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ABSTRACT. Let G be a split simply connected semisimple algebraic group
over a field F' and let C be the center of G. It is proved that the maximal
index of the Tits algebras of all inner forms of G, over all field extensions
L/F corresponding to a given character x of C' equals the greatest common
divisor of the dimensions of all representations of G which are given by the
multiplication by x being restricted to C. An application to the discriminant
algebra of an algebra with an involution of the second kind is given.
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Let G be an adjoint semisimple algebraic group defined over a ﬁelcl~ F,let m: G- G
be the universal covering and let C' = ker(m) denote the center of G. In [13] Tits has
constructed a homomorphism

B:C*(F) — Br(F)

where C*(F') is the group of characters of C' defined over F' and Br(F) is the Brauer
group of F. For any character x € C*(F) one can choose a central simple algebra
A (called the Tits algebra), representing the class B(x) € Br(F), in such a way that
there is a group homomorphism

G — GLy(A)

restricting to the character x on the center C' and inducing an irreducible represen-
tation over a separable closure Fiep, of the field F'. It follows from the representation
theory of semisimple algebraic groups that the index ind(A) of the algebra A divides
the dimension of any irreducible representation p : G7 = GL(V) of a quasisplit inner
form G7 of G such that the restriction of p to the center CY of G is given by the
multiplication by x (we identify the Galois modules of the character groups C* and
C?*). Therefore, if we denote by n, (@) the greatest common divisor of the dimensions
of all such representations, then ind(A) divides n,(G). The numbers n,(G) depend
only on the class of the inner forms of G, i.e. on the Dynkin diagram D = Dyn(Gsep),
and the action of the absolute Galois group of F' on Aut(D). In particular, if G is of

1T would like to thank the Université de Franche-Comté at Besancon and the Alexander von
Humboldt-Stiftung for financial support.
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inner type, then the numbers n, (G) depend only on the isomorphism class of G over
Fiep and were computed in [5].

It was proved in [5], case by case, that, for a group G of inner type, the maximal
possible index of the Tits algebra A corresponding to x reaches its upper bound
ny(G). More precisely, there is a field extension E/F and an inner form G’ of the
group G xXp E over E such that for any character of the center of the universal
covering of G', defined over E, the index of the Tits algebra A corresponding to
equals n, (G) = n,(G").

We give here a uniform proof of this statement for all adjoint semisimple algebraic
groups G (not necessarily of inner type). The field E appears as a function field of a
“classifying variety” Y for the corresponding adjoint quasisplit group G9.

The universal property of the variety Y asserts that any inner form of G over
an arbitrary field extension L/F arises from some L-point of Y. Hence, the Tits
algebras over the function field E = F(Y) are generic ones, and, therefore, are of
maximal index. It follows that, if the index of the Tits algebra A corresponding to
reaches the upper bound 7, (G) over some field extension, then it does so over F(Y').

In the first part of the paper we define, for a group scheme G, the dual group
scheme G’ with respect to a G-torsor. This construction is a slight generalization of
the corollary of Prop. 34 in [10]. For an adjoint semisimple algebraic group G over a
field F' we construct a classifying variety Y over F' such that the scheme G’, dual to
G xp Y with respect to a certain torsor, represents the algebraic family of all inner
forms of G.

In section 4 we define Tits algebras and give a list of all Tits algebras for all
absolutely simple groups of classical types.

The main result is formulated in section 5. The rest of the paper is devoted to
the proof of the theorem. In the last section we give an application of the theorem in
the case of groups of outer type As,_; which was not covered in [5].

All the group schemes considered in the paper are assumed to be flat affine of
finite type over a Noetherian separated base scheme Y.

For a field F' we denote by Fi, a separable closure and by I' the absolute Galois
group Gal(Fiep/F). The split 1-dimensional torus SpecF[t,t~'] is denoted by Gy, .

1. DUAL GROUP SCHEME WITH RESPECT TO A TORSOR

Let G be a group scheme over a scheme Y, and let 7 : X — Y be a (left) G-torsor [7].
Denote by Autg(X) the group of all G-automorphisms of X over Y. If X = G is a
trivial torsor, then the map G(Y) — Autg(X) given by the rule g — (¢’ — ¢’ - g7 1)
is clearly a group isomorphism.

Consider the sheaf of groups in the flat topology Yz on Y:

S(Z) = AuthYZ(X Xy Z)
PROPOSITION 1.1. The sheaf S is represented by a group scheme over Y.

