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Abstract. Let G be a split simply connected semisimple algebraic group

over a �eld F and let C be the center of G. It is proved that the maximal

index of the Tits algebras of all inner forms of G

L

over all �eld extensions

L=F corresponding to a given character � of C equals the greatest common

divisor of the dimensions of all representations of G which are given by the

multiplication by � being restricted to C. An application to the discriminant

algebra of an algebra with an involution of the second kind is given.

1991 Mathematics Subject Classi�cation: Primary 20G15.

Let G be an adjoint semisimple algebraic group de�ned over a �eld F , let � :

e

G! G

be the universal covering and let C = ker(�) denote the center of

e

G. In [13] Tits has

constructed a homomorphism

� : C

�

(F )! Br(F )

where C

�

(F ) is the group of characters of C de�ned over F and Br(F ) is the Brauer

group of F . For any character � 2 C

�

(F ) one can choose a central simple algebra

A (called the Tits algebra), representing the class �(�) 2 Br(F ), in such a way that

there is a group homomorphism

e

G! GL

1

(A)

restricting to the character � on the center C and inducing an irreducible represen-

tation over a separable closure F

sep

of the �eld F . It follows from the representation

theory of semisimple algebraic groups that the index ind(A) of the algebra A divides

the dimension of any irreducible representation � :

e

G

q

! GL(V ) of a quasisplit inner

form

e

G

q

of

e

G such that the restriction of � to the center C

q

of

e

G

q

is given by the

multiplication by � (we identify the Galois modules of the character groups C

�

and

C

q�

). Therefore, if we denote by n

�

(G) the greatest common divisor of the dimensions

of all such representations, then ind(A) divides n

�

(G). The numbers n

�

(G) depend

only on the class of the inner forms of G, i.e. on the Dynkin diagram D = Dyn(G

sep

),

and the action of the absolute Galois group of F on Aut(D). In particular, if G is of

1
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230 A. S. Merkurjev

inner type, then the numbers n

�

(G) depend only on the isomorphism class of G over

F

sep

and were computed in [5].

It was proved in [5], case by case, that, for a group G of inner type, the maximal

possible index of the Tits algebra A corresponding to � reaches its upper bound

n

�

(G). More precisely, there is a �eld extension E=F and an inner form G

0

of the

group G �

F

E over E such that for any character of the center of the universal

covering of G

0

, de�ned over E, the index of the Tits algebra A corresponding to �

equals n

�

(G) = n

�

(G

0

).

We give here a uniform proof of this statement for all adjoint semisimple algebraic

groups G (not necessarily of inner type). The �eld E appears as a function �eld of a

\classifying variety" Y for the corresponding adjoint quasisplit group G

q

.

The universal property of the variety Y asserts that any inner form of G over

an arbitrary �eld extension L=F arises from some L-point of Y . Hence, the Tits

algebras over the function �eld E = F (Y ) are generic ones, and, therefore, are of

maximal index. It follows that, if the index of the Tits algebra A corresponding to �

reaches the upper bound n

�

(G) over some �eld extension, then it does so over F (Y ).

In the �rst part of the paper we de�ne, for a group scheme G, the dual group

scheme G

0

with respect to a G-torsor. This construction is a slight generalization of

the corollary of Prop. 34 in [10]. For an adjoint semisimple algebraic group G over a

�eld F we construct a classifying variety Y over F such that the scheme G

0

, dual to

G �

F

Y with respect to a certain torsor, represents the algebraic family of all inner

forms of G.

In section 4 we de�ne Tits algebras and give a list of all Tits algebras for all

absolutely simple groups of classical types.

The main result is formulated in section 5. The rest of the paper is devoted to

the proof of the theorem. In the last section we give an application of the theorem in

the case of groups of outer type A

2n�1

which was not covered in [5].

All the group schemes considered in the paper are assumed to be 
at a�ne of

�nite type over a Noetherian separated base scheme Y .

For a �eld F we denote by F

sep

a separable closure and by � the absolute Galois

group Gal(F

sep

=F ). The split 1-dimensional torus SpecF [t; t

�1

] is denoted by G

m

.

1. Dual group scheme with respect to a torsor

Let G be a group scheme over a scheme Y , and let � : X ! Y be a (left) G-torsor [7].

Denote by Aut

G

(X) the group of all G-automorphisms of X over Y . If X = G is a

trivial torsor, then the map G(Y ) ! Aut

G

(X) given by the rule g 7! (g

0

7! g

0

� g

�1

)

is clearly a group isomorphism.

Consider the sheaf of groups in the 
at topology Y




on Y :

S(Z) = Aut

G�

Y

Z

(X �

Y

Z):

Proposition 1.1. The sheaf S is represented by a group scheme over Y .

Proof. Since � : X ! Y is faithfully 
at, it is su�cient to prove that the restriction

of S on X is represented by a group scheme (by faithfully 
at descent, [7, Th.2.23]).

But over X the torsor ��

Y

id : X �

Y

X ! X is trivial, hence for any scheme Z over

X we have a canonical isomorphism S(Z)

�

! G(Z) and therefore the restriction of S

on X is represented by G �

Y

X .
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Maximal Indexes of Tits Algebras 231

We denote by G

0

the group scheme over Y representing S and call G

0

the group

scheme dual to G with respect to the G-torsor � : X ! Y . It follows from the proof of

proposition 1.1 that the group schemes G

0

�

Y

X and G �

Y

X are isomorphic over X .

