdomains U of X for

which there exists a rational covering given by f

1

; :::; f

n

and an i such that U � U

i

and jf

i

j

a

� jf

j

j

a

for all j. This is equivalent with the property that j j

a

extends to

a j j

a

: O(U) ! R

�0

, i.e., that a is also an analytic point of U . We write a 2 U

to denote that U belongs to the �lter of a. We will also need the concept of a wide

neighborhood of an analytic point a of X (see [S93, p. 131]). An element U of the

�lter of a is a wide neighborhood of a if there exists an a�noid generating system

f

1

; : : : ; f

n

of O(U) over O(X) such that jf

i

j

a

< 1 for all i.

LetM(X) denote the set of analytic points of X . We giveM(X) the coarsest

topology such that for every g 2 O(X) the map M(Z) ! R given by a 7! jgj

a

is

continuous. For an analytic point a a fundamental system of neighborhoods is given

by the subsetsM(U) where U runs through the (a�noid) wide neighborhoods of a.

The spaceM(Z) is Hausdor� and compact for this topology. These results are not

hard to prove, they follow from 1.2.2 and 1.3.3 of [P82], but see [B90, x1], [S93, x1]

for more details. We will repeatedly make use of the following corollary of the above:

Suppose that fX

i

g

i2I

are a�noid subdomains of X such that for any analytic point a

of X some X

i

is a wide neighborhood of a, then the covering X =

S

X

i

is admissible,

i.e., �nitely many of the X

i

cover X.

The stalk of a sheaf S on X

rigid

at an analytic point a is de�ned as S

a

=

lim

!

S(U) where the direct limit is taken over all U in the �lter of a. The mod-

i�ed stalk of S at a is S

mod

a

= lim

!

S(U) where the limit is over the wide open

neighborhoods of a in X .

For every U in the �lter of a the semi-norm j j

a

extends to a semi-norm on O(U).

Hence we get a semi-norm j j

a

on O

a

the stalk of O = O

X

at a. A fundamental fact

that we will use is (see [P82, 1.3.1]) that for f 2 O(X):

jf j

a

= inffjjf jj

U

g

where U runs through the �lter of a. In fact it su�ces to consider only wide open

neighborhoods of a (use that for U � X rational we have jjf jj

U

= inf

r>1

jjf jj

U(r)
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where U(r) is de�ned as in 2.3 below). It follows from these considerations that the

ideal m

a

of elements f 2 O

a

satisfying jf j

a

= 0 is the unique maximal ideal of O

a

(and similar for O

mod

a

). The �eld O

a

=m

a

will be denoted by k

a

. The semi-norm j j

a

induces a valuation on k

a

. This valuation extends the valuation of the sub�eld k of

k

a

. In general the �eld k

a

is not complete and its completion is denoted by F

a

. (The

same constructions give k

mod

a

and F

mod

a

.)

Let � : O(X)! F

a

denote the continuous homomorphism of k-algebras obtained

above from j j

a

. Then one sees that jf j

a

= j�(f)j. This remark shows that our

de�nition of analytic point coincides with the equivalence classes of analytic points as

de�ned in [S93]. Every ordinary point of X is also an analytic point (with F

a

= k

a

a �nite extension of k). The following lemma will be useful in our study of the �etale

site of X .

Lemma 2.1.1 Notations are as above.

1. O

a

and O

mod

a

are Henselian local rings.

2. k

a

and k

mod

a

are Henselian valued �elds.

3. F

a

is �nite over a complete sub�eld K which has a dense sub�eld k(t

1

; :::; t

d

)

with d � the dimension of X .

4. The homomorphism O

mod

a

! O

a

is local, 
at and induces an isomorphism

F

mod

a

�

=

F

a

.

Proof. Let O

a

� A be a �nite free extension of rings. We claim the following: the

ring A

^


F

a

has a nontrivial idempotent if and only if A has one. (We also claim a

similar result for O

mod

a

.)

This immediately implies (1) (see [R70, I Proposition 5]). Statement (2) means

that the valuation ring of k

a

(resp. k

mod

a

) is an Henselian ring. Our claim implies

that a �nite separable ring extension k

a

� k

0

contains a copy of k

a

if and only if

the tensor product k

0


 F

a

contains a copy of F

a

(use a lift O

a

! A of the �nite

extension k

a

! k

0

). This gives that any scheme �etale over the valuation ring of k

a

has a k

a

-valued point if and only if it has a F

a

-valued point. This assertion combined

with the fact that the valuation ring of F

a

is Henselian implies that k

a

is a Henselian

valued �eld (use the criterium of [R70, Proposition 3 page 76]).

To prove our claim, note that the ring extension O

a

� A comes from a �nite

free ring extension O(U) � A

U

for some U in the �lter of a. Clearly, A

U

is an

a�noid algebra and hence determines a �nite 
at morphism � : V = Spm(A

U

)! U .

The fact that A

^


F

a

�

=

A

U

^


F

a

has a nontrivial idempotent is equivalent to the

fact that �

�1

(a) = b

1

; : : : ; b

s

has at least two elements. Let us take disjoint wide

neighbourhoods V

i

of the b

i

in V . There exists a smaller U

0

in the �lter of a such

that �

�1

(U

0

) is contained in [V

i

(see Lemma 3.1.6 below; the reader may check that

this lemma is not used before that lemma). Therefore the algebra A

U

0

= A

U


O(U

0

)

decomposes and hence so does A. The proof for O

mod

a

is the same.

(3) After dividing O(X) by a prime ideal we may suppose that j j

a

is a norm on

O(X). The �eld of quotients of O(X) is a dense sub�eld of F

a

. The algebra O(X) is

�nite over some A := khT

1

; : : : ; T

d

i with d equal to the dimension of X . Let K � F

a

denote the completion of the �eld of quotients of A with respect to j j

a

. The �eld F

a

is �nite over K and K has k(T

1

; : : : ; T

d

) as dense sub�eld with respect to j j

a

.
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(4) It is clear that the homomorphism O

mod

a

! O

a

is local and 
at. Suppose

that } is the kernel of the seminorm j j

a

on O(X). It is clear that the fraction �eld

of O(X)=} is dense in both F

a

and F

mod

a

. The result follows. 2

Remark 2.1.2 It follows from this lemma and its proof that there are equivalences

between the following categories: the category of �nite separable extensions of F

a

,

of �nite separable extensions of k

a

, of �nite separable extensions of k

mod

a

, of �nite

�etale extensions of local rings O

a

� A, and of �nite �etale extensions of local rings

O

mod

a

� A. Furthermore, any such extension comes from a �nite �etale (see paragraph

4) morphism V ! U where U is a wide neighbourhood of a.

It is clear that the above constructions are functorial in the following sense. If

f : Y ! X is a morphism of a�noids over k, then we get a morphism of sites

Y

rigid

! X

rigid

(resp. Y

rat

rigid

! X

rat

rigid

). Indeed, if U � X is an a�noid subdomain

(resp. rational subset) then so is f

�1

(U) � Y . Hence a functor X

rigid

! Y

rigid

; U 7!

f

�1

(U), it is easy to see that this is continuous and compatible with �bre products

(i.e., intersections). The associated adjoint functors on sheaves are denoted f

�

; f

�

as

usual.

The morphism f also induces a continuous map: M(Y ) ! M(X). The semi-

norm O(Y )! R

�0

is mapped to the composition O(X)! O(Y )! R

�0

. We remark

that if f identi�es Y with an a�noid subdomain of X then 1) Y

rigid

�

=

X

rigid

=Y and

2) the analytic points of Y are identi�ed with those analytic points a of X such that

Y is in the �lter of a, i.e., a 2 Y .

2.2 Sites, sheaves and analytic points for general X

To the analytic variety X we associate the site X

rigid

by exactly the same de�nition

as for a�noid X 's. The objects are the �nite unions of a�noid open subvarieties and

the coverings are coverings which can be re�ned to �nite coverings. (Since X is quasi-

separated, the intersection of two a�noid open subvarieties is an object of the category

X

rigid

, so that X

rigid

is indeed a site.) We remark that the the associated toposX

�

rigid

is again naturally isomorphic to the category of sheaves on X (as de�ned in [BGR,

9.2]). A morphism f : Y ! X induces a morphism of topoi f

rigid

: Y

�

rigid

! X

�

rigid

but not in general a morphism of sites Y

rigid

! X

rigid

. Indeed, this morphism of sites

exists if and only if f is quasi-compact.

The spaceX has some admissible covering fX

i

g by a�noids subsets. The analytic

points of X are just the analytic points of the X

i

, subject to the usual equivalence

relation. (For a more precise de�nition see [S93, x2].) We remark that our f : Y ! X

induces a map on analytic points.

Finally, suppose f : Y ! X is an open immersion (in the sense of [BGR, p. 354]).

It is easy to prove (using the above) that: 1) f induces an injection between the sets

of analytic points and 2) f induces an isomorphism Y

�

rigid

! X

�

rigid

=Y (where Y

denotes the sheaf V 7! Mor

X

(V; Y ) on X

rigid

). However, it is not true that any f

satisfying 1) and 2) is an open immersion.

2.3 Overconvergent sheaves on affinoids

Let X be an a�noid variety over k. The collection of analytic points of X is still not

large enough to "separate" the Abelian sheaves on X

rigid

. We can introduce a larger
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collection of points as in [P82] to remedy this fact. However, this larger collection of

points seems not to be of much use for questions like base change theorems et cetera.

We choose to work with a restricted collection of sheaves, namely the overconvergent

sheaves on X

rigid

.

Suppose that V � U are special subsets of X . We will say that V is inner in U

(w.r.t. X), or that U is a wide neighborhood of V in X , if for any analytic point a

of V there is an a�noid wide neighborhood U

a

of a in X with U

a

� U . Notation:

V ��

X

U . It is proved in [S93, x1 Proposition 23] that this agrees with the notion V is

relatively compact in U over X (see [BGR, 9.6.2]) if V and U are a�noid subdomains

of X : V ��

X

U , there is an a�noid generating system f

1

; : : : ; f

r

of O(U) over

O(X) such that

V � fx 2 U ; jf

1

(x)j < 1; : : : ; jf

r

(x)j < 1g:

Suppose V � X is rational in X given by the inequalities jg

0

j � jg

1

j; :::; jg

m

j.

For r > 1 and r 2

p

jk

�

j we de�ne the rational set V (r) by the inequalities rjg

0

j �

jg

1

j; :::; jg

m

j. It is easy to see that V ��

X

V (r). (The notation V (r) will be used even

if no explicit system g

0

; : : : ; g

m

de�ning V and V (r) is indicated.)

Lemma 2.3.1 With notations as above.

1. The V (r) form a co-�nal system of (special) wide neighborhoods in X of the

rational set V .

2. If V

1

; : : : ; V

n

are rational in X then

V

1

\ : : : \ V

m

��

X

V

1

(r) \ : : : \ V

m

(r)

(r > 1 and r 2

p

jk

�

j) and this forms a co-�nal system of wide neighborhoods

of V

1

\ : : : \ V

m

. Similarly for V

1

[ : : : [ V

m

��

X

V

1

(r) [ : : : [ V

m

(r).

Proof. Suppose that V ��

X

U (with U a special subset of X). We claim the covering

X = U [ (X n V ) is admissible. This is proved in [P92, Lemma 1.1], but let us

indicate another proof: For any analytic point a of X , a 62 V choose an a�noid wide

neighborhood W

a

of a with W

a

\V = ; (just de�ne W

a

by suitable inequalities). For

an analytic point a 2 V we choose the a�noid wide neighborhoodW

a

of a in X which

is contained in U . SinceM(X) is compact the covering X =

S

W

a

is admissible (see

3.1), hence so is X = U [ (X n V ). This proves our claim. In particular there is a

special W � X n V such that X = U [W .

Next, put W

i

= fw 2 W ; jg

i

(x)j � jg

j

(x)j j = 0; : : : ; ng for i = 1; : : : ; n. Of

course W =

S

W

i

since W \ V = ;. On W

i

the function g

i

is invertible hence we can

put

�

i

= jjg

0

=g

i

jj

W

i

and � = max

i

�

i

:

By the maximum modulus principle on W

i

and since W \ V = ; we get �

i

< 1 and

� < 1. It is now clear that for any r 2

p

jk

�

j, �

�1

> r > 1 we have V (r) \W = ; and

hence V (r) � U .

We prove 2) only in the case m = 2. Suppose that V

1

is given by the inequalities

jg

0

j � jg

1

j; : : : ; jg

n

j and that V

2

is given by the inequalities jf

0

j � jf

1

j; : : : ; jf

n

0

j. The

intersection V

1

(r)\V

2

(r) is given by the inequalities r

2

jg

0

f

0

j � jg

i

f

j

j; i = 0; : : : ; n; j =

0; : : : ; n

0

. The result follows. The statement for unions is trivial from 1). 2
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At this point we are able to de�ne the rigid overconvergent sheaves on our a�noid

variety X . A (pre)sheaf S (on X

rigid

) is called (rigid) overconvergent if for every

admissible open V � X we have

S(V ) = lim

�!

V��

X

U

S(U):

It follows from the lemma above that if S is a sheaf then S is overconvergent if

and only if S(V ) = limS(V (r)) for any rational V � X . These sheaves were called

the constructible sheaves in [P82]; they agree with the conservative sheaves of [S93]

by [S93, x1 Lemma 25]. In [S93, x1] it is shown that these overconvergent sheaves

correspond to sheaves on the topological spaceM(X).

Lemma 2.3.2 (Properties of overconvergent sheaves.) In this lemma all (pre)sheaves

are (pre)sheaves of Abelian groups on the a�noid variety X .

1. The sheaf associated to a overconvergent presheaf is overconvergent.

2. For any overconvergent sheaf S the presheaves U 7! H

i

(U; S) are overconver-

gent.

3. The category of overconvergent sheaves is an exact subcategory of the category

of all sheaves.

4. If f : Y ! X is a morphism of a�noids then f

�

and f

�

preserve overconvergent

sheaves. The same holds for R

q

f

�

.

5. If X =

S

X

i

is written as the �nite union of a�noid subdomains then a sheaf

S on X is overconvergent if and only if the restriction of S to any of the X

i

is

overconvergent.

6. A overconvergent sheaf S is zero if and only if all of its stalks S

a

at analytic

points of X are zero.

Proof. Let S be a overconvergent presheaf. Suppose V � X is the union of rational

subsets V

1

; : : : ; V

m

of X . Denote by V = fV

i

g the covering of V and by V(r) = fV

i

(r)g

the covering of V (r) :=

S

i

V

i

(r). It is immediate from Lemma 2.3.1 that

C

�

(V ; S) = lim

�!

r>1

C

�

(V(r); S):

(These symbols denote

�

Cech complexes.) It is therefore clear that the map

lim

�!

V��

X

U

�

H

p

(U; S) �!

�

H

p

(V; S)

is surjective.

Let us prove that it is also injective. Take a special U � X with V ��

X

U , an

admissible covering U = fU

i

g of U , a co-cycle � 2 C

p

(U ; S) whose

�

Cech cohomology

class maps to zero in

�

H

p

(V; S). This means there is a covering V = fV

j

g of V which

re�nes U \ V , i.e., there is a function � such that V

j

� U

�(j)

\ V , and a chain

� 2 C

p�1

(V ; S) with �(�)� d� = 0 2 C

p

(V ; S). Here �(�) is the image of � under the
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map C

p

(U ; S)! C

p

(V ; S) determined by �. By re�ning U and V we may assume that

U and V are �nite and that all U

i

and V

j

are rational subdomains of X .

By the above, the co-cycle � lifts to a co-cycle �

0

2 C

p

(U(r); S) for some r > 1.

Lemma 2.3.1 implies that there exists an r

�

> 1 such that V

j

(r

�

) � U

�(j)

(r)8j. For

an even smaller r

�

, we may also assume � lifts to a chain �

0

2 C

p�1

(V(r

�

); S). The

co-cycle �(�

0

) � d�

0

2 C

p

(V(r

�

); S) maps to zero as a chain in C

p

(V ; S), thus it is

already zero in some C

p

(V(r

��

); S), r

�

> r

��

> 1. We conclude that the cohomology

class of � in

�

H

p

(V (r

��

); S) is zero, which was what we wanted to show.

The isomorphism of

�

Cech cohomologies above proves that the presheaf

�

H

0

(S)

is overconvergent if S is overconvergent. Hence also the sheaf associated to S is

overconvergent. It proves (2) since

�

Cech cohomology agrees with usual cohomology

for any special U � X . (See [P82, 1.4.4] or our Proposition 2.5.4.)

The third statement of our lemma means that the kernels and co-kernels of over-

convergent sheaves are overconvergent and that if a short exact sequence of sheaves

0! S

1

! S

2

! S

3

! 0 is given, S

1

and S

3

are overconvergent then so is S

2

. These

statements follow easily from (1) and (2).

(4) If V � X is a rational subset, then f

�1

(V ) is a rational subdomain of Y

and we have: f

�1

�

V (r)

�

=

�

f

�1

(V )

�

(r). Thus it is clear from Lemma 2.3.1 that for

special V ��

X

U in X we have f

�1

(V ) ��

Y

f

�1

(U) and that these f

�1

(U) form a

co-�nal system of wide neighborhoods of f

�1

(V ).

Take an overconvergent sheaf S on Y . The sheaf R

q

f

�

S is the sheaf associated

to the presheaf U 7! H

q

(f

�1

(U); S). It is immediate from the remarks above and (2)

that this presheaf is overconvergent.

If S is a sheaf on X then f

�

S is the sheaf associated to the presheaf P de�ned

as follows on V 2 X

rigid

:

P (V ) = lim

�!

U2X

rigid

;f

�1

(U)�V

S(U)

Suppose S is overconvergent. If t 2 P (V ), i.e., t comes from s 2 S(U) for some U � X

as in the limit, then s comes from s

0

2 S(U

0

) for some U

0

2 X

rigid

with U ��

X

U

0

.

By the above we see that V ��

Y

f

�1

(U

0

). We conclude that the map

lim

�!

V��

Y

V

0

P (V

0

)! P (V )

is surjective. Let us prove that it is injective: Suppose t

0

2 P (V

0

) comes from some

s

0

2 S(U

0

) with f

�1

(U

0

) � V

0

and maps to zero in some S(U) with U � U

0

and

f

�1

(U) � V . There exists a wide neighborhood U

00

of U

0

and s

00

2 S(U

00

) mapping

to s

0

. Since S is overconvergent there is a special U

000

with U

000

� U

00

, U

000

��

X

U

such that s

00

maps to zero in U

000

. It is clear that V

00

:= V

0

\ f

�1

(U

000

) is a wide

neighborhood of V in Y such that t

0

maps to zero in P (V

00

). We have proved that P ,

hence f

�

S, is overconvergent.

(5) This follows from (3) and (4) since any sheaf S on X �ts into an exact

sequence

0 �! S �!

M

i

Sj

X

i

�!

M

i;j

Sj

X

i

\X

j

:

Here Sj

X

i

:= j

�

j

�

S where j : X

i

! X is the inclusion.
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(6) Take a section s 2 �(X;S). By assumption any analytic point a in X has an

a�noid wide neighborhood V

a

� X such that sj

V

a

= 0. By compactness of M(X)

we get that the covering X =

S

V

a

is admissible, hence s = 0. The same proof gives

that �(V; S) = 0 for arbitrary special V � X . 2

2.4 Overconvergent sheaves on general X

Let X be an arbitrary analytic variety over k. We will say that a sheaf S on X

is overconvergent if for any a�noid open subvariety V � X , the restriction Sj

V

is

overconvergent on V . Suppose X =

S

X

i

is an admissible a�noid covering. It follows

from Lemma 2.3.2 that S is overconvergent if and only if Sj

X

i

is overconvergent for

all i.

Suppose f : Y ! X is a morphism of rigid varieties. It is clear from Lemma

2.3.2 that f

�

preserves overconvergent sheaves. This is not true in general for f

�

or

R

q

f

�

. But it is true if f is quasi-compact.

Proposition 2.4.1 If f : Y ! X is a quasi-compact morphism then f

�

and R

q

f

�

preserve overconvergent presheaves.