Proof. Since m: X — Y is faithfully flat, it is sufficient to prove that the restriction
of S on X is represented by a group scheme (by faithfully flat descent, [7, Th.2.23]).
But over X the torsor m Xy id : X xy X — X is trivial, hence for any scheme Z over
X we have a canonical isomorphism S(Z) = G(Z) and therefore the restriction of S
on X is represented by G xy X. O
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We denote by G’ the group scheme over Y representing S and call G’ the group
scheme dual to G with respect to the G-torsor m: X — Y. It follows from the proof of
proposition 1.1 that the group schemes G’ xy X and G xy X are isomorphic over X.

By definition the group scheme G’ acts on X over Y.

PROPOSITION 1.2. The morphism 7w : X — Y is a G'-torsor.

Proof. By faithfully flat descent we may assume that X = G is a trivial G-torsor.
Then the action of G’ & G on X clearly leads to the structure of a trivial G'-torsor
on X. O

There is a natural bijection of the set of isomorphism classes of G-torsors 7 :
X = Y over Y and the set Hi(Y,G) (see [7]).

Let f : G — G; be a morphism of group schemes over Y, and let 7 : X — Y be
a G-torsor. A Gj-torsor m; : X1 — Y representing the image of the class of 7 under
the map

Hy(Y,G) — Hi(Y,G")

is called the image of the G-torsor m : X — Y wunder f. Let G' (resp. Gj) be the
group scheme dual to G (resp. Gi) with respect to the torsor 7 : X — Y (resp.
7 : X1 — Y). The natural group homomorphism

Autg (X) — Autg1 (Xl)

induces a group scheme homomorphism f' : G' — G| over Y of the dual group schemes.

2. PGL-TORSORS

Let p : V — Y be a vector bundle over Y and £ = Endy (V) (viewed as a vector
bundle over V). Consider the group scheme G = PGL(V) over Y. Let 7 : X —» YV
be a G-torsor. The group scheme G acts on £ and on X over Y, hence on £ xy X.
Denote by Secg(€) the I'(Y, Oy )-algebra of G-invariant sections X — £ xy X of the
vector bundle £ xy X — X. Consider the sheaf T" of algebras on Yj:

T(Z) = Sngxyz(g Xy Z)

PROPOSITION 2.1. The sheaf T is represented by the total space of an Azumaya alge-
bra over Y.

Proof. By faithfully flat descent we may assume that X = G is a trivial torsor. Then
for any scheme Z over Y we have T(Z) = Mory(Z,£), hence T is represented by
& which is the total space of the associated locally free sheaf Endy (V) of Azumaya
algebras. O

We call an Azumaya algebra A over Y whose total space represents T the algebra
associated to the G-torsor m : X — Y. It follows from the proof of proposition 2.1
that the Ox-algebra 7*A4 is isomorphic to 7*(Endy (V)).

Consider the sheaf of sets on Yj:

U(Z) = 1800, —alg(\* A, X*Endy (V))
for any A : Z — Y. The group G(Z) acts naturally on U(Z) making U a G-torsor.

PROPOSITION 2.2. The sheaf U is represented by the G-torsor m : X — Y.
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Proof. A morphism p : Z — X over Y defines a trivialization of the torsor
X xy Z — Z and, hence, an isomorphism of (gz-algebras (wpu)*A and
(mp)*(Endy (V). Therefore, we get a map X(Z) — U(Z) which gives rise to a
map of sheaves

Mory (%, X) — U.

To prove that this map is a bijection, by faithfully flat descent one may assume that
X is a trivial torsor. By the Skolem-Noether theorem in this case the statement is
clear. O

REMARK 2.3. Proposition 2.2 shows how to reconstruct the G-torsor 7 : X — Y
out of the algebra A. Thus, we have a bijection between the set of isomorphism
classes of Azumaya algebras A over Y such that 7*A = 7*(Endy (V)) and the set of
isomorphism classes of PGL(V)-torsors over Y.

The group scheme PGL;(A) over Y acts naturally on the sheaf U, and the
action commutes with that of G. Hence, we have a group scheme homomorphism
PGL;(A) — G' where G’ is the group scheme dual to G with respect to the G-torsor
m: X = Y. To prove that this homomorphism is an isomorphism, by faithfully flat
descent, one may consider the split situation in which our statement is clear. Hence,

G' = PGL(V) = PGL;(A).
Now let G be an arbitrary group scheme over Y, let 7 : X — Y a G-torsor and
let
f:G—PGL(V)
be a projective representation over Y, where V is a vector bundle over Y. Denote
by A the Azumaya algebra on Y associated to the PGL(V)-torsor, which is equal to

the image of © under f. We call A the algebra associated to the G-torsor m and the
projective representation f. There is a natural group scheme homomorphism

f: G - PGL,(A)

where G’ is the group scheme dual to G with respect to .

