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Abstract. A re-make, not of the construction, but of its description.

By an ordered graph will be meant a triple of sets (P;N;E) together with a pair of

structure maps, N  E ! P . These data are to be thought of as `positive vertices',

`negative vertices', `edges', and `incidence relations', respectively.

An ordered graph is a sort of ordered simplicial complex. It can be made into a

simplicial set by adding degenerate simplices. The details of this step can be neatly

described by means of an auxiliary category C

�

associated to the ordered graph �.

The set of objects of C

�

is the disjoint union N

.

[P ; the set of non-identity morphisms

is the set E, and the source and target functions on E are given by the two maps

E ! N and E ! P , respectively. The category is a little unusual insofar as no

two morphisms in it can be composable unless at least one of them is an identity

morphism.

The nerve construction produces a simplicial set N(C

�

) now: an m-simplex is a

functor [m]! C

�

(where [m] denotes the ordered set (0 < 1 < � � � < m), regarded as

a category). The set of m-simplices is thus a disjoint union N

.

[E

.

[ : : :

.

[E

.

[P , with

one entry \E " for each surjective monotone map [m]! [1]. The simplicial set N(C

�

)

is 1-dimensional in the sense that every non-degenerate simplex has dimension � 1.

Instead of N(C

�

) we will henceforth write N(�) for this simplicial set.

The geometric realization jN(�)j is a CW complex of dimension � 1. The 0-cells

of jN(�)j are indexed by the set N

.

[ P (disjoint union), and the 1-cells are indexed

by the set E.

We will suppose now that the ordered graph � is connected (equivalently, that the

CW -complex jN(�)j is) and pointed ( i.e., equipped with the choice of an element

x 2 P ). We may then speak of the fundamental group �

1

(�; x). It can be described

as the fundamental group of the CW -complex jN(�)j based at jxj or else, in somewhat

more combinatorial terms, as the edge path group of � based at x.

We may also speak of the universal covering of � (with respect to the chosen

basepoint x). This is an ordered graph

e

�. It comes equipped with an action of

�

1

(�; x), and with a map

e

� ! �; and these two pieces of data are such that they

make

e

� into a principal �

1

(�; x)-bundle over � (by de�nition, this means that the

action is free, and that the quotient by the action is identi�ed to � by the given map).

The construction of all this is as follows, by covering space theory. An element of

e

N

(a `negative vertex' of

e

�) consists of a pair of data in �, namely (i) a `negative vertex'

v of � and (ii) a homotopy class of paths connecting v to the chosen basepoint x. The

map

e

N ! N is de�ned as the forgetful map which forgets the path; and the action of

�

1

(�; x) on

e

N is given by composing the path with the loop in question. The other

data are given similarly.
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As we have implicitly used before, the ordered graphs are the objects of a category

in an evident way: a map in this category is a triple of maps of sets, P ! P

0

,

N ! N

0

, E ! E

0

, so that these maps are compatible to the structure maps of the

two ordered graphs in question. It makes sense, consequently, to speak of a simplicial

ordered graph, a simplicial object in the category of ordered graphs. We note that

a simplicial ordered graph will give rise to a bisimplicial set, by nerve, and hence to

a CW -complex, by geometric realization (this particular geometric realization uses

`prisms'; an equivalent construction, up to canonical isomorphism, would be to pass

to the diagonal simplicial set �rst and then take the geometric realization of that

diagonal simplicial set). We are in a position now to describe our basic construction.

The construction is implicit in Kan's paper [1], but it was not made explicit there.

Construction. Let X : �

op

! (sets); [n] 7! X

n

, be a simplicial set. There is an

associated simplicial ordered graph. It has P

n

= X

n

, N

n

= X

0

, E

n

= X

n+1

, and the

maps E

n

! P

n

and E

n

! N

n

are given by the `last face' map and `last vertex' map,

respectively. This simplicial ordered graph will be denoted �X .

