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INTRODUCTION

Multirelative K-groups K, (R, a1, ..., a,) of an m-tuple (a4, ..., a,,) of ideals of a ring
R are recently used to derive properties of the absolute K-groups, e.g. by Levine [4]
and by Bloch and Lichtenbaum [1]. Here it is shown how K-theory as defined in [3]
can easily be extended to the multirelative case and that some of its properties can
be taken as axioms for the K-theory of rings. Special types of m-tuples of ideals—
the ‘normal’ m-tuples—play a crucial role. In fact we will only define multirelative
K-groups for such m-tuples. The notion of normal m-tuple of ideals is introduced in
Section 2. Tt already appeared in 1981 in a paper by Dayton and Weibel [2] on the
K-theory of affine glued schemes under the name of ‘condition (CRT)’ (= Chinese
Remainder Theorem).

In Section 4 we review briefly higher K-theory as defined in [3]. In Section 6
multirelative K-groups are defined, and in Section 7 it is shown that from some of
their properties one can reconstruct the K-theory of rings.

1 NOTATIONS

In this paper ‘ring’ stands for a non-unital ring. Non-unital rings form a category
which is denoted by R.

Since the functors GL, E and K; are product preserving functors from unital
rings to groups, they can be extended to functors defined on R in the usual way: if
T is one of these functors, then put

T(R) := Ker(T(R") — T(Z)),
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278 FrANS KEUNE

where R* = R x Z with multiplication given by
(r,k)(s,l) = (rs + ks + Ir, ki)

is a ring with (0, 1) as unity element.

Here ‘ideal’ will always stand for ‘twosided ideal’.

By A we will denote the category of Abelian groups, by G the category of all
groups, and by S the category of sets. The category of simplicial objects in a category
C is denoted by sC.

2 m-CUBES AND NORMAL m-TUPLES

In this section the notion of normality of an m-tuple of ideals is considered. Only
the group structure is involved in its definition, and since we can use later a similar
notion for groups instead of rings we give a more general definition. By m we will
denote the set {1,...,m}.

DEFINITION 1. An m-tuple (Bj,...,B;,) of normal subgroups of a group A—also
denoted as (A4, By, ..., B,,)—is called normal if for all subsets I and J of m

NB:-[[B = ﬂ(B,»-HB]—>.
= jeJ iel jeJ

The condition is trivially fulfilled when I NJ # (). In the case of Abelian groups
it reads in the additive notation as

B:i+> B = ﬂ(Bi—I—ZBj).
iel jeJ iel jeJ

Note that in the special case of an m-tuple of ideals in a commutative ring the
condition is a local one since it involves only intersections and sums of ideals.

The subsets of m are ordered by inclusion. This ordered set determines in the
usual way a category C,,. For every pair (I,J) of subsets with I C J there is the
unique morphism p§ from I to .J in Cp,.

DEFINITION 2. Let D be a category. An m-cube in D is a functor
D:Cp —D, I~ Dr, pherl

The morphisms in C,, are generated by the pg, where #J = #I1 + 1. An m-cube
in a category D is a commutative diagram in D having the shape of an m-dimensional
cube. The edges of the cube correspond to the images of these generating morphisms.

DEFINITION 3. Let D: C,, — D be an m~-cube in D. It is said to be a split m-cube if
for every pair of subsets (I, J) of m satisfying I C J there is a morphism s7: D; — Dy
in D such that

(S1) sfsf =sK forall ICJCK,

(S2) rlsl =1p, forall T C J,
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(S3) rindsl ;= stVIpl S for all I and J.

(Of course such a split m-cube can also be seen as a functor defined on a category
which is obtained from Cy,, by adjoining extra morphisms o : J — I.)

In condition (S3) one only needs the case where #(I'\ J) = #(J\I) = 1. It then
reads

(S3) rlu{k}sﬁu{” s%%i}k}r%}]}k} for all j,k ¢ I with j # k.