Proof. Take an overconvergent sheaf S on Y . The question is local on X , hence

we may assume X a�noid. Thus Y is quasi-compact and hence by Lemma 2.5.3

we can �nd a �nite admissible a�noid covering Y =

S

Y

i

such that all intersections

Y

i

0

:::i

q

:= Y

i

0

\ : : : \ Y

i

q

are a�noid. At this point we use the spectral sequence

(deduced from the Cartan-Leray spectral sequence [SGA 4, V 3.3]) fE

pq

n

g abutting

to R

n

f

�

S and with E

2

-term:

E

pq

2

=

M

i

0

:::i

q

R

p

�

f j

Y

i

0

:::i

q

�

�

Sj

Y

i

0

:::i

q

By Lemma 2.3.2 all its terms are overconvergent sheaves. Hence by the same lemma

we see that R

n

f

�

S is overconvergent too. 2

2.5 Cohomology and

�

Cech cohomology

In this subsection we prove that cohomology agrees with

�

Cech cohomology on quasi-

compact varieties. Further we prove that the cohomological dimension of such an

analytic variety is at most its dimension.

Lemma 2.5.1 Let X be an a�noid variety, V � X special and a an analytic point of

X . There exists a wide neighborhood W =W

a

of a such that W \V is a �nite union

of Weierstrass domains, each de�ned by invertible functions.

Proof. Since V is a �nite union of rational subsets of X we may assume that V is

rational itself. Say it is de�ned by the inequalities jg

0

j � jg

1

j; : : : ; jg

n

j, where the g

i

generate the unit ideal of O(X). If a 62 V , then we can �nd a wide neighborhood W

of a disjoint with V . If a 2 V then jg

0

j

a

� jg

i

j

a

and since the g

i

generate the unit

ideal we get jg

0

j

a

> 0. Thus we may replace X by a wide neighborhood of a, so that

g

0

becomes invertible. In this situation V is de�ned by 1 � jf

i

j with f

i

= g

i

=g

0

, i.e.,

V is a Weierstrass domain in X . For those i such that �

i

:= jf

i

j

a

< 1, we may replace
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X by the wide neighborhood of a de�ned by jf

i

j � 1=2(1 + �

1

) and drop f

i

. At this

point V � X is de�ned as 1 � jf

i

j with jf

i

j

a

= 1 for all i. Hence the subset jf

i

j � j�j,

� 2 k; 0 < j�j < 1 de�nes a wide neighborhood of a such that f

i

is invertible on it. 2

Lemma 2.5.2 Suppose X is a�noid, V � X special. There exists a �nite covering

X =

S

X

i

by a�noids of X such that X

i

\ V is a�noid for all i.

Proof. By compactness of M(X) and the lemma above we may assume V � X

is a �nite union of Weierstrass domains, each given by invertible functions. Say

V =

S

n

i=1

V

i

and V

i

is de�ned by 1 � jf

i

1

j; : : : ; jf

i

n

i

j and each f

i

j

invertible.

Consider combinatorial data of the form A = (i; (j

1

; : : : ;

b

j

i

; : : : ; j

n

)) where i 2

f1; : : : ; ng and j

l

2 f1; : : : ; n

l

g for each l 6= i; l 2 f1; : : : ; ng. We put

V

A

=

�

x 2 X ; jf

i

j

(x)j � jf

l

j

l

(x)j; l = 1; : : : ;

^

i; : : : ; n; j = 1; : : : ; n

i

	

Remark that X =

S

A

V

A

since for any x 2 X there is some i 2 f1; : : : ; ng

such that max

j

jf

i

j

(x)j � max

j

jf

l

j

(x)j for all l 6= i. On the other hand, if

A = (i; (j

1

; : : : ;

b

j

i

; : : : ; j

n

)) as above then

V

A

\ V � V

i

;

and hence V

A

\ V = V

A

\ V

i

is a�noid. This is immediate from the de�nitions. 2

We remark that in proving the lemmata above we proved something slightly

stronger: Suppose we had started with an admissible a�noid covering V =

S

V

i

.

This we can re�ne to a �nite covering V =

S

V

i

with V

i

� X rational. The proof

of Lemma 2.5.1 shows that we can cover X by �nitely many a�noids X

j

such that

each X

j

\V

i

is a Weierstrass domain in X

j

de�ned by invertible functions. The proof

of Lemma 2.5.2 shows that we can cover each X

j

by �nitely many X

j;A

's such that

X

j;A

\ (V \X

j

) = X

j;A

\ V is contained in some V

i

. Thus we have proved the �rst

statement of the following lemma in the case that X is a�noid.

Lemma 2.5.3 Let X be a quasi-compact variety over k.

1. Given an admissible covering V : V =

S

V

i

of the special subset V of X , there

exists a �nite a�noid covering U : X =

S

X

j

such that the covering U \ V

re�nes V . In addition we may assume X

j

\ V

i

a�noid for all j.

2. There exists a �nite a�noid covering X =

S

X

j

such that X

i

\ X

j

is a�noid

for all i; j.

Proof. (1) This assertion follows immediately from the caseX a�noid (proved above)

by writing X as the �nite admissible union of a�noids (use that X is quasi-separated

by our conventions).

(2) Take �rst an arbitrary �nite a�noid covering X =

S

X

i

. By (1) we can �nd

�nite a�noid coverings U

ij

: X

i

=

S

k

X

ijk

such that X

ijk

\ (X

i

\X

j

) is a�noid for

all k. Next we take a �nite a�noid covering U

i

: X

i

=

S

l

X

il

re�ning U

ij

for all j. It

is clear that X

il

\X

jm

= X

il

\ (X

i

\X

j

)\X

jm

is a�noid (all intersections are taken

in X). Thus the covering X =

S

X

il

works. 2

Documenta Mathematica 1 (1996) 1{56



12 Johan de Jong and Marius van der Put

Proposition 2.5.4 Suppose X is a quasi-compact (and quasi-separated) variety.

�

Cech cohomology agrees with cohomology on X .

Proof. The Leray spectral sequence relating

�

Cech cohomology with cohomology

[SGA 4, V 3.4] shows that it su�ces to prove:

�

H

p

(X;S) = 0 if S is a presheaf

whose associated sheaf is zero. Suppose V is some �nite admissible covering of X and

� =

Q

�

i

o

:::i

p

2 C

p

(V ; S) =

Q

i

o

:::i

p

S(V

i

o

:::i

p

). We can �nd a covering V

i

o

:::i

p

of V

i

o

:::i

p

such that �

i

o

:::i

p

restricts to zero on each member of V

i

o

:::i

p

. By Lemma 2.5.3 we can

�nd a covering U

i

: V

i

=

S

U

ij

of V

i

such that U

i

\ V

i

o

:::i

p

(some i

l

= i) re�nes V

i

o

:::i

p

for all choices of the i

l

. Put U =

S

U

i

, it is an admissible covering of X and the map

� : C

�

(V ; S) �! C

�

(U ; S)

is de�ned using U

ij

� V

i

. It is clear that the chain � maps to zero under �. 2

Remark 2.5.5 By Lemma 2.5.3 this is a special case of [P82, 1.4.4]. The argument

in the proof of [P82, 1.4.5] together with Lemma 2.5.3 shows that

�

Cech cohomology

agrees with cohomology on any (quasi-separated, see conventions) X which is of

countable type (see De�nition 2.5.6 below).

We introduce some convenient topological notions for the Grothendieck topology

on our analytic varieties X .

Definition 2.5.6 Let X be an analytic variety over k.

1. We say that X is of countable type if there exists a countable admissible a�noid

covering of X .

2. Suppose that X =

S

X

i

is an admissible a�noid covering of X . We say that

the covering is locally �nite if each X

i

meets �nitely many X

j

.

3. The variety X will be called paracompact if there exists an admissible locally

�nite a�noid covering.

Lemma 2.5.7 A paracompact space X is the admissible disjoint union of paracom-

pact varieties of countable type. A connected paracompact variety X can be written

as the admissible union X =

S

n2N

X

n

, with X

n

quasi-compact and X

i

\X

j

= ; when

ji� jj � 2.

Proof. Since any rigid analytic space is the admissible disjoint union of its connected

components, it su�ces to prove the second statement. Therefore we assume that X

is connected and has a locally �nite a�noid admissible covering X =

S

X

�

. Let us

choose a �xed index �

0

. For any � we de�ne the distance d(�) of � to �

0

to be the

minimal length d of a sequence of indices �

0

; �

1

; : : : ; �

d

= � such that X

�

i

\X

�

i+1

6=

; for all i = 0; : : : ; d � 1. Since X is connected all distances are �nite. We put

X

n

=

S

d(�)=n

X

�

. Since the covering was locally �nite the spaces X

n

are quasi-

compact. The last condition of the lemma follows immediately from our de�nition of

distance. 2
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In the proof of the next proposition we need the relation of rigid analytic geometry

with formal geometry (see [R70] and [BL]). We recall that if X is a formal scheme of

�nite type and 
at over Spf(k

�

) then there is canonically associated a quasi-compact

rigid analytic variety X = X

rig

. If U � X is a formal open subscheme then U

rig

� X

rig

is an open subvariety. If X =

S

U

i

then X

rig

=

S

U

rig

i

is an admissible covering (see

[BL, x4]). Thus we get a morphism of sites X

rigid

= X

rig

rigid

! X

Zar

.

It is also possible to perform the construction X 7! X

rig

for formal schemes

X which are only locally of �nite type over Spf(k

�

). It is not true that any rigid

variety X comes from such a formal scheme. A counterexample can be constructed

by gluing a countable number of closed discs to a �xed closed disc along mutually

disjoint closed sub-discs. (This is also an example of a variety of countable type

which is not paracompact.) It can be proved using the lemma above and [BL] that

any paracompact X comes from a (paracompact) formal scheme X.

Proposition 2.5.8 (See [P82, 1.4.13]). If X is a quasi-compact rigid analytic variety

of dimension d then H

p

(X;S) = 0 for all p > d and all sheaves S on X .

Proof. Let us choose a formal scheme X with X

rig

�

=

X (see [R70] or [BL, Theorem

4.1]). Let us denote by fX

�

g the directed system of admissible blowing ups of X.

These all satisfy X

rig

�

�

=

X . Hence we get the morphism of sites �

�

: X

rigid

! X

�;Zar

.

Let us write S

�

:= �

�;�

S. There is a mapH

p

�

:= H

p

(X

�;Zar

; S

�

)! H

p

(X;S) deduced

from the map �

�

�

�;�

S ! S. It is proved in [BL, 4.4] that any �nite covering of X

comes from a covering of some X

�

. Therefore, by our result that

�

Cech cohomology

agrees with cohomology on X , we see that any cohomology class in H

p

(X;S) comes

from some H

p

�

. At this point we just remark that the underlying Zariski topological

space associated to X

�

is the underlying topological space of a scheme of �nite type

over the �eld

�

k of dimension at most n. The result follows. 2

Remark 2.5.9 If we allow in X

rigid

only �nite coverings then it is true that

limX

�;Zar

�

=

X

rigid

as sites (see letter of Deligne to Raynaud of 23 august 1992).

In this way it becomes clear that in fact limH

p

�

= H

p

(X;S). This follows from the

following general fact: Suppose the site S is the direct limit of a directed system of

sites S

�

. Then for any sheaf F on S there is a canonical isomorphism

lim

�!

�

H

q

(S

�

;Fj

S

�

)

�

=

H

q

(S;F):

This isomorphism is in fact easy to prove by induction on q, using the Cartan-Leray

spectral sequence and the fact that any cohomology class can be killed by some

covering.

Corollary 2.5.10 If X is paracompact and of dimension � d then cohomology of

sheaves on X is zero in degrees � d+ 1.

Proof. It su�ces to do the case where X is connected. Choose a covering X =

S

X

n

as in Lemma 2.5.7. Put V

1

=

S

n odd

X

n

and V

2

=

S

n even

X

n

. The spaces V

1

, V

2

and

V

1

\ V

2

are admissible disjoint unions of quasi-compact varieties. Note that for any

sheaf S on X the maps H

d

(X

n

; S)�H

d

(X

n+1

; S)! H

d

(X

n

\X

n+1

; S) is surjective,

otherwise the sheaf S on X

n

[X

n+1

would have a nontrivial d+1

th

-cohomology group,
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a contradiction with the proposition. With these remarks the result of the corollary

follows from a consideration of the Cartan-Leray spectral sequence associated to the

covering X = V

1

[ V

2

. 2

Remark 2.5.11 Any separated variety of dimension 1 is paracompact. See [LP].

Similarly, the analytic space associated to a scheme of �nite type over Spec(k) is

paracompact.

2.6 General morphisms

Consider an extension of complete valued �elds k � K. In [BGR, 9.3.6] there is

constructed a base change functor X 7! X

^


K of analytic varieties over k to analytic

varieties over K. If X is a�noid then X

^


K is a�noid with algebra O(X)

^




k

K. In

general, if X =

S

X

i

is an admissible a�noid covering then X

^


K is de�ned as the

gluing of theX

i

^


K. If V is an a�noid open subvariety of X then so is V

^


K � X

^


K.

In this way (use [BGR, 9.3.6/1& 2]) we see that there is a morphism of sites

' = '

K=k

: (X

^


K)

rigid

! X

rigid

:

Lemma 2.6.1 The functors '

�

, '

�

and R

q

'

�

preserve overconvergent sheaves.

Proof. There is a trivial reduction to the case that X is a�noid. Let V be a rational

subdomain of X . It is clear that V (r)

^


K =

�

V

^


K

�

(r) for r > 1; r 2

p

jk

�

j (see

[BGR, 9.3.6/1]). These form a co-�nal system of wide neighborhoods of V

^


K since

p

jk

�

j is dense in R

�0

. Thus it is clear from Lemma 2.3.1 that for special V ��

X

U

in X we have V

^


K ��

X

^


K

U

^


K and that these U

^


K form a co-�nal system of

wide neighborhoods of V

^


K. The rest of the proof is exactly the same as the proof

of Lemma 2.3.2 part 4. 2

Let k � K denote an extension of complete valued �elds. Let X (resp. Y ) denote

an arbitrary analytic variety over the �eld k (resp. K). The most convenient way

to de�ne a general morphism f : Y ! X is to say that f is a morphism of the

K-analytic spaces Y ! X

^


K. If both X and Y are a�noid then this is simply

a continuous k-algebra homomorphism O(X) ! O(Y ), since any such factors as

O(X) ! O(X)

^




k

K ! O(Y ). By the above, a general morphism f : Y ! X

gives rise to a morphism of topoi f

rigid

: Y

�

rigid

! X

�

rigid

. The pullback functor,

written f

�

, preserves overconvergent sheaves. We say that the morphism f is quasi-

compact if Y ! X

^


K is quasi-compact. In this case f induces a morphism of sites

Y

rigid

! X

rigid

and R

q

f

�

preserves overconvergent sheaves for all q. (Use the lemma

above and Proposition 2.4.1.)

If, in addition, we are given a morphism Z ! X of analytic varieties over k, then

we can form the �bre product:

Y �

X

Z := Y �

X

^


K

X

^


K

It is an analytic variety over K which satis�es a certain universal property regarding

general morphisms; we leave it to the reader to describe this property explicitly.
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2.7 Base change

The aim of the base change theorem is to compare H

q

(Y

a

; Sj

Y

a

) with

�

R

q

f

�

S

�

a

for

sheaves S on Y . Here Y

a

is the �bre of a morphism f over the analytic point a. Let

us �rst de�ne this �bre.

Consider a morphism f : Y ! X of analytic varieties over k and let an analytic

point a of X be given. The �bre Y

a

of f over a is de�ned as the �bre product of

the general morphism Spm(F

a

) ! X with f . It can also be de�ned as the �bre of

f

^


F

a

: Y

^


F

a

! X

^


F

a

over the usual point a 2 X

^


F

a

. There results a general

morphism � : Y

a

! Y . We remark that � is quasi-compact; the morphism of sites

(Y

a

)

rigid

! Y

rigid

comes from the functor V 7! V

a

on special subsets of Y . For a

sheaf S on Y we write SjY

a

instead of �

�

(S). Finally, we remark that if both X and

Y are a�noid then Y

a

is a�noid with algebra O(Y )

^




O(X)

F

a

.

Lemma 2.7.1 (Key lemma for the rigid case.) Let a morphism f : Y ! X of a�noid

spaces over k be given together with an analytic point a of X . Write � : Y

a

! X for

the resulting general morphism.

1. For every admissible open V � Y

a

(i.e., V 2 (Y

a

)

rigid

) there is an admissible

open W � Y such that V =W

a

.

2. Suppose W;Z are admissible open in Y and W

a

� Z

a

. There is a U in the �lter

of a such that W \ f

�1

(U) � Z.

Proof. (1) We may assume that V is a rational subset of Y

a

. Thus V is given by

inequalities jg

1

j � jg

1

j; :::; jg

m

j with elements g

1

; :::; g

m

2 O(Y

a

) = O(Y )

^




O(X)

F

a

generating the unit ideal. Say that f

1

g

1

+ : : : + f

m

g

m

= 1. We may suppose that

the g

i

come from elements g

i

2 O(Y ) 


O(X)

k

a

. So there is some U in the �lter of

a and elements G

i

2 O(Y )

^




O(X)

O(U) = O(f

�1

(U)) mapping to the g

i

. If we take

F

i

2 O(Y )

^




O(X)

O(U) = O(f

�1

(U)) mapping to elements close to the f

i

then we see

that F

1

G

1

+: : :+F

m

G

m

= 1+� where � maps to an element of O(Y

a

) = O(Y )

^




O(X)

F

a

with small norm, say with spectral norm < 1. By Lemma 2.7.2 this implies that �

gets spectral norm < 1 in O(Y )

^




O(X)

O(U) = O(f

�1

(U)) for some smaller U in the

�lter of a. Hence we see that G

1

; : : : ; G

m

generate the unit ideal in O(f

�1

(U)). Thus

W � f

�1

U given by the inequalities jG

1

j � jG

1

j; :::; jG

m

j works.

(2) We may assume that W is a rational subdomain of Y . Next we write Z

as a �nite union Z =

S

Z

i

of rational subdomains Z

i

of Y . The �nite covering

W

a

=

S

i

W

a

\ (Z

i

)

a

can be re�ned by a rational covering W

a

=

S

j

V

j

given by a

number of elements g

1

; : : : ; g

m

in O(W

a

) generating the unit ideal. Arguing as above,

we may suppose that the g

i

come from G

i

2 O(W ) generating the unit ideal, after

replacing X by some U in the �lter of a. The rational subsets W

j

of W de�ned

by jG

j

j � jG

1

j; :::; jG

m

j cover W and each (W

j

)

a

is contained in some (Z

i

)

a

. If

we solve the problem for all the pairs (W

j

; Z

i

) with (W

j

)

a

� (Z

i

)

a

then we solve

the problem for (W;Z). Thus we have reduced to the case that both W and Z are

rational subdomains of Y .

At this point we replace Z by Z \W , then we are in the situation that Z � W

is a rational subdomain, Z

a

= W

a

and we want to show that there is some U such

that W \ f

�1

(U) = Z \ f

�1

(U) � Z. Suppose that Z is given by inequalities

jh

0

j � jh

1

j; :::; jh

n

j where h

0

; :::; h

n

generate the unit ideal in O(W ). In particular, h

0

Documenta Mathematica 1 (1996) 1{56



16 Johan de Jong and Marius van der Put

is an invertible function on Z, hence on Z

a

= W

a

. Arguing as in (1), we may shrink

X and assume that h

0

is invertible onW . Dividing by h

0

we see that we may suppose

that Z is given by the inequalities jh

1

j � 1; : : : ; jh

m

j � 1. The h

i

have norms � 1 on

W

a

. Hence, by Lemma 2.7.2, we can �nd a U in the �lter of a such that the h

i

have

norm � 1 on W \ f

�1

(U), i.e., such that W \ f

�1

(U) = Z \ f

�1

(U). 2

Lemma 2.7.2 Let f : Y ! X be a morphism of a�noid spaces over k, let a be an

analytic point of X . Let g 2 O(Y ) whose image �(g) 2 O(Y

a

) has spectral norm � 1

(resp. < 1). There is a U in the �lter of a such that the spectral norm of g on f

�1

(U)

is � 1 (resp. < 1).

Proof. Let us write O(Y ) = O(X)hT

1

; :::; T

n

i=(G

1

; :::; G

m

). With obvious notations

we have O(Y

a

) = F

a

hT

1

; :::; T

n

i=(G

1

(a); :::; G

m

(a)). If the spectral norm of �(g) is

� 1 it follows that �(g) is integral over the ring F

a

hT

1

; :::T

n

i

o

. Let such an equation

be

�(g)

e

+ c

e�1

�(g)

e�1

+ :::+ c

0

= 0

Write c

i

=

P

c

i;�

T

�

with all c

i;�

2 F

a

satisfying jc

i;�

j

a

� 1.