(Here are some more details. The simplicial set P. is de�ned to be isomorphic to

X itself, while N. is de�ned as the set X

0

considered as a simplicial set in a trivial

way. Concerning E., if � : [n]! [n

0

] is a monotone map then �

�

: E

n

0

! E

n

is de�ned

to be the map X

n

0

+1

! X

n+1

induced from � [ f1g : [n] [ f1g ! [n

0

] [ f1g : The

map E

n

! P

n

is de�ned to be the map X

n+1

! X

n

induced from the injective map

[n] ! [n+1] which misses n+1, and the map E

n

! N

n

is de�ned to be the map

X

n+1

! X

0

induced from the map [0]! [n+1] taking 0 to n+1.)

Considering X as a simplicial ordered graph in a trivial way (no edges, no negative

vertices) we have a natural inclusion X ! �X . The following will be shown later.

Lemma. The map X ! �X is a weak homotopy equivalence.

We will suppose now that the simplicial set X is connected and that it is equipped

with a basepoint (that is, the choice of an element in X

0

). Then �

n

X , the ordered

graph in degree n of the simplicial ordered graph �X , will also be connected (a proof

of this fact will be given below) and it will be equipped with a basepoint x

n

(namely

the degenerate in degree n of the chosen element in X

0

). �X can thus be considered as

a simplicial object of pointed ordered graphs, and we can therefore de�ne a simplicial

group G = G(X),

[n] 7! G

n

: = �

1

(�

n

X; x

n

) :

Theorem. The simplicial group G is a loop group for X .

Proof. In view of the lemma it will su�ce to show that there is a principal G-bundle

over �X with weakly contractible total space (`weakly contractible' means that the

map to the one-point-space is a weak homotopy equivalence). For by pulling back

such a bundle along the map X ! �X we can obtain a principal G-bundle over X ,

and the total space of the latter bundle will again be weakly contractible. (This is

so since, for example, a map of principal bundles of simplicial sets is also a map of

Kan �brations [2, Satz 9.5] and the geometric realization of a Kan �bration is a Serre

�bration [3]. So the Whitehead theorem applies.)
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The universal covering of a pointed ordered graph, as described above, is functorial.

Hence we have a simplicial ordered graph [n] 7!

e

�

n

X , it is obtained from [n] 7! �

n

X

(that is, from �X) by taking the universal covering degreewise. This simplicial ordered

graph is weakly contractible in every degree; hence (by [4, Appendix A] for example)

it is also weakly contractible globally.

The desired principal bundle is now obtained by observing that the simplicial group

G acts on

e

�X , that the action is free, and that the quotient of

e

�X by the action is

just �X again.

Proof of Lemma. We give two proofs, both fairly self-contained. The short proof

is in an appendix; here is the pedestrian one.

The category of ordered graphs, as well as the category of simplicial sets, is a functor

category , namely the category of-%-shaped, respectively of �

op

-shaped, diagrams in

the category of sets; and colimits in such a functor category are computed `pointwise'.

It results that the functor X 7! �X commutes with colimits and, what is more to

the point here, that the functor X 7! N(�X) (and therefore also X 7! jN(�X)j )

does so, too. We can apply this fact in two ways. First, by direct limit, we can

reduce to proving the lemma for those simplicial sets which are �nite; that is, there

are only �nitely many non-degenerate simplices. Next, a �nite simplicial set can be

obtained from a `smaller' one by the attaching of a simplicial set standard k-simplex,

for some k; by induction and the gluing lemma we can therefore reduce to proving

the lemma for just the latter kind of simplicial set. In other words, we are reduced

now to showing that jN(��

k

)j is contractible.

To show this, we will work out the cell structure of the CW -complex jN(��

k

)j

explicitly. The cells in this complex are of three kinds. First, there are the cells

coming from the positive vertices; these contribute the copy of j�

k

j coming from the

inclusion �

k

! N(��

k

). Next, there are the cells coming from the negative vertices;

these cells are all 0-dimensional, and there is one such for every vertex of �

k

.

