Doc. MATH. J. DMV 417

CALABI-YAU THREEFOLDS OF QUASI-PrRoDUCT TYPE

KEenr Ocuiso

Received: March 20, 1996

Communicated by Thomas Peternell

ABSTRACT. According to the numerical litaka dimension »(X, D) and co(X) -
D, fibered Calabi-Yau threefolds ®p) : X — W (dim W > 0) are coarsely
classified into six different classes. Among these six classes, there are two
peculiar classes called of type Il and of type III; which are characterized
respectively by v(X,D) = 2 and ¢3(X) - D = 0 and by v(X,D) = 3 and
c2(X) - D = 0. Fibered Calabi-Yau threefolds of type IIl; are intensively
studied by Shepherd-Barron, Wilson and the author and now there are a
satisfactory structure theorem and the complete classification. The purpose
of this paper is to guarantee a complete structure theorem of fibered Calabi-
Yau threefolds of type IIp to finish the classification of these two peculiar
classes. In the course of proof, the log minimal model program for threefolds
established by Shokurov and Kawamata will play an important role. We shall
also introduce a notion of quasi-product threefolds and show their structure
theorem. This is a generalization of the notion of hyperelliptic surfaces to
threefolds and will have other applicability, too.

1991 Mathematics Subject Classification: Primary: 14J, secondary 14D.

INTRODUCTION

Let us start this introduction by recalling a global picture of fibered Calabi-Yau
threefolds known at the present and then state the Main Theorem precisely.

Throughout this paper, by a Calabi-Yau threefold, we mean a normal projective
complex threefold X with only Q—factorial terminal singularities (so that isolated)
and with Ox(Kx) ~ Ox and 7%(X) = {1}. The last condition is equivalent to
79 (X — Sing X) = {1}, because the local fundamental group of three dimensional
terminal Gorenstein singularities is trivial ([Kw3]). This also implies h'(Ox) = 0
([01]). We define

c2(X) D := e (X') - v*(D)

for any resolution v : X’ — X of Sing (X).
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It is known by Miyaoka that c¢2(X) - D is non-negative if D is nef ([Mi]).

A surjective morphism ® : X — W is called a fibered Calabi-Yau threefold if X
is a Calabi-Yau threefold, W is a normal projective variety (of positive dimension)
and @ has connected fibers. Note that ® is nothing but ®p if D is the pull back of
(any) very ample divisor H on W.

Fibered Calabi-Yau threefolds ®p| : X — W are divided into six classes by the
numerical invariants v(X, D) and ¢y - D:

Typely :v(X,D)=1landecy-D=0; Typel, :v(X,D)=1andcs-D > 0;
Type Ily : v(X,D)=2and ¢z -D =0; Type Iy : v(X,D)=2and ¢ - D > 0;
Type Iy : v(X,D) =3 and ¢x - D = 0; Type 111 : v(X,D) =3 and ¢o - D > 0.

The following (more or less tautological) coarse classification is proved in [O1].

THEOREM 1 ([O1]). Each class of fibered Calabi-Yau threefolds ®(= ®p|) : X — W
defined above is characterized as follows.

Type Iy: General fibers are smooth Abelian surfaces and W = P!,

Type 1, : General fibers are smooth K3 surfaces and W = P,

Type 1ly: General fibers are smooth elliptic curves and W is a normal projective
rational surface with only quotient singularities and with Kyw = 0,

Type 11,.: General fibers are smooth elliptic curves and W is a normal projective
rational surface with only quotient singularities and with Ky + A = 0 for some
non-zero effective Q-divisor A such that (W, A) is klt,

Type Il1y: ® is a birational morphism and W is a normal projective threefold with
only canonical singularities and with Ow (Kw) ~ Ow and co(W)(:= ®,ca(X)) =0
as a linear form on Pic(W),

Type 111, : ® is a birational morphism and W is a normal projective threefold with
only canonical singularities and with Ow (Kw) ~ Ow and c2(W) # 0.

Moreover, if ® : X — W is a fibered Calabi-Yau threefold of type 11y and H is
a general very ample divisor on W, then the induced elliptic surface ®~'(H) — H
has no singular fibers while ®~'(H) — H has at least one singular fiber composed of
rational curves if ® : X — W is of type Il .

Theorem 1 shows that fibered Calabi-Yau threefolds of type IIIy or of type Il
have rather special nature.

The following two theorems give a complete picture of fibered Calabi-Yau three-
folds of type III,.

THEOREM 2 ([SW]). Let ® : X — X be a fibered Calabi-Yau threefold of type I1I,.
Then, there exist an Abelian threefold A and a finite Gorenstein automorphism group
G of A such that

(1) Al%l is a non-empty finite set, and
(2) X = A/G.
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TuroreM 3 ([03]). Two fiber spaces ®3 : X3 — X3 and ®; : X7 — X; defined in
the following (1) and (2) are fibered Calabi-Yau threefolds of type IIlj.

(1) Let E¢, be the elliptic curve with period (3 := exp (27i/3). Setting X3 :=
E?g/(diag (¢3,(3,(3)), we define ®3 : X3 — X3 to be a unique crepant (toric)
resolution of X3.

(2) Let A7 be the Jacobian threefold of the Klein quintic curve C' := (zox3 +
7173 + w22y = 0) C ]P’[onzml:m] and g; the automorphism of A; induced by
the automorphism of C' given by [vo : 1 : m2] — [z} : 23 : 23]. Setting
X7 = A;/{g7), we define ®; : X; — X; to be a unique crepant (toric)
resolution of X7.

Conversely, any fibered Calabi-Yau threefold of type Il is isomorphic to either ®3 :
X3 — X3 or ®; : X7 — X7 as fiber spaces.

In particular, there are exactly two fibered Calabi-Yau threefolds of type 111y and
both of them are smooth and rigid.

Now it is interesting to study another peculiar class of fibered Calabi-Yau three-
folds called of type II,.

Base surfaces W of fibered Calabi-Yau threefolds ® : X — W of type Il are
classified into two classes by the global canonical covering 7 : T — W, for which we
have either

(1) T is a smooth Abelian surface, or

(2) T is a (projective) K3 surface with only Du Val singularities.

In case (1) (resp. (2)), a fibered Calabi-Yau threefold ® : X — W of type IIj is called
of type I A (resp. of type Iy K).

The following theorem gives a complete classification of fibered Calabi-Yau three-
folds of type IIyA.

THEOREM 4 ([02]).

(1) Let 3 : X3 — Eg3/diag(C3,§3,§3) be as in Theorem 3 and p : X3 —
Egg /diag ({3, (3) the natural map given by the composite of ®3 and the natural
projection pis : EY, /diag ((3, G, (3) = EZ, /diag (C3,(3). Then, any composite
of flops f : X3 - -+ = X} along curves in p~'(Sing (EZ, /diag (3, (3))) gives a
fibered Calabi-Yau threefolds p o f~' : X4 — EZ, /diag ((3,(s) of type TlyA.
In this case, Ega is nothing but the global canonical cover of the base surface
EZ [diag (C3,C3)-

(2) Conversely, every fibered Calabi-Yau threefolds of type Iy A is obtained by
the above process up to isomorphisms as fiber spaces. In particular, every
fibered Calabi-Yau threefolds of type IIyA is smooth and rigid. Moreover,
there are exactly 14 different fibered Calabi-Yau threefolds of type IIg A up to
isomorphism as fiber spaces.

The purpose of this paper is to show the following structure theorem of fibered
Calabi-Yau threefolds of type IIpK. This theorem tells us how to construct all the
fibered Calabi-Yau threefolds of type IIp K.
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MAIN THEOREM. Let us prepare

(i) a smooth elliptic curve E with a fixed origin 0,
(ii) a projective K3 surface S with only Du Val singularities and its minimal
resolution p : 8" — S, and
(iii) two groups
G € {{1}, ZQ, Zg, Z4, Z5, Zs, Z7, Zg, (ZQ)Q, (Z3)2, (Z4)2, Z2 X Z4, Z2 X Zs},
and
(g) = ZI € {Z27 Z37Z47Z6}7
such that G := G % (g) (semi-direct product) acts faithfully on both E and S (and
then on S’ and E x S') in such a way that
(iv) G3a:ExS = ExS', (z,y) = (z+ag,as(y)) with ag € (E)oa(a) and
a%wsr = wgr, where wgr is a nowhere vanishing regular 2 form on S',
(v) g: ExS' = E xS, (z,y) = ({7, 95 (y)) with ghws = (ws, and
(vi) (S C Exc(u) except for finitely many points in (S")[], that is, (S)I] is a
finite set.

Note that G is a finite Gorenstein automorphism group of E x S'. Let
v:Y(E,S,G) = (ExS")/G
be a crepant resolution (whose existence is now guaranteed by Roan [Ro]) and
p:Y(E,S,G) - S/GY

the natural projection given by the composite of v : Y(E,S,G) — (E x §8")/G,
o (ExS)/G— S"/G, and u/G : S'/G — S/G.

Then,

(1) any composite of flop f : Y (E,S,G) -~ — Y" along curves in p~' (Sing (S/G))
gives a fibered Calabi-Yau threefold po f~! : V' — S/G’ of type 11y K provided
that 70" (Y) = {1}. In this case S/G gives the global canonical cover of the
base space S/G.

(2) Conversely, every fibered Calabi-Yau threefold of type 1IoK is obtained by
the above process for some triplet (F, S, G) satisfying the conditions (i)-(vi)

up to isomorphisms as fiber spaces. In particular, every fibered Calabi-Yau
threefold of type IIo K is smooth.

This together with Theorems 2, 3 and 4 will complete the structure theorem of
the two peculiar classes of fibered Calabi-Yau threefolds called of types ITy and III,.

