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Abstract. Let f be a modular form of even weight on �

0

(N) with asso-

ciated motive M

f

. Let K be a quadratic imaginary �eld satisfying certain

standard conditions. We improve a result of Nekov�a�r and prove that if a

rational prime p is outside a �nite set of primes depending only on the form

f , and if the image of the Heegner cycle associated with K in the p-adic

intermediate Jacobian of M

f

is not divisible by p, then the p-part of the

Tate-

�

Safarevi�c group of M

f

over K is trivial. An important ingredient

of this work is an analysis of the behavior of \Kolyvagin test classes" at

primes dividing the level N . In addition, certain complications, due to the

possibility of f having a Galois conjugate self-twist, have to be dealt with.

1991 Mathematics Subject Classi�cation: 11G18, 11F66, 11R34, 14C15.

1 Introduction

Let f be a new form of even weight 2r for the group �

0

(N), let M

f

be the r-th Tate

twist of the motive associated to f by Jannsen [Jan88b] and Scholl [Sch90]. For all

but a �nite number of primes p there is a canonical choice of free Z

p

-lattice T

p

(M

f

)

with a continuous action of Gal(

�

Q=Q) such that T

p

(M

f

)
Q is the p-adic realization

of M

f

. In [Nek92], Nekov�a�r showed that under certain assumption one could apply

the Kolyvagin method of Euler systems to M

f

and obtained, among other things,

the following result:

Theorem 1.1. Let K be a quadratic imaginary �eld of discriminant D in which all

primes dividing N split, and let p be a prime not dividing 2N . Let T

p

(M

f

) be the

p-adic realization of M

f

and let P (1) be the image in H

1

(K;T

p

(M

f

)) of the Heegner

cycle associated with K under the p-adic Abel-Jacobi map. If P (1) is not torsion,

then the p-part of the Tate-

�

Safarevi�c group of M

f

over K, X

p

(M

f

=K), is �nite.

1
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We remark that in [Nek92] there is a stronger condition on p for the theorem to

hold which is removed in a remark on the last paragraph of [Nek95].

The purpose of this note is to give the following re�nement of the above result:

Theorem 1.2. There is a �nite set of primes 	(f), depending only on f , such that

for a prime p not in 	(f) the following holds: for K as in theorem 1.1, if P (1) is

not torsion, then p

2I

p

X

p

(M

f

=K) = 0, where I

p

is the smallest non-negative integer

such that the reduction of P (1) to H

1

(K;T

p

(M

f

)=p

I

p

+1

) is not 0. In particular, if

I

p

= 0, thenX

p

(M

f

=K) is trivial

Remark 1.3. 1. The Tate-

�

Safarevi�c group discussed here is not exactly the same as

the one that appears in [Nek92]. The main di�erence is in the local conditions

at the primes of bad reduction. Nekov�a�r makes no conditions at these primes,

which is whyX comes out too big. The local condition that we use is the one

de�ned by Bloch and Kato. The analysis of this local condition is one of the

main ingredient of this work.

2. The �nite set 	(f) contains the primes dividing 2N and primes with an excep-

tional image of Gal(

�

Q=Q) in Aut(T

p

(M

f

)) (see de�nition 6.1).

It is our hope that the methods used here allow a complete analysis of the struc-

ture ofX

p

(M

f

=K) in terms of various Kolyvagin classes following [Kol91, McC91].

Notice however that some di�culties are already visible in the fact that the power of

p annihilating X is 2I

p

whereas in the elliptic curves case one gets annihilation by

p

I

p

. This di�culty is caused by the more complicated structure of the image of the

Galois representation associated to M

f

(see remark 6.5).