This can easily be seen as follows. Put K =INJ, I\ K = {i1,...,ip} and J\ K =
{j1,---,7q}- Then the result follows from the diagram

Dk e DKU{il} > o > Dy
DKU{j1} - DKU{il,j1} ’ > DIU{jl}
Dy —— Djuuy SRR > Drug

where the horizontal maps are r-maps and the vertical maps are s-maps.

DEFINITION 4. An m-tuple T = (4, By, ..., Bp,) of normal subgroups determines an
m-cube in G:
I—Tr = /
i€l

When I C J, then [];,.; B; C J and 14 induces a grouphomomorphism rﬁ: Tr — Ty.
This m-cube is said to be induced by the m-tuple T'. Similarly for an m-tuple of ideals
in a ring.

PRrROPOSITION 2.1. Let D: C,, — D be an m-cube in G, which is split as an m-cube
in S. Then D is induced by a normal m-tuple of normal subgroups of Dy.

Proof. For i € m put
B; = Ker(rly: Dy = Dy ).
We will first show that the cube is induced by the m-tuple (Dg, B, ..., B,,). Since

the cube splits in S, the homomorphisms Dy — Dj are surjective. To show that for
each I Cm
Ker(Dy — D;) = [[ Bi.
el

This can be done by induction on #(I). For #(I) = 0 it is trivial. Let #(I) > 0
Choose k € I. By induction hypothesis

Ker(Dy = Dry) = [[ B
ieI\{k}
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Since the cube splits in § we have a commutative diagram with exact rows and
columns:

1 —— BiN[Lepgy Bi —— B —— Ker(,{\{k}) 1

1 ——  [LengyBi —— Dy —— Dnpy —— 1

1 — Ker(r;{-k}) — Dyy —— D; — 1
1 1 1
Hence
Ker(r))/Br =[] Bz’/ (Bk n I Bi) = [[(Bi/Bx),
ieI\{k} ieI\{k} icl

and therefore,

Ker(r) = HBi‘
iel
For the normality of the m-tuple let I, J C m and consider the commutative square

py X ., Do/ B

l’”g l(rgﬁ}{i})
(Tgu{i})
Dy HjeJBJ' I XieIDm HjeJu{i} B;.

Since the m-cube is split in S the vertical homomorphisms have compatible sections
inS. So rg induces a surjective homomorphism on the kernels of the horizontal ho-
momorphisms. This holds for all I, J C m. Therefore, the m-tuple (Dg, By, ..., Bpm)
is normal. O

For the Abelian case we also prove the converse.

PROPOSITION 2.2. Let T = (A, By,...,Byn) be a normal m-tuple of subgroups of an
Abelian group A. Then the induced m-cube is split in the category S.

Proof. By taking kernels of the surjective homomorphisms in the induced m-cube it
can be extended to a diagram of 3™ Abelian groups. We will give a detailed description
of this diagram and show how a splitting of the cube can be obtained from it.

For each pair (I, .J) of disjoint subsets of m define

Cy= ﬂBi+ZBj/ZBj.

iel jeJ jeJ
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Then for each such pair (I, J) and each k ¢ TUJ we have a surjective homomorphism
cl— C;u{k}’ induced by rju{k} : Ay = Ajuqry, where we use the notation

Thus Ay = CY. The kernel of the surjective homomorphism C} — C% | ok 18
(ﬂ B + ZB]) N (Bk + ZB]) /Bk +Y B
il jer jer jed
We have the inclusions
N B+ Bc (mBﬁsz) n <Bk+23j> c N <Bi+23j>.
ieTU{k} JjeJ icl JjeJ JEJ teTJ{k} jeJ
By normality these groups are equal, so we have a short exact sequence

0 it S 0l = 0y — 0.

For each pair (I, J) of disjoint subsets of m satisfying I U.J = m choose a section
th:Ch — cj(c of = A)

of the map C} — C¥ induced by r%: A — A; and satisfying ¢5(0) = 0. Next define

maps th: C] — Cf for every disjoint pair (I, J) using induction to the number of

elements of the complement of I U J. So, let (I,J) be a disjoint pair of subsets of m

with #(I U J) = n < m and assume that sections t5: C'f* — C;* have already been
defined for pairs (K, L) with K U L having more than n elements.

