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Abstract. According to the numerical Iitaka dimension �(X;D) and c

2

(X) �

D, �bered Calabi-Yau threefolds �

jDj

: X ! W (dimW > 0) are coarsely

classi�ed into six di�erent classes. Among these six classes, there are two

peculiar classes called of type II

0

and of type III

0

which are characterized

respectively by �(X;D) = 2 and c

2

(X) � D = 0 and by �(X;D) = 3 and

c

2

(X) � D = 0. Fibered Calabi-Yau threefolds of type III

0

are intensively

studied by Shepherd-Barron, Wilson and the author and now there are a

satisfactory structure theorem and the complete classi�cation. The purpose

of this paper is to guarantee a complete structure theorem of �bered Calabi-

Yau threefolds of type II

0

to �nish the classi�cation of these two peculiar

classes. In the course of proof, the log minimal model program for threefolds

established by Shokurov and Kawamata will play an important role. We shall

also introduce a notion of quasi-product threefolds and show their structure

theorem. This is a generalization of the notion of hyperelliptic surfaces to

threefolds and will have other applicability, too.

1991 Mathematics Subject Classi�cation: Primary: 14J, secondary 14D.

Introduction

Let us start this introduction by recalling a global picture of �bered Calabi-Yau

threefolds known at the present and then state the Main Theorem precisely.

Throughout this paper, by a Calabi-Yau threefold, we mean a normal projective

complex threefold X with only Q�factorial terminal singularities (so that isolated)

and with O

X

(K

X

) ' O

X

and �

alg

1

(X) = f1g. The last condition is equivalent to

�

alg

1

(X � SingX) = f1g, because the local fundamental group of three dimensional

terminal Gorenstein singularities is trivial ([Kw3]). This also implies h

1

(O

X

) = 0

([O1]). We de�ne

c

2

(X) �D := c

2

(X

0

) � �

�

(D)

for any resolution � : X

0

! X of Sing (X).
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It is known by Miyaoka that c

2

(X) �D is non-negative if D is nef ([Mi]).

A surjective morphism � : X ! W is called a �bered Calabi-Yau threefold if X

is a Calabi-Yau threefold, W is a normal projective variety (of positive dimension)

and � has connected �bers. Note that � is nothing but �

jDj

if D is the pull back of

(any) very ample divisor H on W .

Fibered Calabi-Yau threefolds �

jDj

: X ! W are divided into six classes by the

numerical invariants �(X;D) and c

2

�D:

Type I

0

: �(X;D) = 1 and c

2

�D = 0; Type I

+

: �(X;D) = 1 and c

2

�D > 0;

Type II

0

: �(X;D) = 2 and c

2

�D = 0; Type II

+

: �(X;D) = 2 and c

2

�D > 0;

Type III

0

: �(X;D) = 3 and c

2

�D = 0; Type III

+

: �(X;D) = 3 and c

2

�D > 0.

The following (more or less tautological) coarse classi�cation is proved in [O1].

Theorem 1 ([O1]). Each class of �bered Calabi-Yau threefolds �(= �

jDj

) : X !W

de�ned above is characterized as follows.

Type I

0

: General �bers are smooth Abelian surfaces and W = P

1

,

Type I

+

: General �bers are smooth K3 surfaces and W = P

1

,

Type II

0

: General �bers are smooth elliptic curves and W is a normal projective

rational surface with only quotient singularities and with K

W

� 0,

Type II

+

: General �bers are smooth elliptic curves and W is a normal projective

rational surface with only quotient singularities and with K

W

+ � � 0 for some

non-zero e�ective Q-divisor � such that (W;�) is klt,

Type III

0

: � is a birational morphism and W is a normal projective threefold with

only canonical singularities and with O

W

(K

W

) ' O

W

and c

2

(W )(:= �

�

c

2

(X)) = 0

as a linear form on Pic(W ),

Type III

+

: � is a birational morphism and W is a normal projective threefold with

only canonical singularities and with O

W

(K

W

) ' O

W

and c

2

(W ) 6= 0.

Moreover, if � : X ! W is a �bered Calabi-Yau threefold of type II

0

and H is

a general very ample divisor on W , then the induced elliptic surface �

�1

(H) ! H

has no singular �bers while �

�1

(H)! H has at least one singular �ber composed of

rational curves if � : X !W is of type II

+

.

Theorem 1 shows that �bered Calabi-Yau threefolds of type III

0

or of type II

0

have rather special nature.

The following two theorems give a complete picture of �bered Calabi-Yau three-

folds of type III

0

.

Theorem 2 ([SW]). Let � : X ! X be a �bered Calabi-Yau threefold of type III

0

.

Then, there exist an Abelian threefold A and a �nite Gorenstein automorphism group

G of A such that

(1) A

[G]

is a non-empty �nite set, and

(2) X = A=G:
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Theorem 3 ([O3]). Two �ber spaces �

3

: X

3

! X

3

and �

7

: X

7

! X

7

de�ned in

the following (1) and (2) are �bered Calabi-Yau threefolds of type III

0

.

(1) Let E

�

3

be the elliptic curve with period �

3

:= exp (2�i=3). Setting X

3

:=

E

3

�

3

=hdiag (�

3

; �

3

; �

3

)i, we de�ne �

3

: X

3

! X

3

to be a unique crepant (toric)

resolution of X

3

.

(2) Let A

7

be the Jacobian threefold of the Klein quintic curve C := (x

0

x

3

1

+

x

1

x

3

2

+ x

2

x

3

0

= 0) � P

2

[x

0

:x

1

:x

2

]

and g

7

the automorphism of A

7

induced by

the automorphism of C given by [x

0

: x

1

: x

2

] 7! [x

1

0

: x

2

1

: x

4

2

]. Setting

X

7

:= A

7

=hg

7

i, we de�ne �

7

: X

7

! X

7

to be a unique crepant (toric)

resolution of X

7

.

Conversely, any �bered Calabi-Yau threefold of type III

0

is isomorphic to either �

3

:

X

3

! X

3

or �

7

: X

7

! X

7

as �ber spaces.

In particular, there are exactly two �bered Calabi-Yau threefolds of type III

0

and

both of them are smooth and rigid.

Now it is interesting to study another peculiar class of �bered Calabi-Yau three-

folds called of type II

0

.

Base surfaces W of �bered Calabi-Yau threefolds � : X ! W of type II

0

are

classi�ed into two classes by the global canonical covering � : T ! W , for which we

have either

(1) T is a smooth Abelian surface, or

(2) T is a (projective) K3 surface with only Du Val singularities.

In case (1) (resp. (2)), a �bered Calabi-Yau threefold � : X !W of type II

0

is called

of type II

0

A (resp. of type II

0

K).

The following theorem gives a complete classi�cation of �bered Calabi-Yau three-

folds of type II

0

A.

Theorem 4 ([O2]).

(1) Let �

3

: X

3

! E

3

�

3

=diag (�

3

; �

3

; �

3

) be as in Theorem 3 and p : X

3

!

E

2

�

3

=diag (�

3

; �

3

) the natural map given by the composite of �

3

and the natural

projection p

12

: E

3

�

3

=diag (�

3

; �

3

; �

3

)! E

2

�

3

=diag (�

3

; �

3

). Then, any composite

of 
ops f : X

3

� �� ! X

0

3

along curves in p

�1

(Sing (E

2

�

3

=diag (�

3

; �

3

))) gives a

�bered Calabi-Yau threefolds p � f

�1

: X

0

3

! E

2

�

3

=diag (�

3

; �

3

) of type II

0

A.

In this case, E

2

�

3

is nothing but the global canonical cover of the base surface

E

2

�

3

=diag (�

3

; �

3

).

(2) Conversely, every �bered Calabi-Yau threefolds of type II

0

A is obtained by

the above process up to isomorphisms as �ber spaces. In particular, every

�bered Calabi-Yau threefolds of type II

0

A is smooth and rigid. Moreover,

there are exactly 14 di�erent �bered Calabi-Yau threefolds of type II

0

A up to

isomorphism as �ber spaces.

The purpose of this paper is to show the following structure theorem of �bered

Calabi-Yau threefolds of type II

0

K. This theorem tells us how to construct all the

�bered Calabi-Yau threefolds of type II

0

K.
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Main Theorem. Let us prepare

(i) a smooth elliptic curve E with a �xed origin 0,

(ii) a projective K3 surface S with only Du Val singularities and its minimal

resolution � : S

0

! S, and

(iii) two groups

G 2 ff1g;Z

2

;Z

3

;Z

4

;Z

5

;Z

6

;Z

7

;Z

8

; (Z

2

)

2

; (Z

3

)

2

; (Z

4

)

2

;Z

2

�Z

4

;Z

2

�Z

6

g;

and

hgi ' Z

I

2 fZ

2

;Z

3

;Z

4

;Z

6

g;

such that

~

G := G o hgi (semi-direct product) acts faithfully on both E and S (and

then on S

0

and E � S

0

) in such a way that

(iv) G 3 a : E � S

0

! E � S

0

; (x; y) 7! (x + a

E

; a

S

0

(y)) with a

E

2 (E)

ord (a)

and

a

�

S

0

!

S

0

= !

S

0

, where !

S

0

is a nowhere vanishing regular 2 form on S

0

,

(v) g : E � S

0

! E � S

0

; (x; y) 7! (�

�1

I

x; g

S

0

(y)) with g

�

S

0

!

S

0

= �

I

!

S

0

, and

(vi) (S

0

)

[

~

G]

� Exc(�) except for �nitely many points in (S

0

)

[

~

G]

, that is, (S)

[

~

G]

is a

�nite set.

Note that

~

G is a �nite Gorenstein automorphism group of E � S

0

. Let

� : Y (E; S;

~

G)! (E � S

0

)=

~

G

be a crepant resolution (whose existence is now guaranteed by Roan [Ro]) and

p : Y (E; S;

~

G)! S=

~

G

the natural projection given by the composite of � : Y (E; S;

~

G) ! (E � S

0

)=

~

G,

p

2

: (E � S

0

)=

~

G! S

0

=

~

G, and �=

~

G : S

0

=

~

G! S=

~

G.

Then,

(1) any composite of 
op f : Y (E; S;

~

G) � �� ! Y

0

along curves in p

�1

(Sing (S=

~

G))

gives a �bered Calabi-Yau threefold p�f

�1

: Y

0

! S=

~

G of type II

0

K provided

that �

alg

1

(Y ) = f1g. In this case S=G gives the global canonical cover of the

base space S=

~

G.

(2) Conversely, every �bered Calabi-Yau threefold of type II

0

K is obtained by

the above process for some triplet (E; S;

~

G) satisfying the conditions (i)-(vi)

up to isomorphisms as �ber spaces. In particular, every �bered Calabi-Yau

threefold of type II

0

K is smooth.

This together with Theorems 2, 3 and 4 will complete the structure theorem of

the two peculiar classes of �bered Calabi-Yau threefolds called of types II

0

and III

0

.