Choose some � 2 k with 0 < j�j < 1. For the c

i;�

with jc

i;�

j

a

� j�j (there are

only �nitely many of these!) we take a suitable U in the �lter of a and elements

C

i;�

2 O(U) with images �(C

i;�

) 2 F

a

such that j�(C

i;�

) � c

i;�

j

a

< j�j. (This is

possible, the image of O

a

is dense in F

a

.) It follows that j�(C

i;�

)j

a

� 1. Thus the

inequalities jC

i;�

j � 1 de�ne a smaller U in the �lter of a where the elements C

i;�

have spectral norm � 1. For convenience we replace X by U and Y by f

�1

U . The

C

i;�

2 O(X) are elements with spectral norm � 1. We consider the expression

R := g

e

+ 
(

X

C

e�1;�

T

�

)g

e�1

+ :::+ 
(

X

C

0;�

T

�

)

where 
 denotes the map O(X)hT

1

; :::; T

n

i ! O(Y ). This element R 2 O(Y ) has an

image �(R) 2 O(Y

a

) with spectral norm < j�j. If we can �nd a U in the �lter of a

such that the spectral norm of R on f

�1

U is < 1 then we replace again X by U and

Y by f

�1

U . After this is done the spectral norm of R on Y is < 1 and the spectral

norms of the 
(

P

C

i;�

T

�

) are � 1. It follows at once that the spectral norm of g on

Y is � 1.

In this way we have reduced the case � 1 of the lemma to the case < 1. Let

us therefore assume that the spectral norm of �(g) is < 1. For some N � 1 the

element �(g

N

) 2 O(Y

a

) has a pre-image g

1

2 F

a

hT

1

; :::; T

n

i with norm < 1. Take also

a g

2

2 O(X)hT

1

; :::; T

n

i with image g

N

2 O(Y ). Then �(g

2

)� g

1

2 F

a

hT

1

; :::; T

n

i lies

in the ideal generated by the fG

1

(a); :::; G

m

(a)g and we can write

�(g

2

)� g

1

=

X

i

G

i

(a)(

X

�

a

i;�

T

�

)

where the coe�cients a

i;�

2 F

a

have limit 0. For the a

i;�

with ja

i;�

j � j�j we choose

a U in the �lter of a and elements A

i;�

2 O(U) such that the di�erence of the image

of A

i;�

and a

i;�

in F

a

has absolute value < j�j. We may suppose again that U = X .

We suppose that � is chosen such that all coe�cients of �G

i

(a) have norm < 1 (in

F

a

). After changing g

2

into g

2

�

P

i

G

i

(

P

�

A

i;�

T

�

) 2 O(X)hT

1

; :::; T

n

i we have the

situation that �(g

2

) � g

1

2 F

a

hT

1

; :::; T

n

i and �(g

2

) 2 F

a

hT

1

; :::; T

n

i are power series
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with coe�cients having absolute values < 1. For the �nitely many coe�cients in

O(X) of g

2

with absolute value � 1 we can �nd a U in the �lter of a such that their

spectral norms on f

�1

U are < 1. After shrinking X to U and Y to f

�1

U we arrive

at the situation where all the coe�cients of g

2

are < 1. Hence the spectral norm of

g

N

on Y is < 1 and so the spectral norm of g on Y is < 1. 2

Lemma 2.7.3 In the situation of the Key Lemma.

1. The functor S 7! Sj

Y

a

preserves 
asque sheaves.

2. For any sheaf S on Y the sheaf �

�

rigid

(S) = Sj

Y

a

can be described as follows:

�(W

a

; Sj

Y

a

) = lim

�!

a2U�X

S

�

W \ f

�1

(U)

�

:

Here W is any special subset of Y .

Proof. (1) This is clear from the �rst assertion of our Lemma 2.7.1. (2) From Lemma

2.7.1 it follows that for any S we have

�(W

a

; Sj

Y

a

) = lim

�!

Z�Y;Z

a

=W

a

S

�

Z

�

:

The limit is over all admissible open Z � Y such that Z

a

= W

a

. From Lemma 2.7.1

part 2 it follows that the Z =W \ f

�1

(U) are co-�nal in this system. 2

Finally, we come to the base change theorem. To give a natural statement recall

that a �-functor between to Abelian categories A and B is a sequence of functors

fT

n

g

n�0

(equipped with certain boundary operators) such that any short exact se-

quence in A is transformed into a long exact sequence in B. (For a more precise

de�nition see for example [H77]).

Theorem 2.7.4 (Base change for rigid spaces.) Let f : Y ! X be a quasi-compact

morphism of rigid analytic varieties over k. Take any analytic point a of X and denote

by Y

a

the �bre of f over a. The functors S 7! H

n

(Y

a

; Sj

Y

a

) (resp. S 7!

�

R

n

f

�

S

�

a

)

on the category of Abelian sheaves on Y

rigid

form a �-functor. These �-functors are

isomorphic:

�

R

n

f

�

S

�

a

�

=

H

n

(Y

a

; Sj

Y

a

) for any Abelian sheaf S on Y .

Proof. The functor S 7! Sj

Y

a

is exact and so is the functor F 7! F

a

on sheaves on X .

From this follows immediately that the functors under consideration form �-functors.

Let us de�ne the canonical morphisms:

(�)

�

R

n

f

�

S

�

a

�! H

n

(Y

a

; Sj

Y

a

)

Since Sj

Y

a

= �

�

(S) there are canonical homomorphisms H

n

(X;S) ! H

n

(Y

a

; Sj

Y

a

)

and these form a transformation of �-functors. For any open subvariety U � X , with

a 2 U , we have f

�1

(U)

a

= Y

a

and

�

Sj

f

�1

(U)

�

j

Y

a

= Sj

Y

a

. Hence the same argument

gives

H

n

(f

�1

(U); S) �! H

n

(Y

a

; Sj

Y

a

):

Since

�

R

n

f

�

S

�

a

= limH

n

(f

�1

(U); S) (the limit is taken over U as above) we get the

desired map of �-functors.
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To prove that (*) is an isomorphism we may assume that X is a�noid. Let us

�rst do the case that Y is a�noid. The result for n = 0 is Lemma 2.7.3 with W = Y .

For a 
asque sheaf on Y both sides of (*) are zero for n � 1 (use 2.7.3), hence the

standard argument gives the result for general n. (Inject S into a 
asque sheaf and

argue by induction on n.)

There are two ways to get the result for general quasi-compact Y .

(1) Choose a �nite a�noid covering Y =

S

Y

i

such that all Y

i

0

:::i

q

= Y

i

0

\ : : :\Y

i

q

are

a�noid (see 2.5.3). The maps (*) for Y and all Y

i

0

:::i

q

induce a morphism of spectral

sequences f

1

E

pq

n

g ! f

2

E

pq

n

g abutting to the maps

�

R

p+q

f

�

S

�

a

�! H

p+q

(Y

a

; Sj

Y

a

)

and with as E

2

-terms the maps (*):

M

i

0

:::i

q

�

R

p

�

f j

Y

i

0

:::i

q

�

�

S

�

a

�!

M

i

0

:::i

q

H

p

�

(Y

i

0

:::i

q

)

a

; Sj

Y

i

0

:::i

q

�

These maps are isomorphisms by the above hence we get the result.

(2) Here we just remark that the Key Lemma holds for f : Y ! X with X a�noid

and Y quasi-compact. This follows immediately from the Key Lemma as it stands

now. The base change theorem now follows from the same argument as for the case

Y a�noid. 2

Remark 2.7.5 (1) The result is of course most useful for overconvergent sheaves S

since in that case the sheaves R

n

f

�

S are overconvergent too and hence "determined"

by their stalks at analytic points.

(2) The proof given above is the one of [P82]. In [S93] the translation of rigid

overconvergent sheaves on Z to sheaves onM(Z) is used to translate the statement

into the topological base change theorem for the continuous map M(f) : M(Y ) !

M(X).

(3) One aim of this paper is to develop a theory of �etale points and �etale overcon-

vergent sheaves such that the base change theorem and related theorems are valid.

3

�

Etale points and

�

etale overconvergent sheaves

A morphism f : Y ! X of analytic spaces over k is called �etale if for every y 2 Y

the induced homomorphism of the local rings O

X;f(y)

! O

Y;y

is 
at and un-rami�ed.

The term un-rami�ed means that O

Y;y

=mO

Y;y

is a (�nite) separable �eld extension

of the �eld O

X;f(y)

=m where m denotes the maximal ideal of O

X;f(y)

.

This notion of �etale morphism is somewhat complicated. First of all the image

of an �etale morphism is in general not an admissible open subset. For a�noids Y;X

however, it has been shown in [M81] that f(Y ) is a �nite union of a�noid subdomains

of X . We will give a proof of this fact below (see Proposition 3.1.7).

We de�ne the �etale site in 3.2 (see [S-S]) and we compare the �etale topology with

the rigid topology. We de�ne �etale points and �etale stalks in 3.3. In order to be able

to work with �etale overconvergent sheaves we construct �etale wide neighborhoods in

the a�noid case. The proof of the �etale base change theorem is then similar to the

proof in the rigid case.
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3.1

�

Etale morphisms of affinoids

Let an extension of rings A ! B be given. Let d : B ! 


f

B=A

denote the uni-

versal �nite di�erential module of B over A. By de�nition 


f

B=A

is a �nitely gen-

erated B-module and every derivation of B=A into a �nitely generated B-module

factors uniquely over d : B ! 


f

B=A

. This module exists in many cases where

the usual universal di�erential module of B over A is not a �nitely generated mod-

ule. For a�noid algebras A;B over the same �eld k one can give B a presentation

B = AhT

1

; :::; T

n

i=(G

1

; :::; G

m

). In this case 


f

B=A

exists and is the quotient of the

free B-module generated by dT

1

; :::; dT

n

by its submodule generated by dG

1

; :::; dG

m

.

Let m be a maximal ideal of B and n the corresponding maximal ideal of A. The

completions of the local rings are denoted by

^

B

m

and

^

A

n

. One can show that 


f

^

B

m

=

^

A

n

coincides with 


f

B=A




^

B

m

. In the situation Y = Spm(B) and X = Spm(A) and y; x

corresponding to m;n one has that

^

B

m

;

^

A

n

are the completions of the local rings O

Y;y

and O

X;f(y)

. The map between the last two local rings is un-rami�ed if and only if

the map between the completed rings is un-rami�ed. The last statement is equivalent

with 


f

^

B

m

=

^

A

n

= 0. From this and the fact that 
atness is a local property one �nds

the following:

Observation 3.1.1 A morphism of a�noid spaces Y ! X is �etale if and only if

O(X)! O(Y ) is 
at and 


f

O(Y )=O(X)

= 0. Further 


f

O(Y )=O(X)

= 0 if and only if the

n� n minors of the matrix (

@G

k

@T

l

) generate the unit ideal in O(Y ).

A special �etale morphism of a�noid spaces f : Y ! X is a morphism such that

O(Y ) has a presentation

O(Y ) = O(X)hT

1

; :::; T

n

i=(G

1

; :::; G

n

)

such that the functional determinant � := det (@G

i

=@T

j

) is an invertible function

on Y . The morphism Y ! X is indeed �etale. We need only prove 
atness. Let us

check this in a point y 2 Y where T

i

= 0. The completion of the local ring O

Y;y

is

isomorphic to:

\

O

X;f(y)

[[T

1

; : : : ; T

n

]]=(G

1

; : : : ; G

n

)

Our assumption on � gives that (G

1

; : : : ; G

n

) = (T

1

; : : : ; T

n

) in this ring. Hence

the map O

X;f(y)

! O

Y;y

is 
at and un-rami�ed since it induces an isomorphism on

completions (this is not true for general points y 2 Y !).

We now present the proof by Huber of the fact that any �etale morphism of

a�noids is special �etale.

Let Y ! X be an �etale morphism of a�noids. Choose a surjection

O(X)hT

1

; : : : ; T

n

i ! O(Y ) with kernel I . Since the module of di�erentials of O(Y )

over O(X) is zero, there is an isomorphism

I=I

2

�! O(Y )dT

1

� : : :�O(Y )dT

n

:

Thus we may choose G

1

; : : : ; G

n

2 I whose classes mod I

2

are a basis of I=I

2

. It

follows that Sp

�

O(X)hT

1

; : : : ; T

n

i=(G

1

; : : : ; G

n

)

�

is equal to Y q Z for some a�noid
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Z. Let us choose an element G 2 O(X)iT

1

; : : : ; T

n

i which is 1 on Y and 0 on Z. It

follows that O(Y ) has the presentation

O(Y ) = O(X)hT; T

1

; : : : ; T

n

i=(TG� 1; G

1

; : : : ; G

n

):

It follows immediately that Y is special �etale over X .

Observation 3.1.2 [Hu, 1.7.1] Any �etale morphism Y ! X of a�noids is a special

�etale morphism.

Let f : Y ! X be an �etale morphism of a�noids and choose a representation

O(Y ) = O(X)hT

1

; : : : ; T

n

i=(G

1

; : : : ; G

n

) such that f�; G

1

; : : : ; G

n

g generate the unit

ideal of the algebra O(X)hT

1

; : : : ; T

n

i. If Z ! X is a general morphism, where Z is

an a�noid variety over K, then the �bre product Z �

X

Y is given by the a�noid

algebra:

O(Z)

^




O(X)

O(Y ) = O(Z)hT

1

; :::; T

n

i=(G

1

; :::; G

m

)

Thus it is clear that Z �

X

Y ! Z is again special �etale.

Observation 3.1.3

�

Etale morphisms of a�noids are preserved by general base

change. It follows that arbitrary �etale morphisms f : Y ! X are preserved by

general base change. In particular, if b is an analytic point with image a in X then

F

b

is a �nite separable extension of F

a

.

The following proposition shows that any �etale morphism of a�noids can locally

be embedded in a �nite �etale morphism.

Proposition 3.1.4 Let f : Y ! X be an �etale morphism of a�noids. There exists

a �nite a�noid covering X =

S

X

j

, �nite �etale morphisms g

j

: Z

j

! X

j

and open

immersions h

j

: f

�1

(X

j

)! Z

j

such that f j

f

�1

(X

j

)

= g

j

� h

j

.

Proof. Let us take an analytic point a of X . By compactness of M(X) we need

only to �nd a wide neighborhood of a in X over which f can be factored as in the

proposition. By Lemma 3.1.6 we may assume that f

�1

(fag) = fbg for some analytic

point b of Y . By the above the �eld extension F

a

� F

b

is �nite separable. Hence we

can �nd a wide U in the �lter of a and a �nite �etale morphism � : V ! U such that

�

�1

(fag) consists of one analytic point v with F

v

�

=

F

b

as F

a

extensions. See Remark

2.1.2. Let us consider the �bre product Y �

X

V and its projections. The projection to

the �rst factor is a �nite �etale map onto f

�1

(U), the projection to the second factor is

�etale to V and there is an analytic point c ="b�

a

v" with F

v

= F

c

= F

b

. Thus by the

lemma below a wide neighborhood W of b is isomorphic to a wide neighborhood of c

which is mapped isomorphically to an a�noid subdomain of a wide neighborhood of

v. Lemma 3.1.6 shows that replacing U by a smaller wide U we get that f

�1

(U) �W

is isomorphic to an a�noid open subdomain of V . 2

Lemma 3.1.5 Let f : Y ! X be an �etale morphism of a�noids and b an analytic

point of Y . Put a = f(b). If F

a

�

=

F

b

then there exists a wide U in the �lter of a such

that f

�1

(U) = V qW where V is a wide neighborhood of b in Y and the morphism

V ! U is an open immersion. If f is �nite then V ! U is an isomorphism.
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Proof. In the case that f is �nite we may assume that f

�1

(fag) = fbg by replacing

X by U as in Lemma 3.1.6 and Y by a connected component of f

�1

(U). Now O(Y )

is a �nite locally free O(X)-module which we may assume to have constant rank

by replacing X by one of its connected components. Our assumptions imply that

F

a

�

=

O(Y )

^




O(X)

F

a

�

=

O(Y )


O(X)

F

a

hence this rank must be one. This proves the

�nite case.

The general case. We may replace X by a U as in the lemma below and Y

by one of its connected components, hence we may assume that f

�1

(fag) = fbg.

Let us consider the �bre product Y �

X

Y . Since f is �etale, the diagonal 4(Y ) is a

union of connected components of Y �

X

Y : 4 is a closed immersion and it is �etale

(look at local rings!), hence by the �nite case above it is also open immersion. Put

Z = Y �

X

Y n 4(Y ), it is an a�noid variety. By assumption, b is not in the image

of pr

1

j

Z

: Z ! Y . Hence we can �nd a wide neighborhood V of b in Y such that

pr

�1

1

(V )\Z = ;. (Use that the spacesM(Z) andM(Y ) are Hausdor� and compact.)

Next we replace X by a wide neighborhood U of a such that f

�1

(U) � V (see lemma

below) and Y by f

�1

(U). We see that Y �

X

Y

�

=

Y . Thus Y ! X is an open

immersion ([BGR, 7.3.3], look at complete local rings in ordinary points of Y ) and

we have won. 2

Lemma 3.1.6 Suppose f : Y ! X is a morphism of a�noids and a is an analytic

point of X .

1. If Y

a

=

S

Y

i

is the decomposition of the �bre of f into connected components,

then there is a wide U in the �lter of a such that f

�1

(U) =

`

V

i

with (V

i

)

a

= Y

i

.

2. If Y

a

= fb

1

; : : : ; b

s

g and we are given wide neighborhoods W

i

� Y of b

i

then we

may choose U such that f

�1

(U) �

S

W

i

.

Proof. The �rst assertion is a direct consequence of the base change theorem com-

bined with the fact that f

�

Z is overconvergent. For 2) take neighborhoods W

0

i

of b

i

in Y such that W

0

i

��

Y

W

i

. By our Key Lemma we can �nd a neighborhood U

0

of a

such that f

�1

(U

0

) �

S

W

0

i

. For some U � X with U

0

��

X

U we get f

�1

(U) �

S

W

i

.

(Since

S

W

0

i

��

Y

S

W

i

, compare with proof of Lemma 2.3.2 part 4.) 2

Proposition 3.1.7 Let f : Y ! X be an �etale morphism with Y quasi-compact.

1. The image f(Y ) of f is a special subset of X , i.e., it is a �nite union of open

a�noid subvarieties of X .

2. An analytic point a of X comes from an analytic point of f(Y ) if and only if

there exists an analytic point of Y mapping to a.

3. The formation of the image of f commutes with general base change: if X

0

! X

is a general morphism then f(Y �

X

X

0

) = f(Y )�

X

X

0

.

Proof. We remark that the last assertion follows from the other two.

Let us take an admissible a�noid covering X =

S

X

j

. The admissible covering

Y =

S

f

�1

(X

j

) has a �nite a�noid re�nement Y =

S

n

i=1

Y

i

. It su�ces to prove the

proposition for the maps Y

i

! X

�(i)

. Thus we may assume that both X and Y are

a�noid. At this point let us prove the assertion on analytic points assuming proven
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the result on the image. Take an analytic point a of X . If a is not an analytic point

of f(Y ) then there exists a neighborhood U � X of a such that U \ f(Y ) = ;. Hence

f

�1

(U) = ; and so Y

a

= ;. On the other hand, if a = f(b) for some analytic point b

of Y then for any U in the �lter of a, f

�1

(U) 6= ;. Hence U \ f(Y ) 6= ;, hence a is

an analytic point of f(Y ).

Let us prove the �rst assertion. Using our preceding proposition we may assume

that f factors as Y ! Z ! X where Y ! Z is an open immersion and Z ! X is

�nite �etale. We may also assume that Y is a rational subdomain of Z. We have a

morphism

' : Z �! (P

n

)

an

with Y = '

�1

(R) where R = f(x

0

; : : : ; x

n

); jx

0

j � jx

i

jg.

Suppose the degree of Z ! X is constant and equal to d. Consider the d-fold

�bre product

Z

d

:= Z �

X

Z � : : :�

X

Z

The diagonals 4

ij

= f(z

1

; : : : ; z

d

) 2 Z

d

jz

i

= z

j

g are unions of connected components

of Z

d

since Z ! X is �etale. We put

W := Z

d

n

[

i;j

4

ij

It is an a�noid variety, �nite �etale over X endowed with an action of S

d

(the sym-

metric group on d letters). The quotient of W under this action is X in the sense

that �(W;O

W

)

S

d

= �(X;O

X

). (Since Z ! X is �nite we are doing just algebraic

geometry here.) There is a S

d

-equivariant map

'� : : :� ' :W �! P

an

n

� : : :� P

an

n

which descends to a morphism

S

d

(') : X !