By de�nition the group scheme G

0

acts on X over Y .

Proposition 1.2. The morphism � : X ! Y is a G

0

-torsor.

Proof. By faithfully 
at descent we may assume that X = G is a trivial G-torsor.

Then the action of G

0

�

! G on X clearly leads to the structure of a trivial G

0

-torsor

on X .

There is a natural bijection of the set of isomorphism classes of G-torsors � :

X ! Y over Y and the set H

1




(Y;G) (see [7]).

Let f : G ! G

1

be a morphism of group schemes over Y , and let � : X ! Y be

a G-torsor. A G

1

-torsor �

1

: X

1

! Y representing the image of the class of � under

the map

H

1




(Y;G)! H

1




(Y;G

0

)

is called the image of the G-torsor � : X ! Y under f . Let G

0

(resp. G

0

1

) be the

group scheme dual to G (resp. G

1

) with respect to the torsor � : X ! Y (resp.

�

1

: X

1

! Y ). The natural group homomorphism

Aut

G

(X)! Aut

G

1

(X

1

)

induces a group scheme homomorphism f

0

: G

0

! G

0

1

over Y of the dual group schemes.

2. PGL-torsors

Let p : V ! Y be a vector bundle over Y and E = End

Y

(V) (viewed as a vector

bundle over Y ). Consider the group scheme G = PGL(V) over Y . Let � : X ! Y

be a G-torsor. The group scheme G acts on E and on X over Y , hence on E �

Y

X .

Denote by Sec

G

(E) the �(Y;O

Y

)-algebra of G-invariant sections X ! E �

Y

X of the

vector bundle E �

Y

X ! X . Consider the sheaf T of algebras on Y




:

T (Z) = Sec

G�

Y

Z

(E �

Y

Z):

Proposition 2.1. The sheaf T is represented by the total space of an Azumaya alge-

bra over Y .

Proof. By faithfully 
at descent we may assume that X = G is a trivial torsor. Then

for any scheme Z over Y we have T (Z) = Mor

Y

(Z; E), hence T is represented by

E which is the total space of the associated locally free sheaf End

Y

(V) of Azumaya

algebras.

We call an Azumaya algebra A over Y whose total space represents T the algebra

associated to the G-torsor � : X ! Y . It follows from the proof of proposition 2.1

that the O

X

-algebra �

�

A is isomorphic to �

�

(End

Y

(V)).

Consider the sheaf of sets on Y




:

U(Z) = Iso

O

Z

�alg

(�

�

A; �

�

End

Y

(V))

for any � : Z ! Y . The group G(Z) acts naturally on U(Z) making U a G-torsor.

Proposition 2.2. The sheaf U is represented by the G-torsor � : X ! Y .
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Proof. A morphism � : Z ! X over Y de�nes a trivialization of the torsor

X �

Y

Z ! Z and, hence, an isomorphism of O

Z

-algebras (��)

�

A and

(��)

�

(End

Y

(V)). Therefore, we get a map X(Z) ! U(Z) which gives rise to a

map of sheaves

Mor

Y

(�; X)! U:

To prove that this map is a bijection, by faithfully 
at descent one may assume that

X is a trivial torsor. By the Skolem-Noether theorem in this case the statement is

clear.

Remark 2.3. Proposition 2.2 shows how to reconstruct the G-torsor � : X ! Y

out of the algebra A. Thus, we have a bijection between the set of isomorphism

classes of Azumaya algebras A over Y such that �

�

A

�

! �

�

(End

Y

(V)) and the set of

isomorphism classes of PGL(V)-torsors over Y .

The group scheme PGL

1

(A) over Y acts naturally on the sheaf U , and the

action commutes with that of G. Hence, we have a group scheme homomorphism

PGL

1

(A)! G

0

where G

0

is the group scheme dual to G with respect to the G-torsor

� : X ! Y . To prove that this homomorphism is an isomorphism, by faithfully 
at

descent, one may consider the split situation in which our statement is clear. Hence,

G

0

= PGL(V)

0

= PGL

1

(A):

Now let G be an arbitrary group scheme over Y , let � : X ! Y a G-torsor and

let

f : G ! PGL(V)

be a projective representation over Y , where V is a vector bundle over Y . Denote

by A the Azumaya algebra on Y associated to the PGL(V)-torsor, which is equal to

the image of � under f . We call A the algebra associated to the G-torsor � and the

projective representation f . There is a natural group scheme homomorphism

f

0

: G

0

! PGL

1

(A)

where G

0

is the group scheme dual to G with respect to �.

3. Inner forms

Let G be a semisimple algebraic algebraic group de�ned over a �eld F with center

Z(G). Denote by G the corresponding adjoint group G=Z(G). An algebraic group G

0

over F is called a twisted form of G if G

0

sep

' G

sep

. The set of isomorphism classes

of twisted forms of G is in 1{1 correspondence with the set H

1

(F;Aut(G

sep

)) ([10]).