Choose k € m \ (I UJ). Let x € C%, then for y = rgtgu{k}rju{k}(ac) we have

Tﬁu{k}(y) = Tgu{k}tgu{k}rju{k}(m) = T:;U{k}(m):
S0, T —y € C;U{k}. Now define ¢! by

th(z) =t ™ @ —y) + o Ioge (@)-

It easily verified that this map is a section of r: C’é — C}. Furthermore it is indepen-
dent of the choice of k: if also I ¢ I U .J, then in both cases the image of an z € C%
under ¢, is determined in the same way by the images of the same elements in the
following four groups

TU{l,k} Tu{l} TU{k} .
Cy ) OJU{k}’ CJU{I}’ and Cfu{m} :
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0 —— ot 5 of
Tu{k} I T
0 —— Cj — O —— Cjyyy —— 0

TU{k}
0 5 CJU{I} 5 Of;u{l} ' O§u{k,l} > 0

0 0 0

Thus we obtain a splitting of the cube, where the sections s7 of the homomor-
phisms rg, where I C J, are the maps r?t%. In particular, condition (S3’) follows
from the above diagram for I = (). O

3 OPERATIONS ON NORMAL m-TUPLES OF IDEALS

By R,, we will denote the category of all normal m-tuples of ideals. Such an m-
tuple is denoted as (R,ai,...,0,,), where R is a ring and a4, ..., a,, are ideals of
R. A morphism ¢: (R,a1,...,08,) — (S,b1,...,by) is just a ringhomomorphism
¢: R — S satisfying ¢(a;) C b; for all i € m.

The following notations will simplify notations for long exact sequences of mul-
tirelative K-theory. Another advantage will be that they are useful to indicate fun-
toriality properties.

For each m > 1 the functor D: R,, = R.._1 is the functor that deletes the last
ideal:

D(R, al,...,am) = (R, al,...,ﬂm_1)

and which has no effect on morphisms.
For each m > 1 the functor M : R,, — R.._1 is the functor that deletes the last
ideal and that takes the ring and the other ideals modulo this ideal:

M(R,al,...,am) = (R/am,ﬁl,...,ﬁm,l),

where a; = a; + a;/a;, and which maps a morphism to the induced morphism.

A functor morphism ¢: D — M of the functors D, M : R,, = R,—1 is defined
as follows: let A = (R,aq,...,ay), then ¢p4: D(A) — M(A) is the canonical ringho-
momorphism R — R/ay,.

Every A € R, has an underlying ideal I(A), which is defined as the intersection
of the m ideals in A: when A = (R, ay,...,a,), then

I(A)=a NN am.

Thus defined, I(A) is functorial in A.
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4 HIGHER K-THEORY OF RINGS

In [3] the definition of higher K-groups is as follows. Let R € R. Choose a simplicial
ring R with an augmentation €: R — R such that

e R is aspherical, i.e. m,(R) =0 for alln > 1,
e R, is free for all m > 0, say R, is free on a set X,,, of generators,

o the sets X, of free generators are stable under degeneracies: s;(X;,) C X1
for all m > 0,

e the augmentation ¢ induces an isomorphism 7y(R) — R.

Then for n > 3 the group K, (R) is defined as the (n — 2)nd homotopy group of the
simplicial group GL(R), and the groups K;(R) and K»(R) are given by the exactness
of

0 = K2(R) - 71o(GLR) - GL(R) — K,(R) — 0.

The groups K, (R) for n > 3 are Abelian because GL(R) is a simplicial group. The
group Ki(R) is Abelian since it is the cokernel of GL(Rg) — GL(R), and K»(R)
is Abelian because it is the cokernel of GL(R1) — GL(Zy), where Zy = { (2o, 1) |
€(zg) = €(z1) }. In [3] it is shown using a comparison theorem that the higher K-
groups are thus well-defined and that they are actually functors. For the purpose of
this paper we will confine to a functorial resolution Fr(R) of a ring R, which we now
describe. Let F': § — R the free ring functor and let U: R — S be the underlying set
functor, then the functor FU: R — R together with the obvious functor morphisms
v: FU — (FU)? and n: FU — I is a cotriple. Put

Fr, = (FU)".
Face and degeneracy morphisms are given by
d; = (FU)'p(FU)" '~ and s; = (FU)'w(FU)" '

The augmentation is then given by 7.