REMARK. Investigating the actions of G and (g) on E, we easily see that

(1) G is uniquely determined by G and (g) as an abstract group, and
(2) among 52 possibilities of (G, (g)) in the Main Theorem, the following 18 com-
binations do not occur:
(Z4,73), (L5, 13), (L6, Lo3), (Zig, L3), (Zig X Tg, T3), (Zn X ZLg, L3),
(Z3,7.4), (4, 1os), (Logy L), (Zin, Ly), (Lo X Tg, Do),
(Z2,Z6), (Z4,Z¢), (Zs,Zs), (L6, Ls), (Zs, L), (L2 X ZLe, Lg), (Zz X Ls, Ls)-
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REMARK. There are examples of non-rigid fibered Calabi-Yau threefolds of type 11y K
and the number of fibered Calabi-Yau threefolds of type I1o K is not finite any more

([01]).

REMARK. It is interesting to compare Theorems 2, 3, 4 and main theorem with the
so called Bogomolov decomposition theorem (see for example [Bo]). These look very
similar, while our proof is free from the Bogomolov decomposition theorem.

The Main Theorem and Theorem 4 immediately imply

COROLLARY. Let ® : X — W is a fibered Calabi-Yau threefold of type I1y. Then the
global canonical index of W is either 2, 3, 4 or 6.

COROLLARY. Let ® : X — W be a fibered Calabi-Yau threefold of type 1IgK (resp.
of type IlgA). Then, there is a composite of flopsY — W of ® : X — W over W
such that Y has at least two different fiber space structures, Y — W of type I[\ K
(resp. of type I[gA) and Y — P! of type I (resp. of type Iy).

Very little is known for a fibered Calabi-Yau threefold of type Iy, that is, a Calabi-
Yau threefold with an Abelian fibration. However, our main theorem and Theorem 4
show

COROLLARY. Let X be a Calabi-Yau threefold with at least two different Abelian
fibrations. Then, X is a Calabi-Yau threefold described as in either the Main Theorem
(2) or Theorem 4(2). In particular, X is smooth and birational to either a quotient
of an Abelian threefolds or that of the product of a K3 surface and an elliptic curve.

In fact, if ®p,| : X — P' (i = 1,2) are two different Abelian fibrations on X,
then ®,,,(p,+p,) : X = W is of type Ilp for some m.

The outline of this paper is as follows.

In section 1, we introduce the notion of quasi-product threefolds ((1.1)) and show
their structure theorem ((1.3)). This plays an important role for our proof of the
Main Theorem.

Sections 2 - 4 are devoted to prove the Main Theorem. Since Main Theorem (1)
is quite clear, we prove only Main Theorem (2).

Let &7 : X7 := X xwT — T be the base change of a fibered Calabi-Yau threefold
®: X — W of type IIj K to the global canonical cover 7 : T' — W. Since ® always
has a two dimensional fibers ([O1]), X7 has very bad singularities and ®7 itself is a
very complicated map in general.

In section 2, we apply the log minimal model program established by Shokurov
and Kawamata or Kollar et al. [Sh] and [Kw4] (also [Ko3]) to find a good birational
(canonical) model f: Z — T of &7 : X7 — T over T such that

(1) Gal(T/W) := (g) acts regularly on f: Z — T and

(2) ®: X — W is birational to the quotient (f : Z — T)/(g).

Moreover applying the result in section 1, we show that there are a smooth elliptic
curve E, a normal projective surface S which is either an Abelian surface or a K3

surface with only Du Val singularities, and a finite automorphism group G of the fiber
space pp : Ex S — Ssuchthat (f: Z—>T)=(p2: ExS—S5)/G.
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In section 3, we show that the action of {(g) on f : Z — T lifts to that on its
covering po : - x S — S in an equivariant way. This is a rather special phenomenon,
because a composite of Galois extensions is not Galois in general.

Till section 3, the main part of our proof of the Main Theorem is completed. It
remains only to show the impossibility for S to be a smooth Abelian surface. This
problem is treated in section 4. This requires our assumption 7;"(X) = {1} and
forces rather minute analysis of automorphism groups of an Abelian surface.
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NOTATION AND CONVENTION

Throughout this paper, we work over the complex number field C.

We will employ standard notion and notation in minimal model program ([KMM]
or [Ko3]) freely.

By a minimal threefold, we mean a normal projective threefold V with only
Q—factorial terminal singularities and with nef canonical (Weil) divisor Ky .

A surjective morphism ® : V' — W is said to be relatively minimal if V' has only
Q—factorial terminal singularities and the canonical divisor Ky is relatively nef with
respect to .

We often use the notion of klt (Kawamata log terminal) given in [Ko3]. This is
same as the notion of log terminal in [KMM].

By a fiber space on a normal projective variety V', we mean a surjective morphism
® : V — W to a normal projective variety W with connected fibers. Note that ®
is not equi-dimensional in general. By & !(w) (w € W), we denote the scheme
theoretic fiber over w. We denote its reduction by ®~!(w)eq. This is in some sense
a set theoretical fiber.

Two fiber spaces @ : V — W and ®' : V' — W' are said to be isomorphic if there
are isomorphisms F': V' — V' and f: W — W' such that ® o F' = f o ®.

For two morphisms ® : V — W and 7 : T — W, we sometimes denote natural
morphisms Vxw T - T and VxwT -V by ®p:Vp > Tand 7y : Vp(=Tv) -V
respectively.

The primitive n—th root of unity exp(27i/n) is denoted by (,.

We denote the cyclic group of order n by Z,,.

The elliptic curve with period 7 € H is written as E.

The n—torsion group of an Abelian variety A with origin 0 is denoted by (A),.
By global coordinates around a point P of an n—dimensional Abelian variety A, we
mean those of its universal cover C* or, equivalently, those of the tangent space T4 p.

For a faithful group action of G on a variety V', we set

Viel.={z eV |3ge G- {1},9(x) =z},

while,
HY :={ve H|Vgeq,g*(v)=v}

for any cohomology group H of V.
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Similarly, for an automorphism g of a variety V', we set
VI:={z eV |g(z) =1z}

An equivariant action of a finite group G on a fibration ® : V' — W induces a
new fibration ®(mod G) : X/G — W/G. We sometimes abbreviate this fibration by
(®:V>W)/G.

We say that G acts on ® : V. — W over W if the action of G is equivariant and
is trivial on W.

An automorphism group G of a variety V with Oy (Kv) ~ Oy is called Gorenstein
if the action of G on H°(V, Oy (Ky)) is trivial, that is, all elements g of G satisfy
g*wy = wy for a generator wy of H(V, Oy (Kv)).

For the automorphism group Aut (V') of a variety V' and a subset B in V, we
often consider the subgroup {g € Aut (V) | g(B) = B}. We denote this group by
Aut (X, B). For example, if A is an Abelian variety with origin 0, then Aut (4, {0})
is nothing but the so called Lie automorphism group of A.

§1. QUASI-PRODUCT THREEFOLDS

In this preliminary section, we shall introduce the notion of quasi-product threefolds
and prove their structure theorem (Theorem (1.3)). This is a rather wide generalisa-
tion of the notion of hyperelliptic surfaces to threefolds.

DEFINITION (1.1). A normal projective threefold V' with only rational singularities
is called a quasi-product threefold with distinguished morphisms a and f if

(1) V has a fiber space structure a : V' — A over a smooth elliptic curve A,

(2) V has a fiber space structure f : V — T over a normal projective surface T
with only rational singularities and with H'(O7) = 0 such that f=!(t)eq is
a smooth elliptic curve for any t € T, and that f~1(t) itself is smooth except
at most finitely many points t € T'.

EXAMPLE (1.2). Let S be a normal projective surface with only rational singularities
and E a smooth elliptic curve. Assume that a finite group of translations G of E
acts faithfully on S in such a way that SI¢ is finite and H'(Os)® = 0. Then
the quotient threefold (E x S)/G is a quasi-product threefold with distinguished
morphisms py : (E x S)/G — E/G and ps : (E x S)/G — S/G.

Conversely, we shall show

THEOREM (1.3). Let V' be a quasi-product threefold with two distinguished mor-
phismsa:V — Aand f:V — T. Let S be a general fiber of a.

Then, there exist an elliptic curve E and a finite subgroup G C E, that is, a finite
group of translations of E (and then is isomorphic to either Z., or Z, X L with
(n|m)) such that

(1) there is an injective homomorphism ¢ : G — Aut (5),
(2) V = (E x S)/G under the (free) action of G on E x S defined by

G3g:ExS>3(u,v)— (u+g,(g)v) € ExS,
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(3) two distinguished morphisms a : V. — A and f : V — T are given by the
natural projections

and
pe: (Ex9S)/G— S/u(G)

respectively.

As a result, S can be replaced by any fiber of a. We set G := 1(G)(~ G).
Moreover, if Oy (Ky) ~ Oy, then,

(4) any fiber S of a is either a K3 surface with only Du Val singularities or a
smooth Abelian surface,

(5) Gg is a finite Gorenstein automorphism of S,

(6) if S is a K3 surface with only Du Val singularities, then S“s! is a non-empty
finite set and Gs(~ G) is isomorphic to either one of the following groups;
{1}, Zo, Z3, Ly, Ls, Lig, Loz, Tog, Lip X Loy Lig X Ly, Loy X Tg, Lz X g, OF Loy X Doy,

(7) if S is a smooth Abelian surface, then S'9s! is a non-empty finite set and
Gs(~ @) is isomorphic to either one of the following groups;

{1}, Z2, ZB; Z4, Zﬁ, or Z2 X Z?a Z2 X Z4, ZB X ZB-

In addition, if Gg ~ Z,, then Gg C Aut (S,{0}) for an appropriate origin 0
of S, while, if Gg ~ Zip, X L, (n|m), then Z,, C (S), and Z,, C Aut (S, {0})
for an appropriate origin 0 of S. Moreover, Sing (S/Gg) is described as follows
for each G ([Kt]).