Remark. Investigating the actions of G and hgi on E, we easily see that

(1)

~

G is uniquely determined by G and hgi as an abstract group, and

(2) among 52 possibilities of (G; hgi) in the Main Theorem, the following 18 com-

binations do not occur:

(Z

4

;Z

3

), (Z

5

;Z

3

), (Z

6

;Z

3

), (Z

8

;Z

3

), (Z

2

�Z

6

;Z

3

), (Z

2

�Z

8

;Z

3

),

(Z

3

;Z

4

), (Z

4

;Z

4

), (Z

6

;Z

4

), (Z

7

;Z

4

), (Z

2

�Z

8

;Z

4

),

(Z

2

;Z

6

), (Z

4

;Z

6

), (Z

5

;Z

6

), (Z

6

;Z

6

), (Z

8

;Z

6

), (Z

2

�Z

6

;Z

6

), (Z

2

�Z

8

;Z

6

):
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Remark. There are examples of non-rigid �bered Calabi-Yau threefolds of type II

0

K

and the number of �bered Calabi-Yau threefolds of type II

0

K is not �nite any more

([O1]).

Remark. It is interesting to compare Theorems 2, 3, 4 and main theorem with the

so called Bogomolov decomposition theorem (see for example [Bo]). These look very

similar, while our proof is free from the Bogomolov decomposition theorem.

The Main Theorem and Theorem 4 immediately imply

Corollary. Let � : X !W is a �bered Calabi-Yau threefold of type II

0

. Then the

global canonical index of W is either 2, 3, 4 or 6.

Corollary. Let � : X ! W be a �bered Calabi-Yau threefold of type II

0

K (resp.

of type II

0

A). Then, there is a composite of 
ops Y ! W of � : X ! W over W

such that Y has at least two di�erent �ber space structures, Y ! W of type II

0

K

(resp. of type II

0

A) and Y ! P

1

of type I

+

(resp. of type I

0

).

Very little is known for a �bered Calabi-Yau threefold of type I

0

, that is, a Calabi-

Yau threefold with an Abelian �bration. However, our main theorem and Theorem 4

show

Corollary. Let X be a Calabi-Yau threefold with at least two di�erent Abelian

�brations. Then, X is a Calabi-Yau threefold described as in either the Main Theorem

(2) or Theorem 4(2). In particular, X is smooth and birational to either a quotient

of an Abelian threefolds or that of the product of a K3 surface and an elliptic curve.

In fact, if �

jD

i

j

: X ! P

1

(i = 1; 2) are two di�erent Abelian �brations on X ,

then �

jm(D

1

+D

2

)j

: X !W is of type II

0

for some m.

The outline of this paper is as follows.

In section 1, we introduce the notion of quasi-product threefolds ((1.1)) and show

their structure theorem ((1.3)). This plays an important role for our proof of the

Main Theorem.

Sections 2 - 4 are devoted to prove the Main Theorem. Since Main Theorem (1)

is quite clear, we prove only Main Theorem (2).

Let �

T

: X

T

:= X�

W

T ! T be the base change of a �bered Calabi-Yau threefold

� : X ! W of type II

0

K to the global canonical cover � : T ! W . Since � always

has a two dimensional �bers ([O1]), X

T

has very bad singularities and �

T

itself is a

very complicated map in general.

In section 2, we apply the log minimal model program established by Shokurov

and Kawamata or Koll�ar et al. [Sh] and [Kw4] (also [Ko3]) to �nd a good birational

(canonical) model f : Z ! T of �

T

: X

T

! T over T such that

(1) Gal(T=W ) := hgi acts regularly on f : Z ! T and

(2) � : X !W is birational to the quotient (f : Z ! T )=hgi.

Moreover applying the result in section 1, we show that there are a smooth elliptic

curve E, a normal projective surface S which is either an Abelian surface or a K3

surface with only Du Val singularities, and a �nite automorphism group G of the �ber

space p

2

: E � S ! S such that (f : Z ! T ) = (p

2

: E � S ! S)=G.

Documenta Mathematica 1 (1996) 417{447



422 Keiji Oguiso

In section 3, we show that the action of hgi on f : Z ! T lifts to that on its

covering p

2

: E � S ! S in an equivariant way. This is a rather special phenomenon,

because a composite of Galois extensions is not Galois in general.

Till section 3, the main part of our proof of the Main Theorem is completed. It

remains only to show the impossibility for S to be a smooth Abelian surface. This

problem is treated in section 4. This requires our assumption �

alg

1

(X) = f1g and

forces rather minute analysis of automorphism groups of an Abelian surface.
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Notation and Convention

Throughout this paper, we work over the complex number �eld C .

We will employ standard notion and notation in minimal model program ([KMM]

or [Ko3]) freely.

By a minimal threefold, we mean a normal projective threefold V with only

Q�factorial terminal singularities and with nef canonical (Weil) divisor K

V

.

A surjective morphism � : V ! W is said to be relatively minimal if V has only

Q�factorial terminal singularities and the canonical divisor K

V

is relatively nef with

respect to �.

We often use the notion of klt (Kawamata log terminal) given in [Ko3]. This is

same as the notion of log terminal in [KMM].

By a �ber space on a normal projective variety V , we mean a surjective morphism

� : V ! W to a normal projective variety W with connected �bers. Note that �

is not equi-dimensional in general. By �

�1

(w) (w 2 W ), we denote the scheme

theoretic �ber over w. We denote its reduction by �

�1

(w)

red

. This is in some sense

a set theoretical �ber.

Two �ber spaces � : V ! W and �

0

: V

0

!W

0

are said to be isomorphic if there

are isomorphisms F : V ! V

0

and f :W !W

0

such that �

0

� F = f ��.

For two morphisms � : V ! W and � : T ! W , we sometimes denote natural

morphisms V �

W

T ! T and V �

W

T ! V by �

T

: V

T

! T and �

V

: V

T

(= T

V

)! V

respectively.

The primitive n�th root of unity exp(2�i=n) is denoted by �

n

.

We denote the cyclic group of order n by Z

n

.

The elliptic curve with period � 2 H is written as E

�

.

The n�torsion group of an Abelian variety A with origin 0 is denoted by (A)

n

.

By global coordinates around a point P of an n�dimensional Abelian variety A, we

mean those of its universal cover C

n

or, equivalently, those of the tangent space T

A;P

.

For a faithful group action of G on a variety V , we set

V

[G]

:= fx 2 V j 9g 2 G� f1g; g(x) = xg;

while,

H

G

:= fv 2 H j 8g 2 G; g

�

(v) = vg

for any cohomology group H of V .
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Similarly, for an automorphism g of a variety V , we set

V

g

:= fx 2 V j g(x) = xg:

An equivariant action of a �nite group G on a �bration � : V ! W induces a

new �bration �(modG) : X=G ! W=G. We sometimes abbreviate this �bration by

(� : V !W )=G.

We say that G acts on � : V ! W over W if the action of G is equivariant and

is trivial on W .

An automorphism group G of a variety V with O

V

(K

V

) ' O

V

is called Gorenstein

if the action of G on H

0

(V;O

V

(K

V

)) is trivial, that is, all elements g of G satisfy

g

�

!

V

= !

V

for a generator !

V

of H

0

(V;O

V

(K

V

)).

For the automorphism group Aut (V ) of a variety V and a subset B in V , we

often consider the subgroup fg 2 Aut (V ) j g(B) = Bg: We denote this group by

Aut (X;B). For example, if A is an Abelian variety with origin 0, then Aut (A; f0g)

is nothing but the so called Lie automorphism group of A.

x1. Quasi-product threefolds

In this preliminary section, we shall introduce the notion of quasi-product threefolds

and prove their structure theorem (Theorem (1.3)). This is a rather wide generalisa-

tion of the notion of hyperelliptic surfaces to threefolds.

Definition (1.1). A normal projective threefold V with only rational singularities

is called a quasi-product threefold with distinguished morphisms a and f if

(1) V has a �ber space structure a : V ! A over a smooth elliptic curve A,

(2) V has a �ber space structure f : V ! T over a normal projective surface T

with only rational singularities and with H

1

(O

T

) = 0 such that f

�1

(t)

red

is

a smooth elliptic curve for any t 2 T , and that f

�1

(t) itself is smooth except

at most �nitely many points t 2 T .

Example (1.2). Let S be a normal projective surface with only rational singularities

and E a smooth elliptic curve. Assume that a �nite group of translations G of E

acts faithfully on S in such a way that S

[G]

is �nite and H

1

(O

S

)

G

= 0. Then

the quotient threefold (E � S)=G is a quasi-product threefold with distinguished

morphisms p

1

: (E � S)=G! E=G and p

2

: (E � S)=G! S=G.

Conversely, we shall show

Theorem (1.3). Let V be a quasi-product threefold with two distinguished mor-

phisms a : V ! A and f : V ! T . Let S be a general �ber of a.

Then, there exist an elliptic curve E and a �nite subgroup G � E, that is, a �nite

group of translations of E (and then is isomorphic to either Z

m

or Z

n

� Z

m

with

(njm)) such that

(1) there is an injective homomorphism � : G! Aut (S),

(2) V = (E � S)=G under the (free) action of G on E � S de�ned by

G 3 g : E � S 3 (u; v) 7! (u+ g; �(g)v) 2 E � S;
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(3) two distinguished morphisms a : V ! A and f : V ! T are given by the

natural projections

p

1

: (E � S)=G! E=G

and

p

2

: (E � S)=G! S=�(G)

respectively.

As a result, S can be replaced by any �ber of a. We set G

S

:= �(G)(' G).

Moreover, if O

V

(K

V

) ' O

V

, then,

(4) any �ber S of a is either a K3 surface with only Du Val singularities or a

smooth Abelian surface,

(5) G

S

is a �nite Gorenstein automorphism of S,

(6) if S is a K3 surface with only Du Val singularities, then S

[G

S

]

is a non-empty

�nite set and G

S

(' G) is isomorphic to either one of the following groups;

f1g, Z

2

, Z

3

, Z

4

, Z

5

, Z

6

, Z

7

, Z

8

, Z

2

�Z

2

, Z

2

�Z

4

, Z

2

�Z

6

, Z

3

�Z

3

, or Z

4

�Z

4

,

(7) if S is a smooth Abelian surface, then S

[G

S

]

is a non-empty �nite set and

G

S

(' G) is isomorphic to either one of the following groups;

f1g, Z

2

, Z

3

, Z

4

, Z

6

, or Z

2

�Z

2

, Z

2

� Z

4

, Z

3

�Z

3

.

In addition, if G

S

' Z

m

, then G

S

� Aut (S; f0g) for an appropriate origin 0

of S, while, if G

S

' Z

n

� Z

m

(njm), then Z

n

� (S)

n

and Z

m

� Aut (S; f0g)

for an appropriate origin 0 of S. Moreover, Sing (S=G

S

) is described as follows

for each G

S

([Kt]).