The natural homomorphism

G(F

sep

)! Aut(G

sep

); �g 7! (g

0

7! gg

0

g

�1

)

induces the map

� : H

1

(F;G(F

sep

))! H

1

(F;Aut(G

sep

)):

A twisted form G

0

of the group G is called an inner form of G if the cocycle

corresponding to G

0

belongs to the image of �. The group G is called of inner type if

G is an inner form of a split group.

Assume now that G is an adjoint group, i.e. G = G. Let X be a G-torsor over

F . It corresponds to some element � 2 H

1

(F;G(F

sep

)) ([10]). It is straightforward
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to check that the group G

0

, dual to G with respect to the torsor X , corresponds to

�(�) 2 H

1

(F;Aut(G

sep

)).

We have proved

Proposition 3.1. Let G and G

0

be adjoint semisimple algebraic groups over a �eld

F . Then G

0

is an inner form of G i� there is a G-torsor X over F such that G

0

is

the dual group with respect to the G-torsor X.

Remark 3.2. The second condition of proposition 3.1 can be taken as the de�nition

of an inner form of an adjoint group (in order to avoid referring to cocycles).

4. Tits algebras

Let G be an adjoint semisimple algebraic group de�ned over a �eld F , let

e

G! G be

the universal covering, and C the kernel of the covering. It is known that C, being

the center of

e

G, is a closed subscheme of

e

G of multiplicative type (not necessarily

reduced) ([2],[12]). Denote by C

�

the �nite �-module Hom(C

sep

; G

m

) of characters.

The group G is an inner form of some quasisplit group de�ned over F ([1],[12]).

By proposition 3.1, there exists a G-torsor X over F such that the group G

0

, dual

to G with respect to X , is quasisplit. The choice of a point of X over F

sep

de�nes

an isomorphism G

sep

�

! G

0

sep

which is uniquely determined up to conjugation. This

isomorphism extends uniquely to an isomorphism

e

G

sep

�

!

e

G

0

sep

where

e

G

0

is the uni-

versal covering of G

0

over F ([12]). Hence, we obtain an isomorphism of the centers

' : C

sep

�

! C

0

sep

. One can easily see that this isomorphism is de�ned over F (hence,

induces an isomorphism of �-modules '

�

: C

�

�

! C

0

�

) and depends only on the choice

of the G-torsor X (which is not unique in general) but not on the point of X over

F

sep

.

Denote by B a Borel subgroup in

e

G

0

de�ned over F , by T a maximal torus in B

de�ned over F and by � the subgroup in T

�

generated by roots of

e

G relative to T .

The restriction map induces the natural isomorphism of �-modules

T

�

=�

�

! C

�

:

There is a partial ordering on T

�

: we write � > � for �, � 2 T

�

if � � � is a sum of

roots of B. In each coset of

e

T

�

=� there is a unique minimal element with respect to

this ordering called the minimal weight.

Choose a character � 2 C

�

de�ned over F and put �

0

= '

�

(�) 2 C

0

�

. By the

representation theory of quasisplit semisimple groups (see [13]) there is an irreducible

representation ~� :

e

G

0

! GL(V ) such that the restriction of ~� to C

0

is given by

multiplication by �

0

. Consider a central simple F -algebra A associated to the G-

torsor X and the projective representation � : G

0

! PGL(V ) induced by ~� (section

2). The algebra A is called the Tits algebra of the group G corresponding to the

representation �. Its class in Br(F ) depends only on the choice of character � 2 C

�

([13]) and is called the Tits class of the group G corresponding to �. By construction,

the index of A divides dim V . Denote by n

�

(G) the greatest common divisor of the

numbers dimV for all representations ~� :

e

G

0

! GL(V ) such that the restriction of ~�

on C

0

is given by multiplication by �

0

. We have observed that indA divides n

�

(G)

(see [5]). If � = 0, then n

�

(G) = 1.

Documenta Mathematica 1 (1996) 229{243



234 A. S. Merkurjev

Let � 2 C

�

(F ) ' (T

�

=�)

�

and � 2 T

�

be the minimal weight in the coset �. Let

~� :

e

G

0

! GL(V ) be a representation (unique up to an isomorphism) with the highest

weight � called the minimal representation. The Tits algebra corresponding to � is

called the minimal Tits algebra of G and is denoted by A

�

. The algebra A

�

is the

canonical representative of the Tits class corresponding to �. For example, if � = 0,

then A

�

= F . Any Tits algebra is Brauer equivalent to a minimal one.

Remark 4.1. The isomorphism ' : C

sep

�

! C

0

sep

depends on the choice of the G-

torsor X . Another choice of X changes ' by an automorphism of C

0

induced by an

(outer) automorphism of G

0

, but clearly does not change the numbers n

�

(G).

Remark 4.2. By de�nition, the numbers n

�

(G) depend only on the quasisplit inner

form of G and hence do not change if we replace G by any inner form of it. In turn,

the class of inner forms of G is uniquely determined by the isomorphism class of G

over F

sep

and the action of � on the group of outer automorphisms

Out(G

sep

) = Aut(G

sep

)= Int(G

sep

) = Aut(Dyn(G

sep

))

of the group G

sep

. If we change F by a �eld extension E=F such that F is separably

closed in E, the numbers n

�

(G) do not change. If G is a group of inner type (i.e.