(GS, Slng (S/GS’)) = (ZQ, 16A1), (Z2 X ZQ, 16A1), (Zg, 9A2), (Zg X Zg, 9A2)
(Z4, 4A3 + 6A1), (Z2 X Z4, 4A3 + 6141), (ZG, A5 + 4A2 + 5A1)

REMARK. Let v : S' — S be the minimal resolution of S. Then G induces an
equivariant free action on id x v : E x §" — E x S. The induced morphism (E X
S")/G — (E x S)/G gives a resolution of (E x S)/G.

REMARK. Our proof given here basically follows the argument of Bombieri and Mum-
ford for hyperelliptic surfaces([BM]). However, since we work at threefolds, we should
keep the following two essential differences in mind:

(1) f may not be flat over T,

(2) three dimensional relatively minimal models are not unique among their bi-
rational models (even if they exist) so that rational actions on a relatively
minimal model are not necessarily regular in general.

Proof. Set B := {t € T|either f~!(¢) is not reduced or T is singular at ¢}, and denote
Ciy:=f1(t)(t€T)and S, := a '(z) (x € A). By our assumption, B is a finite set.
Let us fix a general point 0 € A and regard this point as an origin of A. Set S := 5.
Then S is a normal surface with only rational singularities. Put n := (C - S). This
is independent of t € T'— B (because T'— B is smooth and f|s-1(7_p) is a smooth
morphism over T — B.)
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Cram (1.4). a; :=alg, : C¢ — A is surjective for each t € T — B. In particular, a;
is an isogeny of elliptic curves of degree n := (Cy - S) for each t € T — B (and then
n>0).

Proof of Claim (1.4). Assume the contrary that a(C}) is a point on A for some ¢ €
T — B. Then, a(Cy) must be a point for every t' € T'— B because f is flat over T'— B.
Thus, a induces a morphism @ : T — B — A. This gives a rational mapa : T-- — A
witha =aof. Let T' — T be a resolution of both singularities of T and indeterminacy
of @. Since T has only rational singularities, we have h'(O7/) = h'(Or) = 0. Thus,
aov(T") is a point. Hence @ is a morphism and @(7') is a point. Then, (V') would be
a point because a = @ o f. But this contradicts the surjectivity of a. g.e.d. for (1.4).

Let t be an arbitrary point on T' — B. Then, by (1.4), A acts on C; via the
composite of the group homomorphism A ~ Pic®(A4) — Pic®(C}) given by a; and the
natural action of Pic’(C}) on C;. More concretely, this action is written as

A2:C4y5P—»P+21+...4+2, -0, —...— 0, € Cy,

where {z1,...,2,} = a;'(z) = C; N S, and {04, ...,0,} := a;'(0) = C; N S. Note
that f has a local section over T'— B. Thus, gluing these together, we get a regular
action of A on Uier_ pC; = f~Y(T — B) over T — B. This gives a rational action on
V over T. But, since the possible indeterminacy f~'(B) of this action on V consists
of elliptic curves (then no rational curves) and since V' has only rational singularities,
this action of A on V' must be regular. Let us denote this action by 0 : A x V — V.
By construction, o stabilizes each fiber of f. Set 7 := o|axs: A xS — V. Since a;
is an isogeny, we have

at(P+z1 +...+ 2, —0; —... = 0,,) = a;(P) + nx
fort € T — B and x € A. So, once we define a new action of A on A by
Ad>z:A— Ay — y+nx,

that is, by n x (translation), then A induces an equivariant action on the fibration
V — f~1(B) — A. By the same reason as before, this action of A is extended to an
equivariant regular action on the whole space a: V — A.

By definition, we have z:(S) (= x(Sy)) = Spa (z € A). In particular, 7: AxS =V
is surjective. Moreover, the action of the n—torsion group (A4), of A on V stabilizes
S = Sp. This induces a group homomorphism ¢ : (4), — Aut (S5).

The following claim ([BM]) is now proved formally.

Cram (1.5). Let (z,v) and (z',v") be points on A x S. Then, the following (1) and
(2) are equivalent to one another.

(1) 7(z,v) = 7(a',0"),
(2) (z,v) and (x',v") are in the same orbit of the action

(A)y2k:AXxS = AxS;(z,v) = (x —k,u(k)v).
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Proof of Claim (1.5). Since 7(xz — k,u(k)v) = o(z — k,o(k,v)) = o(x — k + k,v) =
T(x,v), (2) implies (1). We prove the converse. Since 7(x,v) € Sp, and 7(z',0v') €
Snar, it follows that nz = nz', or equivalently, k := z — 2’ € (A),,. We may show that
t(k)(v) =v'. Using 7(x,v) = 7(2',v"), that is, o(x,v) = o(z',v"), we calculate

v =o(—2, 00" V) = o(—2',0(z,v)) =z —2',v).

This is nothing but the desired equality, ¢(k)(v) = v'. q.e.d. for (1.5).

By (1.5), we get V = (A x S)/(A),. Moreover, just by construction, we see that
f:(Ax8)/(A), — T factors through the natural projection ps : (A x S)/(A), —
S/(A),. In fact, f factors through po at least over T'— B. But, since B is finite and
S/(A),, is normal, this is so over the whole T'. Let p : S/(A)n, — T be the induced
morphism. Since both f and p» have only one dimensional connected fibers, p must
be a finite birational morphism. Thus, by the Zariski main theorem, p is isomorphism
and then f = p, under the identification ' = S/(A),,. Similarly, a : (AxS)/(4), = A
factors through p; : (A x S)/(A)n, = A/(A), = A. Now the equality a = p, is shown
by the same argument as before.

It only remains to make ¢ injective to complete the first half part of (1.3). But this
is done as follows. Let G = (A),/Kert. Then, (A x S)/(A)n = (A/(Ker:) x S)/G
and A/(A), = (A/Ker)/G, in which G acts on translation group of an elliptic curve
A/Keri. Now replacing A, (A), and ¢« by E = A/(Ker:), G, and the injection
to(—1): G — Aut (S), we are done. Here we will compose (—1) only to change the
sign — in (1.5) into + as in (1.3).

From now on, we shall prove the latter half part of (1.3). It is obvious that S
is either a K3 surface with only Du Val singularities or a smooth Abelian surface.
Moreover, since G acts on E as a translation group and Oy (Ky) ~ Oy, it follows
that Gg¢ must be a Gorenstein automorphism group of S. In the rest we denote Gg
simply by G if no confusion seems to arise.

Assume first that S is a K3 surface with only Du Val singularities. Let S’ — S
be the minimal resolution of S. Then G gives a commutative Gorenstein action on
S’. Now the result follows from the Nikulin’s classification ([Ni]). Note that two
groups (Z»)? and (Z»)* in his list are excluded because G is isomorphic to either Z,,
or Zip X Ly, (n|m).

Finally, assuming that S is a smooth Abelian surface, we show that G satisfies
the condition in (1.3)(7). Since G is a finite Gorenstein automorphism group of
S with T = S/G and since h'(T,0r) = 0, it follows that SI¢! is a non-empty
finite set. Choose an appropriate origin 0 of S and identify S with its translation
automorphism group. Set Aut’(S) := {0 € Aut(9)|oc*ws = ws}, Aut®(S,{0}) :=
{o € Aut®(S)|o(0) = 0}, where wg is a non-zero global regular two form on S.
Then, Aut®(S) = S x Aut®(S,{0}) and G C Aut®(S). Identifying Aut’(S,{0}) =
Aut®(S)/S, we denote the natural projection by p : Aut’(S) — Aut®(S,{0}). If
we choose global coordinates around 0, we can explicitly write down the action of
g € Aut®(9) in its affine form

g(x) = Mgz +t,, M, € SL(2,C),t, € S.
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Then p is nothing but the map taking the matrix part, that is, g — M,. It follows
from this expression that

(1) as an abstract group, p(G) is independent of the choice of an origin of S,
(2) a finite Gorenstein automorphism g € Aut®(S) has a fixed point if and only if
g is not a translation.

On the other hand, Katsura’s classification ([Kt]) of possible finite subgroups of
Aut®(S, {0}) shows that the commutative group p(G) is isomorphic to either Zs, Zs3,
Z4 or Zg.

Thus we can choose g € G and 0 € S such that p(g) generates p(G) and g(0) = 0.
From now on, we regard this point 0 as the origin of S.

Cram (1.6).
(1) H := Ker(p) consists of translations in G, that is, H C S,

(2) {9) = p(G).
(3) G is isomorphic to H x (g).
(4) H is a subgroup of S9 (under the inclusion H C S).

Proof of (1.6). The assertion (1) follows from M}, = id for h € H. By definition, p|
(9) — p(G) is surjective group homomorphism. Let h be an element of Ker(pl,).
Then, h(0) = 0 and h € H. Combining this with (1), we get h = id. Thus, p|
is isomorphism. This shows that G is a semi-direct product of H and (g). Since G
is commutative, this must be the direct product. The last statement now directly
follows from the relation gh = hg (h € H). q.e.d. of (1.6).

Cramv (1.7). According to ord (g) = 2,3,4,6, S9 is isomorphic to (Z2)*, (73)?, (75)?
and {0}.

Proof of (1.7). If ord (g) = 2, then S9 = (S),. Since (S)s ~ (Z2)*, we are done.