A property of this functorial resolution is that, when applied to a surjective
ringhomomorphism R — S, it gives a dimensionwise surjective homomorphism
FrR — FrS of simplicial rings, and since the ringhomomorphisms are dimensionwise
split it also gives a surjective simplicial grouphomomorphism GL(FrR) — GL(FrS).
This is often convenient when considering homotopy fibres, because surjective simpli-
cial grouphomomorphisms are fibrations themselves. So instead of taking a homotopy
fibre one just takes a fibre, i.e. the kernel of the simplicial group homomorphism.

5 CUBES IN A SIMPLICIAL GROUP

Let A be a simplicial group with augmentation do: Ay — A. It is a contravariant
functor A: Q5" — G from the category Q0 of finite ordered sets

[n] ={0,...,n} (n>-1)
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(where [—1] = ) and monotone (= order preserving) maps to the category of groups.
(Here we use the notation A_; = A.) We will show that A determines an m-cube of
groups for every nonnegative integer m. In stead of the ordered set of subsets of m
for the description of an m-cube the ordered set of subsets of [m — 1] will be used for
this purpose.

Let Q(m) be the category of injective monotone maps

a: [k] = [m—1].

A morphism from «: [k] = [m — 1] to 8: [[] = [m — 1] is a monotone map ~: [k] — [{]
such that 8y = «a. Tt exists if and only if Im(«) C Im(3), and it is unique if it exists.
For each I C [m — 1] there is a unique injective monotone map

ar: [k] = [m —1],

where k = m — 1 — #(I) and Im(ay) = [m — 1]\ I. If I C J C [m — 1], then
Im(ay) D Im(ay) , so then there is a unique

"}/j]: oy — oy,
i.e. a monotone 77 : [m — 1 — #(J)] = [m — 1 — #(I)] such that ayv{ = ay.

DEFINITION 5. Let A be an augmented simplicial group and let m be a nonnegative
integer. Then the m-cube of A is the m-cube A(m): C,, — G with

A(m)r = Ap—i—x(1) forall I C [m —1],
rh=AM0): Am)r = A(m); forall TCJC[m—1].

LEMMA 5.1. Let the augmentation dy: Ay — A_1 induce a surjective homomorphism
mo(A) — A_y. Then for all integers i,j, m such that 0 < j <i<m

a™ (Ker (™)) = Ker(a" ).

Proof. Let = € Ker(dgm)). Then, since i > j, d;jd;(x) = di—1dj(z) = 1. So

d;(Ker(d;)) C Ker(d;). Now, let y € Ker(dg.m_l)). There is an z € A,, such that

d;j(z) =1 and d;(x) = y. For m > 1 this is the case because a simplicial group is a
Kan-complex, while for m = 1 it follows from the condition on the augmentation. [

PROPOSITION 5.1. Let A be a simplicial group with an augmentation dy: A — A
that induces an isomorphism wo(A) — A. Then for all m > 1 the m-cube A(m) is
induced by the m-tuple

(Am_l,Ker(dO), N Ker(dm_l)).

Proof. All face maps are surjective, so it remains to show that for all J C [m — 1]

Ker(r) = H Ker(dg.m_l)).

JjeJ
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For J = () this is trivially true. Let J be nonempty and proceed by induction. Let
z € Ker(r%). Let k € J be maximal. Then r?k}(ac) = dp(z) € Ker(rt{lk}). By
induction this group is equal to HjeJ’ Ker(dg,m—Q)), where J' = J\ {k}. (Here we

used the maximality of k in J and the same result for the (m — 1)-cube A(m — 1).)
By the lemma we have

dk(H Ker(dg-ml))> = H Ker(dg.mﬂ)).
JjEJ' JjeEJ'
Choose y € [[;c Ker(dg.m_l) such that dy(y) = dg(z). Then zy—' € Ker(dy). It
follows that
Ker(r%) C H Ker(dgmfl)).
JjEJ
For the other inclusion note that d; = r?].} and

rgf}r?j} = 1"9.