3. INNER FORMS

Let G be a semisimple algebraic algebraic group defined over a field F with center
Z(@). Denote by G the corresponding adjoint group G/Z(G). An algebraic group G
over F' is called a twisted form of G if G, ~ Ggsep- The set of isomorphism classes
of twisted forms of G is in 1-1 correspondence with the set H'(F, Aut(Gsep)) ([10]).
The natural homomorphism

G(Fiep) = Aut(Gsep), g (9" = gg'g™")
induces the map
a: H' (F,G(Fep)) = H'(F, Aut(Gsep)).
A twisted form G’ of the group G is called an inner form of G if the cocycle
corresponding to G' belongs to the image of a. The group G is called of inner type if
G is an inner form of a split group.

Assume now that G is an adjoint group, i.e. G = G. Let X be a G-torsor over
F. Tt corresponds to some element ¢ € H'(F,G(Fsp)) ([10]). It is straightforward
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to check that the group G', dual to G with respect to the torsor X, corresponds to
a(§) € HY(F, Aut(Gsep))-
We have proved

PROPOSITION 3.1. Let G and G' be adjoint semisimple algebraic groups over a field
F. Then G' is an inner form of G iff there is a G-torsor X over F such that G' is
the dual group with respect to the G-torsor X. O

REMARK 3.2. The second condition of proposition 3.1 can be taken as the definition
of an inner form of an adjoint group (in order to avoid referring to cocycles).

4. TITS ALGEBRAS

Let G be an adjoint semisimple algebraic group defined over a field F, let G — G be
the universal covering, and C' the kernel of the covering. It is known that C, being
the center of @, is a closed subscheme of G of multiplicative type (not necessarily
reduced) ([2],[12]). Denote by C* the finite I~module Hom(Csep, Gy, ) of characters.

The group G is an inner form of some quasisplit group defined over F ([1],[12]).
By proposition 3.1, there exists a G-torsor X over F' such that the group G’, dual
to G with respect to X, is quasisplit. The choice of a point of X over Fi,, defines

an isomorphism Gsep — Ggep which is uniquely determined up to conjugation. This

isomorphism extends uniquely to an isomorphism Ggep — Giep Where G' is the uni-

versal covering of G’ over F' ([12]). Hence, we obtain an isomorphism of the centers
¢ : Csep = Clyp- One can easily see that this isomorphism is defined over F' (hence,

induces an isomorphism of ['-modules ¢* : C* 5 C’I*) and depends only on the choice
of the G-torsor X (which is not unique in general) but not on the point of X over
Fiep. _

Denote by B a Borel subgroup in G’ defined over F, by T' a maximal torus in B
defined over F' and by A the subgroup in T™ generated by roots of G relative to T.
The restriction map induces the natural isomorphism of I'-modules

T*/A 5 C*.

There is a partial ordering on T*: we write a > 3 for o, 8 € T* if @ — 3 is a sum of
roots of B. In each coset of T* /A there is a unique minimal element with respect to
this ordering called the minimal weight.

Choose a character y € C* defined over F and put x' = ¢*(x) € C'*. By the
representation theory of quasisplit semisimple groups (see [13]) there is an irreducible
representation p : G - GL(V) such that the restriction of p to C' is given by
multiplication by x'. Consider a central simple F-algebra A associated to the G-
torsor X and the projective representation p : G' — PGL(V) induced by p (section
2). The algebra A is called the Tits algebra of the group G corresponding to the
representation p. Its class in Br(F') depends only on the choice of character xy € C*
([13]) and is called the Tits class of the group G corresponding to x. By construction,
the index of A divides dim V. Denote by n,(G) the greatest common divisor of the
numbers dim V' for all representations j : G' — GL(V) such that the restriction of j
on C' is given by multiplication by x’. We have observed that ind A divides n, (G)
(see [5]). If x =0, then n, (G) = 1.
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Let x € C*(F) ~ (T*/A)F and p € T* be the minimal weight in the coset x. Let
p:G' — GL(V) be a representation (unique up to an isomorphism) with the highest
weight u called the minimal representation. The Tits algebra corresponding to p is
called the minimal Tits algebra of G and is denoted by A,. The algebra A, is the
canonical representative of the Tits class corresponding to y. For example, if y = 0,
then A, = F. Any Tits algebra is Brauer equivalent to a minimal one.

REMARK 4.1. The isomorphism ¢ : Csp = Cl,, depends on the choice of the G-
torsor X. Another choice of X changes ¢ by an automorphism of C” induced by an
(outer) automorphism of G’, but clearly does not change the numbers n, (G).