�

(P

n

)

d

=S

d

�

an

:

It is clear that f(Y ) = S

d

(')

�1

�

R(d)=S

d

�

with

R(d) =

[

i

P

an

n

� : : :�R� : : :P

an

n

:

There is an obvious formal scheme (P

d

n;k

�

)

^

giving rise to (P

d

n

)

an

and R(d) corresponds

to a S

d

-stable formal open subscheme of it, namely:

U :=

[

i

(P

n;k

�

)

^

� : : :� (A

n;k

�

)

^

� : : :� (P

n;k

�

)

^

It follows that R(d)=S

d

corresponds to the formal open subscheme U=S

d

of (P

d

n;k

�

)

^

.

Thus R(d)=S

d

is a special subset of

�

(P

n

)

d

=S

d

�

an

and hence so is S

d

(')

�1

of it. 2
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3.2 The

�

etale site

Let X be an analytic variety over k. In this subsection we recall the de�nition of

the �etale site of X (see [S-S, p. 58]). We give a criterium for a presheaf to be a

sheaf and we give some examples of �etale sheaves. Finally, we prove Hilbert 90 in

our situation and we prove that �etale cohomology of coherent O-modules agrees with

rigid cohomology.

The underlying category of the site X

�etale

will be the category of �etale morphisms

f of analytic varieties f : Y ! X . A morphism of f into f

0

is a morphism g : Y ! Y

0

such that f

0

� g = f ; the morphism g is automatically �etale.

We say that a family of �etale morphisms fg

i

: Z

i

! Y g

i2I

is an �etale covering if

it has the following property:

For any (some) choice of admissible a�noid coverings Z

i

=

S

j

Z

i;j

we have

Y =

S

i;j

g

i

(Z

i;j

) and this is an admissible covering in the G-topology of Y .

This makes sense since the subsets g

i

(Z

i;j

) are admissible (special) subsets (see Propo-

sition 3.1.7). We remark that the property is local on Y in the following sense: if

Y =

S

Y

l

is an admissible a�noid covering then fg

i

: Z

i

! Y g is an �etale covering

if and only if fg

i

: g

�1

i

(Y

l

) ! Y

l

g is an �etale covering for all l. This is so since both

assertions are equivalent to the following assertion:

For each l there are �nitely many (i

�

; j

�

), � = 1; : : : ; n

such that Y

l

�

S

n

�=1

g

i

�

(Z

i

�

;j

�

).

From this it also immediately follows that if fZ

i

! Y g is an �etale covering and

fX

i;j

! Z

i

g are �etale coverings then fX

i;j

! Y g is an �etale covering.

Lemma 3.2.1 Suppose fY

i

! Xg is an �etale covering and Z ! X is a general

morphism. The �bre product fZ �

X

Y

i

! Zg is an �etale covering.

Proof. This follows immediately from the de�nition, the remarks above and Propo-

sition 3.1.7. 2

It follows from the above that the category X

�etale

, equipped with the family of

�etale coverings as de�ned above is a site. It is also clear from the lemma that any

(general) morphism f : Z ! X de�nes a morphism of sites Z

�etale

! X

�etale

(given

by the functor (Y ! X) 7! (Z �

X

Y ! Z)). The functors on �etale sheaves will be

denoted by f

�

and f

�

as usual.

For any object Y ! X of X

�etale

we get a morphism of sites

r

Y=X

: X

�etale

�! Y

rigid

;

comparing rigid and �etale topologies. It is de�ned by the inclusion of categories

Y

rigid

� X

�etale

, if S is a sheaf on X

�etale

then �(V; (r

Y=X

)

�

S) = �(V; S). Sometimes

we will use the notation Sj

Y

rigid

in stead of (r

Y=X

)

�

S; we will also use this notation

for presheaves S on X

�etale

. If Y = X the morphism r

X=X

will be denoted r : X

�etale

!

X

rigid

. If a is an analytic point of X then we put S

a

:= (Sj

X

rigid

)

a

= r

�

(S)

a

.

Proposition 3.2.2 The presheaf S on X

�etale

is a sheaf if and only if the following

two conditions hold:
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1. For any Y in X

�etale

the presheaf Sj

Y

rigid

is a sheaf.

2. For any surjective �nite �etale morphism Y

0

! Y of a�noids in X

�etale

the

sequence ; ! S(Y )! S(Y

0

)

!

!

S(Y

0

�

Y

Y

0

) is exact.

Proof. Suppose S satis�es 1) and 2). We claim that S also satis�es 2) for any �nite

�etale morphism Y

0

! Y in X

�etale

with Y quasi-compact. Just cover Y by a�noids

as in Lemma 2.5.3 and use 1) to show that it su�ces to know 2) for all the resulting

a�noid �nite �etale coverings.

Let us take a morphism ' : Z ! U in X

�etale

such that

1. ' is surjective,

2. Z and U are quasi-compact,

3. ' factors as Z ! V ! U with V ! U �nite �etale and Z ! V an open

immersion.

We claim that for any such ' the sequence

; ! S(U)! S(Z)

!

!

S(Z �

U

Z)

is exact. We prove this by induction on the degree of the morphism V ! U . (If it is 1

then ' is an isomorphism and our claim trivial.) Suppose therefore that the degree of

V ! U is d and that we have proved our claim in the cases where the corresponding

degree is less than d.

Since V ! U is �nite �etale we have that the diagonal 4(V ) � V �

U

V is

a union of connected components of V �

U

V . Its complement W � V �

U

V is

thus a quasi-compact variety and the morphism pr

2

: W ! V is �nite �etale of

degree < d. Put Z

0

= Z �

U

V \ W and U

0

= pr

2

(Z

0

), both are quasi-compact

(see Proposition 3.1.7). The surjective �etale morphism '

0

= pr

2

: Z

0

! U

0

factors

through V

0

:= W \ pr

�1

2

(U

0

) ! U

0

which is �nite �etale of degree < d. Furthermore,

it is clear that V = U

0

\ Z.

We have the following commutative diagram:

; �! S(U) �! S(Z)

�!

�!

S(Z �

U

Z)

# # #

; �! S(U

0

) �! S(Z

0

)

�!

�!

S(Z

0

�

0

U

Z

0

)

The diagram shows that any element s 2 S(Z) such that p

�

1

(s) = p

�

2

(s) gives a unique

element (by induction) s

0

2 S(U

0

) such that s

0

j

Z

0

= sj

Z

0

. It is also true that s

0

j

U

0

\Z

=

sj

U

0

\Z

(use induction hypothesis for the morphism ('

0

)

�1

(U

0

\ Z)! U

0

\ Z). Hence

by 1) for the covering V = Z [ U

0

we get a unique section s

V

2 S(V ) with s

V

j

Z

= s

and s

V

j

U

0

= s

0

. We want to show that p

�

1

(s

V

) = p

�

2

(s

V

) on V �

U

V . Remark that

V �

U

V has the following admissible special covering

V �

U

V = Z �

U

Z [ U

0

�

U

Z [ Z �

U

U

0

[ U

0

�

U

U

0

:

Hence by 1) we need only to prove p

�

1

(s

V

) = p

�

2

(s

V

) on each of these. For the most

di�cult case, namely U

0

�

U

U

0

, we remark that the morphism Z

0

�

U

Z

0

! U

0

�

U

U

0
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is the composition Z

0

�

U

Z

0

! U

0

�

U

Z

0

! U

0

�

U

U

0

of morphisms to which our

induction hypothesis applies. Hence the map S(U

0

�

U

U

0

)! S(Z

0

�

U

Z

0

) is injective.

At this point the commutative diagram

S(Z)

�!

�!

S(Z �

U

Z)

# #

S(Z

0

)

�!

�!

S(Z

0

�

0

U

Z

0

)

gives the desired result.

To prove that the presheaf S is a sheaf we have to show that any �etale covering

fg

i

: Z

i

! Y g in X

�etale

gives an exact sequence

; �! S(Y ) �!

Y

S(Z

i

)

�!

�!

Y

S(Z

i

�

Y

Z

j

):

By choosing an admissible a�noid covering Y =

S

Y

j

and using 1) it is easy to

reduce to the case Y a�noid. Similarly we may reduce to the case all Z

i

a�noid

also. Using propositions 3.1.4 and 3.1.7 we may assume that each Z

i

! Y factors

as Z

i

! V

i

! U

i

� Y as above. It is now easy to deduce the result from our claim

above. Compare also with [M80, II 1.5]. 2

Examples of sheaves on the

�

etale site. It follows easily from the criterium

given above that the following presheaves are sheaves. A general object of X

�etale

will

be denoted by f : Y ! X .

1. The structure sheaf G

a

de�ned by Y 7! �(Y;O

Y

).

2. The sheaf G

m

de�ned by Y 7! �(Y;O

�

Y

).

3. For any real number r we can look at the subsheaf of G

a

given by Y 7! ff 2

�(Y;O

Y

) : jf(y)j � r8y 2 Y g. We can also replace the �-sign by the < sign. If

r � 1 we can de�ne a subsheaf of G

m

by inequalities of the form j1� f(y)j � r.

4. Any representable sheaf Y 7! Mor

X

(Y; Z) given by some variety Z over X .

5. For any Abelian group A we have the constant sheaf A

X

with stalks A de�ned

by: Y 7! the set of maps Y ! A constant on connected components of Y . (This

is in fact a representable sheaf, namely represented by

`

a2A

X .)

6. If n is prime to the characteristic of k then we de�ne �

n

as the kernel of the ho-

momorphism G

m

! G

m

given by multiplication by n. If k contains a primitive

n

th

root of unity � then �

n

�

=

Z=nZ

X

� �. There is a Kummer exact sequence

1 �! �

n

�! G

m

�! G

m

�! 1:

7. Suppose that F is a coherent sheaf of O

X

-modules on X . We de�ne a sheaf

W (F) of G

a

-modules on X

�etale

as follows: Y 7! �(Y; f

�

F), here f

�

denotes

pullback of coherent O-modules: f

�

F := f

�

(F) 


f

�

O

X

O

Y

. It is clear that

W (O

X

) = G

a

.
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Suppose that we are given an �etale covering fY

i

! Xg. We claim that this

coverings allows e�ective descent of coherent O-modules. This means the following:

suppose we are given for each i a coherent O

Y

i

-module F

i

and descent data. This

means isomorphisms of coherent sheaves

'

ij

: pr

�

1

F

i

�! pr

�

2

F

j

on Y

i

�

X

Y

j

satisfying the co-cycle relation '

ij

� '

jk

= '

ik

on Y

i

�

X

Y

j

�

X

Y

k

. In

this situation there exists a unique coherent sheaf of O

X

-modules F giving rise to

F

i

on each Y

i

and inducing the isomorphisms '

ij

. In addition, homomorphisms of

systems (F

i

; '

ij

) as above should correspond to homomorphisms of the corresponding

sheaves F . The proof of this is gotten by paraphrasing the proof of Proposition

3.2.2 in this case. Indeed, the question we are considering is whether the association

Y 7! the category of coherent O

X

-modules de�nes a sheaf of categories. It is clear

that rigid coverings and �nite �etale coverings allow e�ective descent for coherent O-

modules and hence the reasoning of the Proposition applies.

Corollary 3.2.3 Any descent datum for coherent sheaves over an �etale covering of

X is e�ective.

Corollary 3.2.4 For any analytic variety X we have the following isomorphisms:

H

1

(X; G

m

)

�

=

H

1

(X;O

�

X

)

�

=

Pic(X)

Proof. Of course the group Pic(X) is the group of isomorphism classes of line bundles

on X . Since H

1

=

�

H

1

any element in H

1

(X; G

m

) can be considered as descent data

for invertible O-modules. By the above these are e�ective and hence come from an

element of H

1

(X;O

�

X

). 2

Proposition 3.2.5 Suppose F is a coherent sheaf of O

X

-modules. The natural maps

H

i

(X

rigid

;F)! H

i

(X;W (F)) are isomorphisms.

Proof. The maps arise from the identi�cation r

�

W (F)

�

=

F and the adjunction map

r

�

F = r

�

r

�

W (F) ! W (F). Hence the result for i = 0. We are going to prove the

proposition by induction on i. Take n and suppose the proposition is proven for all

X;F and i � n� 1.

For any f : Y ! X in X

�etale

consider the map

H

n

(Y; f

�

F) = H

n

(Y; (r

Y=X

)

�

W (F)) �! H

n

(Y;W (F)):

This map is injective: by induction hypothesis the sheaves R

i

(r

Y=X

)

�

W (F) on Y

rigid

are zero for i = 1; : : : ; n � 1 (they are the sheaves associated to the presheaves

U 7! H

i

(U;W (F))). Thus the spectral sequence H

j

(Y;R

i

(r

Y=X

)

�

W (F)) )

H

i+j

(Y;W (F)) gives the result. Consider the presheaf H

n

on X

�etale

de�ned by

Y 7�! H

n

:= Coker

�

H

n

(Y; f

�

F)! H

n

(Y;W (F))

�

:

The sheaf associated to this presheaf is zero since any cohomology class in

H

n

(Y;W (F)) can be killed by an �etale covering. Therefore, if we show that H

n

is a sheaf then we are done. To do this we use the criterium from Proposition 3.2.2.
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Take any admissible covering U : Y =

S

Y

j

of some �etale f : Y ! X . We have the

morphism of spectral sequences

�

H

i

(U ; H

j

�

f

�

F)

�

) H

i+j

�

Y; f

�

F

�

# #

�

H

i

(U ; H

j

�

W (F))

�

) H

i+j

�

Y;W (F)

�

(see for example [M80, III Proposition 2.7]). We leave it to the reader to verify that

this and our induction hypothesis immediately imply that

0 �! H

n

(Y ) �!

Y

H

n

(Y

j

) �!

Y

H

n

(Y

i

\ Y

j

)

is exact.

Finally, let Z ! Y be a �nite �etale morphism of a�noids in X

�etale

. Put A =

O(Y ), B = O(Z) andM = �(Y;W (F)). We use the notation Z

n

= Z�

X

Z�: : :�

X

Z.

It is an a�noid variety. Thus we have that H

i

(Z

n

rigid

;F 
 O

n

Z

) = 0 for all i; n.

Furthermore, the complex

0 �!M �!M

^




A

B �!M

^




A

B

^




A

B �! : : :

is exact. (As the ring extension A � B is �nite we may replace the completed tensor

products by usual ones and then the result is classical.) Thus the spectral sequence

�

H

i

(U ; H

j

(W (F))) ) H

i+j

(Y;W (F)) for the covering U = fZ ! Y g and induction

hypothesis gives that

0 �! H

n

�

Y;W (F)

�

�! H

n

�

Z;W (F)

�

�! H

n

�

Z �

Y

Z;W (F)

�

is exact. We have won. 2

Corollary 3.2.6 Suppose the homomorphism A! B of a�noid algebras de�nes a

surjective �etale morphism of a�noids. For any �nite A-module M the complex

0 �!M �!M

^




A

B �!M

^




A

B

^




A

B �! : : :

is exact.

3.3

�

Etale points and stalks

Let us de�ne an �etale point of the analytic variety X . An �etale point e above the

analytic point a of X is a separable closure F

a

� H

e

of F

a

. We will always denote

by F

e

the completion of H

e

. Note that the �eld F

e

is algebraically closed (see [BGR,

3.4.1/6]). Therefore an �etale point e over a also corresponds to an algebraically closed

complete extension F

a

� F

e

such that the algebraic closure of F

a

lies dense in F

e

.

The group Gal(H

e

=F

a

) is equal to the group of continuous F

a

-isomorphisms F

e

! F

e

;

this pro-�nite group will be denoted G

e

.

An �etale neighborhood of e is a triple (Y; b; �), where Y is a variety �etale over

X , the analytic point b of Y maps to a and � : F

b

! F

e

is an F

a

-embedding. A

morphism (Y; b; �)! (Y

0

; b

0

; �

0

) is a morphism g : Y ! Y

0

over X such that g(b) = b

0

and �

0

= � � g

�

. Two �etale neighborhoods (Y

1

; b

1

; �

1

) and (Y

2

; b

2

; �

2

) are dominated

by a third one: take Y = Y

1

�

X

Y

2

, take the point b in Y corresponding to some
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factor of F

b

1




F

a

F

b

2

and � = �

1


 �

2

. In this way we see that the category of all

�etale neighborhoods of e give a �ltered system.

The stalk S

e

of a sheaf S on X

�etale

at the �etale point e is de�ned by the formula:

S

e

:= lim

�!

(Y;b;�)

S(Y )

The limit is take over the category of �etale neighborhoods of e. If e

0

(given by F

a

�

F

e

0

) is another �etale point lying over a, we get by choosing a continuous isomorphism

 : F

e

! F

e

0

a functor (Y; b; �) 7! (Y; b;  � �) of the category of �etale neighborhoods

of e to the category of �etale neighborhoods of e

0

. This gives an isomorphism of stalks

S

e

:= lim

�!

(Y;b;�)

S(Y )

 

�

�! S

e

0

:= lim

�!

(Y;b;�)

S(Y )

s 2 S(Y ) w:r:t: (Y; b; �) 7�! s 2 S(Y ) w:r:t: (Y; b;  � �)

In particular we get an action of G

e

on the stalk functor S 7! S

e

. It is clear that this

action is continuous (with the discrete topology on S

e

), since any � is stabilized by

an open subgroup of G

e

.

Let us construct some �etale neighborhoods of e. Take a �nite Galois extension

F

a

� L, say with group G, contained in F

e

. By Remark 2.1.2 we can �nd an a�noid

neighborhood U of a in X and a �nite �etale morphism g : V ! U , such that G acts

on V over U , g

�1

(fag) = fvg and F

v

�

=

L (G-equivariant). We may also assume that

V and U are connected. It is clear that (V; v; F

v

! L � F

e

) is an �etale neighborhood

of e. We claim that these �etale neighborhoods are co�nal in the system of all �etale

neighborhoods of e.

Indeed, given an arbitrary (Y; b; �) take L such that it contains �(F

b

). The �bre

product Y �

X

V contains a point c with pr

1

(c) = b, pr

2

(c) = v and F

b

! F

c

�

=

F

v

�

=

L � F

e

equals �. Using Lemma 3.1.5 we see that there is a commutative diagram

V

0

�! Y

# "

V  � Y �

X

V

where V

0

� V is an a�noid subdomain containing v. By the Key Lemma we can �nd

a smaller a�noid neighborhood U

0

of a in X such that g

�1

(U

0

) � V

0

. It is clear that

(g

�1

(U

0

); v; F

v

! L � F

e

) is of the form described above and dominates (Y; b; �).

Lemma 3.3.1 In the situation above.

1. The association S 7! S

e

is an exact functor of the category of �etale sheaves on

X to the category of continuous G

e

-sets.

2. For any �etale neighborhood (Y; b; �) we have

�

Sj

Y

rigid

�

b

=

�

(r

Y=X

)

�

S

�

b

= H

0

(Gal(H

e

=�(F

b

)); S

e

):

In particular S

a

= (r

�

S)

a

= H

0

(G

e

; S

e

).

3. The cohomological dimension cd(G

e

) of the pro-�nite group G

e

= Gal(H

e

=F

a

)

is less than or equal to dimX + cd(Gal(k

sep

=k)):
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Proof. (1) We have to show that a surjection of �etale sheaves S ! T induces a

surjection S

e

! T

e

. Take an element t 2 T (Y ) for some �etale neighborhood (Y; b; �).

There is some �etale covering fZ

i

! Y g of Y and elements s

i

2 S(Z

i

) such that s

i

maps to the element tj

Z

i

in T (Z

i

). By Lemma 3.2.1 the family f(Z

i

)

b

! bg is a

covering, hence there is some i

0

and analytic point b

i

0

2 Z

i

0

mapping to b. Thus

(Z

i

0

; b

i

0

; �) is a neighborhood of e (here � is some extension of �) and s

i

0

gives an

element of S

e

lifting t. (Another proof follows from the result S

e

$ i

�

a

S below.)

(2) We only do the case X = Y , a = b. Take an element s 2 S

e

, which is �xed

by the group G

e

. By our results above we may assume that s 2 S(V ) for some special

neighborhood (V; v; F

v

! L � F

e

) constructed above. Our assumption is that s is

stable under the action of G acting on S(V ) via its action on V . If we show that

V �

U

V = V �

X

V is isomorphic to V � G then the sheaf property of S will imply

that s comes from a unique section of S over U and hence we will be done. However,

this again is a consequence of Remark 2.1.2 at least after shrinking U a bit.