A natural problem raised by theorem 1.2 is to bound the numbers I

p

. In par-

ticular, one would hope that I

p

= 0 for all but a �nite number of p's. This would

show the �niteness ofX(M

f

=K) except for possible in�nite contribution at primes

dividing 2N . It is useful to compare the situation to the case where the weight of f is

2, where the triviality ofX

p

(M

f

=K) for almost all p has been previously established

in [KL90]. In that case, the class P (1) correspond to a point on the Jacobian of a

modular curve, and I

p

= 0 for almost all p whenever P (1) is of in�nite order. This

last result uses essentially the injectivity of the Abel-Jacobi map (up to torsion) and

the Mordell-Weil theorem, neither of which is known for greater than 1 codimension

cycles. One possible way of getting some control over the indices I

p

could be to use the

results of Nekov�a�r on the p-adic heights of Heegner cycles: According to [Nek95, corol-

lary to theorem A] one has the equality h(P (1); P (1)) = 


f
K;p

L

0

p

(f 
K; r) where

h( ; ) is the p-adic height pairing de�ned by Nekov�a�r and Perrin-Riou, L

p

(f 
K) is a

p-adic L-function of f over K de�ned by Nekov�a�r and 


f
K;p

is some p-adic period.

The p-adic height of elements of H

1

f

(K;T ) has a bounded denominator (it is integral

for universal norms from a Z

p

extension) and so the estimation of I

p

is reduced to

giving estimates on the p-divisibility of L

0

p

(f 
K; r).

Another problem is to handle primes dividing 2N . The di�culty here is that

we do not understand yet the image of the Abel-Jacobi map with Q

p

coe�cients for

varieties over an extension of Q

p

and with bad reduction. Recently there has been

some progress on that problem [Lan96] but the results do not yet cover the cases we

need.

Here is a short description of the contents. After a few preliminary remarks and

de�nitions in section 2 we will recall in section 3 some of the main points of [Nek92].
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For brevity this will be far from a full account. We merely attempt to indicate the main

changes that need to be made and explain where the local conditions at the bad primes

come into play. These conditions are then discussed in sections 4 and 5. We then

give the proof of the main theorem in section 6. It would have been nice to skip this

section or make it shorter and refer instead to the corresponding sections in [Nek92].

However, it turns out that to get the result we want under weaker conditions than

the ones stated there (see the remark in loc. cit. page 121), the proof has to be

modi�ed somewhat. I have therefore chosen to give the full details of the proof. In

the appendix we give a proof of a Hochschild-Serre spectral sequence for continuous

group cohomology which is used in section 5.

As the reader will notice, this work is closely related to [Nek92]. Familiarity with

that paper is helpful for reading this one but not necessary, as one may choose to

trust the results quoted from there.

I would like to thank Wayne Raskind, Don Blasius, Haruzo Hida, Dinakar Ra-

makrishnan and Jan Nekov�a�r for helpful discussions and remarks. I would also like

to thank Farshid Hajir for encouraging me to write down my ideas on this subject.

Finally, I would like to thank the referee for some useful corrections and remarks.

2 preliminaries

For this work, a motive is e�ectively equivalent to its set of realizations. We only need

the p-adic realizations for the di�erent p's and a brief mention of the Betti realization.

Thus, a motive M has a Betti realization which is a Q-vector space V

Q

and p-adic

realizations which are continuous representations of Gal(

�

Q=Q) on V

p

= V

Q


Q

p

for the

di�erent p's. By choosing a suitable Z-lattice T

Z

in V

Q

we have in each V

p

an invariant

Z

p

-lattice T

p

= T

Z


 Z

p

. The p-part of the Tate-

�

Safarevi�c group of M depends on

the choice of T

p

but statements about the p-part for all but a �nite number of p are

clearly independent of the choice of T

Z

. In the cases we will be considering there

is a standard choice (a Tate twist of a piece of the �etale cohomology of a suitable

Kuga-Sato variety, see [Nek92, x3]) and the theorem will be proved for this choice.

To be more precise:

T

p


 Q

p

�

=

�

f;p


 Q

p

(r); (2.1)

where �

f;p

is the standard p-adic representation associated to f .