REMARK 4.2. By definition, the numbers n, (G) depend only on the quasisplit inner
form of G and hence do not change if we replace G by any inner form of it. In turn,
the class of inner forms of G is uniquely determined by the isomorphism class of G
over Fgyp and the action of I' on the group of outer automorphisms

Out(Gsep) = Aut(Gsep)/ Int(Gsep) = Aut(Dyn(Gsep))

of the group Ggep. If we change F by a field extension E/F such that F' is separably
closed in E, the numbers n,(G) do not change. If G is a group of inner type (i.e.
G’ is a split group, or equivalently, I" acts trivially on Out(Gsep)) then the numbers
ny (@) depend only on the isomorphism class of G over Fye, and are computed in [5].

We would like to classify the Tits classes of all adjoint semisimple algebraic
groups. A Tits algebra of the product of adjoint semisimple groups is the tensor
product of the Tits algebras of factors. Since any adjoint semisimple group is the
product of the groups G = Rp/r(G) where G is an absolutely simple adjoint group
over a finite separable field extension L/F ([12]), it suffices to describe the Tits alge-
bras of Gy. If G — @ is the universal covering of G with kernel C, then

61 = RL/F(G) — RL/F(G) = G1

is the universal covering of Gy with kernel Cy = Ry /p(C).
Let F C L C Fyep, I'o = Gal(Fgep/L) C I'. We have a canonical isomorphism

6:C*(L) = (C*)™ = (CD)F = Ci(F),

and for any xo € C*(L) the Tits algebra A, with x = 6(xo) for the group G, equals
the corestriction in the extension L/F of the Tits algebra A,, of G ([13]). Hence, it
is sufficient to classify the Tits classes of absolutely simple adjoint groups.

Below is the list of minimal Tits algebras and numbers n,(G) for absolutely
simple adjoint groups. We use the notation and the computations from [4] and [5].

4.1. TYPE A,,. An adjoint simple algebraic group of the type A,,, defined over F, is
isomorphic to the projective unitary group G = PGU(B, ), where B is an Azumaya
algebra of degree n + 1 over an étale quadratic extension L/F with an involution 7
of the second kind trivial on F'. Its universal covering is the special unitary group
G =SU(B,r)

Assume first that L splits, i.e. L ~ F' x F. In this case B ~ A x A°P with the
switch involution 7 where A is a central simple algebra of degree n 4+ 1 over F', where
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G = SL;(A) and G = PGL;(A4). Then C' = p,, ., and C* = Z/(n + 1)Z with the
trivial I'-action. For any ¢+ = 0,1,...,n, consider the natural representation

pi : G — GLy (N A)

where M\'A are external powers of A (see [4]). In the split case, p; is the i-th ex-
ternal power representation known as a minimal representation. Hence, AA for
i = 0,1,...,n are minimal Tits algebras of G. If x = i+ (n + 1)Z € C*, then
ny = (n+1)/ged(i,n + 1).

Now let G = SU(B, 1), where B is a central simple algebra of degree n+ 1 with a
unitary involution over a quadratic separable field extension L/F. The group I' acts
on C* =Z/(n+ 1)Z by x +— —x through Gal(L/F'). The only non-trivial element in
C*(F)is x = 1 + (n + 1)Z (when n is odd). There is a natural homomorphism

p: G — GL{(D(B,7)),

where D(B, 1) is the discriminant algebra (see section 10). In the split case p is the
external "Tﬂ—power representation. Hence, the algebra D(B,7) is the minimal Tits
algebra for the group G corresponding to x. The number n, equals 2 if (n +1) is a
2-power and equals 4 otherwise (see section 10).

4.2. TYPE B,. An adjoint simple algebraic group of type B,, defined over F, is
isomorphic to the special orthogonal group G = O%(V,q) where (V,q) is a non-
degenerate quadratic form of dimension 2n + 1. Its universal covering is the spinor
group G = Spin(V,q). Then C = p,, C* = Z/2Z = {0, x}. The embedding

G = GL(Co(V;q)),

where Cy(V, q) is the even Clifford algebra of (V,q), is, in the split case, the spinor
representation known as a minimal representation. Hence, the even Clifford algebra
Co(V,q) is the minimal Tits algebra A,. The number n, equals 2.

4.3. TypE C),,. An adjoint simple algebraic group of type C,,, defined over F, is
isomorphic to the group of projective similitudes G = PGSp(A4, o), where A is a
central simple algebra of degree 2n with a symplectic involution o. Its universal
covering is the symplectic group G = Sp(A4,s). Then C' = p, and C* = 7[27 =
{0, x}. The embedding
G — GLy(A)

is, in the split case, a minimal representation. Hence, A is the minimal Tits algebra
Ay. The number n,, is the largest 2-power which divides 2n.