And, �nally, there are the cells coming from the non-degenerate edges; of these

there is a `basic' edge for every negative vertex. Namely suppose that the negative

vertex corresponds to the l-th vertex of �

k

. Let front

l

(�

k

) denote the copy of �

l

inside �

k

whose vertices are the vertex l and its predecessors. Then the last degenerate

of the generating simplex of front

l

(�

k

) gives an l-dimensional edge of the simplicial

ordered graph, and this edge is non-degenerate. Conversely, every non-degenerate

edge is either of this kind or is a face of one such. Indeed, suppose the edge corresponds

to a simplex y of �

k

and suppose that l is the highest vertex of �

k

occurring in y. If

any vertex < l occurs twice in y, or if the vertex l occurs more than twice, then the

edge associated to y is degenerate|contrary to assumption. If, on the other hand,

some vertex < l does not occur at all, or if the vertex l occurs only once rather than

twice, then the edge associated to y is a proper face of one of higher dimension.

Returning to the `basic' edge, we note that the associated cell has dimension l+1.

Its closure is the image of a copy of j�

l

j�j�

1

j which is mapped in such a way that all

of j�

l

j � 0 is identi�ed to a point (corresponding to the negative vertex in question),

while j�

l

j � 1 is identi�ed to the geometric realization of front

l

(�

k

). By induction,

there are no identi�cations over faces of �

k

which are not of this kind. It results that

jN(��

k

)j is the union of the cones on j�

0

j; j�

1

j; : : : ; j�

k

j, each glued along its base

to the appropriate subsimplex in j�

k

j. This complex is indeed contractible.

Documenta Mathematica 1 (1996) 121{126



124 Friedhelm Waldhausen

Appendix (on generators and relations ).

If the groups G

n

= �

1

(�

n

X; x

n

) are expressed as edge path groups, one obtains a

sort of description of the simplicial group G in terms of the structure of X . This de-

scription occurs as a de�nition of the loop group in [1, section 12]. Another de�nition

of the loop group is given in [1, sections 7 and 9] in terms of generators and relations.

The equivalence of the two de�nitions can be explained by combinatorial group the-

ory. Namely, in a connected graph one can choose a maximal tree. The fundamental

group of the graph can then be identi�ed to the free group freely generated by the

edges of the graph not in that maximal tree; equivalently, the fundamental group can

be identi�ed to the group generated by all the edges of the graph, where, however,

the edges of the chosen maximal tree are also introduced as relations.

To make this description e�ective, one needs to know what a maximal tree in

the ordered graph �

n

X will look like. The answer is as follows. If the simplicial

set X is reduced (that is, if X

0

; the set of 0-simplices, has only one element) then

there is a maximal tree in �

n

X which is such that it contains exactly those edges

where the corresponding simplex of X is a last degenerate. In the general case of a

connected, but not necessarily reduced X , one has to choose a maximal tree in X

�rst (a sub-simplicial-set which contains all of X

0

and whose geometric realization is

a simply-connected CW -complex of dimension �1); the pieces in �

n

X coming from

this sub-simplicial-set are then, additionally, in the maximal tree in �

n

X .

We will justify this description of the maximal tree now (for much of the following,

cf. [1, Lemma 9.1] and [1, section 14] in particular). We begin by explaining why,

for connected X and for every n, the graph �

n

X is connected. First, every positive

vertex of �

n

X can be connected to some negative vertex. Indeed, if the positive vertex

corresponds to x 2 X

n

then the last degenerate of x gives an edge in �

n

X which will

connect this positive vertex to a negative vertex (namely the one associated with

the `last vertex' of that last degenerate or, what amounts to the same thing, the

`last vertex' of x itself). Next, all the negative vertices of �

n

X come from �

0

X , by

degeneracy, hence it will su�ce to show that they can be connected to each other

inside �

0

X . It will, in fact, su�ce to show this in the special case of two negative

vertices where the associated 0-simplices of X are adjacent (in making this reduction

we are using the assumed fact that X is connected). We are thus in the special case

now where the two 0-simplices of X are the faces of some y 2 X

1

. We see that in

this case the two negative vertices can be connected to each other by an edge path of

length 2 in �

0

X ; the two edges in the path are provided by the simplex y on the one

hand and by the 1-dimensional degenerate of the last face of y on the other.

