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Abstract. Using Lichtenbaum's complex �(2), we reprove and extend

a little bit some known results relating the kernel of H

3

(F;Q=Z(2)) !

H

3

(F (X);Q=Z(2)) to the torsion of CH

2

X for rational varieties X .
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Introduction

Let F be a �eld and X be a smooth, geometrically integral variety over F . In [6,

prop. 3.6], Colliot-Th�el�ene and Raskind produced an exact sequence:

(1) H

1

Zar

(X;K

2

)! H

1

Zar

(X;K

2

)

G

F

! H

1

(F;K

2

(F (X))=H

0

Zar

(X;K

2

))! Ker(CH

2

X ! CH

2

X)

! H

1

(F;H

1

Zar

(X;K

2

))! H

2

(F;K

2

(F (X))=H

0

Zar

(X;K

2

)):

Here, X denotes the variety X viewed over the separable closure F of F , K

2

is

the Zariski sheaf associated to the presheaf U 7! K

2

(U) and G

F

is the absolute Galois

group of F . On the other hand, in [17, th. 3.1], we produced an isomorphism

H

1

(F;K

2

(F (X))=K

2

(F )) ' Ker(H

3

(F;Q=Z(2))! H

3

(F (X);Q=Z(2))):(2)
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In (2), the coe�cients Q=Z(2) are

lim

�!

�


2

n

if charF = 0 and lim

�!

(n;charF )=1

�


2

n

� lim

�!

r

W

r




2

log

[�2] if charF > 0;

where W

r




2

log

is the weight-two logarithmic part of the de Rham-Witt complex over

the big �etale site of SpecF [13] (see comments at the end of the introduction).

When X is a complete rational variety, i.e. the extension F (X)=F is

purely transcendental, the group H

0

Zar

(X;K

2

) coincides with K

2

(F ). One

may therefore replace the group H

1

(F ;K

2

(F (X))=H

0

Zar

(X;K

2

)) in (1) by

Ker(H

3

(F;Q=Z(2)) ! H

3

(F (X);Q=Z(2))) in this case. The resulting exact se-

quence has been used in [29] and [30].

Moreover, the left map in (1) is injective when X is a complete rational variety

([6, prop. 4.3] in characteristic 0, [24, prop. 1.5] in general). Putting all this together,

one therefore gets an exact sequence:

0! H

1

Zar

(X;K

2

)! H

1

Zar

(X;K

2

)

G

F

! Ker(H

3

(F;Q=Z(2))! H

3

(F (X);Q=Z(2)))

! Ker(CH

2

X ! CH

2

X)! H

1

(F;H

1

Zar

(X;K

2

))

for any complete rational variety X .

In this paper, we use the Lichtenbaum complex �(2) of [22], [23] to recover this

exact sequence directly, and extend it to the right. Our main result is:

Theorem 1. Let X be a smooth variety over F .

a) Assume that K

2

(F )

�

�! H

0

Zar

(X;K

2

). Let us denote by

� : H

3

(F;Q=Z(2)) �! H

0

Zar

(X;H

3

(Q=Z(2)))

� : CH

2

X �! (CH

2

X)

G

F

cl

2

X

: CH

2

X 
Q=Z �! H

4

(X;Q=Z(2))

the natural maps and the divisible cycle class map. Then there is an exact sequence

0!H

1

Zar

(X;K

2

)!H

1

Zar

(X;K

2

)

G

F

!Ker �!Ker �!H

1

(F;H

1

Zar

(X;K

2

)):(3)

b) Assume moreover that H

0

Zar

(X;H

3

(Q=Z(2))) is p-primary torsion, where p is the

characteristic exponent of F and H

3

(Q=Z(2)) is the Zariski sheaf associated to the

presheaf U 7! H

3

�et

(U;Q=Z(2)) (if charF = 0, this means H

0

Zar

(X;H

3

(Q=Z(2))) = 0).

Then the exact sequence (3) extends to a complex

Ker � ! H

1

(F;H

1

Zar

(X;K

2

))! H

4

(F;Q=Z(2))! Coker cl

2

X

:(4)

Let A (resp. B) denote the homology of (4) at H

1

(F;H

1

Zar

(X;K

2

)) (resp. at

H

4

(F;Q=Z(2))). Then there is another complex

0!Coker � 
 Z[1=p]!Coker � 
 Z[1=p]!H

2

(F;H

1

Zar

(X;K

2

))
 Z[1=p](5)

whose homology at Coker� 
 Z[1=p] (resp. at Coker � 
 Z[1=p]) is A
 Z[1=p] (resp.

B 
 Z[1=p]).

If H

0

Zar

(X;H

3

(Q=Z(2))) = 0, we can remove 
Z[1=p] everywhere.
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Remark. The assumptions are satis�ed if X is a complete rational variety,

but also if it is a torsor under a semi-simple, simply connected algebraic group

[7]. If chark = p > 0, in the second case the group H

0

Zar

(X;H

3

(Q=Z(2)) is in

general nonzero, as higher logarithmic Hodge-Witt cohomology is not homotopy

invariant; hence the complicated statement of theorem 1. However, we do have

H

0

Zar

(X;H

3

(Q=Z(2)) = 0 in the �rst case (compare corollaries 5.3 and 6.2 c)).

Corollary. Let X be as in theorem 1 b).

1) Suppose cdF � 3. Then there is an exact sequence

0! H

1

Zar

(X;K

2

)! H

1

Zar

(X;K

2

)

G

F

! Ker � ! Ker � ! H

1

(F;H

1

Zar

(X;K

2

))

! Coker� ! Coker � ! H

2

(F;H

1

Zar

(X;K

2

))

after tensorisation by Z[1=p]. The part of this sequence up to H

1

(F;H

1

Zar

(X;K

2

))

exists and is exact without tensoring by Z[1=p].

2) Suppose cdF � 2. Then there is an isomorphism

H

1

Zar

(X;K

2

)

�

�! H

1

Zar

(X;K

2

)

G

F

and an exact sequence

0! Ker � ! H

1

(F;H

1

Zar

(X;K

2

))

! H

0

Zar

(X;H

3

(Q=Z(2)))! Coker � ! H

2

(F;H

1

Zar

(X;K

2

))

after tensorisation by Z[1=p]. The injection Ker � ,! H

1

(F;H

1

Zar

(X;K

2

)) holds

without tensoring by Z[1=p].

If H

0

Zar

(X;H

3

(Q=Z(2))) = 0, the results hold without tensoring by Z[1=p].