(G

S

; Sing (S=G

S

)) = (Z

2

; 16A

1

); (Z

2

�Z

2

; 16A

1

); (Z

3

; 9A

2

); (Z

3

�Z

3

; 9A

2

)

(Z

4

; 4A

3

+ 6A

1

); (Z

2

�Z

4

; 4A

3

+ 6A

1

); (Z

6

; A

5

+ 4A

2

+ 5A

1

):

Remark. Let � : S

0

! S be the minimal resolution of S. Then G induces an

equivariant free action on id � � : E � S

0

! E � S. The induced morphism (E �

S

0

)=G! (E � S)=G gives a resolution of (E � S)=G.

Remark. Our proof given here basically follows the argument of Bombieri and Mum-

ford for hyperelliptic surfaces([BM]). However, since we work at threefolds, we should

keep the following two essential di�erences in mind:

(1) f may not be 
at over T ,

(2) three dimensional relatively minimal models are not unique among their bi-

rational models (even if they exist) so that rational actions on a relatively

minimal model are not necessarily regular in general.

Proof. Set B := ft 2 T j either f

�1

(t) is not reduced or T is singular at tg, and denote

C

t

:= f

�1

(t)(t 2 T ) and S

x

:= a

�1

(x) (x 2 A). By our assumption, B is a �nite set.

Let us �x a general point 0 2 A and regard this point as an origin of A. Set S := S

0

.

Then S is a normal surface with only rational singularities. Put n := (C

t

� S). This

is independent of t 2 T � B (because T � B is smooth and f j

f

�1

(T�B)

is a smooth

morphism over T �B.)
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Claim (1.4). a

t

:= aj

C

t

: C

t

! A is surjective for each t 2 T � B. In particular, a

t

is an isogeny of elliptic curves of degree n := (C

t

� S) for each t 2 T � B (and then

n > 0).

Proof of Claim (1.4). Assume the contrary that a(C

t

) is a point on A for some t 2

T �B. Then, a(C

t

0

) must be a point for every t

0

2 T �B because f is 
at over T �B.

Thus, a induces a morphism a : T � B ! A. This gives a rational map a : T � � ! A

with a = a�f . Let T

0

! T be a resolution of both singularities of T and indeterminacy

of a. Since T has only rational singularities, we have h

1

(O

T

0

) = h

1

(O

T

) = 0. Thus,

a��(T

0

) is a point. Hence a is a morphism and a(T ) is a point. Then, a(V ) would be

a point because a = a � f . But this contradicts the surjectivity of a. q.e.d. for (1.4).

Let t be an arbitrary point on T � B. Then, by (1.4), A acts on C

t

via the

composite of the group homomorphism A ' Pic

0

(A)! Pic

0

(C

t

) given by a

�

t

and the

natural action of Pic

0

(C

t

) on C

t

. More concretely, this action is written as

A 3 x : C

t

3 P 7! P + x

1

+ :::+ x

n

� 0

1

� :::� 0

n

2 C

t

;

where fx

1

; :::; x

n

g := a

�1

t

(x) = C

t

\ S

x

and f0

1

; :::; 0

n

g := a

�1

t

(0) = C

t

\ S. Note

that f has a local section over T � B. Thus, gluing these together, we get a regular

action of A on [

t2T�B

C

t

= f

�1

(T �B) over T �B. This gives a rational action on

V over T . But, since the possible indeterminacy f

�1

(B) of this action on V consists

of elliptic curves (then no rational curves) and since V has only rational singularities,

this action of A on V must be regular. Let us denote this action by � : A� V ! V .

By construction, � stabilizes each �ber of f . Set � := �j

A�S

: A � S ! V . Since a

t

is an isogeny, we have

a

t

(P + x

1

+ :::+ x

n

� 0

1

� :::� 0

n

) = a

t

(P ) + nx

for t 2 T �B and x 2 A. So, once we de�ne a new action of A on A by

A 3 x : A! A; y 7! y + nx;

that is, by n � (translation), then A induces an equivariant action on the �bration

V � f

�1

(B) ! A. By the same reason as before, this action of A is extended to an

equivariant regular action on the whole space a : V ! A.

By de�nition, we have x(S)(= x(S

0

)) = S

nx

(x 2 A). In particular, � : A�S ! V

is surjective. Moreover, the action of the n�torsion group (A)

n

of A on V stabilizes

S = S

0

. This induces a group homomorphism � : (A)

n

! Aut (S).

The following claim ([BM]) is now proved formally.

Claim (1.5). Let (x; v) and (x

0

; v

0

) be points on A�S. Then, the following (1) and

(2) are equivalent to one another.

(1) �(x; v) = �(x

0

; v

0

);

(2) (x; v) and (x

0

; v

0

) are in the same orbit of the action

(A)

n

3 k : A� S ! A� S; (x; v) 7! (x � k; �(k)v):
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Proof of Claim (1.5). Since �(x � k; �(k)v) = �(x � k; �(k; v)) = �(x � k + k; v) =

�(x; v), (2) implies (1). We prove the converse. Since �(x; v) 2 S

nx

and �(x

0

; v

0

) 2

S

nx

0

, it follows that nx = nx

0

, or equivalently, k := x�x

0

2 (A)

n

. We may show that

�(k)(v) = v

0

. Using �(x; v) = �(x

0

; v

0

), that is, �(x; v) = �(x

0

; v

0

), we calculate

v

0

= �(�x

0

; �(x

0

; v

0

)) = �(�x

0

; �(x; v)) = �(x� x

0

; v):

This is nothing but the desired equality, �(k)(v) = v

0

. q.e.d. for (1.5).

By (1.5), we get V = (A � S)=(A)

n

. Moreover, just by construction, we see that

f : (A � S)=(A)

n

! T factors through the natural projection p

2

: (A � S)=(A)

n

!

S=(A)

n

. In fact, f factors through p

2

at least over T �B. But, since B is �nite and

S=(A)

n

is normal, this is so over the whole T . Let � : S=(A)

n

! T be the induced

morphism. Since both f and p

2

have only one dimensional connected �bers, � must

be a �nite birational morphism. Thus, by the Zariski main theorem, � is isomorphism

and then f = p

2

under the identi�cation T = S=(A)

n

. Similarly, a : (A�S)=(A)

n

! A

factors through p

1

: (A� S)=(A)

n

! A=(A)

n

= A. Now the equality a = p

2

is shown

by the same argument as before.

It only remains to make � injective to complete the �rst half part of (1.3). But this

is done as follows. Let G = (A)

n

=Ker �. Then, (A � S)=(A)

n

= (A=(Ker �) � S)=G

and A=(A)

n

= (A=Ker �)=G, in which G acts on translation group of an elliptic curve

A=Ker �. Now replacing A, (A)

n

and � by E = A=(Ker �), G, and the injection

� � (�1) : G ! Aut (S), we are done. Here we will compose (�1) only to change the

sign � in (1.5) into + as in (1.3).

From now on, we shall prove the latter half part of (1.3). It is obvious that S

is either a K3 surface with only Du Val singularities or a smooth Abelian surface.

Moreover, since G acts on E as a translation group and O

V

(K

V

) ' O

V

, it follows

that G

S

must be a Gorenstein automorphism group of S. In the rest we denote G

S

simply by G if no confusion seems to arise.

Assume �rst that S is a K3 surface with only Du Val singularities. Let S

0

! S

be the minimal resolution of S. Then G gives a commutative Gorenstein action on

S

0

. Now the result follows from the Nikulin's classi�cation ([Ni]). Note that two

groups (Z

2

)

3

and (Z

2

)

4

in his list are excluded because G is isomorphic to either Z

n

or Z

n

� Z

m

(njm).

Finally, assuming that S is a smooth Abelian surface, we show that G satis�es

the condition in (1.3)(7). Since G is a �nite Gorenstein automorphism group of

S with T = S=G and since h

1

(T;O

T

) = 0, it follows that S

[G]

is a non-empty

�nite set. Choose an appropriate origin 0 of S and identify S with its translation

automorphism group. Set Aut

0

(S) := f� 2 Aut (S)j�

�

!

S

= !

S

g, Aut

0

(S; f0g) :=

f� 2 Aut

0

(S)j�(0) = 0g, where !

S

is a non-zero global regular two form on S.

Then, Aut

0

(S) = S o Aut

0

(S; f0g) and G � Aut

0

(S). Identifying Aut

0

(S; f0g) =

Aut

0

(S)=S, we denote the natural projection by p : Aut

0

(S) ! Aut

0

(S; f0g). If

we choose global coordinates around 0, we can explicitly write down the action of

g 2 Aut

0

(S) in its a�ne form

g(x) =M

g

x+ t

g

;M

g

2 SL(2; C ); t

g

2 S:
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Then p is nothing but the map taking the matrix part, that is, g 7! M

g

. It follows

from this expression that

(1) as an abstract group, p(G) is independent of the choice of an origin of S,

(2) a �nite Gorenstein automorphism g 2 Aut

0

(S) has a �xed point if and only if

g is not a translation.

On the other hand, Katsura's classi�cation ([Kt]) of possible �nite subgroups of

Aut

0

(S; f0g) shows that the commutative group p(G) is isomorphic to either Z

2

, Z

3

,

Z

4

or Z

6

.

Thus we can choose g 2 G and 0 2 S such that p(g) generates p(G) and g(0) = 0.

From now on, we regard this point 0 as the origin of S.

Claim (1.6).

(1) H := Ker(p) consists of translations in G, that is, H � S,

(2) hgi ' p(G).

(3) G is isomorphic to H � hgi.

(4) H is a subgroup of S

g

(under the inclusion H � S).

Proof of (1.6). The assertion (1) follows fromM

h

= id for h 2 H . By de�nition, pj

hgi

:

hgi ! p(G) is surjective group homomorphism. Let h be an element of Ker(pj

hgi

).

Then, h(0) = 0 and h 2 H . Combining this with (1), we get h = id. Thus, pj

hgi

is isomorphism. This shows that G is a semi-direct product of H and hgi. Since G

is commutative, this must be the direct product. The last statement now directly

follows from the relation gh = hg (h 2 H). q.e.d. of (1.6).

Claim (1.7). According to ord (g) = 2; 3; 4; 6, S

g

is isomorphic to (Z

2

)

4

, (Z

3

)

2

, (Z

2

)

2

and f0g.

Proof of (1.7). If ord (g) = 2, then S

g

= (S)

2

. Since (S)

2

' (Z

2

)

4

, we are done.

Assume that ord (g) = 3. Then, using appropriate global coordinates (x; y) around

0, we can write g = diag (�

3

; �

�1

3

). In particular, 1+g+g

2

= 0. Thus, 3p = p+p+p =

p+ g(p) + g

2

(p) = (1+ g+ g

2

)(p) = 0 for p 2 (S)

g

. Hence S

g

� (S)

3

and S

g

' (Z

3

)

k

for some non negative integer k. On the other hand, by the Lefschetz �xed point

formula, we have ]S

g

=

P

4

i=0

(�1)

i

tr(g

�

jH

i

(S; C )). Recall that

H

1

(S; C ) = C dx � C dy � C dx � C dy;

and

H

i

(S; C ) = ^

i

H

1

(S; C ):

Now an explicit calculation based on g = diag (�

3

; �

�1

3

) shows tr(g

�

jH

0

(S; C )) =

1;�2; 3;�2; 1 according to i = 0; 1; 2; 3; 4. Thus, ]S

g

= 9. This implies S

g

' (Z

3

)

2

.