Next, suppose that the simplicial set X is a tree. We want to show that, in this

case, the ordered graph �

n

X is a tree, too, for every n. Now the nerve N(�

n

X) is

1-dimensional, and connected; so it will be a tree if (and only if) it is acyclic. To

prove the latter, since the functor X 7! N(�

n

X) commutes with colimits, we can

further reduce, by direct limit and (inductively) the gluing lemma, to dealing with

just the two cases where X = �

0

or X = �

1

. We will write P

n

, E

n

, N

n

, respectively,

for the sets of positive vertices, edges, and negative vertices of �

n

X . In the case

X = �

0

, each of these sets has exactly one element, so N(�

n

�

0

) is isomorphic to �

1

.

In the case X = �

1

, the set P

n

has n+2 elements which we denote p

0

; p

1

; : : : ; p

n+1

(where p

n+1

stands for the map [n] ! [1] with image consisting of only 0 2 [1] and

where, otherwise, p

i

stands for the monotone map [n]! [1] having the property that
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i 2 [n] is the smallest element whose image is 1 2 [1] ); the set E

n

has n+3 elements,

e

0

; e

1

; : : : ; e

n+2

, and the set N

n

has two elements, n

0

and n

1

. The map E

n

! P

n

takes e

i

to p

i

for all i � n+1, and, in addition, it takes e

n+2

to p

n+1

. The map

E

n

! N

n

takes the element e

n+2

into n

0

and it takes all other elements of E

n

into

n

1

. We see that N(�

n

�

1

) is a one-point-union of n+1 copies of �

1

, together with

one extra copy of �

1

hanging on to one of the whiskers. It is a tree indeed.

Let X be a connected simplicial set now. Choose a maximal tree T in X . Let P

0

,

E

0

, N

0

denote, respectively, the sets of positive vertices, edges, and negative vertices

of �

n

T . Let P

00

denote the subset of X

n

which is complementary to the subset T

n

.

Let E

00

be de�ned as the subset of X

n+1

given by the image of P

00

under the `last

degeneracy' map. One of the structure maps of �

n

X restricts to a map E

00

! N

0

(all

the negative vertices of �

n

X are contained in N

0

since T contains all the 0-simplices

of X), and the other structure map restricts to a map E

00

! P

00

. The latter map is

given by the `last face' map, and is actually inverse to the above map P

00

! E

00

; in

particular it is an isomorphism. In view of this fact, and using the fact established

above, that the ordered graph

N

0

; E

0

; P

0

; N

0

 E

0

! P

0

is indeed a tree, we can now conclude that the sets, and maps,

N

0

; E

0

[E

00

; P

0

[ P

00

; N

0

 E

0

[ E

00

! P

0

[ P

00

do form a tree, too. The isomorphisms N

0

� X

0

and P

0

[ P

00

� X

n

show that this

tree contains all the vertices of �

n

X . It is therefore a maximal tree.

Appendix (another view at the lemma).

The geometric realization j�X j may be identi�ed to the double mapping cylinder

of the following diagram (the terms involved have been de�ned in connection with

the de�nition of �X),

jP.j  � jE.j �! jN.j :

As a consequence, the assertion of the lemma, that the inclusion

jX j � jP.j �! j�X j

is a homotopy equivalence, will therefore result once one knows that the map

E. �! N.

is a (weak) homotopy equivalence. But this is a well known fact: E. is obtained from

the simplicial set X by shifting , it is a sort of path space on X , and it is homotopy

equivalent to the subspace of constant paths; that is, the set X

0

regarded as a simpli-

cial set in a trivial way. The latter statement is in fact true with the strongest possible

interpretation of homotopy equivalence, namely simplicial homotopy equivalence. An

account can be found in [4, proposition 1.5]; another in [5, lemma 1.5.1].
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