Assume that ord (¢) = 3. Then, using appropriate global coordinates (z,y) around
0, we can write g = diag ({3, {5,_1). In particular, 1+g+g¢2 = 0. Thus, 3p = p+p+p =
p+g) +g%*(p) = (1+g+g*)(p) =0 for p € (S)9. Hence SY C (S)3 and SY ~ (Z3)*
for some non negative integer k. On the other hand, by the Lefschetz fixed point
formula, we have $59 = Z?:o( 1)itr(g*|H!(S,C)). Recall that

H'(S,C) = Cdz @ Cdy ® Cdz & Cdy,

and
H!(S,C) = N'HY(S, C).

Now an explicit calculation based on g = diag((3,(; ") shows tr(g*|H°(S,C)) =
1,-2,3,—2,1 according to i = 0,1,2,3,4. Thus, £S9 = 9. This implies S9 ~ (Z3)?.

Assume that ord(g) = 4. Since S9 C S9° ~ (Z5)*, it follows that S9 ~ (Z»)* for
some non negative integer k. As in the case of ord (¢g) = 3, we can choose appropriate
global coordinates (,y) around 0 such that g = diag (¢4, ¢; ). Then, again using the
Lefschetz fixed point formula, we calculate §S9 = 4. This implies S9 ~ (Z»)>.

Finally assume that ord (g) = 6. Then, it follows from the previous observation
that 9 C §9° N S9° C (S)2 N (S)s = {0}. qe.d. of (1.7).
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Now Claims (1.6), (1.7) and the fact that G is a finite Abelian group of the form
Ly, ot Zip X L, (n|m) together with the fundamental theorem on finite Abelian groups
imply the assertion (1.3)(7).

The only remaining problem is to study Sing (S/G) for each G. If G is isomorphic
t0 Zpm, the result follows from Katsura’s table ([Kt]). Next, consider the case when
Zin, X Ly, for some n and m (with n|m). Since S/G ~ (S/Z,)/Z, and since (S/Z,,)
is again an Abelian surface, the assertion follows from the first case.

Now we are done. Q.E.D. of (1.3).

§2. GOOD MODEL OVER THE GLOBAL CANONICAL COVERING

Let us fix a fibered Calabi-Yau threefold ® : X — W of type IIpK. Define I :=
min{n € N|Ow (nKw) ~ Ow} and denote the global canonical cover of W by = :
T — W ([Kwl, Z]). By our assumption, T is a projective K3 surface with only Du Val
singularities. Set Wy := W — Sing (W). It is well known by [Kwl, Z] that 7 : T — W
is a cyclic Galois covering of order I(W) and is étale over Wy. Moreover, there is a
generator g of the Galois group Gal(T /W) such that g*wr = (Gwr, where wr is a
nowhere vanishing regular two form on T, that is, a generator of H°(O7(Kr)).

We fix these notation till the end of Section 4.

Set 7 : X7 := X xw T — T. Then, the Galois group Gal(T /W) = (g) acts on
this fibration by ¢ : (z,¥y) — (z,g(y)) and induces an isomorphism

(®: X > W)~ (®p/: X7 = T)/{g).
However, Xt itself has very bad singularities in general.

The goal of this section is to prove the following

KEY LEMMA (2.1). There is a normal projective threefold Z such that

(1) Z has only Q—factorial canonical singularities with Oz(Kz) ~ Og,

(2) Z is a quasi-product threefold ((1.1)) with two distinguished morphisms f :
Z — T and a : Z — A, where the latter map is the Albanese morphism
of Z (see [Kw2] for the definition of the Albanese variety and the Albanese
morphism for varieties with rational singularities), and

(3) there is a regular action of the Galois group of (g) on the fibration f : Z — T
such that W =T /(g) and (® : X — W) is birational to (f : Z — T)/(g) over
W =T/{g). Moreover, these are isomorphic over W — Sing (W).

The plan of proof of Key Lemma is as follows. First, applying the log minimal
model program, we find a birational model f : Z — T of & : Xp — T with property
(1) in (2.1). Then, we check that f: Z — T also satisfies (2) and (3).

In order to carry out this plan, we start by observing some general lemmas.

PROPOSITION (2.2). Let ¢ : V. — S be a surjective morphism from a normal pro-
jective Q—factorial threefold V' to a normal projective surface S. Let {F;};c1 be the
set of all two-dimensional irreducible components in fibers of p. Set E = Y;c1E;.
Assume that

(1) V is not covered by rational curves,
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(2) Ky = Xcra;E; (as a Weil divisor on V) for some a; € Z >,
(3) (V,€eE) is klt for some positive small rational number e.

Then, there are a normal projective threefold V™) and a surjective morphism (™ :
V(") — S such that

(4) V(™ has only Q—factorial canonical singularities with Oy (Kyn)) =~ Oy,

(5) ¢ : V(M) — § is birational to ¢ : V — S over S and is isomorphic except
over a finite set p(F), and

(6) o™ : V(™ — S is an equi-dimensional elliptic fibration.

Proof. First, we remark
CrLAM (2.3). Ky + €E is not nef unless E = 0 as a divisor.

Proof of (2.3). Let H be a general very ample divisor on V. Then H is a normal
surface and the restriction |y : H — S is surjective. Since (Kv +€E)|g = X;er(a; +
€)E;| g and since E;|p are contracted by pp, we get

(Kv +€B)*-H) = (Kv + €E)|n)” = (Sier(ai + €)Ei|n)* <0
unless E = 0. g.e.d. of (2.3).

Let us apply the log minimal model program for a klt divisor Ky + eE. If E #
0, then Ky + €E is not nef by (2.3). Thus, there is a log extremal ray R such
that (Ky + €E) - C < 0 for any curve C' belonging to R. Let contgr : V. — W be
the contraction morphism associated to R. This is a birational morphism by our
assumption (1). Since 0 > (Ky +€E) - C = X(a; +€)(E; - C), there is a prime divisor
E; such that E; - C < 0. This implies C C E;. Thus contpg is defined over S. Let
¢ : W — S be the induced morphism.

If contp is a divisorial contraction, setting V(1) := W, (1) := ¢ and changing E
by its strict transform E(M) on V(1) we see that ¢ : V(1) — § and E(!) satisfy all
the assumptions in (2.2) (without any change of coefficients).

If contp is a small contraction, then we apply a log flip for contr to get cont;g :
vVt S Ww.

The existence of log flips for threefolds is guaranteed by [Sh].

Now, setting V(1) := v+, o) .= pocontf; and changing E by its strict transform
EM on V1 we see that 1) : V(1) — § and EM also satisfy all the assumptions in
(2.2).

Putting V(® :=V, ¢ := ¢ and E(®) := E and repeating this process, say, for
n(> 0) times, we finally get (™ : V() — § and the strict transform E(™) of E to
V(") such that

(1) ¢ : V(™ - § and E™ satisfy all the assumptions in (2.2), and

(2) Ky + eE™ is nef.

This is due to the termination of log flips for threefolds shown by [Kw4].

Then E™ = 0 by (2.3). This implies the equi-dimensionality of ¢("). Note
that all modifications are done over p(E). Thus ¢™ : V(») — Sand ¢ : V = §
coincide over S —¢(E). Set Vp := V' — E —Sing (V'). Then the assumption (2) implies
Ov,(Ky,) ~Oy,. Let v: V -+ — V(") be the birational map obtained by the above
process. Since v|y, : Vo = v(Vj) is an isomorphism, we have O, (v,)(Ky(vy)) = Oy(v)-
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Since the codimension of V(™ — y(V;) in V(") is at least two by E(™ = 0 and since
V(") is normal, this isomorphism gives Oy (Kym) =~ Opm). Note that V(") hag
only rational singularities, because (V ("), E(")) = (V(") 0) is klt. Thus V(") has only
rational Gorenstein singularities, that is, canonical singularities of index one. Now
the remaining assertion is obvious. Q.E.D. of(2.2).

The next two lemmas are concerned with singular fibers of certain elliptic three-
folds.

LEMMA (2.4). Let ¢ : V — S be a fiber space such that

(1) V is a normal projective threefold with only Q—factorial terminal singularities
and with Ky =0,

(2) S is a normal projective surface with only quotient singularities and with
KV =0.

Then, ¢~ '(s) is a smooth elliptic curve if s € S — Sing(S). In particular, ¢ is a
smooth morphism over S — Sing (5).

Proof. We make use of the following theorem due to Nakayama.

THEOREM (2.5)([NA1 ALSO NA2]). Let f : Vaz — A? be a relatively minimal
projective elliptic fibration over a two-dimensional (small) polydisk

A? = {(z,y) €C | o] < e Jy| <e}.

Assume that f has (singular) fibers of type 1, (a > 0) over (x = 0)—{(0,0)} and those
of type Iy (b > 0) over (y = 0) — {(0,0)}. (Here we employed Kodaira’s notation.)
Then f~1((0,0)) is a (singular) fiber of type 1,4y. In particular, if f is smooth over
A% —{(0,0)}, then £=1((0,0)) is a smooth elliptic curve and f is a smooth morphism
over the whole AZ.

First, we show

CrLAam (2.6). ¢ : V — S is an elliptic fibration and has singular fibers only over a
finite set of points of S.

Proof of (2.6). Note that a general fiber of ¢ is a smooth elliptic curve. Let H be
a general very ample divisor on S. Set Vg := ¢~!(H). Since V has only isolated
singularities and since H is general, we may assume that HN(Sing (S)Ue(Sing (V))) =
¢ and both H and Vg are smooth. Let ¢|y, : Vg — H be the induced elliptic
fibration. Using the adjunction formula, we calculate Ky = H|g and Ky,, = (Ky +
Vi)lvy = ¢*(Kg). Comparing this with the canonical bundle formula of an elliptic
surface (for example see [BPV]), we find that ¢|y,, is a smooth morphism. This
implies the result. q.e.d of (2.6).