44. TYPE D,. An adjoint simple algebraic group of type D,,, defined over F' (of non-
trialitarian type if n = 4), is isomorphic to the group of proper projective similitudes
G = PGO™ (A, 0, f) where A is a central simple, algebra of degree 2n with an orthog-
onal pair (o, f) (see [4]). Its universal covering is the spinor group G = Spin(4, o0, f).
Then C* = {0,x,x",x~} where y factors through the special orthogonal group
O* (4,0, f). The composition

Spin(4,0, f) = OT (4,0, f) = GL{(A)

is, in the split case, the standard minimal representation. Hence, A is the minimal
Tits algebra A,. The number n, equals the largest 2-power which divides 2n.
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Assume that the discriminant of o is trivial (i.e. the center Z of the Clifford
algebra C'(A, o, f) splits). The group I acts trivially on C*. The natural compositions

Spin(4, 0, f) = GL{(C(4,0, f)) = GL(C* (4,0, f))

where C*(A, 0, f) are simple components of C(A4,0,f), are, in the split case,
semispinor minimal representations. Hence, C*(A, ¢, f) are minimal Tits algebras
A, +. The numbers n,+ equal 2”1,

If the discriminant of o is not trivial, then I' interchanges x* and x~ and x is
the only nontrivial I'-invariant character.

4.5. EXCEPTIONAL TYPES.

4.5.1. Trialitarian type Dy. The image of the map I' — Aut(C*) contains a subgroup
of order 3. It implies that C*(F) = 0 and there are no nontrivial characters and Tits
algebras.

4.5.2. Type Eg. In this case C* ~ Z /37 and for a nontrivial character y € C*(F’) one
has n, = 27.

4.5.3. Type E;. In this case C* ~ 7Z /27 and for a nontrivial character y € C*(F') one
has n, = 8.

4.5.4. Types Eg, Fy and Gs. In these cases C* = 0 and there are no nontrivial
characters and Tits algebras.

5. THE CLASSIFYING VARIETY OF A GROUP

Let G be an adjoint semisimple algebraic group over a field F' and Y be a scheme
over F'. Consider the group scheme G = G xr Y over Y, and an arbitrary G-torsor
7 : X — Y. Denote by G' the dual scheme with respect to this torsor. For any
rational point y € Y'(F') the fiber G, of G' over y is dual to G, = G with respect to
the G-torsor m, : X,, — Spec F'. Hence, by proposition 3.1, an algebraic group g; is
an inner form of G. So, we can view the scheme G' as the algebraic family of inner
forms of G.

Now we take a specific scheme Y. Let G — GL,, be any faithful representation
over F. Consider the homogeneous variety Y = GL,, /G and the canonical G-torsor
m : GL, — Y. The variety Y is called the classifying variety of G. The universal
property of YV asserts that any inner form of GG is a member of the algebraic family
G over Y:

PROPOSITION 5.1. For any inner form G' of G over F there exists a rational point
y € Y(F) such that G' ~ G, over F.

Proof. This follows from Hilbert’s Theorem 90 and the exact sequence of pointed sets

([71,[10])
Y(F) = H'(F,G(Fsep)) = H' (F,GL,(Fiep))

induced by the exact sequence
1 = G(Fsep) = GLy (Fuep) = YV (Feep) — 1. O

Now let G; be any adjoint semisimple algebraic group over F', and G be its
quasisplit inner form. Consider the classifying variety Y = GL,, /G and the group
scheme G’ dual to § = G xp Y with respect to the G-torsor = : GL,, — Y. By
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proposition 5.1, we have Gy ~ G, for some y € Y (F). Let { € Y be the generic point.
The generic fiber Qé is an adjoint semisimple algebraic group over the function field
F(Y). The G-torsor m enables us to identify the character module C* of the center of
the universal coverings of the groups G, G and G;.

Now we formulate the main result.

THEOREM 5.2. For any character x € C*(F), the index of the Tits class of the group
G¢ corresponding to X equals ny(G1) = ny(G) = ny(Gg).

COROLLARY 5.3. For any adjoint semisimple algebraic group Gy over a field F' there
exists a field extension E/F and an inner form G of the group Gy ®p E over E such
that F is separably closed in E and for any character x of the center of the universal
covering of Go, with x defined over E, the index of the Tits class of the group Gs
corresponding to x equals ny(G1) = ny(G2). O

6. G-MODULES

Let G be a group scheme over a scheme Y. Assume that G acts on a scheme X over
Y. The morphism of the G-action on X we denote by

6:G xy X - X.
A G-module F on X is a quasicoherent Ox-module F together with an isomorphism
of Ogx, x-modules
0 0*F S pyF
(where p2 : G Xy X — X is the projection), satisfying the cocycle condition

Pa3(p) o (id x 0)* () = (m x id)" ()
where m : G Xy G — @G is the multiplication.