To try and get a relationship between theorem 1 and the last term in (1), we

observe that a closer examination of the spectral sequence used in [17, proof of th.

3.1] yields an exact sequence:

(6) H

3

(F;Q=Z(2))! Ker(H

3

(F (X);Q=Z(2))! H

3

(F (X);Q=Z(2)))

! H

2

(F;K

2

(F (X))=K

2

(F ))! H

4

(F;Q=Z(2))! H

4

(F (X);Q=Z(2)):

How to derive theorem 1 from sequence (6) does not seem obvious, however.

This paper is organized as follows. In section 1, we compute the �etale hy-

percohomology of X with coe�cients in �(2): this is done in theorem 1.1, which

is of independent interest. In sections 2 and 3, we introduce two relative com-

plexes �(F (X)=X; 2) (over X

�et

) and �(X=F; 2) (over (SpecF )

�et

). Considering the

Hochschild-Serre spectral sequence for the hypercohomology of �(F (X)=X; 2), we

get back the Colliot-Th�el�ene-Raskind exact sequence (1) in a straightforward manner

(see proposition 2.2). To prove theorem 1, we similarly examine the Hochschild-Serre

spectral sequence for the hypercohomology of X with coe�cients �(X=F; 2) (see

section 3). In sections 4, 5 and 6, we respectively prove a purity theorem, compute

the motivic cohomology of a projective bundle and prove a Bloch-Ogus type theorem.

Finally, in section 7, we look at projective homogeneous varieties.

The proof of the isomorphism (2) in [17] consisted of considering the Hochschild-

Serre spectral sequence for the hypercohomology of F with coe�cients in a relative
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398 Bruno Kahn

Lichtenbaum complex �(F (X)=F; 2), relative to the extension F=F . What we do

here can be considered as a re�nement of this method, by factoring the morphism

SpecF (X)! SpecF into

SpecF (X) �! X �! SpecF:

Remarks on characteristic p. We have to be a little careful if charF > 0 when

de�ning the coe�cients Q=Z(2). In characteristic 0, they are de�ned as lim

�!

�


2

n

. If

charF = p > 0, we set Z=p

r

(2) = W

r




2

log

[�2], where W

r




2

log

is the sheaf of loga-

rithmic de Rham-Witt di�erentials over the big �etale site of SpecF , de�ned as the

subsheaf of the de Rham-Witt sheaf W

r




2

generated locally for the �etale topology

by sections of the form d logx

1

^ d logx

2

[13, I.5.7]. So Z=p

r

(2) is a complex of �etale

sheaves concentrated in degree 2. The Verlagerung maps V : W

n




2

! W

n+1




2

pre-

serve logarithmic di�erentials, hence can be used to de�ne Q

p

=Z

p

(2) as lim

�!

r

Z=p

r

(2).

Corollaires I.3.5 and I.5.7.5 of [13] yield exact sequences of �etale sheaves

0! Z=p

r

(2)

V

s

��! Z=p

r+s

(2)! Z=p

s

(2)! 0(7)

hence exact sequences

0! Z=p

r

(2)! Q

p

=Z

p

(2)

p

r

�! Q

p

=Z

p

(2)! 0:(8)

We now de�ne Q=Z(2) as lim

�!

(n;charF )=1

�


2

n

�Q

p

=Z

2

(2). We sometimes abbreviate

Q=Z(2) by `2'.

Notation. We denote by �

Zar

(2) (resp. �

�et

(2)) the complex of sheaves over the big

Zariski (resp. �etale) site of SpecF associated to the presheaf U 7! �(U; 2) of [22].

When necessary, we denote by �

Zar

(X; 2) (resp. �

�et

(X; 2)) the restriction of �

Zar

(2)

(resp. �

�et

(2)) to the small Zariski (resp. �etale) site of a scheme X . We drop indices

when the context makes it clear what site we are in.

1. Motivic cohomology of smooth varieties

Let X be a smooth, connected variety over a �eld F . We compute the �etale hyperco-

homology groups H

�

�et

(X;�(2)) = H

�

�et

(X;�

�et

(2)):

1.1. Theorem. H

i

�et

(X;�(2)) is

(i) 0 for i � 0.

(ii) K

3

(F (X))

ind

for i = 1.

(iii) H

0

Zar

(X;K

2

) for i = 2.

(iv) H

1

Zar

(X;K

2

) for i = 3

(v) Coker cl

2

X

for i = 5

(vi) H

i�1

�et

(X;Q=Z(2)) for i � 6

where cl

2

X

is de�ned in theorem 1. Moreover, for i = 4 there is a short exact sequence:

0! CH

2

X ! H

4

�et

(X;�(2))! H

0

Zar

(X;H

3

(Q=Z(2)))! 0:(9)

As an immediate application, we get:

1.2. Corollary. In characteristic 0, weight-two �etale motivic cohomology is homo-

topy invariant. In characteristic >0, this is still true up to (cohomological) degree 3:
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To prove theorem 1.1, we shall use the Leray spectral sequence

E

p;q

2

= H

p

Zar

(X;R

q

�

�

�(2)) =) H

p+q

�et

(X;�(2))(10)

associated to the change-of-sites map � : X

�et

! X

Zar

. For the convenience of the

reader, we prove a well-known general lemma:

1.3. Lemma. Let �

j

�! X be the generic point of the irreducible normal scheme X,

and let A be an �etale sheaf over �. Then the cohomology groups H

q

�et

(X; j

�

A) are

torsion for all q > 0.

Proof. Let � = SpecK. Consider the Leray spectral sequence for j

E

p;q

2

= H

p

�et

(X;R

q

j

�

A) =) H

p+q

�et

(K;A):

Since the abutment is Galois cohomology, it is torsion for p+ q > 0 and we have to

prove that R

q

j

�

A is torsion for all q > 0. But since X is normal, it is geometrically

unibranch and the stalks of R

q

j

�

A are Galois cohomology of the strict Henselizations

of K relatively to the points of X , hence the claim. 2

1.4. Lemma. The Zariski sheaves R

q

�

�

�(2) are as follows:

(i) 0 for q � 0.

(ii) The constant sheaf K

3

(F (X))

ind

for q = 1.

(iii) K

2

for q = 2.

(iv) 0 for q = 3.

(v) H

q�1

(Q=Z(2)) for q � 4.

Proof. (i) is obvious, (iii) is proved in [23, th. 2.10]) and (ii) (resp. (iv)) is proved

in [23, prop. 2.11] (resp. in [23, prop. 2.12]) but only up to 2-torsion. This partially

comes from the insistence to deal with gr

2




K

3

rather than with K

3;ind

. We give proofs

of (ii), (iv) and (v).