(3) We use the notations of Lemma 2.1.1. By [S64, II 4.1] we may replace F

a

by K, since this can at most increase the cohomological dimension. The �eld K is

the completion of k(t) = k(t

1

; : : : ; t

d

) for some valuation and some d � dimX . But

then the group Gal(K

sep

=K) is a closed subgroup of the group Gal(k(t)

sep

=k(t)). We

conclude by [S64, I Proposition 14, II Proposition 11]. 2

There is a more canonical way to understand the �etale stalks S

e

. Consider the

general morphism

i

a

: a = Spm(F

a

) �! X:

It is clear that the category of sheaves on a

�etale

is equivalent to the category of

discrete G

e

-sets. (Compare [M80, II 1.9].) Therefore i

�

a

is a functor of sheaves on

X

�etale

to the category of discrete Gal� cont(F

e

=F

a

)-sets. This functor is precisely

our functor S 7! S

e

. The functor (i

a

)

�

has the following description: if M is a set

with a continuous G

e

-action, then

�(Y; (i

a

)

�

M) =

Y

b2Y

a

�

Hom

F

a

(F

b

; F

e

)�M

�

G

e

We leave it to the reader as a nice exercise that this functor is exact. It follows from

the yoga of adjoint functors that S 7! (i

a

)

�

S = S

e

transforms injective sheaves into

injective G

e

-modules.

Corollary 3.3.2 There are canonical isomorphisms

�

R

q

r

�

S

�

a

�

=

H

q

(G

e

; S

e

):

Proof. For q = 0 this is the lemma above. It follows for general q by the usual

argument using that if S is injective then both sides are zero. (See above.) 2

As in the rigid case we do not have enough �etale points to separate �etale sheaves.

To overcome this di�culty we introduce the �etale overconvergent sheaves: A sheaf S

on X

�etale

is said to be (�etale) overconvergent if Sj

Y

rigid

is overconvergent for all Y

in X

�etale

. Before we can prove interesting properties of these sheaves we need some

technical preparations; these will be done in the next section.
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3.4

�

Etale overconvergent sheaves on affinoids

In this section X will be an a�noid variety. Let f : Y ! X be a morphism with Y

a�noid and let b be an analytic point of Y . We will say that Y is a wide neighborhood

of b over X if there exists an a�noid generating system f

1

; : : : ; f

n

of O(Y ) over O(X)

such that jf

i

j

b

< 1 for all i = 1; : : : ; n. Note that this agrees with our de�nition in

x3.1 in the case that f is an open immersion.

Next we de�ne the notion of relative compactness over X . Let us take a quasi-

compact analytic variety Z over X and a quasi-compact open subvariety Y � Z. We

say that Y is relatively compact in Z over X , or that Z is a wide neighborhood of Y

over X , if for any analytic point b of Y there is an a�noid neighborhood V � Z of

b which is a wide neighborhood of b over X . Notation: Y ��

X

Z. Remark that if

Y ��

Z

Y

0

in this situation then also Y ��

X

Y

0

. We note that if both Y and Z are

a�noid then this agrees with the de�nition of [BGR, p. 394] (proof same as proof of

[S93, Proposition 23], see also [B90, x2.5]).

Suppose that f : Y ! X is an �etale morphism with Y quasi-compact. We want

to construct wide neighborhoods of f . We only do this in the case that f is an �etale

morphism of a�noids. Thus Y is a�noid and O(Y ) has a presentation:

O(Y ) = O(X)hT

1

; : : : ; T

n

i

�

(G

1

; : : : ; G

n

)

such that � = det(@G

i

�

@T

j

) generates the unit ideal of O(Y ). A fundamental prop-

erty of special �etale morphisms is that we may always choose this presentation such

that G

1

; : : : ; G

n

2 O(X)[T

1

; : : : ; T

n

]. This follows immediately from the proposition

below; in it we use jRj for the supremum norm of an element R 2 O(X)hT

1

; : : : ; T

n

i.

Lemma 3.4.1 In the situation above there exists an � > 0 such that if we take any

R

1

; : : : ; R

n

2 O(X)hT

1

; : : : ; T

n

i with jR

i

j < � then we have:

1. The a�noid algebra O(X)hT

1

; : : : ; T

n

i=(G

1

+R

1

; : : : ; G

n

+R

n

) de�nes a special

�etale morphism f

0

: Y

0

! X .

2. There exists an isomorphism Y

�

=

Y

0

of analytic varieties over X .

Proof. Let us write � + R for the determinant of the matrix

�

@(G

i

+R

i

)

�

@T

j

�

. It

is clear that if the R

i

have small norm then R has small norm. Since �; G

i

generate

the unit ideal of O(X)hT

1

; : : : ; T

n

i it follows that � + R;G

i

+ R

i

also generate the

unit ideal if jR

i

j is small enough. This proves (1).

We claim there exists for any positive � < 1 an � > 0 such that for any a�noid

O(X)-algebra A the following holds: If there are a

1

; :::; a

n

2 A with all ja

i

j � 1 and

all jG

i

(a

1

; :::; a

n

)j < �, then there are b

1

; : : : ; b

n

2 A such that all ja

i

� b

i

j < � and all

G

i

(b

1

; :::; b

n

) = 0.

We suppose given a

1

; :::; a

n

2 A with all ja

i

j � 1 and all jG

i

(a

1

; :::; a

n

)j < �, the

size of � will be determined later. For an element b = (b

1

; :::; b

n

) 2 A

n

we write kbk =

max jb

i

j. Further G = (G

1

; :::; G

n

) is seen as a map from fb 2 A

n

; kbk � 1g to A

n

.

Let @G=@T denote the Jacobian matrix of G. Note that j(@G=@T )j is bounded from

below away from zero on Y , hence is bounded from below by � > 0 in a neighborhood

of the form jG

i

j � �

0

, some �

0

> 0. We apply Newton's method; consider the map

Z : b 7! b � (@G=@T (b))

�1

G(b). By the remark above, and by considering a power
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series expansion of the map G, we see that for � small enough (so that the quadratic

and higher order terms of the power series are negligible) and � < �� (for the constant

terms) this de�nes a selfmap of the set S := fb 2 A

n

; kb�ak � �g. Moreover it is then

clear that the map Z : S ! S is a contraction. The �xed point b of the contraction

satis�es G(b) = 0.

We apply this claim to A = O(X)hT

1

; :::; T

n

i=(G

1

+ R

1

; :::; G

n

+ R

n

) with

the jR

i

j < � and where a

i

, i = 1; :::; n is the image of T

i

in A. There re-

sults a morphism of a�noid O(X)-algebras � : O(X)hT

1

; :::; T

n

i=(G

1

; :::; G

n

) !

O(X)hT

1

; :::; T

n

i=(G

1

+ R

1

; :::; G

n

+ R

n

), with �(T

i

) close to T

i

. We can do the

same in the other direction to get � : O(X)hT

1

; :::; T

n

i=(G

1

+ R

1

; :::; G

n

+ R

n

) !

O(X)hT

1

; :::; T

n

i=(G

1

; :::; G

n

), with �(T

i

) close to T

i

. The composition is an endo-

morphism of O(Y ) = O(X)hT

1

; :::; T

n

i=(G

1

; :::; G

n

) as an O(X)-algebra which is close

to the identity. It follows that this must be the identity by looking at the graph of it in

the �bre product Y �

X

Y , where the diagonal is a union of connected components. 2

Let us take an �etale morphism of a�noids f : Y ! X and take a presentation

O(Y ) = O(X)hT

1

; : : : ; T

n

i=(G

1

; : : : ; G

n

) with G

i

2 O(X)[T

1

; : : : ; T

n

]. The functional

determinant of this presentation � = det(@G

i

=@T

j

) is viewed as a function on X �

A

N;an

. We de�ne a morphism f(r) : Y (r)! X for r 2

p

jk

�

j; r > 1 as follows:

Y (r) =

�

(x; t

1

; : : : ; t

n

) 2 X � A

n;an

; jt

i

j � r and G

i

(x; t

1

; : : : ; t

n

) = 0

	

We claim that if our r is close to 1 then f(r) will again be special �etale. To see this

we note that there is a presentation:

O(Y (r)) = O(X)hS

1

; : : : ; S

n

; T

0

1

; : : : ; T

0

n

i

��

(T

0

i

)

m

� �

�m+1

S

i

; G

i

(�T

0

1

; : : : ; �T

0

n

)

�

Here � is an element of k with r

m

= j�j and the relation of the coordinates is that

S

i

= �

�1

T

m

i

and T

0

i

= �

�1

T

i

. The functional determinant of this presentation is

�

�mn

�j

Y (r)

. It is therefore clear that Y (r) ! X is special �etale as soon as � 2

�(Y (r); O

Y (r)

) is invertible; this will be the case for r su�ciently close to 1 (the zero

locus of � lies a positive distance away from Y !). Finally it is clear that Y ��

X

Y (r).

We will use the notation Y (r) even if no explicit presentation of O(Y ) is given, the

number r will always denote an element of

p

jk

�

j bigger than 1 and small enough.

At this point we want to prove the analog of Lemma 2.3.1 in this situation.

However, we need to be careful since any �etale U ! X has many non-separated wide

neighborhoods, so the wide neighborhoods Y � Y (r) can only be co�nal in the system

of separated wide neighborhoods. Although this is in fact true, we restrict ourselves

to the case of a�noid varieties.

Lemma 3.4.2 With notations as above.

1. Let W , U ��

X

V be a�noid varieties �etale over X and f : V ! W a mor-

phism over X . If V

0

is a wide neighborhood of U in V , then f(V

0

) is a wide

neighborhood of f(U) in W . For varying V

0

these give a co�nal system of wide

neighborhoods of f(U). If f j

U

is an isomorphism U ! f(U) then for some

U ��

V

V

0

f induces an isomorphism V

0

! f(V

0

).

2. If U ��

X

V are a�noid varieties �etale over X and ' : Y ! U is a morphism

then for some r > 1 there exists an extension '(r) : Y (r) ! V of '. This
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extension is unique if r is su�ciently close to 1. In particular the Y (r), r > 1

form a co�nal system of a�noid wide neighborhoods of Y over X .

3. Suppose that Y

i

! X , i = 1; : : : ; n is �etale and Y

i

a�noid. We have:

Y

1

(r)�

X

: : :�

X

Y

n

(r) =

�

Y

1

�

X

: : :�

X

Y

m

�

(r)

Proof. Suppose we show that if b is an analytic point of U (with image a in W ), then

there is a wide neighborhood V

b

of b in V

0

such that f(V

b

) is a wide neighborhood

of a in W . This immediately implies the �rst statement of (1). The statement on

co-�nality then follows immediately by letting V

0

run through the inverse images of

such a system of wide neighborhoods of f(U). Let Z denote the complement of the

diagonal in V �

W

V ; it is a union of connected components and hence a�noid. Under

the last assumption of (1) we have pr

1

(Z)\U = ;. Thus for some wide neighborhood

V

0

of V we have V

0

�

W

V

0

�

=

V

0

and hence it will map isomorphically onto f(V

0

)

(compare with Lemma 3.1.5).

Let us construct the neighborhood V

b

. By assumption there exists an a�noid

generating system f

1

; : : : ; f

r

of O(V ) over O(X) such that jf

i

j

b

< 1. Take a wide

neighborhood V

b

of b such that jjf

i

jj

V

b

< 1. By Lemma 3.1.6 we can �nd a wide

neighborhood W

a

of a in W such that f

�1

(W

a

) =

S

V

i

as in 3.1.6.1 and V

1

� V

b

is

a wide neighborhood of b. Thus we may replace W by W

a

and V by V

1

and assume

that jjf

i

jj

V

< 1 for a generating system f

1

; : : : ; f

r

of O(V ) over O(W ). But then V

is �nite over W [BGR, 9.6.3/6], so we get the existence of V

b

by Lemma 3.1.5.

To prove (2) we apply (1) to the projection Y (r) �

X

V ! Y (r). We see that

there exists a wide neighborhood of the graph �

'

� Y �

X

U � Y (r) �

X

V which

maps isomorphically onto a wide neighborhood Y

0

of Y in Y (r). Hence we can �nd

some r

0

, 1 < r

0

< r such that Y (r

0

) � Y

0

(see Lemma 2.3.1). This r

0

works.

The proof of (3) is formal. 2

The lemma above allows us to work with �etale morphisms of a�noids only. There-

fore we introduce the special �etale site of X . (Recall that X is a�noid.) It is denoted

X

sp

�etale

and is de�ned as follows:

1. Objects are �etale morphisms Y ! X with Y a�noid, i.e. special �etale ones.

2. Morphisms are morphisms of analytic spaces over X .

3. Coverings are those �nite families of morphisms ff

i

: Y

i

! Y g such that

S

f

i

(Y

i

) = Y .

It follows from the remarks made after the de�nition of special �etale morphisms and

Lemma 3.2.1 that this is indeed a site. It is functorial with respect to (general)

morphisms of a�noids: Z ! X induces a morphism of sites Z

sp

�etale

! X

sp

�etale

.

The morphism of site X

�etale

! X

sp

�etale

, given by the inclusion functor, induces an

equivalence of associated topoi. (Use 3.1.2.)

Lemma 3.4.3 The topos of sheaves on X

sp

�etale

is coherent (see [SGA 4, Expos�e VI]).

In particular, �etale cohomology of �etale Abelian sheaves on X commutes with �ltered

direct limits, see [Ibid, 5.2].
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Proof. In the site X

sp

�etale

�nite �bered products are representable and any object is

quasi-compact (see [Ibid, De�nition 1.1]). Since it also has a �nal object we are done,

see [Ibid, 2.4.1]. 2

The following lemma characterizes overconvergent �etale sheaves on X in terms

of the site X

sp

�etale

.

Lemma 3.4.4 A sheaf S on X

sp

�etale

corresponds to an overconvergent sheaf on X

�etale

if and only if the natural map

lim

�!

r>1

S(Y (r)) �! S(Y )

is an isomorphism for all Y ! X a�noid �etale.

Proof. Suppose that S is overconvergent. In this case Sj

Y (r

0

)

is overconvergent for

some r

0

> 1. Hence 3.4.4 is an isomorphism since Y ��

Y (r

0

)

Y (r), 1 < r < r

0

forms

a co�nal system of wide neighborhoods of Y in Y (r

0

).

Conversely suppose 3.4.4 is an isomorphism always. Let Y ! X be an �etale

morphism of a�noids. We have to show that Sj

Y

is rigid overconvergent. Let U � Y

be a rational subset of Y . Choose some r

0

> 1 such that Y ��

X

Y (r

0

) and Y (r

0

)

is �etale over X . Denote for r > 1 by U(r) the wide neighborhood of U in Y (r

0

)

de�ned in x3.3. It follows easily from Lemma 3.4.2 that these wide neighborhoods

U ��

X

U(r) form a co�nal system of a�noid �etale wide neighborhoods of U over X .

Hence our assumption gives the isomorphism limS(U(r)) = S(U).

However, we want to show that the map limS(U(r) \ Y ) ! S(U) is an isomor-

phism. It is clear from the above that this is a surjection. Using for all the rational

subdomains U(r)\Y of Y the bijectivity of the map S

�

(U(r)\Y )(r

0

)

�

! S(U(r)\Y ),

it also follows that the map is injective. This proves our lemma. 2

We will say that a presheaf on X

sp

�etale

is overconvergent if the map 3.4.4 is always

an isomorphism. At this point we introduce a useful method to produce overconver-

gent (pre)-sheaves on X

sp

�etale

. Let S be a presheaf on X

sp

�etale

. We de�ne the presheaf

cS on X

sp

�etale

as follows:

�(Y; cS) = cS(Y ) := lim

�!

r>1

�(Y (r); S)

for any Y in X

sp

�etale

. Note that Lemma 3.4.2 implies that this is independent of the

chosen representation of O(Y ) over O(X) and that cS is indeed a presheaf. The

construction c is a functor, there is an obvious functorial arrow cS ! S and the map

ccS ! cS is an isomorphism. Hence the presheaf cS is overconvergent. It is therefore

clear that the functor c is a right adjoint of the inclusion functor: overconvergent

presheaves on X

sp

�etale

! presheaves on X

sp

�etale

.

Lemma 3.4.5 With notations as above.

1. If S is a sheaf then cS is a (overconvergent) sheaf. The functor S 7! cS is a

right adjoint of the inclusion functor: overconvergent sheaves on X ! sheaves

on X . The functor S 7! cS is left exact on the category of sheaves on X

sp

�etale

.
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2. If J is an injective sheaf on X

sp

�etale

and U = fY

i

! Y g is a covering in X

sp

�etale

then

�

H

i

(U ; cJ ) = 0 8i > 0:

It follows that cJ is a 
abby sheaf on X

sp

�etale

.

3. Any overconvergent sheaf can be embedded into a sheaf of the form cJ with J

injective.

Proof. Let U = fg

i

: Y

i

! Y g be a covering in X

sp

�etale

. We want to show the following:

there exists a set of coverings U

�

such that for any (pre)sheaf S we have a canonical

isomorphism:

(�) lim

�!

�

�

C(U

�

; S)

�

=

�

C(U ; cS)

(The symbols

�

C denote

�

Cech-complexes.) It is clear that this will prove that cS is a

sheaf if S is a sheaf and it will prove the second assertion of the lemma. We leave the

adjointness property to the reader, as well as the third part of the lemma.

We will only prove the above in the case that the covering U = fg : Z ! Y g is

given by one map. Since for an arbitrary (and hence �nite) covering in X

sp

�etale

there

exists a covering consisting of a single morphism giving an isomorphic

�

Cech-Complex

there is no loss of generality. To do this we �x r

0

> 1 small enough such that Y (r

0

)

is �etale over X and a r

1

> 1 small enough such that g extends to ~g : Z(r

1

)! Y (r

0

).

Next, for any r

2

, 1 < r

2

< r

1

, we choose a r

3

(r

2

), 1 < r

3

(r

2

) < r

0

such that

Y (r

3

(r

2

)) � ~g(Z(r

2

)). This is possible by Lemma 3.4.2, which also implies that we

may choose r

3

(r

2

) to be a decreasing function of r

2

, decreasing to 1 in fact.

We put Z

r

2

= Z(r

2

) \ ~g

�1

�

Y (r

3

(r

2

))

�

. The coverings we are looking for are

U

r

2

= fZ

r

2

! Y (r

3

(r

2

))g. Note that there are commutative diagrams for 1 < r

0

2

< r

2

:

Z �! Z

r

0

2

�! Z

r

2

# # #

Y �! Y (r

3

(r

0

2

)) �! Y (r

3

(r

2

))

Hence we get the map (*). To show that (*) is an isomorphism we only need to prove

that

Z �

Y

: : :�

Y

Z ��

X

Z

r

2

�

Y (r

3

(r

2

))

: : :�

Y (r

3

(r

2

))

Z

r

2

forms a co�nal system of wide neighborhoods of Z �

Y

: : : �

Y

Z as r

2

decreases to

1. This is clear from the following three facts: 1) Z

r

2

�

X

: : :�

X

Z

r

2

forms a co�nal

system of wide neighborhoods of Z�

X

: : :�

X

Z (see Lemma 3.4.2), 2) Z�

Y

: : :�

Y

Z

is a union of connected components of Z �

X

: : : �

X

Z and 3) the intersection of

Z

r

2

�

Y (r

3

(r

2

))

: : :�

Y (r

3

(r

2

))

Z

r

2

with Z �

X

: : :�

X

Z is Z �

Y

: : :�

Y

Z. 2

Lemma 3.4.6 (Properties of overconvergent sheaves on X

sp

�etale

.) In this lemma all

(pre-)sheaves are (pre-)sheaves of Abelian groups.

1. The sheaf associated to an overconvergent presheaf is overconvergent.

2. For any overconvergent sheaf S the presheaves Y 7! H

q

(Y; S) are overconver-

gent; for any q the rigid sheaf R

q

(r

X=Y

)

�

S is overconvergent on Y , in particular

the sheaves R

q

r

�

S are overconvergent on X

rigid

.
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3. The category of overconvergent sheaves is an exact subcategory of the category

of all sheaves on X

sp

�etale

.

4. If f : Z ! X is a general morphism of a�noids then f

�

and f

�

preserve

overconvergent sheaves. The same holds for R

q

f

�

for any q.

5. If ff

i

: X

i

! Xg is a special �etale covering of X then a sheaf on X

sp

�etale

is

overconvergent if and only if each f

�

i

(S) is overconvergent.

6. An overconvergent sheaf S is zero if and only if its �etale stalks S

e

are zero for

all �etale points e of X .

Proof. 1) Let a(S) denote the sheaf associated to S. The map S ! a(S) factors as

S ! ca(S)! a(S) since S is overconvergent. By the universal property of aS we get

a section a(S)! ca(S) (as ca(S) is a sheaf). It follows that a(S) is a direct summand

of the overconvergent sheaf ca(S) and hence overconvergent.