Assume that ord(g) = 4. Since S

g

� S

g

2

' (Z

2

)

4

, it follows that S

g

' (Z

2

)

k

for

some non negative integer k. As in the case of ord (g) = 3, we can choose appropriate

global coordinates (x; y) around 0 such that g = diag (�

4

; �

�1

4

). Then, again using the

Lefschetz �xed point formula, we calculate ]S

g

= 4. This implies S

g

' (Z

2

)

2

.

Finally assume that ord (g) = 6. Then, it follows from the previous observation

that S

g

� S

g

2

\ S

g

3

� (S)

2

\ (S)

3

= f0g. q.e.d. of (1.7).
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Now Claims (1.6), (1.7) and the fact that G is a �nite Abelian group of the form

Z

n

or Z

n

�Z

m

(njm) together with the fundamental theorem on �nite Abelian groups

imply the assertion (1.3)(7).

The only remaining problem is to study Sing (S=G) for each G. If G is isomorphic

to Z

m

, the result follows from Katsura's table ([Kt]). Next, consider the case when

Z

n

� Z

m

for some n and m (with njm). Since S=G ' (S=Z

n

)=Z

m

and since (S=Z

n

)

is again an Abelian surface, the assertion follows from the �rst case.

Now we are done. Q.E.D. of (1.3).

x2. Good model over the global canonical covering

Let us �x a �bered Calabi-Yau threefold � : X ! W of type II

0

K. De�ne I :=

minfn 2 NjO

W

(nK

W

) ' O

W

g and denote the global canonical cover of W by � :

T !W ([Kw1, Z]). By our assumption, T is a projective K3 surface with only Du Val

singularities. Set W

0

:=W � Sing (W ). It is well known by [Kw1, Z] that � : T !W

is a cyclic Galois covering of order I(W ) and is �etale over W

0

. Moreover, there is a

generator g of the Galois group Gal(T=W ) such that g

�

!

T

= �

I

!

T

, where !

T

is a

nowhere vanishing regular two form on T , that is, a generator of H

0

(O

T

(K

T

)).

We �x these notation till the end of Section 4.

Set �

T

: X

T

:= X �

W

T ! T . Then, the Galois group Gal(T=W ) = hgi acts on

this �bration by g : (x; y) 7! (x; g(y)) and induces an isomorphism

(� : X !W ) ' (�

T

= : X

T

! T )=hgi:

However, X

T

itself has very bad singularities in general.

The goal of this section is to prove the following

Key Lemma (2.1). There is a normal projective threefold Z such that

(1) Z has only Q�factorial canonical singularities with O

Z

(K

Z

) ' O

Z

;

(2) Z is a quasi-product threefold ((1.1)) with two distinguished morphisms f :

Z ! T and a : Z ! A, where the latter map is the Albanese morphism

of Z (see [Kw2] for the de�nition of the Albanese variety and the Albanese

morphism for varieties with rational singularities), and

(3) there is a regular action of the Galois group of hgi on the �bration f : Z ! T

such that W = T=hgi and (� : X !W ) is birational to (f : Z ! T )=hgi over

W = T=hgi. Moreover, these are isomorphic over W � Sing (W ).

The plan of proof of Key Lemma is as follows. First, applying the log minimal

model program, we �nd a birational model f : Z ! T of �

T

: X

T

! T with property

(1) in (2.1). Then, we check that f : Z ! T also satis�es (2) and (3).

In order to carry out this plan, we start by observing some general lemmas.

Proposition (2.2). Let ' : V ! S be a surjective morphism from a normal pro-

jective Q�factorial threefold V to a normal projective surface S. Let fE

i

g

i2I

be the

set of all two-dimensional irreducible components in �bers of '. Set E = �

i2I

E

i

.

Assume that

(1) V is not covered by rational curves,
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(2) K

V

= �

i2I

a

i

E

i

(as a Weil divisor on V) for some a

i

2 Z

�0

,

(3) (V; �E) is klt for some positive small rational number �.

Then, there are a normal projective threefold V

(n)

and a surjective morphism '

(n)

:

V

(n)

! S such that

(4) V

(n)

has only Q�factorial canonical singularities with O

V

(n)

(K

V

(n)

) ' O

V

(n)

,

(5) '

(n)

: V

(n)

! S is birational to ' : V ! S over S and is isomorphic except

over a �nite set '(E), and

(6) '

(n)

: V

(n)

! S is an equi-dimensional elliptic �bration.

Proof. First, we remark

Claim (2.3). K

V

+ �E is not nef unless E = 0 as a divisor.

Proof of (2.3). Let H be a general very ample divisor on V . Then H is a normal

surface and the restriction 'j

H

: H ! S is surjective. Since (K

V

+�E)j

H

� �

i2I

(a

i

+

�)E

i

j

H

and since E

i

j

H

are contracted by '

H

, we get

((K

V

+ �E)

2

�H) = ((K

V

+ �E)j

H

)

2

= (�

i2I

(a

i

+ �)E

i

j

H

)

2

< 0

unless E = 0. q.e.d. of (2.3).

Let us apply the log minimal model program for a klt divisor K

V

+ �E. If E 6=

0, then K

V

+ �E is not nef by (2.3). Thus, there is a log extremal ray R such

that (K

V

+ �E) � C < 0 for any curve C belonging to R. Let cont

R

: V ! W be

the contraction morphism associated to R. This is a birational morphism by our

assumption (1). Since 0 > (K

V

+ �E) �C = �(a

i

+ �)(E

i

�C), there is a prime divisor

E

i

such that E

i

� C < 0. This implies C � E

i

. Thus cont

R

is de�ned over S. Let

� :W ! S be the induced morphism.

If cont

R

is a divisorial contraction, setting V

(1)

:= W , '

(1)

:= � and changing E

by its strict transform E

(1)

on V

(1)

, we see that '

(1)

: V

(1)

! S and E

(1)

satisfy all

the assumptions in (2.2) (without any change of coe�cients).

If cont

R

is a small contraction, then we apply a log 
ip for cont

R

to get cont

+

R

:

V

+

!W .

The existence of log 
ips for threefolds is guaranteed by [Sh].

Now, setting V

(1)

:= V

+

, '

(1)

:= ��cont

+

R

and changing E by its strict transform

E

(1)

on V

(1)

, we see that '

(1)

: V

(1)

! S and E

(1)

also satisfy all the assumptions in

(2.2).

Putting V

(0)

:= V , '

(0)

:= ' and E

(0)

:= E and repeating this process, say, for

n(� 0) times, we �nally get '

(n)

: V

(n)

! S and the strict transform E

(n)

of E to

V

(n)

such that

(1) '

(n)

: V

(n)

! S and E

(n)

satisfy all the assumptions in (2.2), and

(2) K

V

(n)

+ �E

(n)

is nef.

This is due to the termination of log 
ips for threefolds shown by [Kw4].

Then E

(n)

= 0 by (2.3). This implies the equi-dimensionality of '

(n)

. Note

that all modi�cations are done over '(E). Thus '

(n)

: V

(n)

! S and ' : V ! S

coincide over S�'(E). Set V

0

:= V �E�Sing (V ). Then the assumption (2) implies

O

V

0

(K

V

0

) ' O

V

0

. Let � : V � � ! V

(n)

be the birational map obtained by the above

process. Since �j

V

0

: V

0

! �(V

0

) is an isomorphism, we have O

�(V

0

)

(K

�(V

0

)

) ' O

�(V

0

)

.
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Since the codimension of V

(n)

� �(V

0

) in V

(n)

is at least two by E

(n)

= 0 and since

V

(n)

is normal, this isomorphism gives O

V

(n)

(K

V

(n)

) ' O

V

(n)

. Note that V

(n)

has

only rational singularities, because (V

(n)

; E

(n)

) = (V

(n)

; 0) is klt. Thus V

(n)

has only

rational Gorenstein singularities, that is, canonical singularities of index one. Now

the remaining assertion is obvious. Q.E.D. of(2.2).

The next two lemmas are concerned with singular �bers of certain elliptic three-

folds.

Lemma (2.4). Let ' : V ! S be a �ber space such that

(1) V is a normal projective threefold with only Q�factorial terminal singularities

and with K

V

� 0,

(2) S is a normal projective surface with only quotient singularities and with

K

V

� 0.

Then, '

�1

(s) is a smooth elliptic curve if s 2 S � Sing (S). In particular, ' is a

smooth morphism over S � Sing (S).

Proof. We make use of the following theorem due to Nakayama.

Theorem (2.5)([Na1 also Na2]). Let f : V

�

2

! �

2

be a relatively minimal

projective elliptic �bration over a two-dimensional (small) polydisk

�

2

:= f(x; y) 2 C

2

j jxj < �; jyj < �g:

Assume that f has (singular) �bers of type I

a

(a � 0) over (x = 0)�f(0; 0)g and those

of type I

b

(b � 0) over (y = 0) � f(0; 0)g. (Here we employed Kodaira's notation.)

Then f

�1

((0; 0)) is a (singular) �ber of type I

a+b

. In particular, if f is smooth over

�

2

�f(0; 0)g, then f

�1

((0; 0)) is a smooth elliptic curve and f is a smooth morphism

over the whole �

2

.

First, we show

Claim (2.6). ' : V ! S is an elliptic �bration and has singular �bers only over a

�nite set of points of S.

Proof of (2.6). Note that a general �ber of ' is a smooth elliptic curve. Let H be

a general very ample divisor on S. Set V

H

:= '

�1

(H). Since V has only isolated

singularities and sinceH is general, we may assume thatH\(Sing (S)['(Sing (V ))) =

� and both H and V

H

are smooth. Let 'j

V

H

: V

H

! H be the induced elliptic

�bration. Using the adjunction formula, we calculate K

H

� H j

H

and K

V

H

= (K

V

+

V

H

)j

V

H

� '

�

(K

H

). Comparing this with the canonical bundle formula of an elliptic

surface (for example see [BPV]), we �nd that 'j

V

H

is a smooth morphism. This

implies the result. q.e.d of (2.6).

Let s 2 S be an arbitrary smooth point of S and take a su�ciently small polydisk

�

2

� S around s. By (2.6), ' is smooth over �

2

� fsg. Now applying (2.5) for an

elliptic �bration 'j

'

�1

(�

2

)

: '

�1

(�

2

)! �

2

, we get (2.4). Q.E.D. of (2.4).
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Lemma (2.7). Let ' : V ! S be a �ber space such that

(1) V is a normal projective threefold with only canonical singularities and with

O

V

(K

V

) ' O

V

,

(2) S is a normal projective surface with only Du Val singularities and with

O

S

(K

S

) ' O

S

,

(3) ' is an equi-dimensional �bration, and

(4) ' is smooth except over a �nite set of points of S.

Then, the reduction of each �ber '

�1

(s)

red

(s 2 S) is a smooth elliptic curve. More-

over, if s is a smooth point of S, then, '

�1

(s) itself is a smooth elliptic curve. In

particular, ' is a smooth morphism over S � Sing (S).