Denote by K

3;ind

(resp. H

1

(�(2))) the �etale sheaf associated to the presheaf

R 7! K

3

(R)

ind

(resp. R 7! H

1

(�(R; 2))) for �etale SpecR! X . Let x 2 X . We claim

that there is a chain of isomorphisms

(11) H

1

�et

(O

X;x

;�(2))

�

�! H

0

�et

(O

X;x

;H

1

(�(2)))

�

 � H

0

�et

(O

X;x

;K

3;ind

)

�

�! H

0

�et

(K;K

3;ind

)

�

 � K

3

(K)

ind

:

The �rst isomorphism (from the left) simply comes from the fact thatH

i

(�(2)) =

0 for i � 0. The last one is proven in [26, prop. 11.4] (see also [21, th. 4.13]). By

[16, theorem], if A is a local ring of a smooth variety, then K

3

(A)

ind

! K

3

(K)

ind

is bijective, where K is the �eld of fractions of A. Letting j : SpecK ,! X be the

inclusion of the generic point, this shows that the map K

3;ind

! j

�

j

�

K

3;ind

is an

isomorphism, hence the third isomorphism in (11). Finally, by [22, prop. 1.8], for any

local ring A whose residue �eld contains more than 2 elements, there is a surjection

K

3

(A)

ind

�!! H

1

(�(A; 2))

which is bijective if A is a �eld. Therefore, the commutative diagram

K

3

(O

sh

X;x

)

ind

�!! H

1

(�(O

sh

X;x

; 2))

o

?

?

y

?

?

y

K

3

(K

sh

x

)

ind

�

����! H

1

(�(K

sh

x

; 2))
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400 Bruno Kahn

where O

sh

X;x

is the strict Henselisationes of O

X;x

and K

sh

x

is its �eld of fractions,

shows that K

3

(O

sh

X;x

)

ind

! H

1

(�(O

sh

X;x

; 2)) is an isomorphism (we used [16] again for

the left vertical isomorphism). This proves the second isomorphism in (11), which

proves lemma 1.4 (ii).

We note that (iv) follows from (iii), the Merkurjev-Suslin theorem for the local

rings of X [22, th. 9.1], the fact that R

3

�

�

�(2) is torsion [22, th. 9.2] and the triangles

�(2)

n

����! �(2)

- .

�


2

n

�(2)

p

r

����! �(2)

- .

Z=p

r

(2)

(12)

in the derived category (the second triangle in the case charF = p > 0). The �rst

triangle is proven exact in [22] and [23] only for n odd, relying on the computation of

torsion and cotorsion in K

3;ind

[22, lemma 8.2]. However, the proof goes through just

as well for n even by using the isomorphism from [16] already mentioned. The second

triangle is proven exact in [23, lemma 2.7] only for r = 1 and p > 2 (this fact was

overlooked in [17]). However, the proof of [23, lemma 2.7] carries over in the same

way, using (ii) and the Bloch-Gabber-Kato isomorphism K

2

(E)=p

r

�

�! W

r




2

E;log

for

any �eld E of characteristic p [2, cor. 2.8].

Finally, let us prove (v). By the triangle (12), we have a long exact sequence of

Zariski sheaves

� � � ! R

i�1

�

�

�(2)
Q! R

i�1

�

�

Q=Z(2)! R

i

�

�

�(2)! R

i

�

�

�(2)
Q! : : :

so that it is enough to see that R

i

�

�

�(2) is torsion for i � 3. For i = 3, this is (iv).

For i > 3, we have a long exact sequence of sheaves

� � � ! R

i�1

�

�

K

3;ind

! R

i

�

�

�(2)! R

i�2

�

�

K

2

! : : :

so it is enough to see that R

i

�

�

K

3;ind

and R

i

�

�

K

2

are torsion for i > 0. In view of

the isomorphism (see above)

K

3;ind

�

�! j

�

j

�

K

3;ind

the �rst one follows from lemma 1.3. We are left with proving that R

i

�

�

K

2

is torsion

for i > 0. As in [23, proof of lemma 2.2], we have a \Gersten resolution"

0! K

2

! j

�

K

2;K

!

a

x2X

(1)

i

�

x

G

m

!

a

x2X

(2)

i

�

x

Z! 0:

This complex of �etale sheaves is not exact, but up to torsion it is. Therefore, up

to torsion, there is a spectral sequence of Zariski sheaves

E

p;q

1

= R

q

�

�

C

p

=) R

p+q

�

�

K

2

where C

p

is the p-th term of the above \resolution" of K

2

. Since C

0

is of the form

j

�

F , the same argument as above shows that E

0;q

1

is torsion for q > 0. The stalks of

E

1;q

1

and E

2;q

1

are sums of Galois cohomology groups, so are torsion for q > 0. This
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shows that E

p;q

2

is torsion for p+ q > 0, except perhaps when q = 0. But, for x 2 X ,

the stalks of E

1;0

2

and E

2;0

2

at x are the cohomology groups of the complex

H

0

(K;K

2

(K))!

a

y2Y

(1)

F (y)

�

!

a

y2Y

(2)

Z! 0(13)

where Y = SpecO

X;x

. Comparing with the exact sequence (Gersten's conjecture)

K

2

(K)!

a

y2Y

(1)

F (y)

�

!

a

y2Y

(2)

Z! 0

and using the fact that the map K

2

(K) ! H

0

(K;K

2

(K)) has torsion kernel and

cokernel, we get that (13) has torsion cohomology groups, which concludes the proof

of lemma 1.4 (v). 2

Proof of theorem 1.1. As indicated above, we use the spectral sequence (10).

(i) is obvious in view of lemma 1.4 (i) and so is (ii) in view of the isomorphism

H

1

�et

(X;�(2))

�

�! H

0

Zar

(X;R

1

�

�

�(2))

and lemma 1.4 (ii). To get further, we observe that E

p;1

2

= 0 for p > 0 since R

1

�

�

�(2)

is constant, and E

p;3

2

= 0 for all p in view of lemma 1.4 (iv). This and lemma 1.4 (iii)

immediately imply (iii) and (iv). Still by lemma 1.4 (iii) and Gersten's conjecture,

E

p;2

2

= 0 for p > 2 and E

2;2

2

' CH

2

X ; this and lemma 1.4 (v) (for q = 4) gives

the exact sequence (9). We now note that the above information and lemma 1.4 (v)

imply that H

i

�et

(X;�(2)) is torsion for i � 5. (v) and (vi) now follow from (9) and the

long exact sequence

� � �!H

i�1

�et

(X;�(2))
Q!H

i�1

�et

(X;Q=Z(2))!H

i

�et

(X;�(2))!H

i

�et

(X;�(2))
Q!� � �

2

1.5. Remark. The same computation gives the cohomology sheaves of �

Zar

(X; 2):

H

1

(�

Zar

(X; 2)) = K

3

(K)

ind

H

2

(�

Zar

(X; 2)) = K

2

H

i

(�

Zar

(X; 2)) = 0 for i 6= 1; 2:

From this, we deduce a triangle, precising [23, prop. 3.1]:

�

Zar

(2) ����! R�

�

�

�et

(2)

- .