G

0

is a split group, or equivalently, � acts trivially on Out(G

sep

)) then the numbers

n

�

(G) depend only on the isomorphism class of G over F

sep

and are computed in [5].

We would like to classify the Tits classes of all adjoint semisimple algebraic

groups. A Tits algebra of the product of adjoint semisimple groups is the tensor

product of the Tits algebras of factors. Since any adjoint semisimple group is the

product of the groups G

1

= R

L=F

(G) where G is an absolutely simple adjoint group

over a �nite separable �eld extension L=F ([12]), it su�ces to describe the Tits alge-

bras of G

1

. If

e

G! G is the universal covering of G with kernel C, then

e

G

1

= R

L=F

(

e

G)! R

L=F

(G) = G

1

is the universal covering of G

1

with kernel C

1

= R

L=F

(C).

Let F � L � F

sep

, �

0

= Gal(F

sep

=L) � �. We have a canonical isomorphism

� : C

�

(L) = (C

�

)

�

0

�

! (C

�

1

)

�

= C

�

1

(F );

and for any �

0

2 C

�

(L) the Tits algebra A

�

with � = �(�

0

) for the group G

1

equals

the corestriction in the extension L=F of the Tits algebra A

�

0

of G ([13]). Hence, it

is su�cient to classify the Tits classes of absolutely simple adjoint groups.

Below is the list of minimal Tits algebras and numbers n

�

(G) for absolutely

simple adjoint groups. We use the notation and the computations from [4] and [5].

4.1. Type A

n

. An adjoint simple algebraic group of the type A

n

, de�ned over F , is

isomorphic to the projective unitary group G = PGU(B; �), where B is an Azumaya

algebra of degree n + 1 over an �etale quadratic extension L=F with an involution �

of the second kind trivial on F . Its universal covering is the special unitary group

e

G = SU(B; �)

Assume �rst that L splits, i.e. L ' F � F . In this case B ' A � A

op

with the

switch involution � where A is a central simple algebra of degree n+1 over F , where
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e

G = SL

1

(A) and G = PGL

1

(A). Then C = �

n+1

, and C

�

= Z=(n+ 1)Z with the

trivial �-action. For any i = 0; 1; : : : ; n, consider the natural representation

�

i

:

e

G! GL

1

(�

i

A)

where �

i

A are external powers of A (see [4]). In the split case, �

i

is the i-th ex-

ternal power representation known as a minimal representation. Hence, �

i

A for

i = 0; 1; : : : ; n are minimal Tits algebras of G. If � = i + (n + 1)Z 2 C

�

, then

n

�

= (n+ 1)=gcd(i; n+ 1).

Now let

e

G = SU(B; �), where B is a central simple algebra of degree n+1 with a

unitary involution over a quadratic separable �eld extension L=F . The group � acts

on C

�

= Z=(n+ 1)Z by x 7! �x through Gal(L=F ). The only non-trivial element in

C

�

(F ) is � =

n+1

2

+ (n+ 1)Z (when n is odd). There is a natural homomorphism

� :

e

G! GL

1

(D(B; �));

where D(B; �) is the discriminant algebra (see section 10). In the split case � is the

external

n+1

2

-power representation. Hence, the algebra D(B; �) is the minimal Tits

algebra for the group G corresponding to �. The number n

�

equals 2 if (n + 1) is a

2-power and equals 4 otherwise (see section 10).

4.2. Type B

n

. An adjoint simple algebraic group of type B

n

, de�ned over F , is

isomorphic to the special orthogonal group G = O

+

(V; q) where (V; q) is a non-

degenerate quadratic form of dimension 2n + 1. Its universal covering is the spinor

group

e

G = Spin(V; q). Then C = �

2

, C

�

= Z=2Z= f0; �g. The embedding

e

G ,! GL

1

(C

0

(V; q));

where C

0

(V; q) is the even Cli�ord algebra of (V; q), is, in the split case, the spinor

representation known as a minimal representation. Hence, the even Cli�ord algebra

C

0

(V; q) is the minimal Tits algebra A

�

. The number n

�

equals 2

n

.

4.3. Type C

n

. An adjoint simple algebraic group of type C

n

, de�ned over F , is

isomorphic to the group of projective similitudes G = PGSp(A; �), where A is a

central simple algebra of degree 2n with a symplectic involution �. Its universal

covering is the symplectic group

e

G = Sp(A; �). Then C = �

2

and C

�

= Z=2Z =

f0; �g. The embedding

e

G ,! GL

1

(A)

is, in the split case, a minimal representation. Hence, A is the minimal Tits algebra

A

�

. The number n

�

is the largest 2-power which divides 2n.

4.4. Type D

n

. An adjoint simple algebraic group of type D

n

, de�ned over F (of non-

trialitarian type if n = 4), is isomorphic to the group of proper projective similitudes

G = PGO

+

(A; �; f) where A is a central simple, algebra of degree 2n with an orthog-

onal pair (�; f) (see [4]). Its universal covering is the spinor group

e

G = Spin(A; �; f).