Let s € S be an arbitrary smooth point of S and take a sufficiently small polydisk
A? C S around s. By (2.6), ¢ is smooth over A% — {s}. Now applying (2.5) for an
elliptic fibration ¢[,-1(a2) : ¢ 1 (A?) = A%, we get (2.4). Q.E.D. of (2.4).
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LEMMA (2.7). Let ¢ : V — S be a fiber space such that

(1) V is a normal projective threefold with only canonical singularities and with
OV (Kv) ~ Ov,

(2) S is a normal projective surface with only Du Val singularities and with
Os(Ks) ~ Os,

(3)  is an equi-dimensional fibration, and

(4) ¢ is smooth except over a finite set of points of S.

Then, the reduction of each fiber ¢ 1(8)req (s € S) is a smooth elliptic curve. More-
over, if s is a smooth point of S, then, p~!(s) itself is a smooth elliptic curve. In
particular, ¢ is a smooth morphism over S — Sing (5).

Proof. Let s € S be an arbitrary point of S. Since S has only Du Val singularities,
we can choose a small neighborhood U around s such that

U = A2%/G,s = (0,0)(mod G).

Here A2 is a two dimensional small polydisk and G is a finite Gorenstein automor-
phism group of A% each of whose element fixes only the origin (0,0). We may also
assume by (4) that ¢ is smooth over U — {s}.

Letting ¢ : Vir = U be the restriction of ¢, we consider the fiber product

PA2 Va2 =V Xy A% 5 A%

Since A? — U is étale over U — {s} and ¢y is smooth over U — {s}, it follows that
oaz 1 Vaz — A? is smooth over A2 — {(0,0)}.

Take a resolution v : V(1) — Vs of Va» and set (1) := g ov: V() - A% Note
that ¢ and (") coincide over A2 — {(0,0)}.

Applying a relatively minimal model program with respect to Ky, over A?
([Mo]), we get a relatively minimal model

@ V@ 4 A2

of M) : V(1) — A2, Since each fiber of ¢(!) over A% — {(0,0)} is a smooth elliptic
curve, ©?) coincides with (") (and then pa2) over A2 — {(0,0)}. This together with
(2.5) implies that (¢(2)~1((0,0)) is also a smooth elliptic curve and that ¢ is
smooth over whole A2, In particular, V(?) is also smooth. Since @2 and ¢ are
birational over A%, the natural action of G on pa> : Va2 — A? induces a rational

action on
<p(2) V3 5 A2

On the other hand, since each fiber of »(?) is an elliptic curve, it follows that ¢(?)
is a unique relatively minimal model. Thus this action of G on ¢ : V(2 — A2 is
regular and induces

0@ VG -5 A%)G =T

This is birational to ¢y : Viy — U over U and is isomorphic over U — {s}. Denote
this birational map over U by

[ V- — V(2)/G
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Then, p gives an isomorphism
Vo =o' () 2 VP /G = (6@) 7 (s).

Since (’)VU_%l(s)(KVU) ~ OVU_%l(s) by our assumption (1) and since (¢(2))~1(s) is
of codimension two in a normal variety it follows that

Ove a(Eye a) = Ove ja-

This shows that the action of G on V(?) is Gorenstein. Since each element of G fixes
the origin (0,0) of A%, G stabilizes a smooth elliptic curve E := (¢(2))~1((0,0)). Since
G is also Gorenstein on A?, so is on E. That is, G acts on E as a translation group.
Thus (¢(2))~(s)rea = E/G is a smooth elliptic curve.

Now, in order to complete the first part of (2.7), it is enough to show that u :
Vi -- = V) /G is actually an isomorphism. But, now, this immediately follows from
the facts that Vi has only rational singularities and that V(%) /G is Q—factorial.

If s is a smooth point of S, then we can take G = {1} and then Vi = V(®) over
U = A?. This implies the last half of (2.7). Q.E.D. of (2.7).

The next lemma is a slight generalization of Kollar’s result (in the three dimen-
sional case), which should be known by specialists. However, because of the lack of
suitable references, we give here a brief proof based on the Kollar’s original result.
LEMMA (2.8). Let ¢ : V — S be a fiber space such that

(1) V is a normal projective threefold with only canonical singularities,
(2) S is a normal surface with only Du Val singularities.

Let wy and wg be the dualizing sheaves on V and S. Then, R'p,wy ~ wg.
Assume furthermore that

(3) Ov(Kv) ~ OV and
(4) S is a K3 surface with only Du Val singularities.

Then h'(Oy) = 1.

REMARK. Kolldr proved the first part of (2.8) under the assumption that both V' and
S are smooth ([Kol]).

Proof. We want to reduce our proof to the smooth case.
Consider the following commutative diagram,

v

Vi L v

q{ l«p
S — S

o

where p : S — S is the minimal resolution of S’ and v : V' — V is a resolution of

both the singularities of V and indeterminacy of u~* o (.
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Then Riv,wy = 0 for 4 > 0. Moreover, v,wy = wy because V has only canonical
singularities. Thus, from the Leray spectral sequence

RPo.(Riv,wyr) = RPY (g o v),wy
we get
RPp,wy ~ RP(pov),wyr ~ RP(uo ®),wy.

In particular,
Rlﬁp*WV ~ Rl (/,l, ¢} @)*w‘/r.

On the other hand, the edge sequence of another Leray spectral sequence
RP i (R'®,wy) = RPY (o @), wy
gives an exact sequence
0= R'py(®owyr) = R (o ®)ywyr = piu(R'®uwyr) = R po (P wy).

Note that R%u.(®.wy) = 0 and that R'u.(®.wy) is a torsion sheaf, because p :
S' — S is a birational morphism between surfaces.

On the other hand, since V' is smooth, R'(y o ®).wy is a torsion free sheaf by
[Kol]. Then, chasing the above exact sequence, we get

R (®owy) =0
and
Rl (,u ] ‘b)*wvr = [y (R1<I>*wvr).
Since V' and S’ are smooth, Kolldr’s original result implies
Rl(I)*er >~ Wwgr.
Thus,
RY(p o ®).wyr ~ paws:.

Moreover, since S has only canonical singularities, it follows that

[leWs = Ws.

Thus,
RY(po ®),wyr ~ ws.

Combining these, we get
R'Y(po ®),wyr ~ ws.

This completes the proof of the first part.

We show the second part. Since wy ~ Oy and wg ~ Og, the first part of (2.8)
gives
R0 ~ 0Os.
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Substituting this into the edge sequence of the Leray spectral sequence
HP?(R¢,0Oy) = HPT1(Oy),
we get an exact sequence
0— H' (Os) = H'(Oy) — H°(Os).
This implies
R (Oy) < hH(Os) +h°(0s) =0+ 1 =1.

We show that h'(Oy) > 1. Considering the pullback of the regular two forms by ®
and using Hodge theory, we calculate

h2(Ov1) = R2O(V') > h20(S") = 1.

On the other hand, using the fact that V has only rational singularities and the Serre
duality, we see that

h%(Oy1) = h*(Oy) = h' (Oy).
Combining these, we get the desired inequality h'(Oy) > 1. Q.E.D. of (2.8).

We return back to Key Lemma (2.1). This is now proved by a simple combination
of the previous lemmas.

Proof of Key Lemma.

Set Wy := W — Sing (W) as before and denote the restrictions of ® : X — W and
m:T — W to Wy by
By : Xo =" (Wy) = Wy

and
mo 2 Tp := 7~ (W) — Wp.

Note that ®g is a smooth morphism by (2.4) and 7y is an étale morphism by definition.
We consider the Cartesian product defined by ¢ and =

Xr=XxwT =5 X

o] Js

T — W

™

and its restriction over Wy

(XT)[J =Xy XW, To —— X

! !

To — Wy

Since Wy is smooth and since each morphism in the second diagram is smooth or
étale, it follows that
Sing (X) C @ (W — W),

and
Sing (X1) C 7" (Sing (X)) C (7x 0 ®)™' (W — W) = &' (T — Tp).
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In what follows, we apply several birational modifications on the first diagram
keeping everything in the second diagram invariant.

Since all singularities in the first diagram are supported over W — Wy, we find a
commutative diagram

!
™
X, —— X'

oxr | [~

X — X

X

such that

(1) X' and X7 are smooth,

(2) vx : X' = X is a birational modification only over W — Wy, and that

(3) vx, : X — Xr is a birational modification only over T' — Tj.

Let {E;};cr be the set of all the two dimensional irreducible components of fibers
of ), ;= drovx, : X7 - Xp - T. Set E := X;c1E;. By construction, F is
supported only over T" — Tj.

Cram (2.10).

(1) X7 is not covered by rational curves.
(2) Kx; =Yiera;E; for some non-negative integers a;.
(3) (X7,¢€E) is kit if € > 0 is sufficiently small.

Proof of (2.10). The assertions (1) and (3) are clear. We show the assertion (2). Since
X has only terminal singularities, Sing (X) C X — Xy, and Kx = 0 as a divisor, we
see that
KX/ = EC]'E},
where c; are some positive integers and E; are some irreducible divisors supported in
vt (X — X).
On the other hand, since 7'y : X — X' ramifies only at F, the ramification

formula gives
Kx: = (n,)" (Kx) + Sicrbi Es,

for some non-negative integers b;. Since (7', )*E; are effective divisors supported in
E, substituting the first equality into the second, we get the result. q.e.d. of (2.10).