�

�3

(R�

�

Q=Z(2))[�1]

In particular,

�

Zar

(2)
Q

�

�! R�

�

�

�et

(2)
Q:(14)

We also get the following analogue of theorem 1.1:

1.6. Theorem. H

i

Zar

(X;�

Zar

(2)) =

8

>

<

>

:

K

3

(K)

ind

if i = 1

H

i�2

Zar

(X;K

2

) if 2 � i � 4

0 otherwise.2
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2. Relative motivic cohomology, I

Let j : SpecF (X) ,! X be the inclusion of the generic point and �(F (X)=X; 2) be

the homotopy �bre of the morphism

�

�et

(X; 2)! Rj

�

�

�et

(F (X); 2):

Denote the hypercohomology group H

i

�et

(X;�(F (X)=X; 2)) by H

i

(F (X)=X;�(2)), so

that we have a long exact sequence

! H

i

(F (X)=X;�(2))! H

i

�et

(X;�(2))! H

i

�et

(F (X);�(2))! H

i+1

(F (X)=X;�(2))!

This gives:

2.1. Lemma. The groups H

i

(F (X)=X;�(2)) are 0 for i � 2; there are exact sequences:

0! K

2

(F (X))=H

0

Zar

(X;K

2

)! H

3

(F (X)=X;�(2))! H

1

Zar

(X;K

2

)! 0

H

4

(F (X)=X;�(2))

�

�! CH

2

X

(15) 0! H

0

Zar

(X;H

3

(2))! H

3

�et

(F (X); 2)

! H

5

(F (X)=X;�(2))! Coker cl

2

X

! H

4

�et

(F (X); 2):

Proof. The �rst claim is clear for i � 0; for i = 1 and 2 it follows from theorem 1.1

and the injectivity of H

0

Zar

(X;H

2

) ! K

2

(F (X)). For i = 3, it follows from theorem

1.1 again, plus the vanishing of H

3

(F (X);�(2)). For i = 4; 5, we have a cross of exact

sequences:

0

?

?

y

H

4

(F (X)=X;�(2))

?

?

y

0 ����! CH

2

X ����! H

4

�et

(X;�(2)) ����! H

0

Zar

(X;H

3

(2)) ����! 0

?

?

y

H

3

�et

(F (X); 2)

?

?

y

H

5

(F (X)=X;�(2))

?

?

y

Coker cl

2

X

?

?

y

H

4

�et

(F (X); 2)

The map H

4

�et

(X;�(2)) ! H

3

�et

(F (X); 2) factors through H

0

Zar

(X;H

3

(2)) !

H

3

�et

(F (X); 2), which is injective. A diagram chase concludes the proof. 2
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For simplicity, let us denote by K

2

(F (X)) the group K

2

(F (X))=H

0

Zar

(X;K

2

).

Using the \Hochschild-Serre" (hypercohomology) spectral sequence

H

p

�et

(F; H

q

(F (X)=X;�(2)))) H

p+q

(F (X)=X;�(2))

and the vanishing of H

i

(F (X)=X;�(2)) for i � 2, we get an isomorphism

H

3

(F (X)=X;�(2))

�

�! H

0

(F; H

3

(F (X)=X;�(2)))

and an 5-terms exact sequence

0! H

1

(F; H

3

(F (X)=X;�(2)))! H

4

(F (X)=X;�(2))

! H

0

(F; H

4

(F (X)=X;�(2)))! H

2

(F; H

3

(F (X)=X;�(2)))! H

5

(F (X)=X;�(2))

hence, using lemma 2.1:

2.2. Proposition. There are exact sequences:

0! K

2

(F (X))! K

2

(F (X))

G

F

! H

1

Zar

(X;K

2

)! H

1

Zar

(X;K

2

)

G

F

! H

1

(F;K

2

(F (X)))! H

1

(F; H

3

(F (X)=X;�(2))

! H

1

(F;H

1

Zar

(X;K

2

))! H

2

(F;K

2

(F (X)))

0! H

1

(F; H

3

(F (X)=X;�(2))! CH

2

X ! (CH

2

X)

G

F

! H

2

(F; H

3

(F (X)=X;�(2))! H

5

(F (X)=X;�(2)):

2

The exact sequence (1) follows immediately. Moreover, we also get [6, lemma 4.1].

3. Relative motivic cohomology, II

We recall some notation:

� As above, H

i

(X; j) (resp. H

i

(j)) is shorthand for H

i

�et

(X;Q=Z(j)) (resp. for

H

i

(Q=Z(j))).

� � is the map H

3

(F; 2)! H

0

(X;H

3

(2)).

� � is the map CH

2

X ! (CH

2

X)

G

F

.

We also denote by H

0

(X;K

2

) the group H

0

(X;K

2

)=K

2

(F ).

Let � : X ! SpecF be the structural morphism and �(X=F; 2) be the homotopy

�bre (in the derived category) of the morphism

�

�et

(F; 2)! R�

�

�

�et

(X; 2):

Denote the hypercohomology group H

i

�et

(F;�(X=F; 2)) by H

i

(X=F;�(2)), so that

we have a long exact sequence

� � � ! H

i

(X=F;�(2))! H

i

�et

(F;�(2))! H

i

�et

(X;�(2))! H

i+1

(X=F;�(2))! � � �

(16)

This gives:

3.1. Lemma. The groups H

i

(X=F;�(2)) are:

(i) 0 for i � 1.

(ii) K

3

(F (X))

ind

=K

3

(F )

ind

for i = 2.