Giving a G-module structure on a quasicoherent Ox-module F is equivalent
to giving, naturally in Y-schemes Z, a homomorphism of the group G(Z) into the
automorphism group of the pair (X xy Z,F ®y Z) ([8],[11]).

Agsume that G acts on an Azumaya algebra B over X, i.e. the structure of
G-module B is given by an Ogx, x-algebra isomorphism

v 0*B S piB.
Denote by M (G, X, B) the abelian category of G-modules F on X, which are also
left B-modules and coherent O x-modules, such that the following diagram commutes:
0B 0*F —— O*F

o] |+

psB@psF —— ps

where the horizontal maps are given by the action of B on F. Morphisms in the
category are morphisms of B- and G-modules.

If the algebra B is trivial, i.e. B = Ox, then the category is simply denoted by
M(G, X).

Let A be an Azumaya algebra on Y. Consider the Azumaya algebra B = 7*A
on X, where 7 : X — Y is the structure morphism, and the category M (Y, A) of
left. A-modules which are coherent Oy-modules. For M € M(Y, A) the O x-module
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F = m* M has a natural structure of a B-module. Since 76 = 7p,, it follows that we
also have a natural G-module structure on F given by the isomorphisms

00 F ~ (10)" M = (mp2)* M ~ p5 F.
Thus, we have obtained a functor
T M(Y,A) - M(G, X, B), M= (7" M, ).
PROPOSITION 6.1. If 7 : X — Y is a G-torsor then * is an equivalence of categories.
Proof. Under the isomorphisms
Gxy X3 X xy X, (g9,7) = (g, )

Gxy Gxy X 5 X xy X xy X, (91,92, %) = (91927, go, )

the action morphism @ is identified with the first projection p; : X xy X — X and
morphisms m x id, id x 8 are identified with the projections p13,p12 : X Xy X Xy X —
X xy X. Hence, the isomorphism ¢ giving a G-module structure on an Ox-module
F can be identified with descent data, i.e. with an isomorphism

b piF = psF
of Ox x, x-modules satisfying the usual cocycle condition
(p2st) o (P12¥) = pis¥-
The statement follows now by faithfully flat descent ([7, Prop.2.22]). O

7. MODULES UNDER GROUPS OF MULTIPLICATIVE TYPE

Let C' be a diagonalizable group scheme over a field F, and let C* = Hom(C, G,,)
be the character group. It is known that C' = SpecF[C*], where F[C*] is the group
algebra of C* over F, and the comorphism

m: F[C*] — F[C*| ®F F|C"]
of the multiplication is given by the formula m(x) = x ® x ([2]).

To introduce an action of C' on an affine scheme X = SpecA over F is the same
as to give a C*-graded structure on the F-algebra A ([3]):

A= 1T Av
x€eC*
The comorphism of the action of C' on X,

9:4 F[C*op A

o( Z ay) = Z (X ® ay).

XEC* xeC*

is given by the formula

The trivial action corresponds to the trivial graded structure: A, =0 for x # 0.
Let M be an A-module. A C-module structure of the associated Ox-module
F = M is given by an isomorphism of F[C*] ® p A-modules

?:(FIC*lor A) @45 M = (FIC* | ©F A) © a5 M,
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satisfying the cocycle condition. Let P(1®1®@m) = )7 .o (x ® 1 ® my), where
my,m € M. Since (e ® id)*¢ = id ([11]), where e : SpecF' — G is the group unit, it

follows that
m=3m,. ()
x€eC*

It is easy to check that the cocycle condition implies that (m, ), equals m,, if x = p and
equals 0 if x # p. Hence, the equality (*) gives rise to the direct sum decomposition

M= 1] M,

xeC*

making M a C*-graded A-module. Therefore, the category M (C, X) is equivalent to
the category of finitely generated C*-graded modules. o

Let an algebraic group G over a field F' act on an affine scheme X over F' and
on an Azumaya algebra 5 on X. Assume that a closed central group subscheme
C' C G of multiplicative type acts trivially on X and B. Denote by C* the I'-module
of characters Hom(Csep, G, ). Since the group Csep is diagonalizable, it follows that
for any F € M(G, X, B) we have a decomposition

-7:sep = H (fsep)x (**)

XEC*

into a direct sum of Ggep-submodules (Fgep)X on Xgep (since C' is central and acts
trivially on X and B).

Choose any I'-invariant character x € C* (defined over F). Clearly, (Fsep)X
and its direct complement in (xx) are defined over F', hence we have a canonical
decomposition

F=FaF
into a direct sum of G-submodules on X. In other words, these submodules are
uniquely determined by the property that ¢ — x(¢) is trivial on FX and invertible on
Fy for all ¢cin C.