Proof. Let s 2 S be an arbitrary point of S. Since S has only Du Val singularities,

we can choose a small neighborhood U around s such that

U = �

2

=G; s = (0; 0)(modG):

Here �

2

is a two dimensional small polydisk and G is a �nite Gorenstein automor-

phism group of �

2

each of whose element �xes only the origin (0; 0). We may also

assume by (4) that ' is smooth over U � fsg.

Letting '

U

: V

U

! U be the restriction of ', we consider the �ber product

'

�

2

: V

�

2

:= V

U

�

U

�

2

! �

2

:

Since �

2

! U is �etale over U � fsg and '

U

is smooth over U � fsg, it follows that

'

�

2

: V

�

2

! �

2

is smooth over �

2

� f(0; 0)g.

Take a resolution � : V

(1)

! V

�

2

of V

�

2

and set '

(1)

:= ' � � : V

(1)

! �

2

. Note

that ' and '

(1)

coincide over �

2

� f(0; 0)g.

Applying a relatively minimal model program with respect to K

V

(1)

over �

2

([Mo]), we get a relatively minimal model

'

(2)

: V

(2)

! �

2

of '

(1)

: V

(1)

! �

2

. Since each �ber of '

(1)

over �

2

� f(0; 0)g is a smooth elliptic

curve, '

(2)

coincides with '

(1)

(and then '

�

2

) over �

2

�f(0; 0)g: This together with

(2.5) implies that ('

(2)

)

�1

((0; 0)) is also a smooth elliptic curve and that '

(2)

is

smooth over whole �

2

. In particular, V

(2)

is also smooth. Since '

�

2

and '

(2)

are

birational over �

2

, the natural action of G on '

�

2

: V

�

2

! �

2

induces a rational

action on

'

(2)

: V

(2)

! �

2

:

On the other hand, since each �ber of '

(2)

is an elliptic curve, it follows that '

(2)

is a unique relatively minimal model. Thus this action of G on '

(2)

: V

(2)

! �

2

is

regular and induces

'

(2)

: V

(2)

=G! �

2

=G = U:

This is birational to '

U

: V

U

! U over U and is isomorphic over U � fsg. Denote

this birational map over U by

� : V

U

� � ! V

(2)

=G:
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Then, � gives an isomorphism

V

U

� '

�1

U

(s) ' V

(2)

=G� ('

(2)

)

�1

(s):

Since O

V

U

�'

�1

U

(s)

(K

V

U

) ' O

V

U

�'

�1

U

(s)

by our assumption (1) and since ('

(2)

)

�1

(s) is

of codimension two in a normal variety it follows that

O

V

(2)

=G

(K

V

(2)

=G

) ' O

V

(2)

=G

:

This shows that the action of G on V

(2)

is Gorenstein. Since each element of G �xes

the origin (0; 0) of �

2

, G stabilizes a smooth elliptic curve E := ('

(2)

)

�1

((0; 0)). Since

G is also Gorenstein on �

2

, so is on E. That is, G acts on E as a translation group.

Thus ('

(2)

)

�1

(s)

red

= E=G is a smooth elliptic curve.

Now, in order to complete the �rst part of (2.7), it is enough to show that � :

V

U

� � ! V

(2)

=G is actually an isomorphism. But, now, this immediately follows from

the facts that V

U

has only rational singularities and that V

(2)

=G is Q�factorial.

If s is a smooth point of S, then we can take G = f1g and then V

U

= V

(2)

over

U = �

2

. This implies the last half of (2.7). Q.E.D. of (2.7).

The next lemma is a slight generalization of Koll�ar's result (in the three dimen-

sional case), which should be known by specialists. However, because of the lack of

suitable references, we give here a brief proof based on the Koll�ar's original result.

Lemma (2.8). Let ' : V ! S be a �ber space such that

(1) V is a normal projective threefold with only canonical singularities,

(2) S is a normal surface with only Du Val singularities.

Let !

V

and !

S

be the dualizing sheaves on V and S. Then, R

1

'

�

!

V

' !

S

.

Assume furthermore that

(3) O

V

(K

V

) ' O

V

and

(4) S is a K3 surface with only Du Val singularities.

Then h

1

(O

V

) = 1.

Remark. Koll�ar proved the �rst part of (2.8) under the assumption that both V and

S are smooth ([Ko1]).

Proof. We want to reduce our proof to the smooth case.

Consider the following commutative diagram,

V

0

�

����! V

�

?

?

y

?

?

y

'

S

0

����!

�

S

where � : S

0

! S is the minimal resolution of S

0

and � : V

0

! V is a resolution of

both the singularities of V and indeterminacy of �

�1

� '.
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Then R

i

�

�

!

V

0

= 0 for i > 0: Moreover, �

�

!

V

0

= !

V

because V has only canonical

singularities. Thus, from the Leray spectral sequence

R

p

'

�

(R

q

�

�

!

V

0

)) R

p+q

(' � �)

�

!

V

0

we get

R

p

'

�

!

V

' R

p

(' � �)

�

!

V

0

' R

p

(� ��)

�

!

V

0

:

In particular,

R

1

'

�

!

V

' R

1

(� ��)

�

!

V

0

:

On the other hand, the edge sequence of another Leray spectral sequence

R

p

�

�

(R

q

�

�

!

V

0

)) R

p+q

(� ��)

�

!

V

0

gives an exact sequence

0! R

1

�

�

(�

�

!

V

0

)! R

1

(� ��)

�

!

V

0

! �

�

(R

1

�

�

!

V

0

)! R

2

�

�

(�

�

!

V

0

):

Note that R

2

�

�

(�

�

!

V

) = 0 and that R

1

�

�

(�

�

!

V

0

) is a torsion sheaf, because � :

S

0

! S is a birational morphism between surfaces.

On the other hand, since V

0

is smooth, R

1

(� � �)

�

!

V

0

is a torsion free sheaf by

[Ko1]. Then, chasing the above exact sequence, we get

R

1

�

�

(�

�

!

V

0

) = 0

and

R

1

(� ��)

�

!

V

0

' �

�

(R

1

�

�

!

V

0

):

Since V

0

and S

0

are smooth, Koll�ar's original result implies

R

1

�

�

!

V

0

' !

S

0

:

Thus,

R

1

(� ��)

�

!

V

0

' �

�

!

S

0

:

Moreover, since S has only canonical singularities, it follows that

�

�

!

S

0

' !

S

:

Thus,

R

1

(� ��)

�

!

V

0

' !

S

:

Combining these, we get

R

1

(� ��)

�

!

V

0

' !

S

:

This completes the proof of the �rst part.

We show the second part. Since !

V

' O

V

and !

S

' O

S

, the �rst part of (2.8)

gives

R

1

'

�

O

Z

' O

S

:
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Substituting this into the edge sequence of the Leray spectral sequence

H

p

(R

q

'

�

O

V

)) H

p+q

(O

V

);

we get an exact sequence

0! H

1

(O

S

)! H

1

(O

V

)! H

0

(O

S

):

This implies

h

1

(O

V

) � h

1

(O

S

) + h

0

(O

S

) = 0 + 1 = 1:

We show that h

1

(O

V

) � 1. Considering the pullback of the regular two forms by �

and using Hodge theory, we calculate

h

2

(O

V

0

) = h

2;0

(V

0

) � h

2;0

(S

0

) = 1:

On the other hand, using the fact that V has only rational singularities and the Serre

duality, we see that

h

2

(O

V

0

) = h

2

(O

V

) = h

1

(O

V

):

Combining these, we get the desired inequality h

1

(O

V

) � 1. Q.E.D. of (2.8).

We return back to Key Lemma (2.1). This is now proved by a simple combination

of the previous lemmas.

Proof of Key Lemma.

Set W

0

:=W �Sing (W ) as before and denote the restrictions of � : X ! W and

� : T !W to W

0

by

�

0

: X

0

:= �

�1

(W

0

)!W

0

and

�

0

: T

0

:= �

�1

(W

0

)!W

0

:

Note that �

0

is a smooth morphism by (2.4) and �

0

is an �etale morphism by de�nition.

We consider the Cartesian product de�ned by � and �

X

T

:= X �

W

T

�

X

����! X

�

T

?

?

y

?

?

y

�

T ����!

�

W

and its restriction over W

0

(X

T

)

0

:= X

0

�

W

0

T

0

����! X

0

?

?

y

?

?

y

T

0

����! W

0

Since W

0

is smooth and since each morphism in the second diagram is smooth or

�etale, it follows that

Sing (X) � �

�1

(W �W

0

);

and

Sing (X

T

) � �

�1

X

(Sing (X)) � (�

X

��)

�1

(W �W

0

) = �

�1

T

(T � T

0

):
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In what follows, we apply several birational modi�cations on the �rst diagram

keeping everything in the second diagram invariant.

Since all singularities in the �rst diagram are supported over W �W

0

, we �nd a

commutative diagram

X

0

T

�

0

X

����! X

0

�

X

T

?

?

y

?

?

y

�

X

X

T

����!

�

X

X

such that

(1) X

0

and X

0

T

are smooth,

(2) �

X

: X

0

! X is a birational modi�cation only over W �W

0

, and that

(3) �

X

T

: X

0

T

! X

T

is a birational modi�cation only over T � T

0

.

Let fE

i

g

i2I

be the set of all the two dimensional irreducible components of �bers

of �

0

T

:= �

T

� �

X

T

: X

0

T

! X

T

! T . Set E := �

i2I

E

i

. By construction, E is

supported only over T � T

0

.

Claim (2.10).

(1) X

0

T

is not covered by rational curves.

(2) K

X

0

T

= �

i2I

a

i

E

i

for some non-negative integers a

i

.

(3) (X

0

T

; �E) is klt if � > 0 is su�ciently small.

Proof of (2.10). The assertions (1) and (3) are clear. We show the assertion (2). Since

X has only terminal singularities, Sing (X) � X �X

0

, and K

X

= 0 as a divisor, we

see that

K

X

0

= �c

j

E

0

j

;

where c

j

are some positive integers and E

0

j

are some irreducible divisors supported in

�

�1

X

(X �X

0

).

On the other hand, since �

0

X

T

: X

0

T

! X

0

rami�es only at E, the rami�cation

formula gives

K

X

0

T

= (�

0

X

T

)

�

(K

X

0

) + �

i2I

b

i

E

i

;

for some non-negative integers b

i

. Since (�

0

X

T

)

�

E

0

i

are e�ective divisors supported in

E, substituting the �rst equality into the second, we get the result. q.e.d. of (2.10).

Now we can apply (2.2) for �

0

T

: X

0

T

! T to get a �ber space f : Z ! T such that

(1) Z has only Q�factorial canonical singularities with O

Z

(K

Z

) ' O

Z

,

(2) f : Z ! T is birational to �

T

: X

T

! T over T and is isomorphic over T

0

,

(3) f : Z ! T is an equi-dimensional elliptic �bration.