2) Embed S in an overconvergent 
abby sheaf as in the preceding lemma: 0 !

S ! cJ . The quotient presheaf is overconvergent hence so is the quotient sheaf Q by

1). For any a�noid Y �etale over X we get the exact sequence

0 �! H

0

(Y; S) �! H

0

(Y; cJ ) �! H

0

(Y;Q) �! H

1

(Y; S) �! 0

and isomorphisms H

q

(Y; S)

�

=

H

q�1

(Y;Q) for q > 1. It follows immediately that the

presheaf Y 7! H

1

(Y; S) is overconvergent and the usual induction on q does the rest.

3) Follows from 1) and 2) and the results on rigid overconvergent sheaves.

4) Remark that if Y ! X is a�noid �etale then Y (r)�

X

Z

�

=

�

Y �

X

Z

�

(r). The

rest of the argument is completely analogous to the proof of Lemma 2.3.2 part 4.

5) Same argument as in the rigid case.

6) This is immediate from Lemma 3.3.1 combined with the result for rigid over-

convergent sheaves. 2

3.5

�

Etale overconvergent sheaves on general X

Let X be an arbitrary analytic variety over k. Recall that a sheaf S on X

�etale

is

overconvergent if Sj

Y

is rigid overconvergent for any Y �etale over X . It is clear from

Lemma 3.4.6 that this condition is local in the �etale topology on X .

There are now a number of easy consequences of the above which we list here:

1. If f : Z ! X is an arbitrary (general) morphism then f

�

preserves overconver-

gent sheaves.

2. If f : Z ! X is quasi-compact then R

q

f

�

preserves overconvergent sheaves.

(Compare proof of Proposition 2.4.1.)

3. For any overconvergent sheaf S onX the rigid sheavesR

q

(r

Y=X

)

�

S (in particular

R

q

r

�

S) are overconvergent.

Finally, we have the following result.

Proposition 3.5.1 If X is paracompact and S is an overconvergent torsion sheaf

on X

�etale

then H

q

(X;S) = 0 for all q > 2 dimX + cd(k), where cd(k) denotes the

cohomological dimension of k.
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Proof. Consider the spectral sequence with E

2

-term H

i

(X

rigid

; R

j

r

�

S) converging

to H

i+j

(X;S). By Corollary 3.3.2 and Lemma 3.4.6 we get that the sheaves R

j

r

�

S

are zero for j > dimX + cd(k). Hence we get the result from Corollary 2.5.10. 2

3.6 Galois action on cohomology

Let us take a separable closure k

sep

of k and let us denote by K the completion of

k

sep

with respect to the absolute value j j. Note that K is algebraically closed (see

e.g. [BGR, 3.4]). We remark that the group G := Gal(k

sep

=k) can be identi�ed with

the group of continuous automorphisms of K over k.

Take an analytic varietyX over k and an �etale sheaf S on it. Consider the variety

X

^


K over K and the general morphism � : X

^


K ! X . For any � 2 G there is an

obvious general morphism '

�

: X

^


K ! X

^


K. This is not a morphism of analytic

varieties over K unless � = id

K

; it lies over the continuous �eld homomorphism

� : K ! K. Since it is clear that � = � � '

�

, we get an isomorphism �

�

(S)

�

=

(� � '

�

)

�

(S)

�

=

('

�

)

�

�

�

(S). Thus we get

'

�

�

: H

i

(X

^


K;�

�

S) �! H

i

(X

^


K;�

�

S):

This de�nes an action of G on H

i

(X

^


K;�

�

S).

Another way to get a G-module is to consider the morphism

p : X ! Sp(k)

As was noted above the sheaves R

i

p

�

S correspond to G-modules (R

i

p

�

S)

e

. It will be

shown below that these two Galois modules agree in the case that X is quasi-compact.

3.7

�

Etale base change

Let f : Y ! X be a quasi-compact morphism of analytic varieties over k and S an

�etale sheaf on Y . The �etale base change theorem compares the cohomology of S on

the �etale �bre Y

e

with the �etale stalks at e of the sheaves R

q

f

�

S. The �etale �bre is

just de�ned as Y

a

^


F

e

, or as the �bre product of the general morphism Sp(F

e

)! X

with the morphism Y ! X . The result will be an isomorphism of G

e

-modules. As in

the rigid case the theorem will follow formally from a lemma describing the �etale site

of the �bre Y

e

in the a�noid case.

Therefore we suppose that f : Y ! X is a morphism of a�noids over k and we

�x an �etale point e lying over the analytic point a of X . For any �etale neighborhood

(U; b; �) of e with U a�noid we can consider the special �etale site of Y

U

:= Y �

X

U .

Using � we can see e as an �etale point of U lying over b and then it is clear that

(Y

U

)

e

= Sp(F

e

) �

U

Y

U

�

=

Sp(F

e

) �

X

Y = Y

e

. Thus a general morphism Y

e

! Y

U

which gives rise to the functor

�

Y

U

�

sp

�etale

�!

�

Y

e

�

sp

�etale

V ! Y

U

7�! V

e

! Y

e

:

On the other hand, if the a�noid �etale neighborhood (U

0

; b

0

; �

0

) dominates (U; b; �),

there is clearly a functor (Y

U

)

sp

�etale

! (Y

U

0

)

sp

�etale

compatible with the functor described

above.
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Lemma 3.7.1 The functors above de�ne an equivalence of sites:

lim

�!

(U;b;�)

�

Y

U

�

sp

�etale

�

=

�

Y

e

�

sp

�etale

:

Proof. Note that all functors de�ned above underly morphisms of sites in the reverse

directions. The statement follows from the following three assertions:

1. For any �etale morphism V ! Y

e

with V a�noid there exists an a�noid �etale

neighborhood (U; b; �) and an �etale W ! Y

U

morphism of a�noids such that

W

e

�

=

V as varieties over Y

e

.

2. Given two �etale morphisms W

i

! Y

U

, W

i

a�noid (i = 1; 2 and U as above)

and a morphism  

e

: W

1;e

! W

2;e

there exists an a�noid �etale neighborhood

(U

0

; b

0

; �

0

) dominating (U; b; �) and a morphism  

U

0

:W

1;U

0

!W

2;U

0

such that

 

U

0

;e

=  

e

. This  

U

0

is unique if U

0

is small enough.

3. If fg

i

: W

i

! Wg is a �nite set of morphisms in (Y

U

)

sp

�etale

and fW

i;e

! W

e

g is

an �etale covering then fW

i;U

0

!W

U

0

g is an �etale covering if U

0

is small enough.

Let us prove 1). By de�nition O(V ) has a presentation

O(V )

�

=

O(Y

e

)hT

1

; : : : ; T

n

i=(G

1

; : : : ; G

n

)

such that � := det(@G

i

=@T

j

) is invertible. By Lemma 3.4.1 we may suppose that

the G

i

are polynomials. Since O(Y

e

) = O(Y )

^




O(X)

F

e

we can approximate the G

i

by

polynomials with coe�cients in O(Y )


O(X)

L for some �nite separable �eld extension

F

a

� L � F

e

. By Lemma 3.4.1 we may assume G

i

2 O(Y ) 


O(X)

L[T

1

; : : : ; T

n

].

We can construct (U; b; �) such that �(F

b

) � L (see 3.3); for this U we can �nd

polynomials P

i

2 O(Y )

^




O(X)

O(U)[T

1

; : : : ; T

n

] mapping to the G

i

. The function

�(P ) := det(@P

i

=@T

j

) on

W := Sp(O(Y )

^




O(X)

O(U)hT

1

; : : : ; T

n

i=(P

1

; : : : ; P

n

)

is such that its restriction to W

e

is invertible. Hence, �(P ) is invertible on W

b

, hence

by Lemma 2.7.2 or 2.7.1 we get that �(P ) is invertible on W after shrinking U . This

gives that W ! Y

U

is special �etale and W

e

�

=

V by construction.

Next we do 2). Note that the morphism  

e

: W

1;e

! W

2;e

gives rise to a graph

morphism �

e

: W

1;e

! (W

1

�

Y

U

W

2

)

e

and that this morphism identi�es W

1;e

with

a union of connected components of (W

1

�

Y

U

W

2

)

e

. Hence �

e

is an �etale morphism

of a�noids. By 1) there exists a smaller �etale neighborhood (U

0

; b

0

; �

0

) and an �etale

morphism of a�noids �

U

0

: W ! (W

1

�

Y

U

W

2

) �

U

U

0

�

=

W

1;U

0

�

Y

U

0

W

2;U

0

with

W

e

�

=

W

1;e

and �

U

0

;e

= �

e

. We replace (U; b; �) by (U

0

; b

0

; �

0

) and hence we have

� : W ! W

1

�

Y

U

W

2

. Consider p

2

= pr

2

� �. By the above we have that (p

2

)

e

is an

isomorphism. It follows that (p

2

)

b

is a bijective (on analytic points) �etale morphism

of a�noids and hence an isomorphism. Thus for any analytic point c 2W

1;b

we have

that p

�1

2

(c) consists of one analytic point c

0

2 W with F

c

�

=

F

c

0

. Lemma 3.1.5 implies

that p

2

is an open immersion in a wide open neighborhoodW

1

(c) of c in W

1

. Finitely

many W

1

(c)

b

's cover W

1;b

and W

b

= W

1;b

hence by the key lemma for the rigid case

we may shrink U and get that p

2

is an isomorphism (apply the key lemma to both

W and W

1

). Clearly, the morphism pr

1

� � � (p

2

)

�1

:W

1

!W

2

does the job.
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The uniqueness follows easily from the rigid key lemma by looking at graphs as

above.

Finally, if the assumptions are as in 3) then W

e

=

S

i

g

i;e

(W

i;e

) implies W

b

=

S

g

i;b

(W

i;b

), since formation of image commutes with arbitrary base change, see

Lemma 3.1.7. Thus the statement follows from the rigid case, i.e., if U small enough

then W =

S

g

i

(W

i

). 2

This was the hard part of the proof of the base change theorem in the �etale case.

We can deduce the following analog of 2.7.3.

Corollary 3.7.2 Consider the general morphism � : Y

e

! Y .

1. The functor �

�

preserves 
abby sheaves.

2. For any sheaf S on Y

sp

�etale

, any (U; b; �) and any W ! Y

U

as above we have:

�(W

e

; �

�

S) = lim

�!

(U

0

;b

0

;�

0

)�(U;b;�)

�(W �

U

U

0

; S)

Proof. For any S on Y

sp

�etale

we have H

q

(Y

e

; �

�

S) = limH

q

(Y

U

; S), by Remark 2.5.9

and the previous lemma. The same argument gives H

q

(W

e

; �

�

S) = limH

q

(W

U

; S)

for W as in 2). The results of the corollary follow directly from this. 2

Theorem 3.7.3 Let f : Y ! X be a quasi-compact morphism of analytic spaces

over k. Take an �etale point e of X and denote by Y

e

the (�etale) �bre of f at e. The

functors

S 7! H

q

(Y

e

; �

�

S) resp: S 7! (R

q

f

�

S)

e

are �-functors of the category of Abelian sheaves on Y

�etale

to the category of continuous

G

e

-modules. These �-functors are isomorphic.

Proof. Remark that Y

e

= Y

a

^


F

e

and that �

�

S is the pullback of Sj

Y

a;�etale

via the

general morphism Y

e

! Y

a

. Thus we see by 3.6 that the groups H

q

(Y

e

; �

�

S) indeed

have a Galois module structure. In the same way as in the proof of the rigid base

change theorem it is proved that the functors under consideration form �-functors.

The maps

�

R

q

f

�

S

�

e

�! H

q

(Y

e

; �

�

S)

are de�ned similarly as in the proof of Theorem 2.7.4. These maps commute with

Galois action since the action on both sides is de�ned through the action of G

e

on F

e

.

Let us prove that these maps are isomorphisms only in the case that both X and

Y are a�noid. The general case then follows as it did in the rigid case. The result

for q = 0 is just Corollary 3.7.2 part 2) with W = Y . The general result follows by

induction on q and the fact that �

�

preserves 
abby sheaves. 2

Corollary 3.7.4 If f : Y ! X is quasi-compact and has �nite �bres then R

q

f

�

S is

zero for q � 1 and any overconvergent sheaf S on Y

�etale

. In particular the cohomology

of S on Y is equal to the cohomology of f

�

S on X .
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Corollary 3.7.5 (Hochschild-Serre spectral sequence.) Let K be a completion of a

separable closure k

sep

of k. Let G = Gal(k

sep

=k) denote the continuous Galois group

of K over k. For any quasi-compact variety X over k and any Abelian sheaf S on

X

�etale

there is a spectral sequence

H

i

(G; H

j

(X

^


K;�

�

S))) H

i+j

(X;S):

Here � : X

^


K ! X is as in 3.6 and H

q

(G;�) denotes continuous cohomology.

Proof. Let us write p : X ! Sp(k) as in 3.6. Let a denote the unique analytic

point of Sp(k) and let e be an �etale point lying over a. First we note that (if S is

overconvergent)

H

q

(X

^


K;�

�

S)

�

=

(R

q

p

�

S)

e

as G-modules by the theorem above. This shows that the G-module on the left has a

continuous G-action if it is given the discrete topology. It also proves that

H

0

(G; H

0

(X

^


K;�

�

S)) = H

0

(G; (p

�

S)

e

) = (p

�

S)

a

= H

0

(Sp(k); p

�

S) = H

0

(X;S):

Here we used Lemma 3.3.2. Hence we only need to show that the functor which maps

S to the Galois module H

0

(X

^


K;�

�

S) transforms an injective sheaf S on X into an

acyclic G-module. Since we are taking continuous cohomology we have:

H

q

(G; H

0

(X

^


K;�

�

S)) = lim

�!

k�k

0

H

q

(Gal(k

0

=k); H

0

(X

^


K;�

�

S)

G

0

);

where the limit runs over all �nite Galois extensions k � k

0

contained in K. By an

argument as above this is the limit over the groups

H

q

(Gal(k

0

=k); H

0

(X 
 k

0

; S)):

But since S is injective these groups compute the cohomology groups H

q

(X;S) (com-

pare [M80, Theorem 2.20]) and these are zero for q � 1. 2

4 Cohomology of varieties of dimension at most 1

In this section we suppose that the �eld k is algebraically closed. Let p � 1 denote

the characteristic of the residue �eld of k. We put p = 1 if the residue �eld of k

contains the �eld of rational numbers. Further X will denote an analytic space over

k of dimension � 1.

4.1 Some general results

For n > 1 which is not divisible by the characteristic of k, we consider the exact

sequence

0 �! �

n

�! G

m

n

�! G

m

�! 0

of sheaves on X

�etale

. This sequence induces the following distinguished triangle of

complexes on X

rigid

:

�! Rr

�

�

n

�! Rr

�

G

m

�! Rr

�

G

m

�! Rr

�

�

n

[1]
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We already know quite a lot about the homology sheaves of these complexes: We

know that R

q

r

�

�

n

= 0 for all q � 2 by Lemma 3.3.1 and Corollary 3.3.2 combined

with the fact that R

q

r

�

�

n

are overconvergent (Lemma 3.4.6). Further we know that

R

1

r

�

G

m

= 0 by Corollary 3.2.4. The following result is a formal consequence of this.

Lemma 4.1.1 In the derived category of Abelian sheaves on X

rigid

we have the fol-

lowing isomorphism

Rr

�

�

n

�

=

�

O

�

X

n

�! O

�

X

�

;

where the �rst term on the right is placed in degree 0.

Lemma 4.1.2 Let X be connected paracompact (and still have dimension � 1). We

denote by Z=nZ

X

the constant sheaf with �bre Z=nZ on X

�etale

, where n is prime to

the characteristic of k. We have H

0

(X;Z=nZ

X

) = Z=nZ and H

q

(X;Z=nZ

X

) = 0 for

q � 3.

1. There is an exact sequence

0 �! H

1

(X

rigid

;Z=nZ) �! H

1

(X;Z=nZ

X

) �! H

0

(X

rigid

; R

1

r

�

Z=nZ

X

)! 0

and we have H

2

(X;Z=nZ

X

) = H

1

(X

rigid

; R

1

r

�

Z=nZ

X

).

2. A choice of a primitive n

th

-root of unity determines an exact sequence

0 �! O(X)

�

=O(X)

� n

�! H

1

(X;Z=nZ

X

) �! ker(n; P ic(X)) �! 0

and an isomorphism H

2

(X;Z=nZ

X

) = Pic(X)=nP ic(X).

Proof. The statement on H

0

is trivial. Consider the spectral sequence with E

2

-

terms H

p

(X

rigid

; R

q

r

�

Z=nZ

X

) abutting to H

p+q

(X;Z=nZ

X

). Clearly 1) follows since

R

q

r

�

Z=nZ

X

= (0) for q � 2 and cohomology of rigid sheaves is zero on X in dimen-

sions � 2 by Corollary 2.5.10.

A choice of a primitive n

th

-root of unity determines an isomorphism of sheaves

Z=nZ

X

�

=

�

n

. Thus statement 2) follows from the lemma above and the vanishing of

rigid cohomology in degrees � 2 on X . 2

4.2 The cohomology of Z=nZwith (n; p) = 1

In this subsection we will determine the cohomology of X in certain cases where X

is smooth and irreducible. We will use the word curve to denote a separated analytic

variety of pure dimension 1. Recall that we are working over an algebraically closed

�eld.

Proposition 4.2.1 Let C be a nonsingular projective curve of genus g. We compute

the cohomology with values in Z=nZ for (n; p) = 1 of an open subvariety X of C as

follows.

1. If X = C, then H

1

(X;Z=nZ

X

)

�

=

(Z=nZ)

2g

and H

2

(X;Z=nZ

X

)

�

=

Z=nZ.

2. If X is the complement of �nitely many points c

1

; : : : ; c

a

(a > 0) in C, then

H

1

(X;Z=nZ

X

)

�

=

(Z=nZ)

2g+a�1

and H

2

(X;Z=nZ

X

) = 0.
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3. Suppose X is C n (D

1

[ : : : [D

a

) where the D

i

are disjoint open discs in C. In

this case H

1

(X;Z=nZ

X

)

�

=

(Z=nZ)

2g+a�1

and H

2

(X;Z=nZ

X

) = 0.

In all of these cases, for any extension of algebraically closed complete valued �elds

k � K, the natural map H

q

(X;Z=nZ

X

)! H

q

(X

K

;Z=nZ

X

K

) is an isomorphism.

Proof. Part 1) follows from Lemma 4.1.2 part 2) and the fact that Pic(C) corresponds

to the algebraic Picard group of C by GAGA. Note that the isomorphism for H

2

is

given by the isomorphism Pic(C)=nP ic(C)

�

=

Z=nZ induced by taking degrees of line

bundles on C.

Note that in case 2) the space X is the admissible increasing union X =

S

X

n

of a�noid spaces X

n

as in 3). Just take D

i;n

to be smaller and smaller open discs in

C with center c

i

. Thus if we prove 3) then 2) will follow by considering the Cartan-

Leray spectral sequence associated to the covering X =

S

X

n

. (Here we also need

that the maps H

i

(X

n+1

)! H

i

(X

n

) are isomorphisms; this follows from the proof of

3) below.)

Let us assume X is as in 3). Any line bundle on X is the restriction of a

line bundle of degree zero on C. In other terms, Pic

0

(C) ! Pic(X) is surjective. In

particular Pic(X) is a divisible group and by Lemma 4.1.2 we get H

2

(X;Z=nZ

X

) = 0.

For the calculation of the group H

1

(X;Z=nZ

X

) we start with the case where X is

the closed unit disk B := fz 2 k; jzj � 1g.

Now H

1

(B ; G

m

) = Pic(B ) = 0 and by 4.1.2 one has H

1

(B ;Z=nZ

B

) =

O(B )

�

=O(B )

�n

. The invertible functions on B are of the form �(1 + f) with � 2 k

�

and f 2 O(B ) has a norm < 1. The condition on n implies that such a function has

an n-th root. Hence H

1

(B ;Z=nZ

B

) = 0.

Next, we want to investigate a ring domain (or annulus) @B := fz 2 k; jzj =

1g. Again Pic(@B ) = 0. Further every invertible function on @B has uniquely the

form �z

s

(

P

m

a

m

z

m

) where � 2 k

�

; s 2 Z and where the Laurent series satis�es

a

0

= 1; ja

m

j < 1 for all m 6= 0 and lim ja

m

j = 0. It follows that H

1

(@B ;Z=nZ

@B

) =

O(@B )

�

=O(@B )

�n

= Z=nZ, a generator is given by the class of z. Clearly this is

independent of the base �eld k.