Now we can apply (2.2) for ®/.: X7. — T to get a fiber space f : Z — T such that

(1) Z has only Q—factorial canonical singularities with Oz (Kz) ~ Oy,
(2) f: Z — T is birational to &7 : X7 — T over T and is isomorphic over Tp,
(3) f: Z — T is an equi-dimensional elliptic fibration.

Recall that T is a K3 surface with only Du Val singularities, and that ®7 is smooth
over Tp.
Now using (2.7) and (2.8), we see that

(4) f71(t)rea is a smooth elliptic curve for each t € T,
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(5) f~1(t) itself is smooth if ¢ is a smooth point of T' (in particular, if ¢ € Tp),
(6) h'(Oz) = 1.

Thus, it follows from (1) and (6) and [Kw2] that

(7)A := Alb (2) is a smooth elliptic curve and the Albanese morphism a : Z — A
is a fiber space.

By (2), the natural action of (g) on ®7 : X7 — T induces a rational action of G
on f : Z — T which is regular over Ty. By virtue of (1) and (4), we can apply the
same argument as in the last part of the proof of (2.7) to conclude

(8) (g) induces a regular action on f: Z — T and
9) (f : Z = T)/(g) is birational to & : X — W and is isomorphic over W, =
To/(g)-

Now these statements (1) - (9) imply the Key Lemma. Q.E.D. of Key Lemma.

§3. LIFTING THE GROUP ACTION ON A FIBER SPACE TO ITS COVERING

In this section, we continue to employ the same notation given at the beginning of
Section 2.

Let f: Z — T be the quasi-product threefold found in (2.1) for a fibered Calabi-
Yau threefold ® : X — W of type I[( K.
Then (f: Z - T)~(p2: E xS — S)/G, where

(1) E is a smooth elliptic curve,

(2) S iseither a (projective) K3 surface with only Du Val singularities or a smooth
Abelian surface, given as (any) fiber of the Albanese morphism a: Z — A,

(3) G is a finite commutative Gorenstein automorphism group of E x S as is
described in Theorem (1.3).

We want to lift the action of (g) on f: Z — T tooneon py : E xS — S in an
equivariant way.

LEMMA (3.1). There is a point 0 on A such that (g) stabilizes a=*(0).

Proof. Since the Albanese morphism is an intrinsically and uniquely defined object,
(g) acts on the Albanese morphism a : Z — A. This induces a fibration

a:Z[(g) — Al(g)-

On the other hand, since X and Z/(g) are birational and since both of them have
only rational singularities, it follows that h'(Oz/(,) = h*(Ox) = 0. This implies
A/(g) = P'. Thus, A9 # ¢. Since A is an elliptic curve, this is equivalent to
A9 # ¢. Hence we can choose such a point 0 in A9. Q.E.D. of (3.1).

Let us take a='(0) as S. Then g induces an action gs := gls : S — S. Since
g acts on the fiber space f : Z — T, (gs) and {g) give an equivariant action on
gr := fls : S = T. Note that ¢r is nothing but the quotient map S — T = S/G.
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LEMMA (3.2). giws = (rwgs, where wg is a nowhere vanishing regular two form on
S, that is, a generator of H*(S,0s(Ky)).

Proof. Let wr be a nowhere vanishing regular two form on 7. Then, wg = ¢jwr is
a nowhere vanishing regular two form on S. Thus,
gsws = g5 © grwr = g © g'wr = qp(Iwr = (JWs.

This implies the result. Q.E.D. of (3.2).
LEMMA (3.3). There is an automorphism ggxs of E x S such that ggxs, gs and g

give an equivariant action on the commutative diagram

ExS 2,49

0 e

z — T
f

where q and q' are natural quotient maps.

Proof. Let us consider the fiber product

ZXTSL)S

n| [or

A — T
f

Define the action of (¢'} on Z x¢ S by
9 Z x7 83 (u,v) = (9(u),gs(v)) € Z xr S.

Then, ¢', (gs) and {g) give an equivariant action on this fiber product.

By the definition of fiber product, there is a surjective morphism v : £ x § —
Z xS which factors through the quotient map ¢: Ex S — Z = (E x S)/G and the
second projection py : E x S — S.

CrLAmM (3.4). v: Ex S — Z xr S is the normalization of Z xr S.
Proof of (3.4). Obvious. q.e.d. of (3.4).

Since normalization is an intrinsically and uniquely defined notion, the action
(¢’ on Z xrp S lifts to the action (grxs) on E x S equivariantly with respect to
v:E xS — Z xrS. This gives a desired action on E x S. Q.E.D. of (3.3).

COROLLARY (3.5). ord(gs) = ord (gexs) = I(:= ord (g)).

Proof. Since gg is a restriction of g, it follows that ord (gs) < ord (g). On the other
hand, since 7 : S — T is surjective and since gg and g induce an equivariant action
on 7, we see that ord (gs) > ord (g). This implies ord (gs) = ord (g). Now it follows
from the construction of ggxs that ord (9gxs) = ord (¢') = ord (g). Q.E.D. of (3.5).
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Define G to be the subgroup of Aut (E x S) generated by G and gz s found in
(3.3). Then G acts on the fiber space py : E x S — S. Thus, there is a (unique) group
homomorphism p : G — Aut (S) such that psoh = p(h)op,. By construction, we have
p(G) = Gs and p(grxs) = gs. Corollary (3.5) shows that p|(s,. ) : (9Exs) = (gs)
is a group isomorphism as is p|q : G — Gg. Set Gs = p(G).

LEMMA (3.6).

(1) Gs is a normal subgroup of Gs.
(2) Gs =Gs % (gs). 5
(3) G is a normal subgroup of G.
(4) G =G % (gpxs)-

(5) p: G — Gg is an isomorphism.

Proof. For the assertion (1), it is enough to show that there is an b’ € Gg such that
gsoh =h'ogs for each h € Gs. Let s € S be a point on S such that gg(s) ¢ S&s.
Using gogr = qr o gs and T = S/Gg, we calculate

grogsoh(s)=goqroh(s)=goqr(s) =qrogs(s).

Thus, for each s € S, there is hy € G such that gs o h(s) = hs o gg(s). Such an h,
is uniquely determined by s because gs(s) € S“s. Thus, we find a continuous map
S — R — (G5 defined by s — h,. Since Gg is discrete, the image must be one point,
say h'. Then, gsoh = h' o g5 over S — g;l(SGS). Taking the closure, we find that
gs oh = h' o gs whole over S. This finishes the proof of (1).

Applying the same argument for Ex S — (E x S)/G = Z (instead of T = S/Gg),
we can also show assertion (3).

We show assertion (2). By (1), we have Gs/Gs = (gs(mod Gs)). Consider the

natural representation G on H°(S,0g(Ks))
¢C:G = C* b C(h)

defined by h*ws = ((h)wg. Since Gg is a Gorenstein automorphism group of S, this
factors L
(:Gs/Gs = (gs(mod Gs)) — C*.

Since ((g9s(mod G's)) = C(gs) = (1 by (3.3), it follows that ord (gg(mod Gs)) > I =
ord (gs). Thus, the natural surjective group homomorphism (gs) — (gs(mod G))
must be isomorphism. This implies the assertion (2).

Finally, we show assertions (4) and (5).

By (3), we see that G/G ~ (grxs(mod G)). Combining this with (3.5), we get

1G = (1G) - (tgpxs(mod G))) < (£G) - (#(9))-
On the other hand, by (2) and (3.5), we have

1Gs = (1Gs) - (8(gs)) = (£G) - (#(9))-

However, since G is an image of G, it follows that

tG > 1Gs.
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Combining these three we get G = $Gg. This implies that the surjective group
homomorphism p : G — G is an isomorphism. Combining this together with (2), we
get G = G % (grxs). This completes the proof. Q.E.D. of (3.6).

From now on, we denote the equivariant actions G and G on the fiber space
ps : Ex S — S simply by G. We also set §j := grxg for consistency of notation.
If no confusion seems to arise, we also identify gs and Gg with § and G (under the
isomorphism p).

The following corollary is an immediate consequence of Lemma, (3.6).

COROLLARY (3.7).

(f:Z->T)/{9g)=(2: ExS—S5)/G.

Thus, the fiber space ® : X — W is birational to (py : Ex S — S)/G over W = S/G
and is isomorphic over Wj.

Now this together with the next lemma and the corollary completes the proof of
Main Theorem (2) modulo impossibility for S to be a smooth Abelian surface.

LEMMA (3.8). Assume that S is a K3 surface with only Du Val singularities. Then,
the action of § on E x S is written as follows:

§:ExS>3(zy)~ (' 2,95(y) € ExS

for an appropriate origin 0 of E.

Proof. Since {g) acts on py : E x S — S, there is a homomorphic map
c¢:S — Aut (E) = E x Aut (E, {0})

defined by s — (p1((z, s)) — p1(g(z, s)))-

On the other hand, since h'(Og) = 0 and S has only Du Val singularities, the
Albanese variety of S is trivial. Thus ¢ must be constant map. That is, § = (g9, 9s)
for some gp € Aut(F). Since X is isomorphic to (E x S)/G over Wy and since
(Ex S)/G — W is equidimensional, Ox (Kx) ~ Ox implies Opxs)a(K pxs)a) =
(’)( ExS)/G- This means G is a Gorenstein automorphism of E x S. In particular,
so is §. Combining this with gtws = (ws, we get gpwe = {I_le. In particular,
E9% + ¢. Now, choosing the origin 0 of E in E9%  we get the desired expressions of
g. This completes the proof of (3.8). Q.E.D.