Recall that T is a K3 surface with only Du Val singularities, and that �

T

is smooth

over T

0

.

Now using (2.7) and (2.8), we see that

(4) f

�1

(t)

red

is a smooth elliptic curve for each t 2 T;
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(5) f

�1

(t) itself is smooth if t is a smooth point of T (in particular, if t 2 T

0

),

(6) h

1

(O

Z

) = 1.

Thus, it follows from (1) and (6) and [Kw2] that

(7)A := Alb (Z) is a smooth elliptic curve and the Albanese morphism a : Z ! A

is a �ber space.

By (2), the natural action of hgi on �

T

: X

T

! T induces a rational action of G

on f : Z ! T which is regular over T

0

. By virtue of (1) and (4), we can apply the

same argument as in the last part of the proof of (2.7) to conclude

(8) hgi induces a regular action on f : Z ! T and

(9) (f : Z ! T )=hgi is birational to � : X ! W and is isomorphic over W

0

=

T

0

=hgi.

Now these statements (1) - (9) imply the Key Lemma. Q.E.D. of Key Lemma.

x3. Lifting the group action on a fiber space to its covering

In this section, we continue to employ the same notation given at the beginning of

Section 2.

Let f : Z ! T be the quasi-product threefold found in (2.1) for a �bered Calabi-

Yau threefold � : X !W of type II

0

K.

Then (f : Z ! T ) ' (p

2

: E � S ! S)=G, where

(1) E is a smooth elliptic curve,

(2) S is either a (projective) K3 surface with only Du Val singularities or a smooth

Abelian surface, given as (any) �ber of the Albanese morphism a : Z ! A,

(3) G is a �nite commutative Gorenstein automorphism group of E � S as is

described in Theorem (1.3).

We want to lift the action of hgi on f : Z ! T to one on p

2

: E � S ! S in an

equivariant way.

Lemma (3.1). There is a point 0 on A such that hgi stabilizes a

�1

(0).

Proof. Since the Albanese morphism is an intrinsically and uniquely de�ned object,

hgi acts on the Albanese morphism a : Z ! A. This induces a �bration

a : Z=hgi ! A=hgi:

On the other hand, since X and Z=hgi are birational and since both of them have

only rational singularities, it follows that h

1

(O

Z=hgi

) = h

1

(O

X

) = 0. This implies

A=hgi = P

1

. Thus, A

hgi

6= �. Since A is an elliptic curve, this is equivalent to

A

g

6= �. Hence we can choose such a point 0 in A

g

. Q.E.D. of (3.1).

Let us take a

�1

(0) as S. Then g induces an action g

S

:= gj

S

: S ! S. Since

g acts on the �ber space f : Z ! T , hg

S

i and hgi give an equivariant action on

q

T

:= f j

S

: S ! T . Note that q

T

is nothing but the quotient map S ! T = S=G.
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Lemma (3.2). g

�

S

!

S

= �

I

!

S

, where !

S

is a nowhere vanishing regular two form on

S, that is, a generator of H

0

(S;O

S

(K

S

)).

Proof. Let !

T

be a nowhere vanishing regular two form on T . Then, !

S

:= q

�

T

!

T

is

a nowhere vanishing regular two form on S. Thus,

g

�

S

!

S

= g

�

S

� q

�

T

!

T

= q

�

T

� g

�

!

T

= q

�

T

�

I

!

T

= �

I

!

S

:

This implies the result. Q.E.D. of (3.2).

Lemma (3.3). There is an automorphism g

E�S

of E � S such that g

E�S

, g

S

and g

give an equivariant action on the commutative diagram

E � S

p

2

����! S

q

0

?

?

y

?

?

y

q

T

Z ����!

f

T

where q and q

0

are natural quotient maps.

Proof. Let us consider the �ber product

Z �

T

S

p

2

����! S

p

1

?

?

y

?

?

y

q

T

Z ����!

f

T

De�ne the action of hg

0

i on Z �

T

S by

g

0

: Z �

T

S 3 (u; v) 7! (g(u); g

S

(v)) 2 Z �

T

S:

Then, g

0

, hg

S

i and hgi give an equivariant action on this �ber product.

By the de�nition of �ber product, there is a surjective morphism � : E � S !

Z �

T

S which factors through the quotient map q : E �S ! Z = (E �S)=G and the

second projection p

2

: E � S ! S.

Claim (3.4). � : E � S ! Z �

T

S is the normalization of Z �

T

S.

Proof of (3.4). Obvious. q.e.d. of (3.4).

Since normalization is an intrinsically and uniquely de�ned notion, the action

hg

0

i on Z �

T

S lifts to the action hg

E�S

i on E � S equivariantly with respect to

� : E � S ! Z �

T

S. This gives a desired action on E � S. Q.E.D. of (3.3).

Corollary (3.5). ord (g

S

) = ord (g

E�S

) = I(:= ord (g)).

Proof. Since g

S

is a restriction of g, it follows that ord (g

S

) � ord (g). On the other

hand, since � : S ! T is surjective and since g

S

and g induce an equivariant action

on � , we see that ord (g

S

) � ord (g). This implies ord (g

S

) = ord (g). Now it follows

from the construction of g

E�S

that ord (g

E�S

) = ord (g

0

) = ord (g). Q.E.D. of (3.5).
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De�ne

~

G to be the subgroup of Aut (E � S) generated by G and g

E�S

found in

(3.3). Then

~

G acts on the �ber space p

2

: E�S ! S. Thus, there is a (unique) group

homomorphism � :

~

G! Aut (S) such that p

2

�h = �(h)�p

2

: By construction, we have

�(G) = G

S

and �(g

E�S

) = g

S

. Corollary (3.5) shows that �j

hg

E�S

i

: hg

E�S

i ! hg

S

i

is a group isomorphism as is �j

G

: G! G

S

. Set

~

G

S

= �(

~

G).

Lemma (3.6).

(1) G

S

is a normal subgroup of

~

G

S

.

(2)

~

G

S

= G

S

o hg

S

i.

(3) G is a normal subgroup of

~

G.

(4)

~

G = Go hg

E�S

i.

(5) � :

~

G!

~

G

S

is an isomorphism.

Proof. For the assertion (1), it is enough to show that there is an h

0

2 G

S

such that

g

S

� h = h

0

� g

S

for each h 2 G

S

. Let s 2 S be a point on S such that g

S

(s) 62 S

G

S

.

Using g � q

T

= q

T

� g

S

and T = S=G

S

, we calculate

q

T

� g

S

� h(s) = g � q

T

� h(s) = g � q

T

(s) = q

T

� g

S

(s):

Thus, for each s 2 S, there is h

s

2 G

S

such that g

S

� h(s) = h

s

� g

S

(s). Such an h

s

is uniquely determined by s because g

S

(s) 62 S

G

S

. Thus, we �nd a continuous map

S � R ! G

S

de�ned by s 7! h

s

. Since G

S

is discrete, the image must be one point,

say h

0

. Then, g

S

� h = h

0

� g

S

over S � g

�1

S

(S

G

S

). Taking the closure, we �nd that

g

S

� h = h

0

� g

S

whole over S. This �nishes the proof of (1).

Applying the same argument for E�S ! (E�S)=G = Z (instead of T = S=G

S

),

we can also show assertion (3).

We show assertion (2). By (1), we have

~

G

S

=G

S

= hg

S

(modG

S

)i. Consider the

natural representation

~

G

S

on H

0

(S;O

S

(K

S

))

� :

~

G! C

�

; h 7! �(h)

de�ned by h

�

!

S

= �(h)!

S

. Since G

S

is a Gorenstein automorphism group of S, this

factors

� :

~

G

S

=G

S

= hg

S

(modG

S

)i ! C

�

:

Since �(g

S

(modG

S

)) = �(g

S

) = �

I

by (3.3), it follows that ord (g

S

(modG

S

)) � I =

ord (g

S

). Thus, the natural surjective group homomorphism hg

S

i ! hg

S

(modG

S

)i

must be isomorphism. This implies the assertion (2).

Finally, we show assertions (4) and (5).

By (3), we see that

~

G=G ' hg

E�S

(modG)i. Combining this with (3.5), we get

]

~

G = (]G) � (]hg

E�S

(modG)i) � (]G) � (]hgi):

On the other hand, by (2) and (3.5), we have

]

~

G

S

= (]G

S

) � (]hg

S

i) = (]G) � (]hgi):

However, since

~

G

S

is an image of

~

G, it follows that

]

~

G � ]

~

G

S

:
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Combining these three we get ]

~

G = ]

~

G

S

: This implies that the surjective group

homomorphism � :

~

G!

~

G

S

is an isomorphism. Combining this together with (2), we

get

~

G = Go hg

E�S

i. This completes the proof. Q.E.D. of (3.6).

From now on, we denote the equivariant actions

~

G and

~

G

S

on the �ber space

p

2

: E � S ! S simply by

~

G. We also set ~g := g

E�S

for consistency of notation.

If no confusion seems to arise, we also identify g

S

and G

S

with ~g and G (under the

isomorphism �).

The following corollary is an immediate consequence of Lemma (3.6).

Corollary (3.7).

(f : Z ! T )=hgi = (p

2

: E � S ! S)=

~

G:

Thus, the �ber space � : X !W is birational to (p

2

: E �S ! S)=

~

G over W = S=

~

G

and is isomorphic over W

0

.

Now this together with the next lemma and the corollary completes the proof of

Main Theorem (2) modulo impossibility for S to be a smooth Abelian surface.

Lemma (3.8). Assume that S is a K3 surface with only Du Val singularities. Then,

the action of ~g on E � S is written as follows:

~g : E � S 3 (x; y) 7! (�

�1

I

x; g

S

(y)) 2 E � S

for an appropriate origin 0 of E.

Proof. Since h~gi acts on p

2

: E � S ! S, there is a homomorphic map

c : S ! Aut (E) = E oAut (E; f0g)

de�ned by s 7! (p

1

((x; s)) 7! p

1

(~g(x; s))):

On the other hand, since h

1

(O

S

) = 0 and S has only Du Val singularities, the

Albanese variety of S is trivial. Thus c must be constant map. That is, ~g = (g

E

; g

S

)

for some g

E

2 Aut (E). Since X is isomorphic to (E � S)=

~

G over W

0

and since

(E�S)=

~

G! W is equidimensional, O

X

(K

X

) ' O

X

implies O

(E�S)=

~

G

(K

(E�S)=

~

G

) '

O

(E�S)=

~

G

. This means

~

G is a Gorenstein automorphism of E � S. In particular,

so is ~g. Combining this with g

�

S

!

S

= �

I

!

S

, we get g

�

E

!

E

= �

�1

I

!

E

. In particular,

E

g

E

6= �. Now, choosing the origin 0 of E in E

g

E

, we get the desired expressions of

~g. This completes the proof of (3.8). Q.E.D.

Combining (3.8) and (3.7), we get

Corollary(3.9). Assume that S is a K3 surface with only Du Val singularities.