(iii) H

0

Zar

(X;K

2

)=K

2

(F ) for i = 3.
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Moreover, there is a complex

(17) 0! H

1

Zar

(X;K

2

)! H

4

(X=F;�(2))! Ker �

! CH

2

X ! H

5

(X=F;�(2))! H

4

(F;Q=Z(2))! Coker cl

2

X

:

This complex is exact, except perhaps at H

5

(X=F;�(2)), where its homology is

Coker�. In particular, we have an isomorphism

H

1

Zar

(X;K

2

)

�

�! H

4

(X=F ;�(2))

and a short exact sequence

0! CH

2

X ! H

5

(X=F;�(2))! H

0

Zar

(X;H

3

(2))! 0:(18)

Proof. (i), (ii) and (iii) immediately follow from theorem 1.1 and the exact sequence

(16). The complex (17) and the value of its homology follow from the cross of exact

sequences ((9) and (16))

0

?

?

y

H

1

Zar

(X;K

2

)

?

?

y

H

4

(X=F;�(2))

?

?

y

H

3

�et

(F; 2)

?

?

?

y

� &

0 ����! CH

2

X ����! H

4

�et

(X;�(2)) ����! H

0

Zar

(X;H

3

(2)) ����! 0

?

?

y

H

5

(X=F;�(2))

?

?

y

H

4

�et

(F; 2)

?

?

y

Coker cl

2

X

and the \lemma of the 700th" [27]. 2

We now consider the hypercohomology spectral sequence

H

p

(F; H

q

(X=F;�(2))) =) H

p+q

(X=F;�(2)):(19)

Note that E

p;2

2

= 0 for p > 0, since the group K

3

(F (X))

ind

=K

3

(F )

ind

is uniquely

divisible by [26, prop. 11.6]. Hence we get an isomorphism

H

0

Zar

(X;K

2

)

�

�! H

0

Zar

(X;K

2

)

G

F
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and an exact sequence

0! H

1

(F;H

0

Zar

(X;K

2

))! H

4

(X=F;�(2))

! H

1

Zar

(X;K

2

)

G

F

! H

2

(F;H

0

Zar

(X;K

2

))

(noting that H

4

(X=F;�(2)) = H

1

Zar

(X;K

2

) by lemma 3.1). The isomorphism is

Suslin's [32, cor. 5.9], but we get it here by a formal argument, in the vein of [17, th.

3.1 (a)]. The cross of complexes (the above exact sequence and (17)):

0

?

?

y

H

1

Zar

(X;K

2

)

?

?

y

0! H

1

(F;H

0

Zar

(X;K

2

))! H

4

(X=F;�(2))!H

1

Zar

(X;K

2

)

G

F

! H

2

(F;H

0

Zar

(X;K

2

))

?

?

y

Ker �

?

?

y

CH

2

X

?

?

y

H

5

(X=F;�(2))

?

?

y

H

4

�et

(F; 2)

?

?

y

Coker cl

2

X

contains, via the lemma of the 700th, all the information one can easily get in this

generality.

Assume now that H

0

Zar

(X;K

2

) = 0. Then the exact row in the above diagram

reduces to an isomorphism H

4

(X=F;�(2))

�

�! H

1

Zar

(X;K

2

)

G

F

, hence we get a com-

plex:

(20) 0! H

1

Zar

(X;K

2

)! H

1

Zar

(X;K

2

)

G

F

! Ker � ! CH

2

X

! H

5

(X=F;�(2))! H

4

�et

(F; 2)! Coker cl

2

X

with homology Coker� at H

5

(X=F;�(2)) and 0 elsewhere.

Moreover the spectral sequence (19) and lemma 3.1 give an exact sequence

0! H

1

(F;H

1

Zar

(X;K

2

))! H

5

(X=F;�(2))

! (H

5

(X=F ;�(2)))

G

F

! H

2

(F;H

1

Zar

(X;K

2

)):

Putting (20) and () together, we get a cross of complexes (the horizontal one

exact, the vertical one exact except perhaps at the crossing point):
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0

?

?

y

H

1

Zar

(X;K

2

)

?

?

y

H

1

Zar

(X;K

2

)

G

F

?

?

y

Ker �

?

?

y

CH

2

X

?

?

y

�

0

&

0!H

1

(F;H

1

Zar

(X;K

2

))! H

5

(X=F;�(2))! (H

5

(X=F;�(2)))

G

F

!H

2

(F;H

1

Zar

(X;K

2

))

?

?

y

H

4

�et

(F; 2)

?

?

y

Coker cl

2

X

:

Note that Ker � = Ker �

0

by (18). We get theorem 1 a) from this cross and the latter

remark, by a diagram chase analogous to the lemma of the 700th. The same diagram

chase gives us the complex (4), and shows that its cohomology coincides with that of

a complex

0! Coker� ! Coker �

0

! H

2

(F;H

1

Zar

(X;K

2

)):

Notice the short exact sequence from (18)

0! Coker � ! Coker �

0

! H

0

Zar

(X;H

3

(2))

G

F

:

Using this exact sequence, we easily conclude the proof of theorem 1. 2

4. Purity

In this section, we establish a purity theorem for Zariski and �etale weight-two motivic

cohomology, generalizing results of [23]. Recall that �(1) is de�ned as G

m

[�1] and

�(0) as Z[0] (in both the Zariski and �etale topologies). We also need such complexes

for i < 0:

4.1. Definition. For i < 0, we de�ne:

�

Zar

(i) = 0;

�

�et

(i) = Q=Z(i)[�1] (no p-primary part in characteristic p).

The following theorem extends and precises [23, th. 4.5]; the method of proof is

di�erent.

4.2. Theorem. Let X be a smooth variety over a �eld and let Z

i

�! X be a closed

immersion, with Z smooth of codimension c.

Documenta Mathematica 1 (1996) 395{416



Applications of Weight-Two Motivic Cohomology 407

a) There is an isomorphism (in the derived category of complexes of sheaves over

Z

Zar

)

�

Zar

(Z; 2� c)[�2c]

�

�! Ri

!

Zar

�

Zar

(X; 2):

b) There is a map (in the derived category of complexes of sheaves over Z

�et

)

�

�et

(Z; 2� c)[�2c]! Ri

!

�et

�

�et

(X; 2)

whose homotopy co�bre is concentrated in degree c + 4 and has p-primary torsion

cohomology, where p is the characteristic exponent of F . In particular, if charF = 0,

this map is an isomorphism.

4.3. Lemma. Let Z

i

,�! X be a smooth subvariety of X of codimension c. Then:

a) For any constant sheaf A over X

Zar

, R

p

i

!

Zar

A = 0 for all p.

b) For any n, R

p

i

!

Zar

K

n

=

(

0 for p 6= c

K

n�c

for p = c,

where K

n�c

:= 0 if n < c.