To de�ne the p-part of X, we start with the free Z

p

-module of �nite rank,

T = T

p

(M), on which Gal(

�

Q=Q) acts continuously. Let V = T 
 Q

p

and A = V=T ,

so that there is a short exact sequence:

0 �! T

i

�! V

pr

�! A �! 0:

Let ` be a prime, possibly 1. Let F be a �nite extension of Q

`

and let

�

F be an

algebraic closure of F . In [BK90, (3.7.1)] Bloch and Kato de�ne the �nite part H

1

f

of
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the �rst Galois cohomology of F with values in V , T or A as follows:

H

1

f

(F; V ) := KerH

1

(F; V )

res

��! H

1

(F

ur

; V ) when ` 6= p;

H

1

f

(F; V ) := KerH

1

(F; V ) ! H

1

(F; V 
B

cris

) when ` = p;

H

1

f

(F; T ) := i

�1

H

1

f

(F; V );

H

1

f

(F;A) := ImH

1

f

(F; V ) ,! H

1

(F; V )

pr

�! H

1

(F;A);

where F

ur

is the maximal unrami�ed extension of F . The ring B

cris

is de�ned by

Fontaine. We will not need to use the de�nition directly in the case ` = p.

Let now K be a number �eld. When B is a Gal(

�

Q=K)-module we have restriction

maps for each place v of K: H

1

(K;B) ! H

1

(K

v

; B). When x 2 H

1

(K;B) we will

denote its restriction to H

1

(K

v

; B) by x

v

. The p-part of the Selmer group of M over

K is now de�ned as

Sel

p

(M=K) := KerH

1

(K;A) �!

Y

v

H

1

(K

v

; A)=H

1

f

(K

v

; A);

where the product is over all places v of K. We also de�ne

H

1

f

(K;V ) := KerH

1

(K;V ) �!

Y

v

H

1

(K

v

; V )=H

1

f

(K

v

; V ):

The p-part of the Tate-

�

Safarevi�c group of M over K is the quotient of Sel

p

(M=K)

by the image of H

1

f

(K;V ). Nekov�a�r de�nes the same group as the quotient of the

Selmer group by the image of an appropriate Abel-Jacobi map. It follows easily from

his result that in the case of interest here his de�nition coincides with the one we are

using.

Let A

p

k be the p

k

-torsion subgroup of A and let red

p

k : T ! A

p

k be the reduction

mod p

k

. We will use the same notation for the reduction map A

p

n

! A

p

k which is

given by multiplication by p

n�k

when n > k and we notice that all reduction maps

commute with each other. We will abuse the notation further to denote by red

p

k
the

maps induced by the reduction on Galois cohomology groups.

To simplify the notation slightly, we assume the following:

Assumption 2.1. There is a Galois invariant bilinear pairing T � T ! Z

p

(1) such

that the induced pairings on T=p

k

�

=

A

p

k
are non-degenerate for all k.

This condition is satis�ed in the case we are considering by [Nek92, proposition

3.1]. It is mostly made at this point so that we do not have to consider both T and

its Kummer dual. We have the following well known results:

Proposition 2.2. The pairing above induces local Tate pairings, for each place v of

K:

H

1

(K

v

; T )�H

1

(K

v

; A) ! H

1

(K

v

;Q

p

=Z

p

(1))

�

=

Q

p

=Z

p

;

H

1

(K

v

; A

p

k )�H

1

(K

v

; A

p

k ) ! H

1

(K

v

;Z=p

k

(1))

�

=

Z=p

k

;

which are both perfect and will be denoted by h ; i

v

(for the torsion coe�cients case

see [Mil86, Chap. I, Cor. 2.3]). The following properties hold:
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1. [BK90, Proposition 3.8] The pairing h ; i

v

makes H

1

f

(K

v

; T ) and H

1

f

(K

v

; A)

exact annihilators of each other (this is true even in the case pjv).

2. If x and y belong to H

1

(K;A

p

k ) then

X

v

hx

v

; y

v

i

v

= 0;

where the sum is over all places v of K but is in fact a �nite sum.