Then,

(1) the global canonical index I = I(W ) of W is either 2; 3; 4; or 6,

(2) if � : S

0

! S is a minimal resolution of S, then the action h~gi on E � S lifts

to E � S

0

in an equivariant way and � : X !W is birational to

(p

2

� (id:� �) : E � S

0

! S)=

~

G

over W = S=

~

G and is isomorphic over W

0

.
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x4. Impossibility for S to be a smooth abelian surface

We continue to employ the same notation given in the previous sections 2 and 3. In

this section, we show that each surface S (found at the beginning of section 3) is not

a smooth abelian surface if � : X !W is a Calabi-Yau threefold of type II

0

K. This

completes the proof of Main Theorem (2).

Thoughout this section, assuming the contrary that S is a smooth abelian surface,

we shall derive a contradiction.

For simplicity, we denote

~

G

S

, G

S

and g

S

by

~

G, G and ~g respectively. Under this

notation, we have T = S=G, W = T=hgi = S=

~

G and I = ord (g) = ord (~g). As before,

we denote by q

T

: S ! T the natural quotient morphism. This has an equivariant

action of h~gi and hgi. Recall also that all the possibilities of G are listed up in (1.3)(4).

The next Lemma is shown by [O2].

Lemma (4.1). I is either 2, 3, 4, 6, or 12.

By virtue of this Lemma, the next two Claims will give a contradiction.

Key Claim (4.2). I is not divided by 2.

Key Claim (4.3). I 6= 3.

The following obvious lemma and its corollaries will be frequently used to prove

these claims.

Lemma (4.4). Let q : S

1

! S

2

be a surjective �nite morphism between normal

projective surfaces with K

S

1

� 0 and K

S

2

� 0. Then q rami�es only at �nitely many

points.

Corollary (4.5). The quotient map S !W (= S=

~

G) rami�es only at �nitely many

points. In particular, S

~

G

S

is a �nite set.

Corollary (4.6). Let h be a non-Gorenstein involution in

~

G. Then, S

h

= �. In

particular, if I = 2k is even, then S

~g

k

= � and S

~g

= �.

Proof. Assuming S

h

6= �, we take a point P in S

h

. Since h is an involution with

h

�

!

S

= �!

S

, it follows that h = diag (�1; 1) under appropriate coordinates (x; y) of

S around P . But then h would have a �xed curve (x = 0), contradiction. q.e.d. of

(4.6).

Corollary (4.7). If I is either 2, 3, or 4, then T

g

6= �: If I = pq where p = 2

or 4 and q = 3, then T

g

p

6= � and T

g

q

6= �. Moreover, if I is either 2 or 4, then

(� 6=)T

g

� Sing (T ).

Proof. Since I is the least common multiple of the local canonical indices of W , the

�rst part of the assertion is obvious. Assume that I is either 2 or 4. The �rst half

part shows T

g

6= �. Assume the contrary that there is a smooth point Q in T

g

. Then,

arguing similarly as in (4.6), we see that g

I=2

= diag (�1; 1) under appropriate local

coordinates around P . Then, g

I=2

has a �xed curve. On the other hand, Lemma (4.4)

shows T !W (= T=hgi) has no rami�cation divisor, contradiction. q.e.d. of (4.7).
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We return back to the key claims (4.2) and (4.3).

Proof of Key Claim (4.2).

Assume the contrary that I = 2k for some integer k. We set h := ~g

k

. Then h

is a non-Gorenstein involution on S. Dividing into the following �ve cases, we shall

derive a contradiction:

Case 1. G ' Z

3

or Z

3

�Z

3

;

Case 2. G ' Z

6

;

Case 3. G ' Z

2

;

Case 4. G ' Z

2

�Z

2

;

Case 5. G ' Z

4

or Z

2

�Z

4

:

Case 1. Since g acts on the set B consisting of nine singular points of type A

3

on

T ((1.3)(4)), h~gi acts on q

�1

T

(B). Since ]q

�1

T

(B) is either 9 or 27, h has a �xed points.

This contradicts (4.6).

Case 2. Consider the unique singular point Q of type A

5

on T ((1.3)(4)). Then,

q

�1

T

(Q) consists of one point, say, P . Since g(Q) = Q, it follows that ~g(P ) = P . But

this contradicts (4.6).

Case 3. By (4.7), T

g

k

6= �. On the other hand, since g

k

is a non-Gorenstein

involution on T , the same argument as in (4.7) implies that T

g

k

� Sing (T ). Let

Q 2 T

g

k

. Then Q is a singular point of type A

1

and then q

�1

T

(Q) consists of one

point, say, P ((1.3)(4)). But then h(P ) = P , contradiction.

Case 4. The same argument as in case 3 shows that T

g

k

6= � and T

g

k

� Sing (T ).

LetQ 2 T

g

k

. Then, Q is a singular point of type A

1

and q

�1

T

(Q) is written as fP; r(P )g

for some point P and a translation r in G ((1.3)(4)). Since h acts on this set, we have

either h(P ) = P or h(P ) = r(P ). The �rst equality contradicts (4.6). Consider the

second case. Set h

0

:= r � h. Then h

�

!

S

= �!

S

. Since the translation subgroup of G

is just hri and since h

�1

� r �h is a translation in G (because G is a normal subgroup

of

~

G), it follows that h

�1

� r � h 2 hri and then hr; hi = hri � hhi ' (Z

2

)

2

. Thus h

0

is

a non-Gorenstein involution with h

0

(P ) = P . But this contradicts (4.6).

Case 5. We treat the following three cases separately:

Case 5a. 3jI , Case 5b. I = 4, and Case 5c. I = 2.

Case 5a. In this case, I = 6m for some integer m. Set j := ~g

m

. This is of order

6. Since g acts on the set consisting of 4 singular points of type A

3

on T ((1.3)(4)),

j

2

acts on the inverse image of these points. This consists of either 4 or 8 points.

Thus, j

2

has a �xed point among these points. Let P be such a �xed point. Then,

j

2

(P ) = P . Since (j

2

)

�

!

S

= �

3

!

S

and j

2

has at most �nite �xed points by (4.5),

an easy coordinate calculation shows that j

2

= diag (�

2

3

; �

2

3

) under appropriate global

coordinates (x; y) around P . Thus, the eigen value of the matrix part of j is in

f�

3

;��

3

g. Thus, j has a �xed point on S, say Q. Since h = j

3

, Q is also a �xed point

of h. But this contradicts (4.6).

Case 5b. By (4.7), we can take a point Q in T

g

. Again by (4.7) and (1.3)(4), Q

is either a singular point of type A

3

or of type A

1

.
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If Q is a singular point of type A

3

, then q

�1

T

(Q) is written as fPg (in the case

when G ' Z

4

) and fP; r(P )g for a translation r in G (in the case when G ' Z

2

�Z

4

).

In the �rst case, we have ~g(P ) = P . But this contradicts (4.6). In the second case,

we have either ~g(P ) = P or ~g(P ) = r(P ). Since r is of order two, in each case, we

get h(P ) = ~g

2

(P ) = P , contradiction.

If Q is a singular point of type A

1

, then q

�1

T

(Q) is written as fP; u

2

(P )g (if

G = hui ' Z

4

) and fP; u

2

(P ); r(P ); r � u

2

(P )g (if G ' Z

2

� Z

4

). In the second case,

r is the unique translation in G and u is some (suitable) generator of G.

In anyway, we have ~g(P ) = P or ~g(P ) = t(P ), where t is an involution in G.

Thus, h(P ) = ~g

2

(P ) = P , contradiction.

Case 5c. First consider the case G = hui ' Z

4

.

Since

~

G = hui o h~gi is of order 8, elementary group theory shows that

~

G is

isomorphic to either

(1) D

8

, the dihedral group of order 8, or

(2) Z

4

�Z

2

:

Assume �rst that

~

G ' D

8

. Then, ~g � u is a non-Gorenstein involution. Take a

point Q in T

g

. Then, Q is a singular point either of type A

3

or of type A

1

.

If Q is of type A

3

, then q

�1

T

(Q) = fPg, a one point set. But then ~g(P ) = P ,

contradiction.

If Q is of type A

1

, then q

�1

T

(Q) is written as fP; u(P )g and ~g stabilizes this set.

If ~g(P ) = P , then we get the same contradiction as before. If ~g(P ) = u(P ), then

~g �u(P ) = P . Since ~g �u is a non-Gorenstein involution, we again get a contradiction.

In any case, we found a contradiction if

~

G ' D

8

.

Next consider the case when

~

G ' Z

4

�Z

2

, that is,

~

G = hui�h~gi. Then hui '

~

G=h~gi

acts on p

2

: (E � S)=h~gi ! S=h~gi. Note that (E � S)=h~gi is also a smooth threefold,

because S

[h~gi]

= � by (4.6) so that (E � S)

[h~gi]

= �.

Claim. (E � S=h~gi)

[hui]

= �:

Proof of Claim. Since u is of order 4, it is su�cient to show that

(E � S=h~gi)

u

2

= �:

Assume the contrary that P 2 (E � S=h~gi)

u

2

. Set p

2

(P ) = Q. Then u

2

(Q) =

Q. Thus u

2

acts on the �ber E

Q

:= (p

2

)

�1

(Q). On the other hand, the �ber of

E � S ! (E � S=h~gi) over Q is written as fR; ~g(R)g and u

2

also acts on this set.

If u

2

(R) = ~g(R), then u

2

� ~g(R) = R on S. But, since u

2

� ~g is a non-Gorenstein

involution on S, this contradicts (4.6). Thus u

2

(R) = R. Let E

R

be the �ber of

p

2

: E � S ! S over R. Then the natural projection E � S ! E � S=h~gi (of degree

two) induces an isomorphism E

R

' E

Q

, because E

~g(R)

is also mapped to E

Q

. Since

u

2

gives an equivariant action on this isomorphism and since u

2

acts on E

R

as a

translation of order two by (1.3), we see that u

2

also acts on E

Q

as a translation of

order two. Thus E

u

2

Q

= �. But this is absurd, because P 2 E

Q

is a �xed point of u

2

.

q.e.d. of Claim.

Thus Y := ((E � S)=h~gi)=hui = (E � S)=

~

G is also a smooth threefold (with

O

Y

(K

Y

) ' O

Y

). Since X is birational to Y , X is connected with Y by 
ops. Then
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X is also smooth and �

1

(X) ' �

1

(Y ) ([Ko2]). Thus X has a non-trivial �nite �etale

covering, because so does Y . But this contradicts our assumption �

alg

1

(X) = f1g.

Therefore, we get a contradiction even in the case G ' Z

4

.

We consider the remaining case G = hti�hui ' Z

2

�Z

4

. Reducing to the previous

case G ' Z

4

, we �nd a contradiction.

Since the translation group of G is just hti and since G is a normal subgroup

of

~

G, the same argument as before shows hti is a normal subgroup of

~

G. Thus

~

G=hti ' hu

1

io h ~g

1

i, where u

1

:= u(mod hti) and ~g

1

:= ~g(mod hti). Observe that u

1

is

of order four and ~g

1

is of order two.