Proof. a) is trivial and b) follows in a well-known way from Gersten's conjecture

(e.g. [9, x 7]). 2

Proof of theorem 4.2 a). Apply Ri

!

to the triangle

(K

3

)

ind

[�1] ����! �

Zar

(2)

- .

K

2

[�2]

and apply lemma 4.3, noting that the Zariski sheaf (K

3

)

ind

is constant.

For the proof of theorem 4.2 b), we need some facts on �etale cohomological purity.

For all m � 1, there is a morphism

Z=m(2� c)[�2c]! Ri

!

�et

Z=m(2):(21)

For m prime to the characteristic exponent of F , this morphism is the classical

purity isomorphism of SGA4, e.g. [28, th. 6.1]. For charF = p > 0 and m a power

of p, it is comes from Gros' thesis [10, II.3.5]: its homotopy co�bre is concentrated

in degree c+ 3. In the general case, we de�ne the morphism component-wise, on the

prime-to-p and p-primary parts.

The following rather trivial lemma is very useful:

4.4. Lemma. a) Let f : S ! T be a morphism of sites and Rf

�

: D

+

(S)! D

+

(T ) the

functor induced from the bounded below derived category of Abelian S-sheaves to that

of Abelian T -sheaves. Let C be a bounded below complex of Abelian groups, that we

view as a complex of constant sheaves over S. Then there is a natural isomorphism

of functors

Rf

�

� (C

L


?) � C

L


(Rf

�

?)

and a natural morphism of functors

f

�

� (C

L


?)! C

L


(f

�

?):
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b) Denote by i

�

(� = Zar or �et) the map corresponding to i from Z

�

to X

�

(small

sites). Then, with C as in a), there is a natural isomorphism of functors

Ri

!

�

� (C

L


?) � C

L


(Ri

!

�

?):

Proof. a) For A;B two Abelian groups, let A

*

B denote Tor

Z

1

(A;B). We note that

*

is left exact and its unique nonzero higher derived functor is R

1

*

= 
. Hence there

is a natural isomorphism

C

L


D � C

R

*

D[1]

for all C;D 2 D(Ab).

Therefore the natural isomorphism of the lemma is equivalent to a natural iso-

morphism of functors

Rf

�

� (C

R

*

?) � C

R

*

(Rf

�

?)

which in turn will follow from a natural isomorphism

f

�

(A

*

F) � A

*

f

�

F(22)

for any Abelian group A and any sheaf F over S. Note that, since

*

is left exact,

the presheaf U 7! A

*

G(U) is a sheaf for any sheaf G over any site. Therefore, given

U 2 S, both sides of (22) evaluated on U are A

*

F(f

�1

(U)). Finally, the second

natural transformation, say, follows from the �rst one by adjunction.

b) Follows from a), considering the triangle of functors (with j : X�Z ,! X the

complementary open immersion)

i

�

Ri

!

! Id

X

�

! Rj

�

j

�

! i

�

Ri

!

[1](23)

and the fact that i

�

is fully faithful. Here we dropped the index

�

for notational

simplicity. 2

Note that the triangle (12) and its analogues for i = 0; 1 can be reformulated as

quasi-isomorphisms

�

�et

(i)

L


Z=m

�

�! Z=m(i) (0 � i � 2)(24)

over the big �etale site of SpecF . Note also the obvious quasi-isomorphisms

�

�

�

Zar

(i)

�

�! �

�et

(i) (0 � i � 2):(25)

Using (24) and lemma 4.4, they give by adjunction morphisms

�

Zar

(i)

L


Z=m! R�

�

Z=m(i) (o � i � 2)(26)

over the big Zariski site of SpecF .

Let �nally �

X

: X

�et

! X

Zar

and �

Z

: Z

�et

! Z

Zar

be the natural morphisms of

(small) sites. Note the natural isomorphism of functors

Ri

!

Zar

R(�

X

)

�

�

�! R(�

Z

)

�

Ri

!

�et

(27)

over the small Zariski site of Z. (It can be obtained for example with the help of

(23); compare [14, II.6.14].)
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There is a diagram

�

Zar

(Z; 2� c)[�2c]

L


Z=m ����! Ri

!

Zar

�

Zar

(X; 2)

L


Z=m

?

?

y

?

?

y

R(�

Z

)

�

Z=m(2� c)[�2c] ����! Ri

!

Zar

R(�

X

)

�

Z=m(2)

(28)

where the vertical maps are given by (26), the top horizontal map by theorem 4.2 a)

and the bottom horizontal map is de�ned by applying R(�

Z

)

�

to (21) and using (27).

The notation in the top right corner is unambiguous, thanks to lemma 4.4.

4.5. Lemma. Diagram (28) commutes up to sign.

Proof. As in the proof of lemma 4.3, this boils down to the fact that the Gersten

complex for K-theory is compatible with the Gersten complex for �etale cohomology

via the Galois symbol (m prime to charF ) or the di�erential symbol (m a power of

charF ). The �rst case is well-known; see [11, cor. 1.6 and proof of lemma 4.11] for

the second one. 2

Proof of theorem 4.2 b). We �rst construct the map. There is a tautological

natural transformation (stemming from (27))

�

�

Z

Ri

!

Zar

! Ri

!

�et

�

�

X

(29)

hence a morphism (in the derived category of �etale sheaves over Z)

�

�

Z

�

Zar

(Z; 2� c)[�2c]! Ri

!

�et

�

�et

(X; 2)(30)

where we used a) and (25). On the other hand, the triangle

�(2) ����! �(2)
Q

- .

Q=Z(2)

(31)

deduced from (12) yields a map

Ri

!

�et

Q=Z(2)[�1]! Ri

!

�et

�

�et

(X; 2):(32)

Passing to the colimit in (21), we get a morphism

Q=Z(2� c)[�2c]! Ri

!

�et

Q=Z(2)(33)

whose homotopy co�bre is concentrated in degree c + 3 and has p-primary torsion

cohomology. Shifting and composing with (32), we get a morphism

Q=Z(2� c)[�1� 2c]! Ri

!

�et

�

�et

(X; 2):(34)

For c � 2, we use (30) to de�ne the map of b), noting that it becomes then

�

�et

(Z; 2� c)[�2c]! Ri

!

�et

�

�et

(X; 2)

via (25). For c > 2, we use (34) to de�ne this map.

We now prove the property of the map of b) as claimed in the statement of

theorem 4.2. It is enough to do this after tensoring (30) and (34) by Q and Z=m for

all m (in the derived sense). Since R(�

Z

)

�

is fully faithful, we may even apply this

Documenta Mathematica 1 (1996) 395{416



410 Bruno Kahn

functor to the situation.