Now we start proving the general statement. The pre-sheaves U 7!

H

i

(U

etale

;Z=nZ

C

) are overconvergent on C

rigid

. Hence it su�ces to prove the state-

ment for all wide neighborhoods X

0

of X in C. For such an X

0

we can �nd closed

unit discs B

i

� D

i

such that X

0

\ B

i

is isomorphic to a ring domain @B . If we have

this then the covering

C = X

0

[

[

B

i

will be admissible. In particular it is also an �etale covering of C. Therefore, we have

the Mayer-Vietoris sequence exact sequence [M80, p. 110]

0 �! H

1

(C;Z=nZ

C

) �! H

1

(X

0

;Z=nZ

C

)�

M

H

1

(B

i

;Z=nZ

C

)

�!

M

H

1

(X

0

\ B

i

;Z=nZ

C

) �! H

2

(C;Z=nZ

C

) �! 0:

The zero on the right follows by the vanishing of H

2

on a�noid curves proved above

and the zero on the left is trivial to establish. The result follows by the computation

of cohomology of B and @B given above.
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For a precise de�nition of the map H

q

(X;Z=nZ

X

) ! H

q

(X

K

;Z=nZ

X

K

) see 5.1

below. The invariance of cohomology under extension of base �eld for X follows from

the invariance of cohomology for the algebraic curve C and the spaces B , resp. @B . 2

Remark 4.2.2 Let k

0

� k denote a complete sub�eld of k such that k is the com-

pletion of the separable algebraic closure of k

0

. Suppose that the g.c.d.(n; p) = 1.

Let @B be the ring domain fz 2 k

0

; jzj = 1g over k

0

. The Galois action (see 3.6) on

H

1

(((@B )

^




k

0

k); �

n

) = Z=nZ is trivial. By the proof above this cohomology group is

canonically isomorphic to O(@B

^




k

0

k)

�

=O(@B

^




k

0

k)

� n

. The generator of this group is

the class of the invertible function z. This is clearly invariant under the Galois group.

Remark 4.2.3 The open unit disc D is the increasing union of closed discs. Thus we

see, by the argument that proved part 2 of the proposition, that H

q

(D;Z=nZ

D

) = 0

for q � 1. This result is partially generalized in the corollary below.

Corollary 4.2.4 Let L be a compact subset of P

1

k

and put X = P

1

k

n L. Then

H

1

(X;Z=nZ

X

) coincides with the group of Z=nZ-valued currents on the tree of X

(or the tree of L). More generally, for any connected open subspace X of P

1

k

, the

group H

1

(X;Z=nZ

X

) is equal to O(X)

�

=O(X)

�n

.

Proof. The line bundles on any open subspace X of P

1

k

are trivial (see [FP]) and

hence H

1

(X;Z=nZ

X

)

�

=

O(X)

�

=O(X)

�n

. (Use Lemma 4.1.2.) The structure of the

group O(X)

�

is well known if X = P

1

k

�L. Namely, there is an exact sequence

0 �! k

�

�! O(X)

�

�! C(T )! 0;

where T denotes the tree of L and where C(T ) denotes the group of currents with

values in Z on T . (See [FP].) It follows that O(X)

�

=O(X)

�n

= C(T )=nC(T ) is the

group of currents on T with values in Z=nZ. 2

Proposition 4.2.5 If X is a connected smooth a�noid curve then there is an em-

bedding X � C as in Proposition 4.2.1 part 3) above. We deduce from this the

following results. Let A be an Abelian torsion group of exponent n, with (n; p) = 1.

1. There are natural isomorphisms H

q

(X;Z=nZ

X

)
A

�

=

H

q

(X;A

X

).

2. The cohomology groups H

q

(X;A

X

) are invariant under algebraically closed

extensions of base �elds.

Proof. The existence of such an embedding X ! C is proved in [P80]. The group A

is the direct limit of its �nite subgroups. Taking cohomology commutes with direct

limits (3.4.3), hence it su�ces to do the case A is �nite. Writing A as the direct sum

of cyclic subgroups it follows that we may assume A

�

=

Z=n

0

Zwhere n

0

jn. In this case

both 1) and 2) follow easily from Proposition 4.2.1. 2

Remark 4.2.6 Other constant sheaves.

1. The cohomology of Q

X

. Since in this case the rigid sheaves R

q

r

�

Q

X

for q � 1

are both torsion (by 3.3.2 and 3.4.6) and sheaves of Q-vector spaces, they are

zero. Hence we have

H

q

(X;Q

X

)

�

=

H

q

(X

rigid

;Q)
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for all q. If X is a separated quasi-compact smooth curve then we have

H

1

(X;Q

X

) = H

1

(X

rigid

;Q) = Q

b

;

where b is the Betti number of the graph of a semi-stable reduction of X . A

semi-stable reduction of X is de�ned as follows: take a separated formal scheme

X of �nite type over Spf(k

�

), whose associated rigid space X

rig

is isomorphic

to X . (See [R74] or [BL].) By blowing up X a bit we may assume that the

singularities of the special �bre are ordinary double points. This special �bre

is a semi-stable reduction of X . Since any other such formal scheme X

0

may

be compared with X by a sequence of blow ups and blow downs in points it

follows that the associated graphs have the same homotopy type. The result

now follows from Remark 2.5.9 and a computation of the Zariski cohomology of

a constant sheaf on an algebraic semi-stable curve.

2. The constant sheaf Z=pZ

X

.

(a) Let the characteristic of k be p > 1. We will give a calculation of

H

1

(B ;Z=pZ

X

) where B is the closed unit disk. Consider the Artin-Schreier

exact sequence

0 �! Z=pZ

B

�! G

a

�

�! G

a

�! 0

on X

�etale

. Here of course �(f) = f

p

� f . On cohomology we get an exact

sequence

0 �! Z=pZ�! O(B )

�

�! O(B ) �! H

1

(B ;Z=pZ

B

) �! 0;

since H

1

(B ; G

a

) = (0) by 3.2.5. The co-kernel of � : O(B ) ! O(B ) is a

rather large group and is not invariant under algebraically closed extensions

of base �elds. This re
ects the fact that the closed disk has many p-cyclic

un-rami�ed coverings.

(b) Here the characteristic of k is zero, but the characteristic of the residue

�eld

~

k is p > 1. With the methods above it follows that H

1

(B ;Z=pZ

B

) =

O(B )

�

=O(B )

�p

. This is again a very large group not invariant under base

�eld extensions. It can be shown that every (algebraic) �nite �etale covering

of the a�ne line over

~

k lifts to a �nite �etale covering of B . The conjecture of

S.S.Abhyankar on the coverings of the a�ne line in characteristic p (proved

by M.Raynaud) implies that the totality of nontrivial �nite �etale coverings

of B is very large.

5 Base change revisited

In this section we prove a general base change theorem for quasi-compact morphisms

and overconvergent �etale sheaves. In order to be able to apply Theorem 3.7.3 we have

to prove invariance of cohomology under extensions of algebraically closed base �elds.

This is done below for rigid and �etale cohomologies and overconvergent sheaves.
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5.1 A change of fields,

�

etale case.

Let k � K be an extension of complete and algebraically closed �elds. For any

analytic space X over k we denote by p

K

: X

K

= X

^




k

K ! X the general morphism

associated to the change of �elds. For an �etale sheaf S on X we have the �etale sheaf

p

�

K

S on X

K

and comparison maps

H

q

(X;S) �! H

q

(X

K

; p

�

K

S):

We would like to know when these are isomorphisms. As before we put p � 1 equal

to the characteristic of the residue �eld of k (and p = 1 if char(

~

k) = 0).

Theorem 5.1.1 The canonical maps H

q

(X;S) �! H

q

(X

K

; p

�

K

S) are isomorphisms

if S satis�es the following conditions:

1. The sheaf S is overconvergent.

2. All �etale stalks S

e

of S are torsion groups, with torsion prime to p.

Proof. By taking an admissible a�noid covering of X we see that it su�ces to do the

case that X is a�noid. Let us consider S as a sheaf on the site X

sp

�etale

. For any n 2 N

with (n; p) = 1 let S

n

� S be the subsheaf of S consisting of sections annihilated by

n, i.e., S

n

:= Ker(S

n

! S) is also overconvergent. By our two conditions on S and

Lemma 3.3.1 we see that any section s 2 S(Y ) is torsion (Y ! X is special �etale,

hence Y a�noid, hence quasi-compact). Thus we see that S =

S

S

n

. By looking at

stalks we see that (p

�

K

S)

n

= p

�

K

S

n

, hence also p

�

K

S =

S

p

�

K

S

n

. Since cohomology

commutes with direct limits (3.4.3) it su�ces to do the case that S is a sheaf of

Z=nZ-modules.

Consider �elds L with k � L � K, which are complete and algebraically closed.

We say that L has topological transcendence degree � r over k if there exist elements

t

1

; : : : ; t

r

2 L such that L is the completion of the algebraic closure of k(t

1

; : : : ; t

r

).

The reasoning of Lemma 3.7.1 shows that the site (X

K

)

sp

�etale

is the direct limit of

the sites (X

L

)

sp

�etale

, taken over all L of �nite topological transcendence degree over

k. Therefore it su�ces to prove H

q

(X;S) = H

q

(X

L

; p

�

L

S) for k � L of topological

transcendence degree � r. By induction on r it su�ces to do the case: k � K of

topological transcendence degree 1.

Take an element t 2 K such that K is the completion of the algebraic closure of

k(t). We may assume that jtj � 1. Consider the continuous k-algebra homomorphism

khT i ! K mapping T to t. This determines an �etale point e of the closed unit disc

B over k with F

e

= K.

The problem we are studying may now be formulated with the help of the fol-

lowing diagram of analytic spaces and general morphisms.

X

K

�! X � B

p

1

�! X

?

?

y

?

?

y

p

2

?

?

y

q

2

Sp(K)

e

�! B

q

1

�! Sp(k):

There is a general base change morphism (see [SGA 4, Exp. XVII 4.1.5])

q

�

1

R

q

(q

2

)

�

S �! R

q

(p

2

)

�

p

�

1

S (1):
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The comparison map from the theorem is the base change map for the big rectangle

of the diagram. Our �etale base change theorem 3.7.3 asserts that the base change

map for the left square with p

�

1

S is an isomorphism. By the functoriality properties

of the base change morphism it will su�ce to prove that (1) is an isomorphism.

Let V ! B be �etale and V a�noid. Put p : X � V ! X equal to the projection.

We write H

m

(V ) = H

m

(V;Z=nZ

V

) and H

m

(V )

X

is the constant sheaf with �bre

H

m

(V ) on X

�etale

. There is a natural map

H

m

(V )

X




Z=nZ

S �! R

m

p

�

p

�

S: (2)

It is the composition

H

m

(V )

X


 S �! R

m

p

�

(Z=nZ

X�V

)
 S �! R

m

p

�

p

�

S;

the �rst map given by base change, the second deduced from S ! p

�

p

�

S by the cup-

product R

m

p

�

(Z=nZ

X�V

)
R

0

p

�

p

�

S ! R

m

p

�

p

�

S associated to Z=nZ

X�V


 p

�

S !

p

�

S. By �etale base change 3.7.3 the stalk of R

m

p

�

p

�

S in the �etale point f of X is

H

m

(V

^


F

f

; (S

f

)

V

^


F

f

). Hence, by Proposition 4.2.5 (2) is an isomorphism on �etale

stalks for all f . Since both sides of (2) are overconvergent we get that (2) is an

isomorphism. Thus we get that R

m

p

�

p

�

S = (0) for n � 2. Finally, since p : X�V !

X has a section, the maps H

m

(X;S)! H

m

(X �V; p

�

S) have sections. We conclude

that the spectral sequence H

i

(X;R

j

p

�

p

�

S)) H

i+j

(X�V; S) degenerates and gives:

H

m

(X � V; S)

�

=

H

m

(X;H

0

(V )

X


 S) � H

n�1

(X;H

1

(V )

X


 S)

�

=

H

0

(V )
H

m

(X;S) � H

1

(V )
H

n�1

(X;S)

Therefore, the sheaf associated to the presheaf V 7! H

m

(X � V; S) (on B

sp

�etale

) is the

constant sheaf with �bre H

m

(X;S). Clearly this means that the right side of (1) is

constant and hence that (1) is an isomorphism (look at �bres over 0 2 B ). 2

5.2 A change of fields, rigid case.

We think it is quite amusing that a similar theorem also holds for the rigid case.

Notations are as in 5.1.

Theorem 5.2.1 Let S be an overconvergent sheaf on X

rigid

. The canonical maps

H

q

(X

rigid

; S) �! H

q

((X

K

)

rigid

; p

�

K

S)

are isomorphisms.

Proof. As in the proof of the �etale case we may assume that X is a�noid and k � K

of topological transcendence degree 1 (using X

rat

rigid

in stead of X

sp

�etale

). We consider

sub�elds L � K, which are complete and are the completion of a function �eld of

transcendence degree 1 over k. In this case we remark that (X

K

)

rat

rigid

is the direct

limit of the sites (X

L

)

rat

rigid

for such �elds L. Again it su�ces to do the case K = L.

(The �eld K is no longer algebraically closed!)

Suppose Z is a nonsingular projective irreducible curve over k, whose function

�eld k(Z) is a dense sub�eld of K. The embedding k(Z) ! K de�nes an analytic

point a of Z with F

a

= K.
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Observation 5.2.2 There is an a�noid subdomain U � Z in the �lter of a with

the following property: For every a�noid V � U and any constant sheaf T on U the

cohomology groups H

n

(V; T ) are zero for n � 1.

This follows quite easily from the stable reduction of Z. As was noted in Remark

4.2.6 part 1) the cohomology of a rigid constant sheaf on an a�noid smooth curve

depends only on the Betti number of the graph of its stable reduction. Thus we take

for U the pre-image of a Zariski open W of the stable reduction of Z, such that W

contains no cycles. The assertion of the observation then holds for V = U . But also

for any such V � U it holds, since this corresponds to a Zariski open part in a blow

up of the stable model of Z. Blow ups do not introduce extra cycles.

The rest of the proof of the theorem is similar to the proof of Theorem 5.1.1:

just replace B by U and �etale by rigid cohomology. 2

Remark 5.2.3 Both theorems are false when k is not algebraically closed. Just take

X = Sp(k

0

) where k � k

0

is a �nite Galois extension and S = Z=nZ

X

. In this case

H

0

(X;S) = Z=nZ and H

0

(X

K

; p

�

K

S) = (Z=nZ)

[k

0

:k]

. Even if X is a geometrically

connected smooth projective curve and S is a constant sheaf the result is false in

general. (Both rigid and �etale case.)

Corollary 5.2.4 Suppose that S is an overconvergent sheaf of Z[1=p]-modules on

X

�etale

. The canonical comparison mapsH

q

(X;S)! H

q

(X

K

; p

�

K

S) are isomorphisms.

Proof. There is an exact sequence

0 �! S

tors

�! S �! S 
 Q �! Q �! 0

By Theorem 5.1.1 the result is true for both S

tors

and Q. Since H

q

(X;S 
Q) agrees

with H

q

(X

rigid

; r

�

S 
Q) (compare Remark 4.2.6) we see the result is true for S 
 Q

also by the theorem above. The snake lemma gives the result for the sheaf S. 2

5.3 Quasi-compact base change.

By a combination of our previous results we can now prove a general base change

theorem for quasi-compact morphisms.

Theorem 5.3.1 (Quasi-compact base change.) Consider a diagram

Z �

X

Y

g

0

�! Y

?

?

y

f

0

?

?

y

f

Z

g

�! X

and an overconvergent sheaf of Z[1=p]-modules S on Y

�etale

. Here f is a quasi-compact

morphism of analytic varieties over k and g is a (arbitrary) general morphism of

analytic varieties. The base change morphism [SGA 4, Expos�e XVII]

g

�

Rf

�

S �! Rf

0

�

(g

0

)

�

S

is a quasi-isomorphism.
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Proof. We only have to show that this morphism induces an isomorphism on the

�etale stalks of the overconvergent sheaves g

�

R

q

f

�

S and R

q

f

0

�

(g

0

)

�

S. Any �etale point

e

0

of Z lies over an �etale point e of X , i.e., such that F

e

� F

e

0

. By the �etale base

change theorem 3.7.3 the map on the stalks is the map 5.1 between

�

g

�

R

q

f

�

S

�

e

0

=

�

R

q

f

�

S

�

e

= H

q

(Y

e

; Sj

Y

e

)

and

�

R

q

f

0

�

(g

0

)

�

S

�

e

0

= H

q

(Y

e

0

; (g

0

)

�

Sj

Y

e

0

) = H

q

(Y

e

^


F

e

0

; p

�

F

e

0

(Sj

Y

e

)):

The statement follows from Corollary 5.2.4. 2

6 The axioms for cohomology

Let k be a complete valued �eld. An `abstract' cohomology theory for rigid analytic

spaces over k is de�ned in [S-S, section 2] to be a cohomology theory X 7! H

�

(X)

satisfying four axioms. There is also given a candidate for such a cohomology theory.

Let A be a �nite ring of order prime to the residue �eld of k. Let K be the completion

of the algebraic closure of k. We put

H

�

(X) := H

�

(X

^


K;A

X

^


K

):

As remarked in [S-S, p. 58], the nontrivial axioms to check in this case are the `ho-

motopy axiom' and the axiom concerning the cohomology of the projective space. In

this section we will prove those axioms.

The homotopy axiom states that H

�

(X �D)

�

=

H

�

(X) for an open disc D. This

follows immediately from the following theorem.

Theorem 6.0.2 (The homotopy axiom.) Let X be an analytic space over k. Let S

be an overconvergent sheaf of Z[1=p]-modules on X

�etale

. Suppose D is an open or

closed disc over k; let p : X � D ! X denote the projection. The canonical maps

H

q

(X;S)! H

q

(X �D; p

�

S) are isomorphisms.

Proof. If the disc D is open then it is the admissible union D =

S

B

n

of closed discs

B

n

of radius �

n

2

p

jk

�

j. The covering X � D =

S

X � B

n

is the also admissible.

Therefore, it su�ces to prove the theorem for a closed disc B.

In this case we prove that p

�

p

�

S

�

=

S and that R

q

p

�

p

�

S = (0) for q � 1.

By the �etale base change theorem the �etale stalk at e of these sheaves are equal to

H

q

(B

^


F

e

; (S

e

)

B

^


F

e

). Note that B

^


F

e

�

=

B , the closed unit disc of radius 1 over F

e

.

If we prove that H

q

(B ; A

B

) = (0) for q � 1 for any Z[1=p]-moduleA then we are done.

A standard argument, compare with 4.2.5, reduces to the cases A = Q or A = Z=nZ.

These cases where done in Remark 4.2.6 and Proposition 4.2.1. 2

For the formulation of the following theorem, we need to be more precise about

the Galois action on the cohomology groups. Let K denote the completion of the

separable closure k

sep

of k. The symbol G = Gal(k

sep

=k) denotes the continuous

Galois group of K over k. See 3.6. The �nite ring A is given the trivial G action.

For any i 2 Z we de�ne A(i) := A


�

�

n

(K)

�


i

as a G-module, where n = #G. The

following result also follows from the comparison theorem in the following section.
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Theorem 6.0.3 (Cohomology of P

d

.) Let P

d

denote the d-dimensional projective

space over k. We have as Galois modules

H

q

(P

d

) = H

q

(P

d

K

; A

P

d

K

) =

�

A(�q=2) for q even, 0 � q � 2d,

(0) otherwise.

Proof. The calculation of the cohomology is done by applying the Mayer-Vietoris

sequence to the covering fU

0

; U

1

g of P

d

given by U

0

= f(z

0

; :::; z

d

)j jz

j

j � jz

0

j for all jg

and U

1

= f(z

0

; :::; z

d

)j jz

0

j � max(jz

1

j; :::; jz

d

j)g. The space U

0

is a product of disks

and has therefore trivial cohomology. The spaces U

1

and U

0

\U

1

respectively, admit

a surjective morphism to P

d�1

given by (z

0

; :::; z

d

) 7! (z

1

; :::; z

d

). The �bres are disks

or ring domains respectively and the �berings are locally trivial. Base change, with

respect to the �rst map, yields H

i

(U

1

)

�

! H

i

(P

d�1

). Base change applied to the

second map gives rise to an exact sequence

0 �! H

i

(U

1

) �! H

i

(U

0

\ U

1

) �! H

i�1

(P

d�1

)(�1) �! 0:

The (�1) in the last cohomology group is a consequence of the Galois action on the

cohomology of a ring domain. See 4.2.2. Induction on d and the Mayer-Vietoris

sequence imply that H

i

(P

d

)

�

=

H

i�2

(P

d�1

)(�1) for i � 2 and the expected values of

H

0

and H

1

. 2

7 Purity and comparison

Let X be a scheme of �nite type over the complete valued �eld k. We write X

�et

for

the small �etale site of the scheme X . Further, X

an

denotes the rigid analytic variety

associated to X . There is a morphism of sites

� : X

an

�etale

�! X

�et

comparing the algebraic and rigid �etale sites. It is given by the functor that associates

to the scheme Y �etale over X the analytic space Y

an

�etale over X

an

. We want to

compare sheaves on both sides and their cohomology. It will turn out that if the

characteristic of k is zero then we get results as proved in [SGA 4] comparing �etale

cohomology and classical cohomology over C . However, if the characteristic is p > 1,

only a weaker version holds. We will give counterexamples for the full statement.