O

PROPOSITION 5.2. Let A be as in Proposition 5.1 and assume moreover that A is
aspherical. Then the m-tuple

(A—1,Ker(dy),...,Ker(dy—_1))
18 mormal.

Proof. The edges of the m-cube are face maps of the simplicial group (4). Normality
means that these maps preserve intersections of (the images of) the normal subgroups
Ker(dyp), - . .,Ker(dy—1). By induction it suffices to show this for the face maps dgmfl).

Let J C [m — 1]. Then to show that

di<ﬂ Ker(dj)> = ) di(Ker(d,)).

jer jeJ

for i ¢ J. The inclusion of the left hand side in the right hand side is trivial. So let
z € (;ey di(Ker(d;)). Then for j € J there is an y; € Ker(d;) such that x = d;(y;).
For j < i it follows that d;(z) = d;d;(y;) = d;—1d;(x;) = 1. Similarly for j > i we
have d;_1 (z) = 1. So, since a simplicial group is a Kan-complex and for J = [m — 1]
since A is aspherical, there is a y € A,,—; such that d;(y) = 1 for all j € J and

d;(y) = x. This shows that x € d; (ﬂjej Ker(dj)). O

6 MULTIRELATIVE K-THEORY

A normal m-tuple of ideals A = (R, a4, ..., a;) induces an m-cube in R
AT R / S a
icl

DOCUMENTA MATHEMATICA 1 (1996) 277-291



286 FrANS KEUNE

which by Proposition 2.2 is split in S. Application of Fr to this m-cube gives an
m-cube of simplicial rings which is dimensionwise split in R. Put

Fr(R,0;) := Ker(Fr(R) — Fr(R/q;)).
This is a simplicial ideal. The m-cube is then induced by the m-tuple
(F‘I‘(R)a F\I‘(Ra Cll), ) F\I‘(Ra a’m))a

of simplicial ideals, an object of the category sR,, of normal m-tuples of simplicial
ideals. We also define the simplicial ideal

Fr(R,ai,...,am) := ﬂ Fr(R,a;).

i=1

Application of GL gives an m-cube of simplicial groups, which is dimensionwise split
in G. This m-cube is induced by the m-tuple

(GLFr(R),GLFr(R,qa1),...,GLFr(R, ay,))
of simplicial normal subgroups. For n > 3 we define multirelative K, by
K,(R,a1,...0n) :=Th—2(GLFr(R,a1,...,0ay)).
Multirelative K5 and K are then given by the exactness of
0— Ka(R,a1,...am) = mo(GLFr(R,a1,...,0,)) —
GL(a;N---Nay) = K1 (R,a1,...0a,) = 0.

These multirelative K7 and K, are Abelian groups for the same reason as in the
absolute case.

Now let A € Ry, with m > 1. Then ¢.: GLFr(DA) — GLFr(MA) is a fi-
bration with fibre GLFr(A). The long exact sequence of homotopy groups is a long
exact sequence of multirelative K-groups which can easily be extended to include
multirelative Ko and K.

PROPOSITION 6.1. Let A € R,, with m > 1. Then we have a functorial exact se-
quence

-+ > Kyp(A) » Kp(DA) - Kpy(MA) » Ky (A) = - = K (MA).
O

The connecting map K, (MA) — K,_1(A) will be denoted by § and the map
K,(A) —» K,(DA) by . To put it in an even more functorial way, we have an exact
sequence of functors and functor morphisms

s Ky S KD e o S K, o KM

In the remaining part of this section multirelative Ky is defined and the long
exact sequence for multirelative K-theory is extended with multirelative Ky-groups.
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DEFINITION 6. For a normal m-tuple A of ideals we define
Ko(A4) = Ko(IA).
Thus defined, K is a functor from R, to A.