Suppose �rst that c � 2. Using (27), (14) and a), we see that the morphism

R(�

Z

)

�

�

�et

(Z; 2� c)[�2c]
Q! R(�

Z

)

�

Ri

!

�et

�

�et

(X; 2)
Q

is a quasi-isomorphism. On the other hand, there is a �-commutative diagram

�

�et

(Z; 2� c)

L


Z=m[�2c] ! �

�

Z

Ri

!

Zar

�

Zar

(X; 2)

L


Z=m ! Ri

!

�et

�

�et

(X; 2)

L


Z=m

?

?

y

o

?

?

y

�.

Z=m(2� c)[�2c] ! Ri

!

�et

Z=m(2):

In this diagram, the left square is obtained via (25) and (27) by applying adjunction

to (28) and using lemma 4.5; the right triangle is obtained via (25) and (29). The

left vertical map and the southwest map come from the triangle (12).

The bottom horizontal map is none else than (21): its homotopy co�bre is

p-primary torsion and concentrated in degree c + 3. The left vertical map and the

south-west map are quasi-isomorphisms by (24), hence the top composite has the

same co�bre as the bottom map. This proves theorem 4.2 b) in the case c � 2.

Suppose now that c > 2. We �rst have

R(�

Z

)

�

Ri

!

�et

�

�et

(X; 2)
Q � Ri

!

Zar

R(�

X

)

�

�

�et

(X; 2)
Q � Ri

!

Zar

�

Zar

(X; 2)
Q = 0

by (14) and a). On the other hand, tensoring (34) by Z=m and using (31) yields

Z=m(2� c)[�2c]! Ri

!

�et

�

�et

(X; 2)

L


Z=m:

Using (24), we get a composition

Z=m(2� c)[�2c]! Ri

!

�et

�

�et

(X; 2)

L


Z=m

�

�! Ri

!

�et

Z=m(2)

which is clearly (33). This concludes the proof of theorem 4.2 b). 2

5. Cohomology of projective bundles

Let E ! X be a vector bundle of rank n, and P

�

�! X the associated projective

bundle. Our aim in this section is to compute R�

�

�

Zar

(P; 2) and R�

�

�

�et

(P; 2).

In order to state the theorem, we remark that there are pairings (i � 2):

�

Zar

(i� 1)

L


�

Zar

(1)! �

Zar

(i)(35)

over the big Zariski site of SpecF , if F has more than two elements, and

�

�et

(i� 1)

L


�

�et

(1)! �

�et

(i)(36)

over the big �etale site of SpecF .

For i = 2, (35) and (36) are the pairings of [22, prop. 2.5]; for i = 1 they are

tautological. For i < 0 (and in the �etale case), the triangle analogous to (31) for �(1)
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shows that, for all i, the morphism Q=Z(i� 1)

L


Q=Z(1)[�1]! Q=Z(i� 1)

L


�

�et

(1)

is a quasi-isomorphism. Therefore it su�ces to de�ne morphisms

Q=Z(i� 1)

L


Q=Z(1)! Q=Z(i)[1]

for all i 2 Z. This is nothing else than Tate twists of the natural isomorphisms (in

D(Ab))

Q

l

=Z

l

L


Q

l

=Z

l

� Q

l

=Z

l

[1]

for l 6= charF . Finally, for i = 0, the pairing is de�ned similarly, using the natural

map

Q=Z[�1]! Z[0] = �

�et

(0):

Let L be a line bundle over an F -scheme S. Let � = Zar or �et. Via (36), its class

[L] 2 H

1

�

(S; G

m

) = H

2

�

(S;�(1)) de�nes morphisms of complexes

�

�

(i� j)

jS

[�2j]

[L]

j

��! �

�

(i)

jS

where

jS

means \restriction to the big � site of S". In particular, for S = P and

L = O(1), we get maps

�

�

(2� j)

jP

[�2j]

[O(1)]

j

����! �

�

(2)

jP

(j � 0)

hence, by adjunction, a morphism

n

a

j=0

�

�

(2� j)

jX

[�2j]

�

�

�! R�

�

(�

�

(2)

jP

):(37)

We are now ready to state the result:

5.1. Theorem. The morphism �

�

is a quasi-isomorphism for � = Zar or �et (for

� = Zar, assume F has more than two elements).

Proof. We proceed as in the last section, �rst proving the Zariski case. Let A be

a local ring of X , and K be its �eld of fractions. The restriction of E to SpecA is

trivial, hence P

jSpecA

' P

n

A

. Looking at the maps induced by �

Zar

on cohomology

sheaves and using theorem 1.6, we can identify them to:

K

3

(K)

ind

! K

3

(K(T

1

; : : : ; T

n

))

ind

K

2

(A)! H

0

Zar

(P

n

A

;K

2

)

A

�

! H

1

Zar

(P

n

A

;K

2

)

Z! H

2

Zar

(P

n

A

;K

2

):

We have to show that all these maps are isomorphisms. The �rst one is an

isomorphism because K

3;ind

is invariant under rational extensions. The other ones

follow from [9, lemma 8.11].

In the �etale case, it is enough to check that � is a quasi-isomorphism after

tensoring by Q and by Z=l for all prime l. In the case of Q, we reduce to the Zariski

case as above, by applying R�

�

and using (14).
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For Z=l, we �rst need a lemma. Note that there are products:

Z=l(i� 1)

L


Z=l(1) �! Z=l(i):(38)

For l 6= charF , they are nothing else than Tate twists of the natural product in

D(Ab). For l = charF (and i > 0), they come from the products




i�1

log


 


1

log

! 


i

log

:

5.2. Lemma. For any prime l and any i � 2, the diagram

�

�et

(i� 1)

L


�

�et

(1)

L


Z=l ����! �

�et

(i)

L


Z=l

?

?

y

?

?

y

Z=l(i� 1)

L


Z=l(1) ����! Z=l(i)

commutes, where the top horizontal map is (36)

L


Z=l, the bottom horizontal map is

(38) and the vertical maps are deduced from (24).

Proof. For l 6= charF , this follows from [22]. For l = charF , it follows from

the de�nition of the logarithmic symbol, since (for i = 1) the �etale sheaf K

3;ind

is

uniquely l-divisible. 2

If l 6= charF , using lemma 5.2, �

L


Z=l becomes the map 
 of [15, th. 2.2.1],

which is a quasi-isomorphism, Tate-twisted twice. If p = charF , still using lemma

5.2, �

L


Z=p becomes the map

Z=p[�2]� (


1

log

)

jX

[�1]� (


2

log

)

jX

�! R�

�

(


2

log

)

jP

shifted, which is an isomorphism by [10, cor. I.2.1.12]. 2

5.3. Corollary. H

0

Zar

(X;H

3

(2))

�

�! H

0

Zar

(P;H

3

(2)).