Then C

�

= f0; �; �

+

; �

�

g where � factors through the special orthogonal group

O

+

(A; �; f). The composition

Spin(A; �; f) ! O

+

(A; �; f) ,! GL

1

(A)

is, in the split case, the standard minimal representation. Hence, A is the minimal

Tits algebra A

�

. The number n

�

equals the largest 2-power which divides 2n.
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Assume that the discriminant of � is trivial (i.e. the center Z of the Cli�ord

algebra C(A; �; f) splits). The group � acts trivially on C

�

. The natural compositions

Spin(A; �; f) ,! GL

1

(C(A; �; f)) ! GL

1

(C

�

(A; �; f))

where C

�

(A; �; f) are simple components of C(A; �; f), are, in the split case,

semispinor minimal representations. Hence, C

�

(A; �; f) are minimal Tits algebras

A

�

�
. The numbers n

�

�
equal 2

n�1

.

If the discriminant of � is not trivial, then � interchanges �

+

and �

�

and � is

the only nontrivial �-invariant character.

4.5. Exceptional types.

4.5.1. Trialitarian type D

4

. The image of the map �! Aut(C

�

) contains a subgroup

of order 3. It implies that C

�

(F ) = 0 and there are no nontrivial characters and Tits

algebras.

4.5.2. Type E

6

. In this case C

�

' Z=3Zand for a nontrivial character � 2 C

�

(F ) one

has n

�

= 27.

4.5.3. Type E

7

. In this case C

�

' Z=2Zand for a nontrivial character � 2 C

�

(F ) one

has n

�

= 8.

4.5.4. Types E

8

, F

4

and G

2

. In these cases C

�

= 0 and there are no nontrivial

characters and Tits algebras.

5. The classifying variety of a group

Let G be an adjoint semisimple algebraic group over a �eld F and Y be a scheme

over F . Consider the group scheme G = G �

F

Y over Y , and an arbitrary G-torsor

� : X ! Y . Denote by G

0

the dual scheme with respect to this torsor. For any

rational point y 2 Y (F ) the �ber G

0

y

of G

0

over y is dual to G

y

= G with respect to

the G-torsor �

y

: X

y

! SpecF . Hence, by proposition 3.1, an algebraic group G

0

y

is

an inner form of G. So, we can view the scheme G

0

as the algebraic family of inner

forms of G.

Now we take a speci�c scheme Y . Let G ,! GL

n

be any faithful representation

over F . Consider the homogeneous variety Y = GL

n

=G and the canonical G-torsor

� : GL

n

! Y . The variety Y is called the classifying variety of G. The universal

property of Y asserts that any inner form of G is a member of the algebraic family

G

0

over Y :

Proposition 5.1. For any inner form G

0

of G over F there exists a rational point

y 2 Y (F ) such that G

0

' G

0

y

over F .

Proof. This follows from Hilbert's Theorem 90 and the exact sequence of pointed sets

([7],[10])

Y (F )! H

1

(F;G(F

sep

))! H

1

(F;GL

n

(F

sep

))

induced by the exact sequence

1! G(F

sep

)! GL

n

(F

sep

)! Y (F

sep

)! 1:

Now let G

1

be any adjoint semisimple algebraic group over F , and G be its

quasisplit inner form. Consider the classifying variety Y = GL

n

=G and the group

scheme G

0

dual to G = G �

F

Y with respect to the G-torsor � : GL

n

! Y . By
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proposition 5.1, we have G

1

' G

0

y

for some y 2 Y (F ). Let � 2 Y be the generic point.

The generic �ber G

0

�

is an adjoint semisimple algebraic group over the function �eld

F (Y ). The G-torsor � enables us to identify the character module C

�

of the center of

the universal coverings of the groups G

1

, G and G

0

�

.

Now we formulate the main result.

Theorem 5.2. For any character � 2 C

�

(F ), the index of the Tits class of the group

G

0

�

corresponding to � equals n

�

(G

1

) = n

�

(G) = n

�

(G

0

�

).

Corollary 5.3. For any adjoint semisimple algebraic group G

1

over a �eld F there

exists a �eld extension E=F and an inner form G

2

of the group G

1




F

E over E such

that F is separably closed in E and for any character � of the center of the universal

covering of G

2

, with � de�ned over E, the index of the Tits class of the group G

2

corresponding to � equals n

�

(G

1

) = n

�

(G

2

).

6. G-modules

Let G be a group scheme over a scheme Y . Assume that G acts on a scheme X over

Y . The morphism of the G-action on X we denote by

� : G �

Y

X ! X:

A G-module F on X is a quasicoherent O

X

-module F together with an isomorphism

of O

G�

Y

X

-modules

' : �

�

F

�

! p

�

2

F

(where p

2

: G �

Y

X ! X is the projection), satisfying the cocycle condition

p

�

23

(') � (id� �)

�

(') = (m� id)

�

(')

where m : G �

Y

G ! G is the multiplication.

Giving a G-module structure on a quasicoherent O

X

-module F is equivalent

to giving, naturally in Y -schemes Z, a homomorphism of the group G(Z) into the

automorphism group of the pair (X �

Y

Z;F 


Y

Z) ([8],[11]).