On the other hand, since hti acts on p

2

: E � S ! S, we get a new �ber space

p

2

: (E � S)=hti ! S=hti;

on which hu

1

i � h~g

1

i gives an equivariant action. Since hti is a translation group on

both E � S and S, it follows that (E � S)=hti is an Abelian threefold and S=hti is

an Abelian surface. Set S

1

:= S=hti and V := (E � S)=hti. Then, T = S

1

=hu

1

i and

W = S

1

=hu

1

; ~g

1

i.

Observe that ~g

�

1

!

S

1

= �!

S

1

, u

�

1

!

S

1

= !

S

1

and that u

1

acts on each �ber over

S

u

1

1

(6= �) as a translation of order 4. The last statement follows from (1.3) and a

similar argument as is given in the last claim. Thus we can apply the same argument

as in the previous case (G ' Z

4

) for p

2

: (E � S)=hti ! S=hti and S

1

! T ! W to

get a contradiction. This �nishes the proof of case 5c.

Now we have completed the proof of (4.2). Q.E.D. of (4.2).

Proof of Key Claim (4.3).

Assuming the contrary that I = 3 and dividing into the following �ve cases, we

shall derive a contradiction.

Case 1. G ' Z

4

or Z

2

�Z

4

;

Case 2. G ' Z

2

or Z

2

�Z

2

;

Case 3. G ' Z

6

;

Case 4. G ' Z

3

;

Case 5. G ' Z

3

�Z

3

:

Case 1. Since g acts on the set of singular points of type A

3

and since this set

consists of 4 points, g has a �xed point, say Q, in this set. Then, ~g acts on q

�1

T

(Q).

Since q

�1

T

(Q) consists of one or two points, ~g has a �xed point in q

�1

T

(Q). Denote

this point by 0. Since ~g

�

!

S

= �

3

!

S

, ~g(0) = 0 and since ~g has only �nitely many

�xed points, we can apply [CC, also O2] to get S ' E

2

�

3

and ~g = �

2

3

, the scalar

multiplication by �

2

3

. On the other hand, the stabilizer of 0 in G is a cyclic group

of order 4. We denote this group by hui. Then u = diag (�

4

; �

�1

4

) under appropriate

global coordinates around 0. Set H := hu; ~gi. Then, H � Aut (S; f0g). Moreover

H is a cyclic group of order 12, because ~g = �

2

3

so that u � ~g = ~g � u. In particular

H 3 �1. But this is impossible by Fujiki's classi�cation ([Fu, Table 6]).

Case 2. Just by the same argument as in case 1, we see that ~g has a �xed point

0 (over some singular point of type A

1

of T ) and then S = E

2

�

3

and ~g = �

2

3

. Set

Stab

f0g

(G) = hui. This is a cyclic group of order two and u = diag (�1;�1) under
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appropriate global coordinates around 0. Thus u � ~g = ~g � u. Since

~

G gives an

equivariant action on p

2

: E � S ! S, ~g and u act on the �ber E := p

�1

2

(0). Since

~g is a Gorenstein automorphism of E � S, the matrix part of ~g on E is �

2

3

so that ~g

acts on E by

~g : E 3 x 7! �

2

3

x 2 E;

if we �x an origin 0

E

of E in E

~g

(6= �). On the other hand, by (1.3), the action of u

on E is written as

u : E 3 x 7! x+ P 2 E;

where P 2 (E)

2

� f0g. Since u � ~g = ~g � u in

~

G, we calculate

~g(x) + ~g(P ) = ~g � u(x) = u � ~g(x) = ~g(x) + P:

Thus, P 2 E

~g

= E

�

3

� (E)

3

. But this is impossible because (E)

3

\ ((E)

2

�f0g) = �.

Case 3. Let Q be the unique singular point of type A

5

on T . Then, q

�1

T

(Q)

consists of one point, say, 0. Since g(Q) = Q, it follows that ~g(0) = 0. Thus, just by

the same argument as before, we get ~g = �

2

3

. Set Stab

f0g

(G) = hui. This is a cyclic

group of order 6 and u = diag (�

6

; �

�1

6

) under an appropriate global coordinates (x; y)

around 0. it follows that ~g � u

2

= diag (1; �

3

). Then ~g � u

2

has a �xed curve (y = 0),

contradiction.

Case 4. Set G = hui. Since

~

G = huioh~gi is of order 9, it follows that

~

G = hui�h~gi.

Let Q be a point in T

g

. Then ]q

�1

T

(Q) is either one or three. If q

�1

T

(Q) = fPg, a

one point set, then ~g(P ) = P . If q

�1

T

(Q) = fP

1

; P

2

; P

3

g, then, ~g(P

1

) = P

j

for some

j = 1; 2; or 3. Since hui acts on fP

1

; P

2

; P

3

g transitively, we �nd that u

i

(P

1

) = P

j

for

some i. Set h := u

�i

� ~g. Then, h(P

1

) = P

1

. Note that h is of order 3 and satis�es

h

�

!

S

= �

3

!

S

and

~

G = hui � hhi. In addition, h and g give an equivariant action on

q

T

: S ! T . Thus, we may replace ~g by h in the second case. Then ~g(P

1

) = P

1

in

each case. We regard this point P

1

as an origin of S and denote it by 0

S

.

Since ~g has only isolated �xed points ((4.5)), the same argument as before shows

that S = E

2

�

3

and ~g = �

2

3

. This implies (S)

~g

\ (S)

u

= �: (In fact, otherwise, choosing

a point P in (S)

~g

\ (S)

u

, we �nd appropriate coordinates (x; y) around P such that

u = diag (�

3

; �

�1

3

). Then, ~g �u = diag (1; �

3

) has a �xed curve (y = 0), contradiction.)

Since

~

G is a Gorenstein automorphism of E�S and gives an equivariant action on

p

2

: E � S ! S, ~g induces an automorphism on the �ber E := p

�1

2

(0

S

) whose matrix

part is �

2

3

. Thus E = E

�

3

and then E � S = E

3

�

3

. Moreover, choosing an origin 0

E

of

E in E

~g

, we get ~g = �

2

3

on E. Now, taking 0 := (0

S

; 0

E

) as an origin of E �S = E

3

�

3

,

we have ~g = �

2

3

on E

3

�

3

. Let us consider the quotient threefolds (E

�

3

)

3

=h~gi and its

crepant resolution � : Y ! (E

�

3

)

3

=h~gi. Note that hui '

~

G=h~gi acts on (E

�

3

)

3

=h~gi.

Note also that � is unique. (In fact, one of such � is given by replacing each of 27

singular points of type 1=3(1; 1; 1) of (E

�

3

)

3

=h~gi by P

2

and then has no 
opping curves

in the exceptional divisor.) Thus, hui induces a regular action on Y .

Claim. hui acts freely on Y .

Proof of Claim. Since ord (u) = 3, it is su�cient to show that Y

u

= �. Assume

the contrary that P 2 Y

u

. Put Q := �(P ). Then u(Q) = Q. Denote the natural

quotient map E

3

�

3

! (E

�

3

)

3

=h~gi by � . Then, Q =2 �((E

3

�

3

)

~g

). (In fact, otherwise,
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�

�1

(Q) = fRg(� (E

3

�

3

)

~g

), a one point set. Thus, u(R) = R and ~g(R) = R on (E

�

3

)

3

.

Set R

0

:= p

2

(R). Then, u(R

0

) = R

0

and ~g(R

0

) = R

0

, because

~

G gives an equivariant

action on p

2

: E � S ! S. But this contradicts (S)

~g

\ (S)

u

= �:)

Thus, �

�1

(Q) consists of three points, say, R

1

, R

2

and R

3

. Since u(Q) = Q, u acts

on fR

1

; R

2

; R

3

g. Since hui acts freely on E

3

�

3

by (1.3), we may assume without loss of

generality that u(R

1

) = R

2

. On the other hand, fR

1

; R

2

; R

3

g is the orbit space of R

1

by h~gi, it follows that ~g

i

(R

1

) = R

2

for some i = 1; 2. Set again R

0

:= p

2

(R

1

). Then,

~g

i

(R

0

) = u(R

0

)(= p

2

(R

2

)) so that u

�1

� ~g

i

(R

0

) = R

0

. Since the matrix part of u

�1

is diag (�

3

; �

�1

3

) under some appropriate global coordinates around R

0

, we calculate

u

�1

� ~g

i

= diag (1; �

3

). Thus u

�1

� ~g

i

has a �xed curve (y = 0), contradiction. q.e.d.

of Claim.

By this claim Y=hui is a smooth threefold with O

Y=hui

(K

Y=hui

) ' O

Y=hui

and with

non-trivial �etale covering. On the other hand, by construction, our original Calabi-

Yau threefold X is birational to Y and then is connected with Y by 
ops. Thus X is

also smooth and �

1

(X) ' �

1

(Y ) by [Ko2]. This implies that X has also non-trivial

�nite �etale covering. But this contradicts our assumption �

alg

1

(X) = f1g.

Case 5. As in case (5c) in Claim (4.2), reducing to the previous case 4, we

�nd a contradiction. Set G = hti � hui, where t is a translation of order 3. Since

the translation group of G is just hti, and G is a normal subgroup of

~

G, the same

argument as in case 4 in Claim (4.2) implies that hti is a normal subgroup of

~

G. Thus,

~

G=hti = hu

1

i � h ~g

1

i ' (Z

3

)

2

, where u

1

:= u(mod hti) and ~g

1

:= ~g(mod hti).

By the way, since hti acts on p

2

: E � S ! S, we get a new �ber space

p

2

: (E � S)=hti ! S=hti;

on which hu

1

i � h~g

1

i gives an equivariant action. Since hti is a translation group on

both E�S and S, (E�S)=hti is an Abelian threefold and S=hti is an Abelian surface.

Set S

1

:= S=hti and V := (E � S)=hti. Then, T = S

1

=hu

1

i and W = S

1

=hu

1

; ~g

1

i.

Moreover ~g

�

1

!

S

1

= �

3

!

S

1

while u

�

1

!

S

1

= !

S

1

. Now applying the same argument as in

case 4 for S

1

! T ! W , we �nd that S

1

= E

2

�

3

and ~g

1

= �

2

3

(after replacing ~g

1

by

u

i

1

� ~g

1

so that S

~g

1

1

6= � and then �xing the origin 0 of S

1

in S

~g

1

1

(6= �)). Note that

hu

1

; ~g

1

i gives a Gorenstein action on V . Then letting E := p

2

�1

(0) and applying the

same argument as in case 4, we see that E = E

�

3

and the action of ~g

1

on E is ~g

1

= �

2

3

(after �xing an origin 0

E

of E in E

~g

1

(6= �)). Thus, regarding 0

E

as an origin 0 of V ,

we get ~g

1

= �

2

3

under appropriate global coordinates around 0. This together with

[CC also O2] implies V = E

3

�

3

. Now again applying the same argument as in case

4 for p

2

: V ! S

1

, we �nally get a contradiction that X is birational to a smooth

threefold Y with non-trivial �nite �etale covering.

Now this completes the proof of Claim (4.3).

Now we are done. Q.E.D. of Main Theorem (2).
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