Proof. (We don't really need �(2) for this.) Consider the commutative diagram

with exact rows

0 ����! CH

2

X ����! H

4

�et

(X;�(2)) ����! H

0

Zar

(X;H

3

(2)) ����! 0

?

?

y

?

?

y

?

?

y

0 ����! CH

2

P ����! H

4

�et

(P;�(2)) ����! H

0

Zar

(P;H

3

(2)) ����! 0

where the rows come from (9). Using theorem 5.1 and the analogous result for Chow

groups, the bottom left horizontal map can be rewritten

CH

0

(X)� CH

1

(X)� CH

2

(X)! H

0

�et

(X;�(0))� H

2

�et

(X;�(1))� H

4

�et

(X;�(2)):

The result now comes from the fact that CH

i

(X) ! H

2i

�et

(X;�(i)) is an isomor-

phism for i = 0; 1. 2

Documenta Mathematica 1 (1996) 395{416



Applications of Weight-Two Motivic Cohomology 413

6. The coniveau spectral sequence and Gersten's conjecture

By the standard procedure, we can construct a coniveau spectral sequence ([3], [5])

E

p;q

1

=

a

x2X

(p)

H

q+p

x

(X

�et

;�(2)) =) H

p+q

�et

(X;�(2))

where H

q+p

x

(X

�et

;�(2)) = lim

�!

U3x

H

q+p

fxg\U

(U

�et

;�(2)).

Applying theorem 4.2, we get, for x 2 X

(p)

:

H

q+p

x

(X

�et

;�(2)) =

8

>

>

>

<

>

>

>

:

H

q

(F (X);�(2)) for p = 0

H

q�2

(F (x); G

m

) for p = 1 and q 6= 4; 5

H

q�2

(F (x);Z) for p = 2 and q 6= 4; 5

H

q�p�1

(F (x);Q=Z(�p)) for p > 2 and q 6= 4; 5.

Moreover, we have exact sequences:

0! H

3�p

(F (x);Q=Z(2� p))! H

p+4

x

(X

�et

;�(2))! H

0

(F (x);F)

! H

4�p

(F (x);Q=Z(2� p))! H

p+5

x

(X

�et

;�(2))! 0

where F is an l-primary torsion sheaf if charF = l > 0 (and is 0 if charF = 0). For

p > 2, the map H

0

(F (x);F) ! H

4�p

(F (x);Q=Z(2� p)) has to be 0, so the sequence

splits into

0! H

3�p

(F (x);Q=Z(2� p))! H

p+4

x

(X

�et

;�(2))! H

0

(F (x);F) ! 0

H

4�p

(F (x);Q=Z(2� p))

�

�! H

p+5

x

(X

�et

;�(2)):

This shows that E

p;5

1

= 0 for p � 5 and E

p;4

1

is l-primary torsion for p � 4. For

q 6= 4; 5, E

p;q

1

= 0 for p � q, except for E

2;2

1

= Z

2

(X) (codimension 2 cycles). Note

also that

E

p;3

1

= 0 for all p:

Using theorem 5.1 for P = P

1

X

, the arguments of [8], [5] show that Gersten's

conjecture holds for �etale weight-two motivic cohomology. Therefore we get a Bloch-

Ogus-type theorem:

6.1. Theorem. The E

p;q

2

term of the coniveau spectral sequence for weight-two mo-

tivic cohomology coincides with H

p

(X

Zar

; R

q

�

�

�(2)) =: H

p

Zar

(X;H

q

(�(2))). 2

6.2. Corollary. For any i � 0,

a) The functor X 7! H

i

�et

(X;�(2)) satis�es \codimension 1 purity" for regular local

rings of a smooth variety in the sense of [4, def. 2.1.4 (b)].

b) H

0

Zar

(X;H

i

(�(2))) is a birational invariant of smooth, proper varieties X=F .

c) For any proper morphism P

f

�! X of smooth, integral F -varieties such that the

generic �bre of f is F (X)-rational,

H

0

Zar

(X;H

i

(�(2)))

�

�! H

0

Zar

(P;H

i

(�(2))):

Proof. a) follows from theorem 6.1. b) follows from theorem 6.1 and [4, prop.

2.1.8]. Finally, c) follows from b) and corollary 5.3. (In [5, x8], we give a general

proof of these properties for suitable \cohomology theories with supports".) 2
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Remark. As for corollary 5.3, we could prove this without having recourse to �(2),

in view of lemma 1.4. More precisely, we could \merely" use Gersten's conjecture for

K-theory (Quillen [31]), �etale cohomology with coe�cients in twisted roots of unity

(Bloch-Ogus [3]) and logarithmic Hodge-Witt cohomology (Gros-Suwa [11]).

7. Projective homogeneous varieties

Let X be a projective homogeneous variety in the sense of [25] and [30]. In

particular X is rational, so the assumptions of theorem 1 are satis�ed, including

H

0

Zar

(X;H

3

(2)) = 0 by corollary 6.2 c). Moreover, we have K

j�i

(F ) 
 CH

i

X

�

�!

H

i

Zar

(X;K

j

) for all i � j (loc. cit.). Finally, the G

F

-modules CH

i

X are permutation

modules, hence torsion-free [30]. In particular:

H

1

(F;H

1

Zar

(X;K

2

)) = 0

Ker � = (CH

2

X)

torsion

:

Let E be the �etale F -algebra associated to X as in [25]. We get the following

corollary of theorem 1, containing [25, Theorem] and [30, th. 1]:

7.1. Corollary. If X is projective homogeneous, there is an exact sequence:

0! H

1

Zar

(X;K

2

)! E

�

�

�! Ker� ! (CH

2

X)

torsion

! 0

and a complex

0! Coker� ! Coker � ! Br(E)

which is exact, except perhaps at Coker �, where its homology is Ker(H

4

(F; 2) !

Coker cl

2

X

).

The map � in corollary 7.1 is described by Merkurjev [25]: there is an Azumaya

E-algebra A associated to X , and � is cup-product by [A] followed by transfer.

7.2. Corollary. Coker� is �nite.

Indeed, Coker � is �nite, as a torsion quotient of the �nitely generated group

(CH

2

X)

G

F

. 2

In [19] we show that Coker� is isomorphic to Ker cl

2

X

.
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