Assume that G acts on an Azumaya algebra B over X , i.e. the structure of

G-module B is given by an O

G�

Y

X

-algebra isomorphism

 : �

�

B

�

! p

�

2

B:

Denote byM(G; X;B) the abelian category of G-modules F on X , which are also

left B-modules and coherent O

X

-modules, such that the following diagram commutes:

�

�

B 
 �

�

F ����! �

�

F

 
'

?

?

y

?

?

y

'

p

�

2

B 
 p

�

2

F ����! p

�

2

F ;

where the horizontal maps are given by the action of B on F . Morphisms in the

category are morphisms of B- and G-modules.

If the algebra B is trivial, i.e. B = O

X

, then the category is simply denoted by

M(G; X).

Let A be an Azumaya algebra on Y . Consider the Azumaya algebra B = �

�

A

on X , where � : X ! Y is the structure morphism, and the category M(Y;A) of

left A-modules which are coherent O

Y

-modules. For M 2 M(Y;A) the O

X

-module
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F = �

�

M has a natural structure of a B-module. Since �� = �p

2

, it follows that we

also have a natural G-module structure on F given by the isomorphisms

' : �

�

F ' (��)

�

M = (�p

2

)

�

M' p

�

2

F :

Thus, we have obtained a functor

�

�

:M(Y;A)!M(G; X;B); M 7! (�

�

M; '):

Proposition 6.1. If � : X ! Y is a G-torsor then �

�

is an equivalence of categories.

Proof. Under the isomorphisms

G �

Y

X

�

! X �

Y

X; (g; x) 7! (gx; x)

G �

Y

G �

Y

X

�

! X �

Y

X �

Y

X; (g

1

; g

2

; x) 7! (g

1

g

2

x; g

2

x; x)

the action morphism � is identi�ed with the �rst projection p

1

: X �

Y

X ! X and

morphismsm� id, id�� are identi�ed with the projections p

13

; p

12

: X�

Y

X�

Y

X !

X �

Y

X . Hence, the isomorphism ' giving a G-module structure on an O

X

-module

F can be identi�ed with descent data, i.e. with an isomorphism

 : p

�

1

F

�

! p

�

2

F

of O

X�

Y

X

-modules satisfying the usual cocycle condition

(p

�

23

 ) � (p

�

12

 ) = p

�

13

 :

The statement follows now by faithfully 
at descent ([7, Prop.2.22]).

7. Modules under groups of multiplicative type

Let C be a diagonalizable group scheme over a �eld F , and let C

�

= Hom(C; G

m

)

be the character group. It is known that C = SpecF [C

�

], where F [C

�

] is the group

algebra of C

�

over F , and the comorphism

m : F [C

�

]! F [C

�

]


F

F [C

�

]

of the multiplication is given by the formula m(�) = �
 � ([2]).

To introduce an action of C on an a�ne scheme X = SpecA over F is the same

as to give a C

�

-graded structure on the F -algebra A ([3]):

A =

a

�2C

�

A

�

:

The comorphism of the action of C on X ,

� : A! F [C

�

]


F

A

is given by the formula

�(

X

�2C

�

a

�

) =

X

�2C

�

(�
 a

�

):

The trivial action corresponds to the trivial graded structure: A

�

= 0 for � 6= 0.

Let M be an A-module. A C-module structure of the associated O

X

-module

F =

f

M is given by an isomorphism of F [C

�

]


F

A-modules

' : (F [C

�

]


F

A)


A;�

M

�

! (F [C

�

]


F

A)


A;p

2

M;
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satisfying the cocycle condition. Let '(1 
 1 
 m) =

P

�2C

�

(� 
 1 
 m

�

), where

m

�

;m 2 M . Since (e
 id)

�

' = id ([11]), where e : SpecF ! G is the group unit, it

follows that

m =

X

�2C

�

m

�

: (�)

It is easy to check that the cocycle condition implies that (m

�

)

�

equalsm

�

if � = � and

equals 0 if � 6= �. Hence, the equality (�) gives rise to the direct sum decomposition

M =

a

�2C

�

M

�

making M a C

�

-graded A-module. Therefore, the categoryM(C;X) is equivalent to

the category of �nitely generated C

�

-graded modules.

Let an algebraic group G over a �eld F act on an a�ne scheme X over F and

on an Azumaya algebra B on X . Assume that a closed central group subscheme

C � G of multiplicative type acts trivially on X and B. Denote by C

�

the �-module

of characters Hom(C

sep

; G

m

). Since the group C

sep

is diagonalizable, it follows that

for any F 2M(G;X;B) we have a decomposition

F

sep

=

a

�2C

�

(F

sep

)

�

(��)

into a direct sum of G

sep

-submodules (F

sep

)

�

on X

sep

(since C is central and acts

trivially on X and B).

Choose any �-invariant character � 2 C

�

(de�ned over F ). Clearly, (F

sep

)

�

and its direct complement in (��) are de�ned over F , hence we have a canonical

decomposition

F = F

�

�F

�

into a direct sum of G-submodules on X . In other words, these submodules are

uniquely determined by the property that c� �(c) is trivial on F

�

and invertible on

F

�

for all c in C.