Consider the full subcategories M (G, X,B) and gX(G,X, B) in M(G,X,B)
consisting of all G-modules F such that 7 = FX and F = F, respectively. It is clear
that

M(G,X,B) ~ MX(G, X, B) x gX(G,X,B).

If x = 0 is the trivial character then the category M*(G, X, B) is equivalent to the
category M(G/C, X, B).

8. EQUIVARIANT ALGEBRAIC K-THEORY

The K-groups of the category M (G, X, B) (see section 6) we denote by K.(G, X, B).
These groups are clearly contravariant with respect to flat G-morphisms in X. If
B = Ox is the trivial algebra we simply write K, (G, X).

Let G be an algebraic group over F' acting on a scheme X over F. We will
need the following particular cases of the localization theorem [11, th. 2.7] and the
homotopy invariance theorem [11, cor. 4.2] in equivariant algebraic K-theory.

PROPOSITION 8.1. Let U C X be an open G-equivariant subscheme. Then the re-
striction homomorphism Ko(G,X) — Ko(G,U) is surjective. O
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PROPOSITION 8.2. Assume that G acts linearly on an affine space A over F'. Then
the structure morphism p : A — SpecF' induces an isomorphism

p* : K.(G,SpecF) = K.(G,AL). O

The category M(G,SpecF') is equivalent to the category of finite dimensional
representations of G over F. The group Ky(G,SpecF') we denote by R(G).

Assume that G acts on an Azumaya algebra B over X and contains a closed
central subscheme C' over F' of multiplicative type, acting trivially on X and B. For
x € C*(F) the K-groups of the category M*(G, X, B) we denote by KX(G,X,B).
Since KX(G, X, B) is a canonical direct summand of K, (G, X, B) (section 7), it follows
that the statements of propositions 8.1 and 8.2 still hold if we replace K, by KX.

The group K (G,SpecF) we simply denote by RX(G). It is generated by the
classes of all representations p : G — GL(V') such that the restriction of p to C is
given by .

9. PROOF OF THE THEOREM

Let G; be an adjoint semisimple group over a field F, let G be the quasisplit inner
form of G; with universal covering G- G, and let C' be the kernel of the covering.

Choose a faithful representation G — GL, over F' and consider the classifying
variety Y = GL,, /G over F and the group scheme G’ over Y dual to G = G xp YV
with respect to the G-torsor 7 : GL,, — Y. Let £ be the generic point of Y. The
G-torsor 7 enables us to identify the character modules C* and C'*, where C' is the
kernel of the universal covering of G¢. Choose a character x' € C'* defined over F(Y)
and denote by x € C* the corresponding character over F.

Consider a representation g : G — GL(V') such that the restriction of p to C' is
given by y. Consider also the Azumaya algebra 4 on Y associated to the G-torsor
7 and the projective representation p : G — PGL(V) induced by p (section 2). We
know that there is an isomorphism of G-algebras

™ (A) ~ 7 (End(V x5 Y))

on GL,, (section 2) and that A, is the Tits algebra corresponding to the character x’
(section 4). We have to show that ind A = n,(G).
Consider the homomorphism

d: K(](Azp) — 7,
taking an Agp—module M to dimp(y) M. It is easy to see that
im(J) = ind A¢ - deg A - Z.

Consider also the homomorphism v : RX(G) — Z, taking a representation space U
to dimp U. It is clear that im(y) = n,(G) - Z. For the proof of the theorem it is
sufficient to find a surjective homomorphism

o : RY(G) = Ko(AL)

such that the composition ¢ o « equals deg A -+ = dimV - . The homomorphism «
will be found as a composite of seven epimorphisms «aq, as, ..., ar.

Consider GL,, as an open subvariety of the affine space A = A’}Q of all n x
n-matrices over F' on which the group G (and hence C~¥) acts linearly. The open
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embedding GL,, < A is clearly @—equivariant. By proposition 8.2 (see also a remark
at the end of section 8) the structure morphism A — SpecF induces an isomorphism

a1 : RX(G) = KX(G, SpecF) 5 KX(G, A).
By proposition 8.1, the restriction homomorphism
ay : KX (G, A) = KX(G, GLy,)

is surjective.
Denote by B the algebra 7*End(V xpY) = OgL, ®r EndV on GL,,. The group

G clearly acts on B. Consider two functors

MX(G,GL,) = M"(G, GL,, B),

’LL(]:)=V* Qr F, U(M)=V®Endv* M,

where V* is the F-vector space dual to V. The canonical isomorphisms V®gnqv:V™* ~
F and V* ®p V ~ End V* show that v and v are mutually inverse equivalences of
categories. Hence, the functor u induces an isomorphism

a3 : KY(G,GL,) 3 KJ(G, GL,, B).