For m = 1 we take the long exact sequence to be the long exact sequence of an
ideal in a ring. Now assume that m > 1 and that we have an extended long exact
sequence

o= KD - K\M — Ky = KgD —» KoM

of functors R,, — A. We will show that there is also such a sequence of functors
Rm+1 — A.
Let A = (Rya1,...,0m4+1) € Rypy1. Put b = TA = ﬂ?;"{l a; . We have exact
sequences for the following m-tuples of ideals
B=DA= (R,al,...,am),
EZ (R/baal/ba---aam/b)

and

(R,al,...,am,l,b).

These m-tuples are normal and their K-groups fit into a commutative diagram

/
1(DB) Ky(B)
) Ko(DA).

Let the dashed arrow be the composition K;(B) — K;(DB) — Ky(b). By an easy
diagram chase we see that the sequence with the dashed arrow is exact as well. The
identity on R is a morphism

(R,al,...,am,b)—>A
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in Rim+1- So we have a commutative diagram with exact rows:

Kl(Raala"'aamab) EE— KI(B) — Kl(B) EE— KU(b)

It now suffices to show that the morphism « in this diagram is an isomorphism. The
(m + 1)-tuple (R/b,a1/b,...,am4+1/b) induces an exact sequence

Kl(R/b,ﬂl/b,...,ﬂm+1/b) — Kl(B) — Kl(MA)

The group K1 (R/b,a1/b,...,a,+1/b) is a quotient of GL((a1/6)N---N(am4+1/b)) =
{1}, so « is injective. On the other hand, since the (m + 1)-tuple A of ideals is

normal, the identity on R induces an isomorphism I(B) — I(M A) and hence also an
isomorphism -
GL(I(B)) = GL(I(MA)).

Since the multirelative K; is a quotient of the general linear group of the underlying
ideal, the map « is surjective. This proves:

THEOREM 1. Let A € Ry, for m > 1. Then we have a functorial exact sequence

o= Kp(A) = Kp(DA) » Kp(MA) - Kp—1(A) = -+ - = Ko(MA).

7 AXIOMS FOR MULTIRELATIVE K-THEORY

It will be shown in this section that an axiomatic approach to multirelative K-theory
is possible. We take some of the properties of multirelative K-groups as axioms and
show that they determine all of multirelative K-theory.

Axioms

MULTIRELATIVE K-THEORY consists of functors

K,:Rn, - A for m and n integers > 0,

morphisms
0: KnyiM — K, (for m and n integers > 0)

of functors R+1 — A and morphisms
v Ky, — K, D (for m and n integers > 0)

of functors R, +1 — A, such that

(MK1) the following sequence is an exact sequence of functors Ry,+1 — A for all
non-negative integers m and n

Kpin D 2% g oM 2 K, KaD 22% K, M.
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(MK2) K,(R) =0 for all n > 0 and all free associative non-unital rings R,
(MK3) Ky(A) = Ko(ITA) for all A € Ry, for all m.

Loosely speaking, the multirelative K-groups are only defined for normal m-
tuples of ideals and they fit into exact sequences the way one can expect, the (absolute)
K-groups of free non-unital rings are trivial and the multirelative Ky is just the
Grothendieck group of the intersection of the ideals.

Let (R,aq,...,a,) be a normal m-tuple of ideals. It induces an m-cube
I—-Rr=R / Z a;,
iel

which is split in S. Application of Fr gives an m-cube
I — FI‘(R[)
of aspherical simplicial rings, which is dimensionwise split in R.

PROPOSITION 7.1. Let m and n be positive integers. Then the (m + n)-tuple
(Fr(R)n,l,Fr(R, a)n_1, ..., Fr(R, am)n,l,Ker(dg”‘”),...,Ker(d;’l‘f)))

18 normal.