Combining (3.8) and (3.7), we get
COROLLARY(3.9). Assume that S is a K3 surface with only Du Val singularities.
Then,

(1) the global canonical index I = I(W) of W is either 2,3,4, or 6,
(2) ifv:S"— S is a minimal resolution of S, then the action (§) on E x S lifts
to E x S’ in an equivariant way and ® : X — W is birational to

(p2o(id.-xv): Ex S — 9)/G

over W = S/G and is isomorphic over W,.
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§4. IMPOSSIBILITY FOR S TO BE A SMOOTH ABELIAN SURFACE

We continue to employ the same notation given in the previous sections 2 and 3. In
this section, we show that each surface S (found at the beginning of section 3) is not
a smooth abelian surface if & : X — W is a Calabi-Yau threefold of type IIp K. This
completes the proof of Main Theorem (2).

Thoughout this section, assuming the contrary that S is a smooth abelian surface,
we shall derive a contradiction.

For simplicity, we denote Gg, G and gg by G, G and § respectively. Under this
notation, we have T = §/G, W =T/(g) = S/G and I = ord (g) = ord (j). As before,
we denote by qr : S — T the natural quotient morphism. This has an equivariant
action of (§) and (g). Recall also that all the possibilities of G are listed up in (1.3)(4).

The next Lemma is shown by [02].
LEmMA (4.1). I is either 2, 3, 4, 6, or 12.

By virtue of this Lemma, the next two Claims will give a contradiction.
KEy CrLAM (4.2). I is not divided by 2.
Key CLaM (4.3). I #3.

The following obvious lemma and its corollaries will be frequently used to prove
these claims.

LEMMA (4.4). Let g : S1 — S» be a surjective finite morphism between normal
projective surfaces with Kg, = 0 and Kg, =0. Then g ramifies only at finitely many
points.

COROLLARY (4.5). The quotient map S — W (= S/G) ramifies only at finitely many
points. In particular, S5 is a finite set.

COROLLARY (4.6). Let h be a non-Gorenstein involution in G. Then, S* = ¢. In
particular, if T = 2k is even, then S7° = ¢ and S% = ¢.

Proof. Assuming S" # ¢, we take a point P in S”. Since h is an involution with
h*wg = —wg, it follows that h = diag (—1,1) under appropriate coordinates (z,y) of
S around P. But then h would have a fixed curve (z = 0), contradiction. q.e.d. of
(4.6).

COROLLARY (4.7). If I is either 2, 3, or 4, then TY9 # ¢. If I = pg where p = 2
or 4 and ¢ = 3, then T9" # ¢ and T9" # ¢. Moreover, if I is either 2 or 4, then

(¢ #)T* C Sing (T).

Proof. Since I is the least common multiple of the local canonical indices of W, the
first part of the assertion is obvious. Assume that I is either 2 or 4. The first half
part shows 79 # ¢. Assume the contrary that there is a smooth point @) in 79. Then,
arguing similarly as in (4.6), we see that ¢'/?> = diag(—1, 1) under appropriate local
coordinates around P. Then, g'/? has a fixed curve. On the other hand, Lemma (4.4)
shows T'— W (= T/(g)) has no ramification divisor, contradiction. q.e.d. of (4.7).
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We return back to the key claims (4.2) and (4.3).
Proof of Key Claim (4.2).

Assume the contrary that I = 2k for some integer k. We set h := §*. Then h
is a non-Gorenstein involution on S. Dividing into the following five cases, we shall
derive a contradiction:

Case 1. G ~ Zs or Zs X Zs,
Case 2. G ~ Zg,

Case 3. G ~ 7,

Case 4. G ~ 7y X Lo,

Case 5. G ~ 7y or Ty X Zy4.

Cuase 1. Since g acts on the set B consisting of nine singular points of type Az on
T ((1.3)(4)), (g) acts on g;.'(B). Since g, (B) is either 9 or 27, h has a fixed points.
This contradicts (4.6).

Case 2. Consider the unique singular point @ of type A5 on T' ((1.3)(4)). Then,
q}l(Q) consists of one point, say, P. Since ¢(Q) = @, it follows that §g(P) = P. But
this contradicts (4.6).

Case 3. By (4.7), 79" # ¢. On the other hand, since ¢g* is a non-Gorenstein
involution on T, the same argument as in (4.7) implies that 79" C Sing (7). Let

Q € T9". Then Q is a singular point of type A; and then q;l(Q) consists of one
point, say, P ((1.3)(4)). But then h(P) = P, contradiction.

Case 4. The same argument as in case 3 shows that 79" # ¢ and 79" C Sing (T).
LetQ € T9" . Then, Q is a singular point of type A; and q}l (Q) is written as { P, r(P)}
for some point P and a translation r in G ((1.3)(4)). Since h acts on this set, we have
either h(P) = P or h(P) = r(P). The first equality contradicts (4.6). Consider the
second case. Set h' := roh. Then h*ws = —wg. Since the translation subgroup of G
is just (r) and since h=! or o h is a translation in G (because G is a normal subgroup
of G), it follows that h~' o7 oh € (r) and then (r,h) = (r) x (h) ~ (Z3)?. Thus &’ is
a non-Gorenstein involution with h'(P) = P. But this contradicts (4.6).

Case 5. We treat the following three cases separately:
Case 5a. 3|I, Case 5b. I =4, and Case 5c. I =2.

Case 5a. In this case, I = 6m for some integer m. Set j := §". This is of order
6. Since g acts on the set consisting of 4 singular points of type Az on T ((1.3)(4)),
42 acts on the inverse image of these points. This consists of either 4 or 8 points.
Thus, 52 has a fixed point among these points. Let P be such a fixed point. Then,
j2(P) = P. Since (j%)*ws = (3ws and j2 has at most finite fixed points by (4.5),
an easy coordinate calculation shows that j2 = diag ({3, (?) under appropriate global
coordinates (x,y) around P. Thus, the eigen value of the matrix part of j is in
{¢3,—(3}. Thus, j has a fixed point on S, say Q. Since h = 53, @ is also a fixed point
of h. But this contradicts (4.6).

Case 5b. By (4.7), we can take a point @ in T9. Again by (4.7) and (1.3)(4), @
is either a singular point of type A3 or of type A;.
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If  is a singular point of type As, then ¢7'(Q) is written as {P} (in the case
when G ~ Z4) and {P,r(P)} for a translation r in G (in the case when G ~ Zs X Zy4).
In the first case, we have g(P) = P. But this contradicts (4.6). In the second case,
we have either §(P) = P or g(P) = r(P). Since r is of order two, in each case, we
get h(P) = §*(P) = P, contradiction.

If Q is a singular point of type A, then q;l(Q) is written as {P,u?(P)} (if
G = (u) ~ Zy4) and {P,u%(P),r(P),r ou?(P)} (if G ~ Zy x Z4). In the second case,
r is the unique translation in G and u is some (suitable) generator of G.

In anyway, we have g(P) = P or §(P) = t(P), where ¢ is an involution in G.
Thus, h(P) = §*(P) = P, contradiction.

Case 5c. First consider the case G = (u) ~ Zy4.

Since G = (u) x (§) is of order 8, elementary group theory shows that G is
isomorphic to either

(1) Dg, the dihedral group of order 8, or
(2) Z4 X ZQ.

Assume first that G ~ Dg. Then, § o u is a non-Gorenstein involution. Take a
point @ in TY9. Then, @ is a singular point either of type Az or of type Aj.

If Q is of type Az, then q;l(Q) = {P}, a one point set. But then g(P) = P,
contradiction.

If Q is of type Ay, then ¢7'(Q) is written as {P,u(P)} and § stabilizes this set.
If g(P) = P, then we get the same contradiction as before. If §(P) = u(P), then
gou(P) = P. Since gowu is a non-Gorenstein involution, we again get a contradiction.
In any case, we found a contradiction if G ~ Ds.

Next consider the case when G' &~ Zyx Z», that is, G = (u)x(§). Then (u) ~ G/(j)
acts on Pz : (E x S)/(g) — S/{(g). Note that (E x S)/(g) is also a smooth threefold,
because SK9 = ¢ by (4.6) so that (E x S){9)] = ¢.

Cramm. (E x S/(gHHw] = ¢.

Proof of Claim. Since u is of order 4, it is sufficient to show that

(E x S/(7)" = ¢.

Assume the contrary that P € (E x S/(g))“Q. Set pz(P) = Q. Then u2(Q) =
Q. Thus u? acts on the fiber Eg := (p2)7'(Q). On the other hand, the fiber of
E xS — (E x §/(g)) over @ is written as {R,§(R)} and u? also acts on this set.
If u>(R) = g(R), then u? o g(R) = R on S. But, since u? o § is a non-Gorenstein
involution on S, this contradicts (4.6). Thus u?(R) = R. Let Eg be the fiber of
p2 i E xS — S over R. Then the natural projection E x S — E x S/(g) (of degree
two) induces an isomorphism Er ~ Eq, because Ej(g) is also mapped to Eq. Since
u? gives an equivariant action on this isomorphism and since u? acts on Eg as a
translation of order two by (1.3), we see that u? also acts on Eg as a translation of
order two. Thus Eg; = ¢. But this is absurd, because P € Eq is a fixed point of u?.
g.e.d. of Claim.

Thus Y := ((E x 8)/(g))/(u) = (E x S)/G is also a smooth threefold (with
Oy (Ky) ~ Oy). Since X is birational to Y, X is connected with ¥ by flops. Then
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X is also smooth and 71 (X) ~ 7 (V) ([Ko2]). Thus X has a non-trivial finite étale
covering, because so does Y. But this contradicts our assumption 7{"(X) = {1}.
Therefore, we get a contradiction even in the case G ~ Zj,.