Since the center C' of G acts trivially on GL,, and B, it follows that the categories
%0 (G,GL,,B°) and M(G,GL,,B?) are equivalent. Hence, we have an isomor-
phism
ay : K§(G, GLy,, B?) 5 Ko(G, GLy,, B%).
The isomorphism G xr X ~ G xy X shows that the categories M (G, GLy, B)
and M(G, GL,, B°?) are equivalent. Hence, we have an isomorphism

as : Ko(G, GL,, B%) 5 Ko(G, GL,, B°).

Since 7 : GL, — Y is a G-torsor and B ~ 7*A, it follows from proposition 6.1
that the functor

7 M(Y,A?) = M(G,GL,, B?)

* induces an isomorphism

is an equivalence of categories. Hence, 7
ag : Ko(G,GL,, B") 5 Ky (Y, AP).
By localization (Proposition 8.1), the functor
M(Y, A?) — M(AZ"), F + stalk of F at the generic point ¢
induces an epimorphism

oy : KO(Y, AOp) — Ko(AZp).

It can be easily checked that the composition @ = azoago- o takes the class
of a representation space U of the group G to the generic stalk F¢ where

o F=V*®prU®&r OcL,

and hence satisfies the desired condition. O

DOCUMENTA MATHEMATICA 1 (1996) 229-243



242 A. S. MERKURJEV

10. EXAMPLES

Let L/F be a Galois quadratic field extension, II = Gal(L/F'), and let B be a central
simple algebra over L of degree 2n with involution 7 of the second kind trivial on F'.

Consider the special unitary group G = SU(B, 1) over F. The group G(F) of F-
points of G consists of all elements b € B* such that 7(b)-b = 1 and Nrd(b) = 1 where
Nrd is the reduced norm homomorphism. The Galois group I' acts on C* ~ Z/2nZ
through its factor group Il = {1, 7} by w(k 4+ 2nZ) = —k + 2nZ (see section 4). The
Tits algebra corresponding to the only nontrivial character x =n+2nZ € C*(F') can
be constructed as follows (see [4],[5]).

Consider the Severi-Brauer variety X over L corresponding to the algebra B and
the canonical locally free sheaf J of rank 2n on X, so B = Endx (J) [9]. The canonical
nondegenerate bilinear form on the n'"-exterior power of .J

A"J @ AT — A*"J ~ Ox

induces in the usual way an involution o of the first kind on the algebra A\"B =
Endop, (A\"J) over L. One can check that the involutions o and 7 = A" on A\"B
commute. Therefore, the set {x € \"B : o(x) = 7'(z)} is a central simple algebra
over F. We denote this algebra by D(B,7) and call it the discriminant algebra of
(B,7) ([4])- It is the Tits algebra corresponding to the character .

The discriminant algebra enjoys the following properties:

1. The degree of D(B,) equals ().

2. The restriction of o to D(B, 7) is an involution of the first kind. In particular,
the exponent of D(B, 1) divides 2.

3. D(B,7) ®r L ~ \"B ~ B®". Since exp(B®") divides 2, it follows that
ind(B®™) also divides 2, and hence ind D(B, ) divides 4.

Let G’ be the quasisplit inner form of G. Tt is the special unitary group of the
hyperbolic hermitian form over the quadratic extension L/F ([12]). Since é;ep o~
SL2, (Fiep) it follows that

R(GI ) ~ Z[tl, tg, ce 7t2n—1]

sep

where t; is the class of the i*"-exterior power of the standard representation of SLy,,.
This ring is C* = Z /2nZ-graded, the degree of ¢; being equal to i (mod 2n). The rank
map R(Gp,) — 7Z takes t; to (QZ”) The action of the Galois group IT on R(GY,,

given by 7 (t;) = tan—;. We have also ([13]):
R(él) ~ Z[tl, tQ, . ,th_l]H.

) is

Using this description of the ring R(G') and the fact that the image of the map
Rx(é’) — 7., taking a representation space U of the group G' to dimp U, equals ny-L,
one can easily compute the number n, (G) for G = G/C (see [6]): 1y (G) is equal to
2 if n is a 2—power and equals 4 otherwise. Hence, the corollary of the theorem gives
in this case the following

PROPOSITION 10.1. For any Galois quadratic field extension L/F and n € N there
is a field extension E/F and a central simple algebra B of degree 2n over E Qp L
with involution T of the second kind trivial on E such that ind D(B,7) =2 ifn is a
2-power and equals 4 otherwise. O
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