Proof. First we show that the induced (m + n)-cube is

(I1, I2) = Fr(Rp, ) n_1-#(1,)

where the cube is indexed by pairs of subsets of m and [n — 1]. This set of pairs is
ordered by componentwise inclusion:

(Il,IQ) < (Jl,JQ) <~— I CJ; and I» C Js.
The homomorphism
FI'(R)n,1 - Fr(RIl)n—l—#(Iz)

is the composition
Fr(R)n—1 — Fr(Rr, )n—1 = Fr(Br)n 1 #(1),

the first map being induced by # C I and the second by [n — 1]\ I» C [n — 1]. Both
homomorphisms are surjective. The first one has kernel (;c; Fr(R,a;)(, 1) and the
second one [;¢;, Ker(d;), where the d; are face maps of Fr(Rr,). Since Fr(R) and
Fr(Ry,) are both aspherical, elements of the second kernel can be lifted to elements
of (N;¢1, Ker(di), where the d; are face maps of Fr(R).

For the (m + n)-tuple to be normal it suffices that the intersections of the images
of the m + n ideals are preserved under the maps on the edges of the induced (m +n)-
cube. These are the homomorphisms

Fr(Ry)i = Fr(Ryury )i
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where J Cm, ke m\ J and [ € [n — 1], and also the face maps
di: Fr(Ry)p = Fr(Rj)p-1,

where p € [n — 1] and 0 < i < p. Without loss of generality we may assume that
J=m,l=n—-1landp=n-1.

Because the m-cube J +— Fr(Ry) is dimensionwise split we have short exact
sequences

0= () Fr(R ) —[)Fr(R o) = () Fr(R/a,a) =0
ieTJ{k} iel i€l
of aspherical simplicial rings. It follows that for all .J C [n — 1] we have
ﬂ FI‘(R,Cli)n_l N ﬂ Ker(dj) = ﬂ Ker(d;),
iel jed jed

where the d; are the face maps of (;c; Fr(R,a;). Under Fr(R) — Fr(R/aj) this
maps onto

() Ker(d}) = () Fr(R/ak,@;)n-1 N [ Ker(d]"),

jer iel jer

where the df are the face maps of (;c; Fr(R/ax,a;) and d}' those of [;c; Fr(R/ay,).
Because the simplicial rings [);c; Fr(R, a;) are aspherical also the face maps
d;: Fr(R),—1 — Fr(R),_» preserve intersections

ﬂ Fr(R,a;)p—1 N ﬂ Ker(d;).

€T JjEJ
O

THEOREM 2. Let A = (R,a1,...,0,) € R. Then for all n > 0 it follows from the
azioms (MK1) and (MK2) that K, (A) is naturally isomorphic to K of the following
object of Rypin:

(FI‘(R)n_l, FI‘(R, al)n_l, ceey FI‘(R, am)n_l, Ker(dg), ce- ,Ker(dn_l)).

From axiom (MK3) it then follows that K, (A) is determined. So (MK1), (MK2) and
(MK3) can be taken as axioms for the (multirelative) K-theory of rings.

Proof. The proof follows from the following three lemmas. O

LeEMMA 7.1. Let m > —1 and q,n > 0. Then
Ky(Fr(R)n,Fr(R,a1)n,...,Fr(R,ay),) =0.

Proof. Since for m > 0 the (m — 1)-tuples D(A) and M (A) are of the same type, the

proof reduces by (MK1) to the case m = —1. For m = —1 the lemma follows from
(MK2). O
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Put
A[n,p] = (Fr(R)n, Fr(R,a1)p, ..., Fr(R, ay)n, Ker(dp), . . ., Ker(dp)),
where —1 < p < n. It is an object of Rppypy1-
LEMMA 7.2. For all p <n and all ¢ > 0 we have
K (A[n,p]) = 0.
Proof. For p > 0 we have
D(A[n,p]) = Aln,p—1] and M(A[n,p]) =An—-1,p—1].

By (MK1) the problem reduces to the case p = —1, which is covered by the previous
lemma. O

LemMA 7.3. For all g,n > 0 we have
Ky (Alnn]) 2 Kqysy (Afn — 1,0 — 1)),
Proof. This follows from (MK1) and the previous lemma. O

From this lemma the theorem follows:

Kn(A) = Kn(A[_]-a _1]) = anl(A[an]) == KO(A[n -Ln- 1])
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