Consider the full subcategories M

�

(G;X;B) and M

�

(G;X;B) in M(G;X;B)

consisting of all G-modules F such that F = F

�

and F = F

�

respectively. It is clear

that

M(G;X;B) 'M

�

(G;X;B)�M

�

(G;X;B):

If � = 0 is the trivial character then the category M

�

(G;X;B) is equivalent to the

category M(G=C;X;B).

8. Equivariant algebraic K-theory

The K-groups of the category M(G; X;B) (see section 6) we denote by K

�

(G; X;B).

These groups are clearly contravariant with respect to 
at G-morphisms in X . If

B = O

X

is the trivial algebra we simply write K

�

(G; X).

Let G be an algebraic group over F acting on a scheme X over F . We will

need the following particular cases of the localization theorem [11, th. 2.7] and the

homotopy invariance theorem [11, cor. 4.2] in equivariant algebraic K-theory.

Proposition 8.1. Let U � X be an open G-equivariant subscheme. Then the re-

striction homomorphism K

0

(G;X)! K

0

(G;U) is surjective.
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Proposition 8.2. Assume that G acts linearly on an a�ne space A

n

F

over F . Then

the structure morphism p : A

n

F

! SpecF induces an isomorphism

p

�

: K

�

(G; SpecF )

�

! K

�

(G; A

n

F

):

The category M(G; SpecF ) is equivalent to the category of �nite dimensional

representations of G over F . The group K

0

(G; SpecF ) we denote by R(G).

Assume that G acts on an Azumaya algebra B over X and contains a closed

central subscheme C over F of multiplicative type, acting trivially on X and B. For

� 2 C

�

(F ) the K-groups of the category M

�

(G;X;B) we denote by K

�

�

(G;X;B).

SinceK

�

�

(G;X;B) is a canonical direct summand ofK

�

(G;X;B) (section 7), it follows

that the statements of propositions 8.1 and 8.2 still hold if we replace K

�

by K

�

�

.

The group K

�

0

(G; SpecF ) we simply denote by R

�

(G). It is generated by the

classes of all representations � : G ! GL(V ) such that the restriction of � to C is

given by �.

9. Proof of the theorem

Let G

1

be an adjoint semisimple group over a �eld F , let G be the quasisplit inner

form of G

1

with universal covering

e

G! G, and let C be the kernel of the covering.

Choose a faithful representation G ,! GL

n

over F and consider the classifying

variety Y = GL

n

=G over F and the group scheme G

0

over Y dual to G = G �

F

Y

with respect to the G-torsor � : GL

n

! Y . Let � be the generic point of Y . The

G-torsor � enables us to identify the character modules C

�

and C

0

�

, where C

0

is the

kernel of the universal covering of G

0

�

. Choose a character �

0

2 C

0

�

de�ned over F (Y )

and denote by � 2 C

�

the corresponding character over F .

Consider a representation ~� :

e

G ! GL(V ) such that the restriction of ~� to C is

given by �. Consider also the Azumaya algebra A on Y associated to the G-torsor

� and the projective representation � : G ! PGL(V ) induced by ~� (section 2). We

know that there is an isomorphism of G-algebras

�

�

(A) ' �

�

(End(V �

F

Y ))

on GL

n

(section 2) and that A

�

is the Tits algebra corresponding to the character �

0

(section 4). We have to show that indA

�

= n

�

(G).

Consider the homomorphism

� : K

0

(A

op

�

)! Z;

taking an A

op

�

-module M to dim

F (Y )

M . It is easy to see that

im(�) = indA

�

� degA �Z:

Consider also the homomorphism 
 : R

�

(

e

G) ! Z, taking a representation space U

to dim

F

U . It is clear that im(
) = n

�

(G) � Z. For the proof of the theorem it is

su�cient to �nd a surjective homomorphism

� : R

�

(

e

G)! K

0

(A

op

�

)

such that the composition � � � equals degA � 
 = dimV � 
. The homomorphism �

will be found as a composite of seven epimorphisms �

1

; �

2

; : : : ; �

7

.

Consider GL

n

as an open subvariety of the a�ne space A = A

n

2

F

of all n �

n-matrices over F on which the group G (and hence

e

G) acts linearly. The open
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embedding GL

n

,! A is clearly

e

G-equivariant. By proposition 8.2 (see also a remark

at the end of section 8) the structure morphism A ! SpecF induces an isomorphism

�

1

: R

�

(

e

G) = K

�

0

(

e

G; SpecF )

�

! K

�

0

(

e

G; A ):

By proposition 8.1, the restriction homomorphism

�

2

: K

�

0

(

e

G; A ) ! K

�

0

(

e

G;GL

n

)

is surjective.