In order to prove the statements above we use a purity result for rigid �etale

cohomology. It tells us what the cohomology of the complement of a smooth divisor

in a smooth rigid analytic variety is.

7.1 A preliminary result

We start by proving that sheaves of the form �

�

S are overconvergent.

Lemma 7.1.1 For any sheaf S on X

�et

the sheaf �

�

S is overconvergent.

Proof. Let Y ! X be an algebraic �etale morphism, with Y a�ne. We also denote

by Y the sheaf on X

�et

it de�nes. We only need to show that the sheaf �

�

(Y ) is

overconvergent. (The sheaves Y generate the category of sheaves on X

�et

and the
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direct limit of overconvergent sheaves is overconvergent.) By Zariski's main theorem

we can embed Y as a Zariski open set in a scheme Y �nite over X . Suppose U � X

an

is an a�noid subdomain and V ! U is an �etale morphism of a�noids. The notation

V (r) ! U is as in 3.4. We have to show that any morphism ' : V ! Y

an

over X

an

extends (uniquely) to some V (r) ! Y

an

. See 3.4.4. By Lemma 3.4.2 it su�ces to

show that '(V ) ��

U

Y

an

�

X

an

U . Clearly, we have that '(V ) ��

U

Y

an

�

X

an

U ,

since the last space is �nite over U . The result follows since Y

an

�

X

an

U is Zariski

open in Y

an

�

X

an

U . See for example [S93, x3 Proposition 3]. 2

7.2 Purity for rigid

�

etale cohomology

Let i : Z ! X be a closed immersion of analytic varieties over k. Let U = X n Z

denote the admissible open subvariety of X which is the complement of Z. As usual

j : U ! X denotes the open immersion of U intoX . We want to prove that sheaves on

Z

�etale

correspond to sheaves S on X

�etale

such that j

�

S is a �nal object in the category

of sheaves on U , i.e., a sheaf which has exactly one section over each object of U

�etale

.

This means that the category of sheaves on Z can be viewed as the closed sub-topos

of X

�

�etale

complementary to the open sub-topos U

�

�etale

. Compare [SGA 4, Expos�e IV

9.3.5]. Although this follows easily for overconvergent sheaves, we need the result in

general for the proof of purity below. It implies in particular that Ri

�

F

�

=

i

�

F for

any Abelian sheaf F on Z

�etale

.

Lemma 7.2.1 The functor i

�

identi�es the category of sheaves (of sets) on Z with

the category of sheaves S on X such that j

�

S is a �nal object of U

�

�etale

.

Proof. Let us take an admissible a�noid covering X =

S

X

i

of X and admissible

a�noid coverings X

i

\X

j

=

S

X

ijk

. Any sheaf on X is given by sheaves on X

i

glued

on the X

ijk

, whereas a sheaf on Z (resp. U) is given by sheaves on Z \ X

i

(resp.

U \X

i

) glued on the Z \X

ijk

(resp. U \X

ijk

). In this way one reduces to the case

that X is a�noid.

In this case we work with the sites X

sp

�etale

and Z

sp

�etale

. The functor X

sp

�etale

! Z

sp

�etale

is denoted W 7!W

Z

= Z �

X

W . Consider the following statements:

1. For any �etale W

0

! Z, W

0

a�noid, there exists an �etale W ! X morphism of

a�noids such that W

0

�

=

W

Z

.

2. If V;W 2 X

sp

�etale

and �

0

: W

Z

! V

Z

is a morphism over Z then there is a

Weierstrass domain W

0

� W with W

0

Z

= W

Z

and a morphism � : W

0

! V

lifting �

0

.

3. If W 2 X

sp

�etale

then any special �etale covering fW

i;0

! W

Z

g may be lifted to a

special �etale covering of W .

Let us �rst prove that these imply the lemma.

We denote by e a �nal object of (U

�etale

)

�

. Further for any sheaf S on X we

denote by P (S) the presheaf on Z

sp

�etale

de�ned by the formula:

P (S)(W

0

) = lim

�!

V;�

0

:W

0

!V

Z

�(V; S)
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By de�nition, i

�

S is the sheaf associated to the presheaf P (S). It is clear from 1) and

2) above that P (S) may be described as follows

P (S)(W

Z

) = lim

�!

W

0

�W as in 2)

�(W

0

; S):

Such a subdomain W

0

is automatically a wide neighborhood of W

Z

in W , since W

Z

is closed in W . Therefore there exists a special subset V � W , disjoint with W

Z

such that W = W

0

[ V . This means that if S has the property that j

�

S

�

=

e then

�(W;S) = �(W

0

; S) since both �(V; S) and �(V \ W

0

; S) consist of one element.

In particular we see that for such S we have P (S)(W

Z

) = �(W;S). Property 3)

above implies that P (S) is a sheaf in this case and hence i

�

(S) = P (S). It follows

immediately that i

�

i

�

S

�

=

S for such sheaves S.

Conversely, if F is a sheaf on Z, it is immediate that j

�

i

�

F

�

=

e. Hence by the

above we have that i

�

i

�

F = P (i

�

F) and

�(W

Z

; i

�

i

�

F) = �(W; i

�

F) = �(W

Z

;F):

We have proved that i

�

and i

�

are mutually inverse functors de�ning the desired

equivalence of categories.

Let us prove 1). Let Y

0

! Z be an �etale morphism of a�noids. We can choose

a presentation (see Lemma 3.4.1)

O(Y

0

) = O(Z)hT

1

; : : : ; T

n

i=(G

1

; : : : ; G

n

)

with G

1

; : : : ; G

n

2 O(Z)[T

1

; : : : ; T

n

] such that the determinant �

0

= det

�

@G

j

�

@T

i

�

is invertible in O(Z). Let us lift the polynomials G

i

to polynomials F

i

2

O(X)[T

1

; : : : ; T

n

]. Put � = det

�

@F

j

�

@T

i

�

. Take � 2 k

�

such that j�j is smaller

than the in�mum of j�

0

j on Z. We consider the algebra

O(X)hT

0

; T

1

; : : : ; T

n

i

�

(F

1

; : : : ; F

n

;�T

0

� �):

This de�nes a special �etale morphism Y ! X since the corresponding functional

determinant is �

2

, which is invertible. The isomorphism Y

0

�

=

Z �

X

Y follows by

construction.

The proof of 2) is similar to the proof of 2) in Lemma 3.7.1. We consider the

product V �

X

W and the graph morphism �

0

: W

Z

! (V �

X

W )

Z

. This morphism

is �etale. By 1) (with W �

X

V in stead of X) we can �nd � : Y ! V �

X

W such

that Y

Z

�

=

W

Z

and �

Z

= �

0

. Next argue as in the proof of 3.7.1 to see that there is

some wide neighborhood W

0

� W of W

Z

such that pr

1

� � : �

�1

(V �

X

W

0

) ! W

0

is an isomorphism. Thus we get W

0

! V . Finally, the Weierstrass domains in W

are co�nal in the set of neighborhoods of W

Z

in W . To see this apply the rigid key

lemma to a morphism f :W ! B

n

with W

Z

= f

�1

(0).

For 3) we �rst note that by 1) we may lift each of the special �etale W

i;0

! W

Z

to special �etale f

i

: W

i

! W . The special subset

S

f

i

(W

i

) is a neighborhood of W

Z

in W , hence a wide neighborhood, hence there exists some special V �W such that

V \W

Z

= ; and W = V [

S

f

i

(W

i

). Write V =

S

V

j

as a �nite union of rational

subdomains of W , then the special �etale covering of W we are looking for is the

covering fW

i

!W;V

j

!Wg. 2
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Next, we prove some kind of purity in the rigid �etale case. Let X be a smooth

rigid variety over k. let i : H ! X be a closed immersion, with H smooth over k

and everywhere in X of co-dimension 1. Thus it is a smooth divisor in X . Let U

denote the admissible open subset X nH of X and let j denote the open immersion

j : U ! X .

Theorem 7.2.2 (Purity.) With the notations as above and with n prime to the

characteristic of k we have

R

q

j

�

Z=nZ

U

=

8

<

:

Z=nZ

X

q = 0

i

�

(�


�1

n

) q = 1

(0) q � 2:

Proof. The statement is local on X , hence we may assume X a�noid. Locally on X

(in the Zariski topology) the ideal of H is generated by a single function, hence we

may assume that H is given as f = 0 for some f 2 O(X). By [K68] we can �nd an

a�noid neighborhood of H in X which has an admissible covering by a�noids of the

form H

i

� B . Here B is the closed unit ball over k with coordinate z. Thus we may

assume that X = H � B and U = H � B

�

where B

�

is the punctured unit disc. Let

us write

�

f : X ! H for the projection and f =

�

f j

U

so that we have the following

commutative diagram:

U

j

�! X

i

 � H

f &

?

?

y

�

f

. id

H

We note that the sheaves R

q

j

�

Z=nZ

U

for q � 1 have are zero restricted to U ,

hence are of the form i

�

F

q

for certain sheaves F

q

on H (use lemma above). Further,

it is clear that j

�

Z=nZ

U

= Z=nZ

X

on X . We study the spectral sequence associ-

ated to the isomorphism Rf

�

�

=

R

�

f

�

� Rj

�

. For the sheaf Z=nZ

U

its E

2

-terms are

E

ab

2

= R

a

�

f

�

R

b

j

�

Z=nZ

U

and it abuts to R

a+b

f

�

Z=nZ

U

. In view of the fact that

R

b

j

�

Z=nZ

U

= i

�

F

b

�

=

Ri

�

F

b

for b � 1 (by 7.2.1), we see that E

ab

2

= 0 for a; b � 1

and E

0b

2

= F

b

for b � 1. Also we have E

a0

2

= R

a

�

f

�

Z=nZ

X

. This is an overconvergent

sheaf, whose �etale stalks are H

a

(B ;Z=nZ

B

), over various algebraically closed base

�elds. Hence, by Lemma 4.1.2 and since Pic(B ) = (0), we see that R

a

�

f

�

Z=nZ

X

= (0)

for a � 2. The upshot of all of this is: 1) we have R

0

f

�

Z=nZ

U

= Z=nZ

H

, 2) there is

an exact sequence

0 �! R

1

�

f

�

Z=nZ

X

�! R

1

f

�

Z=nZ

U

�! F

1

�! 0

and 3) there are isomorphisms R

q

f

�

Z=nZ

U

�

=

F

q

for q � 2.

We have already used the morphism

R

�

f

�

Z=nZ

X

�! Rf

�

Z=nZ

U

:

In addition, there is a map

Z=nZ

H

[�1] �! Rf

�

�

n

;

which associates to 1 2 Z=nZ the section of R

1

f

�

�

n

corresponding to the �

n

-torsor

of U = H � B

�

given by the equation y

n

= z. We claim that together these induce a

quasi-isomorphism

R

�

f

�

Z=nZ

X

� �


�1

n

[�1] �! Rf

�

Z=nZ

U

: (1)
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From the considerations above it follows that this implies the theorem.

To prove the claim we may assume that n is a prime power n = p

r

. Let us treat

the case that p equals the characteristic of k. In this case k is a p-adic �eld. The

other cases are easier and similar arguments work.

Let us take c 2 N large enough. For m 2 N we put R

m

= fx 2 B ; jxj � jp

cm

jg,

a ring domain. Put U

m

= H � R

m

, note that the covering U =

S

U

m

is admissible.

Let us write f

m

: U

m

! H for the projection. We will study the overconvergent sheaf

R

q

f

m;�

�

n

. Its �etale �bres are H

q

(R

m

^


F

e

; �

n

). These are zero for q � 2 and equal to

�

n

for q = 0. Note that

P

1

= fjzj � jp

cm

jg [ fjzj � 1g;

hence that we have an exact sequence

0 �! F

�

e

�! O

�

(jzj � jp

cm

j)�O

�

(jzj � 1) �! O

�

(R

m

) �! Z�! 0:

This follows by the computation of cohomology of P

1

, use for example Lemma 4.1.2.

We see immediately that

H

1

(R

m

^


F

e

) = Z=nZ�H

1

(jzj � 1)�H

1

(jzj � jp

cm

j):

This implies a corresponding decomposition of the overconvergent sheaf

R

1

f

m;�

�

n

= Z=nZ

H

�R

1

�

f

�

�

n

�Rest

m

:

The maps Rest

m+1

! Rest

m

are zero, since by [L93, Theorem 2.1] the maps on the

�etale �bres H

1

(jzj � jp

c(m+1)

j)! H

1

(jzj � jp

cm

) are zero if c is large enough.

This means that for any V ! H a�noid �etale we have a decomposition

H

q

(V �R

m

) = H

q�1

(V; �


�1

n

)�H

q

(V � B ) �Rest

m

;

the transition maps H

q

(V �R

m+1

)! H

q

(V �R

m

) are the identity on the �rst two

summands, zero on the last one. This proves that

lim

 �

H

q

(V �R

m

) = H

q�1

(V; �


�1

n

)�H

q

(V � B )

and the derived limit

lim

 �

(1)

H

q

(V �R

m

) = (0):

We conclude that H

q

(V � B

�

) = H

q�1

(V; �


�1

n

) � H

q

(V � B ), hence (1) is an iso-

morphism. 2

7.3 Comparison

In this section X will denote a variety of �nite type over over the complete valued

�eld k. We state the results corresponding to [SGA 4, Expos�e XI Theorem 4.4] in our

case. Further, we will indicate the necessary changes in the proof given there so that

it will work in our case also.

Theorem 7.3.1 Suppose the characteristic of k is zero. There is an equivalence

between the category of locally constant sheaves on X

�et

with �nite stalks and the

category of locally constant sheaves on X

an

�etale

with �nite stalks. The equivalence is

given by the functors �

�

and �

�

.

Documenta Mathematica 1 (1996) 1{56



�

Etale Cohomology of Rigid Analytic Spaces 53

Proof. Since sheaves of this kind are representable by �nite �etale coverings we see

that it su�ces to prove the following statement: If Y ! X

an

is �nite �etale then there

exists a (unique) �nite �etale morphism of schemes Z ! X such that Y

�

=

Z

an

. This

was recently proved by L�utkebohmert, see [L93]. 2

In the next theorem k is no longer of characteristic zero.

Theorem 7.3.2 Let X be smooth over Spec(k) and let k be algebraically closed.

Suppose S is an Abelian locally constant sheaf on X

�et

with �nite stalks where all or-

ders of torsion are prime to the characteristic of k. In this case we have R

q

�

�

�

�

S = (0)

for q � 1. The canonical morphisms H

q

(X

�et

; S)! H

q

(X

an

�etale

; �

�

S) are isomorphisms.

In particular we have

H

q

(X

�et

;Z=nZ)

�

=

H

q

(X

an

;Z=nZ

X

an

):

Proof. With the results proved above, we can use the proof of [SGA 4, Expos�e XI

Theorem 4.4 part (ii)]. In stead of the `calcul direct' of line 1 on page 13 we use

Theorem 7.2.2. The only other fact used in the proof which is not immediately clear

is the following: Suppose

�

f :

�

X ! S is a family of smooth projective curves over

the scheme S, which is of �nite type over k, suppose n is relatively prime to the

characteristic of k. In this case R

1

�

f

an

�

Z=nZ

�

X

an

is a locally constant sheaf on S

an

�etale

.

However, this is immediately clear from: 1) The corresponding fact in the algebraic

case. 2) The base change map �

�

R

1

f

�

Z=nZ! R

1

�

f

an

�

Z=nZ

�

X

an

is an isomorphism

(look at �etale �bres). 2

Remark 7.3.3 The more general results proved in [SGA 4, Expos�e XVI x4] should

hold true for the rigid analytic case also. At least if the characteristic of k is zero

then it should be possible with some e�ort to follow the reasoning of locus citatus in

this case.

7.4 Counterexamples in characteristic p > 0.

Take k algebraically closed of characteristic p > 0. Riemann's existence theorem is

no longer valid in this case. We give an example of this.

Lemma 7.4.1 Consider the covering  : Y ! A

1 an

, given by the equation T

p

� T =

F :=

P

i�0

a

i

z

p

i

, where the series F converges on A

1 an

. We suppose that there are

in�nitely many non zero a

i

and that for every k � 0 one has

ja

k

+ a

p

k�1

+ a

p

2

k�2

+ :::+ a

p

k

0

j = max

0�i�k

(ja

i

j

p

k�i

):

Then Y is not isomorphic to Z

an

for any covering Z ! A

1

.

Proof. Any p-cyclic (un-rami�ed) covering of the unit disk D is given by an equation

T

p

�T = f with f 2 O(D). Two functions f

1

; f

2

2 O(D) de�ne isomorphic coverings

if and only if �

1

f

1

+ �

2

f

2

= h

p

� h holds with �

1

; �

2

2 F

�

p

and h 2 O(D). Using that

the structure sheaf O on the analytic space A

1;an

has trivial cohomology, one �nds

for A

1;an

similar results. Namely: Any p-cyclic analytic covering of A

1 an

is given by

an equation T

p

� T = f with f a holomorphic function on A

1 an

. Two holomorphic
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functions f

1

; f

2

de�ne the same p-cyclic extension if and only if there is a � 2 F

p

such

that the equation T

p

� T = �

1

f

1

+ �

2

f

2

has a holomorphic solution.

If Y = Z

an

then Z is a p-cyclic covering of A

1

given by an equation of the

form U

p

� U = g with g 2 zk[z]. Let the equation T

p

� T = �G := F � �g have

a holomorphic solution h =

P

i�1

h

i

z

i

. In some disk around 0 the spectral norm

of G is less than 1. Therefore

P

i�0

G

p

i

converges and is on this disk a solution

of T

p

� T = �G. So h coincides with

P

i�0

G

p

i

on this disk and the power series

expansion of h is equal to the power series expansion of

P

i�0

G

p

i

. One takes a

disc D(0; R) around 0 such that 1 < B := kGk

R

= kFk

R

> kgk

R

. After replacing

z by z� for a suitable � 2 k

�

, we may suppose that R = 1. First we look at

P

i�0

F

p

i

=

P

k�0

A

k

z

p

k

with A

k

= (a

k

+ a

p

k�1

+ a

p

2

k�2

+ ::: + a

p

k

0

). A calculation

shows that for N >> 0 one has jA

N

j = jA

N�1

j

p

and jA

N

j � B. Then we look at

P

i�0

g

p

i

=

P

k�1

b

k

z

k

. One can calculate that the absolute value of b

p

k grows less

fast than jA

k

j. This implies that the power series representing h is not convergent on

D(0; 1). This contradiction ends the proof. 2

Corollary 7.4.2 The map

H

1

(A

1

et

;Z=pZ)�! H

1

(A

1 an

etale

;Z=pZ)

is injective but not surjective. In particular Theorem 7.3.2 is not valid for sheaves

consisting of p-torsion.

Corollary 7.4.3 Let n > 1 with pj�(n) and with n not divisible by p. There is a

locally constant sheaf S on A

1 an

�etale

with stalk Z=nZ, which is not of the form �

�

T .

Proof. We consider the p-cyclic analytic covering  : Y ! A

1 an

of Lemma 7.4.1.

Let � denote the generator of the Galois group G of this extension. LetM denote the

constant �etale sheaf on Y with stalk Z=nZ. Let a 2 Z=nZ

�

be an element of order

p. We de�ne an action G on Z=nZ by �(i) = ai. This induces an action of G on

Z=nZ�Y by �((i; y)) = (ai; �(y)). The quotient by this group action is a sheaf S on

A

1 an

�etale

which is locally the constant sheaf with stalk Z=nZ. (And of course  

�

S is the

constant sheaf on Y ). However, there is no �etale covering fY

i

g of A

1

which trivializes

S. Indeed, such an �etale covering would give a trivialization of Y ! A

1 an

. 2
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