We consider the remaining case G = (t) X (u) ~ Zo X Z4. Reducing to the previous
case G ~ 74, we find a contradiction.

Since the translation group of G is just (t) and since G is a normal subgroup
of G, the same argument as before shows (t) is a normal subgroup of G. Thus
G/(t) ~ (u1) x (1), where u; := u(mod (t)) and g := g(mod (t)). Observe that u; is
of order four and g; is of order two.

On the other hand, since (t) acts on py : E X S — S, we get a new fiber space

P2 (E x 8)/(t) = S/(t),

on which (u1) X (g1) gives an equivariant action. Since (t) is a translation group on
both E x S and S, it follows that (E x S)/(t) is an Abelian threefold and S/(t) is
an Abelian surface. Set Sy := S/(t) and V := (E x S)/(t). Then, T = S1/(u;) and
W =81 /(u1,g1)-

Observe that §iwg, = —wg,, ujws, = wg, and that u; acts on each fiber over
S (# ¢) as a translation of order 4. The last statement follows from (1.3) and a
similar argument as is given in the last claim. Thus we can apply the same argument
as in the previous case (G ~ Z,) for D3 : (E x S)/(t) — S/(t) and S; - T — W to
get a contradiction. This finishes the proof of case 5c.

Now we have completed the proof of (4.2). Q.E.D. of (4.2).

Proof of Key Claim (4.3).

Assuming the contrary that I = 3 and dividing into the following five cases, we
shall derive a contradiction.

Case 1. G~ 7y or Ly X Ly,

Case 2. G ~ 7 or Ly X o,

Case 3. G ~ Zg,

Case 4. G ~ 73,

Case 5. G ~ Zs3 X Zs.

Case 1. Since g acts on the set of singular points of type Az and since this set
consists of 4 points, g has a fixed point, say @, in this set. Then, g acts on q}l(Q).
Since g;'(Q) consists of one or two points, § has a fixed point in ¢;'(Q). Denote
this point by 0. Since §*ws = (3ws, §(0) = 0 and since § has only finitely many
fixed points, we can apply [CC, also O2] to get S ~ Eg3 and § = (2, the scalar
multiplication by (2. On the other hand, the stabilizer of 0 in G is a cyclic group
of order 4. We denote this group by (u). Then u = diag (¢4, (") under appropriate
global coordinates around 0. Set H := (u,g). Then, H C Aut(S,{0}). Moreover
H is a cyclic group of order 12, because § = (3 so that wo § = §owu. In particular
H > —1. But this is impossible by Fujiki’s classification ([Fu, Table 6]).

Case 2. Just by the same argument as in case 1, we see that ¢ has a fixed point
0 (over some singular point of type A; of T') and then S = EZ and g = (5. Set
Stab ¢01(G) = (u). This is a cyclic group of order two and u = diag (-1, —1) under
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appropriate global coordinates around 0. Thus w o g = § o u. Since G gives an
equivariant action on ps : £ x S — S, § and u act on the fiber E := p2_1(0). Since
g is a Gorenstein automorphism of E x S, the matrix part of g on E is (? so that g
acts on E by

Gg:E>z— 3z € E,

if we fix an origin Og of E in E9(# ¢). On the other hand, by (1.3), the action of u
on F is written as
u:E>x—z+P€EeE,

where P € (E); — {0}. Since uo § = jou in G, we calculate
9(x) +9(P) = gou(r) =uog(z) = g(z) + P.
Thus, P € E9 = E%* C (E)3. But this is impossible because (E)3; N ((E)s — {0}) = ¢.

Case 3. Let @ be the unique singular point of type As on T. Then, q;l(Q)
consists of one point, say, 0. Since g(Q) = @Q, it follows that §(0) = 0. Thus, just by
the same argument as before, we get § = (3. Set Stab ;03 (@) = (u). This is a cyclic
group of order 6 and u = diag ((s, ; *) under an appropriate global coordinates (z, %)
around 0. it follows that §ou? = diag(1,(3). Then j o u? has a fixed curve (y = 0),
contradiction.

Case 4. Set G = (u). Since G = (u)x(§) is of order 9, it follows that G = (u) x (§).
Let @ be a point in TY9. Then ]jq;l(Q) is either one or three. If qu(Q) ={P}, a
one point set, then §(P) = P. If qu(Q) = {Pi, P», P3}, then, §(P1) = P; for some
j =1,2, or 3. Since (u) acts on { P, P, P3} transitively, we find that u’(P;) = P; for
some i. Set h :=u~ %o g. Then, h(P;) = P;. Note that h is of order 3 and satisfies
h*ws = (sws and G = (u) x (h). In addition, h and g give an equivariant action on
gr : S — T. Thus, we may replace § by h in the second case. Then g(P;) = P, in
each case. We regard this point P; as an origin of S and denote it by Og.

Since ¢ has only isolated fixed points ((4.5)), the same argument as before shows
that S = EZ, and § = ¢3. This implies (8)7 N (S)* = ¢. (In fact, otherwise, choosing
a point P in (S)9 N (S)*, we find appropriate coordinates (z,y) around P such that
u = diag ((3,¢;"). Then, jou = diag(1,(3) has a fixed curve (y = 0), contradiction.)

Since @ is a Gorenstein automorphism of E x S and gives an equivariant action on
p2: Ex S — S, §induces an automorphism on the fiber E := p,!(05) whose matrix
part is (5. Thus E = F¢, and then E x S = E? . Moreover, choosing an origin 0 of
Ein E7, we get § = (5 on E. Now, taking 0 := (0s,0g) as an origin of £ x § = E,
we have § = (3 on E} . Let us consider the quotient threefolds (Ec,)®/(g) and its
crepant resolution v : Y — (E¢,)%/(3). Note that (u) ~ G/(g) acts on (F¢,)?/(§)-
Note also that v is unique. (In fact, one of such v is given by replacing each of 27
singular points of type 1/3(1,1,1) of (E¢,)*/(g) by P? and then has no flopping curves
in the exceptional divisor.) Thus, (u) induces a regular action on Y.

CLAIM. (u) acts freely on Y.

Proof of Claim. Since ord (u) =
the contrary that P € Y*. Pu

it is sufficient to show that Y% = ¢. Assume
t =
quotient map E} — (E¢)*/(g)

3,
:= v(P). Then u(Q) = Q. Denote the natural
by 7. Then, @ ¢ 7((EZ)?). (In fact, otherwise,
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771(Q) = {R}(C (E})?), a one point set. Thus, u(R) = R and §(R) = R on (E¢,)®.
Set R’ := pa(R). Then, u(R') = R’ and §(R') = R', because G gives an equivariant
action on py : E x S — S. But this contradicts (5)7 N (S)* = ¢.)

Thus, 7 1(Q) consists of three points, say, Ry, Re and R3. Since u(Q) = @, u acts
on {Ry, Ry, R3}. Since (u) acts freely on Ega by (1.3), we may assume without loss of
generality that u(R;) = Ra. On the other hand, {R;, R>, R3} is the orbit space of Ry
by (g), it follows that §'(R;) = R» for some i = 1,2. Set again R’ := po(R;). Then,
G(R") = u(R")(= p2(Rz2)) so that u ! o g*(R') = R'. Since the matrix part of u?
is diag (G, (5 1) under some appropriate global coordinates around R', we calculate
u™l o gt = diag(1,¢3). Thus u~' o §% has a fixed curve (y = 0), contradiction. q.e.d.
of Claim.

By this claim Y/(u) is a smooth threefold with Oy () (Ky/(u)) ~ Oy/(yy and with
non-trivial étale covering. On the other hand, by construction, our original Calabi-
Yau threefold X is birational to Y and then is connected with Y by flops. Thus X is
also smooth and 7 (X) ~ m(Y) by [Ko2]. This implies that X has also non-trivial
finite étale covering. But this contradicts our assumption 729(X) = {1}.

Case 5. As in case (5¢) in Claim (4.2), reducing to the previous case 4, we
find a contradiction. Set G = (t) x (u), where t is a translation of order 3. Since
the translation group of G is just (), and G is a normal subgroup of G, the same
argument as in case 4 in Claim (4.2) implies that (¢) is a normal subgroup of G. Thus,
G/(t) = (uy) x (§1) ~ (Z3)?, where u; := u(mod (t)) and g := §(mod (t)).

By the way, since (t) acts on py : E x S — S, we get a new fiber space

P2 (E x 8)/(t) = S/(t),

on which (u1) x (g1) gives an equivariant action. Since (t) is a translation group on
both Ex S and S, (E x S)/(t) is an Abelian threefold and S/(t) is an Abelian surface.
Set Sy := S/(t) and V := (E x S)/(t). Then, T = S1/(u1) and W = Sy /(u1, §1)-
Moreover §iws, = (3ws, while ujws, = wg,. Now applying the same argument as in
case 4 for i — T — W, we find that Sy = EZ, and g1 = (3 (after replacing g1 by

ul o g so that S9 # ¢ and then fixing the origin 0 of S; in S7'(# ¢)). Note that
(u1,§1) gives a Gorenstein action on V. Then letting £ := p3~(0) and applying the
same argument as in case 4, we see that E = E, and the action of §; on E is §; = (3
(after fixing an origin O of E in E9'(# ¢)). Thus, regarding Oz as an origin 0 of V,
we get g1 = (7 under appropriate global coordinates around 0. This together with
[CC also O2] implies V = Egg. Now again applying the same argument as in case
4 for p3 : V. — Sp, we finally get a contradiction that X is birational to a smooth
threefold Y with non-trivial finite étale covering.

Now this completes the proof of Claim (4.3).

Now we are done. Q.E.D. of Main Theorem (2).
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