Denote by B the algebra �

�

End(V �

F

Y ) = O

GL

n




F

EndV on GL

n

. The group

e

G clearly acts on B. Consider two functors

M

�

(

e

G;GL

n

)

u

�

v

M

0

(

e

G;GL

n

;B

op

);

u(F) = V

�




F

F ; v(M) = V 


EndV

�

M;

where V

�

is the F -vector space dual to V . The canonical isomorphisms V


EndV

�

V

�

'

F and V

�




F

V ' EndV

�

show that u and v are mutually inverse equivalences of

categories. Hence, the functor u induces an isomorphism

�

3

: K

�

0

(

e

G;GL

n

)

�

! K

0

0

(

e

G;GL

n

;B

op

):

Since the center C of

e

G acts trivially on GL

n

and B, it follows that the categories

M

0

(

e

G;GL

n

;B

op

) and M(G;GL

n

;B

op

) are equivalent. Hence, we have an isomor-

phism

�

4

: K

0

0

(

e

G;GL

n

;B

op

)

�

! K

0

(G;GL

n

;B

op

):

The isomorphism G�

F

X ' G �

Y

X shows that the categoriesM(G;GL

n

;B

op

)

and M(G;GL

n

;B

op

) are equivalent. Hence, we have an isomorphism

�

5

: K

0

(G;GL

n

;B

op

)

�

! K

0

(G;GL

n

;B

op

):

Since � : GL

n

! Y is a G-torsor and B ' �

�

A, it follows from proposition 6.1

that the functor

�

�

:M(Y;A

op

)!M(G;GL

n

;B

op

)

is an equivalence of categories. Hence, �

�

induces an isomorphism

�

6

: K

0

(G;GL

n

;B

op

)

�

! K

0

(Y;A

op

):

By localization (Proposition 8.1), the functor

M(Y;A

op

)!M(A

op

�

); F 7! stalk of F at the generic point �

induces an epimorphism

�

7

: K

0

(Y;A

op

)! K

0

(A

op

�

):

It can be easily checked that the composition � = �

7

��

6

� � � ���

1

takes the class

of a representation space U of the group

e

G to the generic stalk F

�

where

�

�

F = V

�




F

U 


F

O

GL

n

and hence satis�es the desired condition.
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10. Examples

Let L=F be a Galois quadratic �eld extension, � = Gal(L=F ), and let B be a central

simple algebra over L of degree 2n with involution � of the second kind trivial on F .

Consider the special unitary group

e

G = SU(B; �) over F . The group

e

G(F ) of F -

points of

e

G consists of all elements b 2 B

�

such that �(b) �b = 1 and Nrd(b) = 1 where

Nrd is the reduced norm homomorphism. The Galois group � acts on C

�

' Z=2nZ

through its factor group � = f1; �g by �(k + 2nZ) = �k + 2nZ (see section 4). The

Tits algebra corresponding to the only nontrivial character � = n+2nZ2 C

�

(F ) can

be constructed as follows (see [4],[5]).

Consider the Severi-Brauer variety X over L corresponding to the algebra B and

the canonical locally free sheaf J of rank 2n on X , so B = End

X

(J) [9]. The canonical

nondegenerate bilinear form on the n

th

-exterior power of J

�

n

J 
 �

n

J ! �

2n

J ' O

X

induces in the usual way an involution � of the �rst kind on the algebra �

n

B =

End

O

X

(�

n

J) over L. One can check that the involutions � and �

0

= �

n

� on �

n

B

commute. Therefore, the set fx 2 �

n

B : �(x) = �

0

(x)g is a central simple algebra

over F . We denote this algebra by D(B; �) and call it the discriminant algebra of

(B; �) ([4]). It is the Tits algebra corresponding to the character �.

The discriminant algebra enjoys the following properties:

1. The degree of D(B; �) equals

�

2n

n

�

.

2. The restriction of � to D(B; �) is an involution of the �rst kind. In particular,

the exponent of D(B; �) divides 2.

3. D(B; �) 


F

L ' �

n

B � B


n

. Since exp(B


n

) divides 2, it follows that

ind(B


n

) also divides 2, and hence indD(B; �) divides 4.

Let

e

G

0

be the quasisplit inner form of

e

G. It is the special unitary group of the

hyperbolic hermitian form over the quadratic extension L=F ([12]). Since

e

G

0

sep

'

SL

2n

(F

sep

) it follows that

R(

e

G

0

sep

) ' Z[t

1

; t

2

; : : : ; t

2n�1

]

where t

i

is the class of the i

th

-exterior power of the standard representation of SL

2n

.

This ring is C

�

= Z=2nZ-graded, the degree of t

i

being equal to i (mod 2n). The rank

map R(

e

G

0

sep

) ! Z takes t

i

to

�

2n

i

�

. The action of the Galois group � on R(

e

G

0

sep

) is

given by �(t

i

) = t

2n�i

. We have also ([13]):

R(

e

G

0

) ' Z[t

1

; t

2

; : : : ; t

2n�1

]

�

:

Using this description of the ring R(

e

G

0

) and the fact that the image of the map

R

�

(

e

G

0

)! Z, taking a representation space U of the group

e

G

0

to dim

F

U , equals n

�

�Z,

one can easily compute the number n

�

(G) for G =

e

G=C (see [6]): n

�

(G) is equal to

2 if n is a 2{power and equals 4 otherwise. Hence, the corollary of the theorem gives

in this case the following

Proposition 10.1. For any Galois quadratic �eld extension L=F and n 2 N there

is a �eld extension E=F and a central simple algebra B of degree 2n over E 


F

L

with involution � of the second kind trivial on E such that indD(B; �) = 2 if n is a

2-power and equals 4 otherwise.
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