We remark that it is possible to neglect the in�nite places in all the discussions if

we assume that p 6= 2 or if K is totally imaginary. Both conditions will in fact hold.

Definition 2.3. Let F be a local �eld. We de�ne H

1

f

(F;A

p

k ) to be the preimage in

H

1

(F;A

p

k
) of H

1

f

(F;A). We de�ne H

1

f

�

(F;A

p

k
) to be the annihilator of H

1

f

(F;A

p

k
)

in H

1

(F;A

p

k ) under local Tate duality. We will call the classes in H

1

f

�

(F;A

p

k ) the

dual �nite classes. We de�ne the singular part of the cohomology as

H

1

sin

(F;A

p

k
) = H

1

(F;A

p

k
)=H

1

f

�

(F;A

p

k
)

(this de�nition is due to Mazur). If x 2 H

1

(F;A

p

k ) we denote by x

sin

its projection

on the singular part. When K is a number �eld we let

Sel(K;A

p

k ) := KerH

1

(K;A

p

k ) �!

Y

v

H

1

(K

v

; A

p

k )=H

1

f

(K

v

; A

p

k ):

Lemma 2.4. The group H

1

f

�

(F;A

p

k ) is the image of H

1

f

(F; T ) under the canonical

map H

1

(F; T ) ! H

1

(F;A

p

k
). There is a perfect pairing, induced by h ; i

v

:

h ; i

v

: H

1

f

(F;A

p

k
)�H

1

sin

(F;A

p

k
) ! Z=p

k

Proof. This is a formal consequence of the preceding de�nition and proposition 2.2.

For a Gal(

�

F=F )-module B and

�

F � K � F we denote B

Gal(

�

F=K)

by B(K). If

B

0

is a subset of B we denote by F (B) the �xed �eld of the subgroup of Gal(

�

F=F )

�xing B

0

.

3 Method of proof

The Kolyvagin method, as applied to M

f

by Nekov�a�r, works as follows: Let f have

q-expansion f =

P

a

n

q

n

. Let E be the �eld generated over Q by the a

i

. It is known

that E is a totally real �nite extension of Q. Let O

E

be the ring of integers of E. As

explained in [Nek92, Proposition 3.1], the invariant lattice T

p

(M

f

) can be taken to

be a free rank 2 module over O

E


Z

p

=

Q

O

E

p

, where the product is over all primes

p of E dividing p. To prove the result about X it is su�cient to choose one such

prime p and consider only the direct summand of T

p

(M

f

) corresponding to p. This

summand will be denoted T

f;p

. For the rest of this section we �x T = T

f;p

and let as

usual V = T 
 Q

p

and A = V=T .
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As the Tate-

�

Safarevi�c group is (obvious with the above de�nition) p-torsion, we

wish to show that its part killed by p

k

is killed by the �xed power p

2I

p

for each k.

We look at the short exact sequence

0 �! A

p

k �! A

p

k

�! A �! 0

and the induced sequence on cohomology

0 �! A(K)=p

k

�! H

1

(K;A

p

k ) �! H

1

(K;A)

p

k �! 0

The conditions we will impose on the prime p imply, as we will see in part 2 of

proposition 6.3, that A(K) = 0, and hence H

1

(K;A)

p

k

�

=

H

1

(K;A

p

k ). It follows that

the preimage in H

1

(K;A

p

k ) of Sel

p

(T=K) is Sel(K;A

p

k ). Since P (1) 2 H

1

f

(K;V ) it

will be enough to show that Sel(K;A

p

k )=(O

E

p

=p

k

)P (1) is killed by p

2I

p

.

Choose once and for all a complex conjugation � 2 Gal(

�

Q=Q). Let S(k) be the

set of primes ` satisfying:

� ` - NDp;

� ` is inert in K;

� p

k

divides a

`

and ` + 1;

� ` + 1� a

`

are not divisible by p

k+1

.

Remark 3.1. The �rst 3 conditions are equivalent to Frob(`) and � being conjugates

in Gal(K(A

p

k )=Q). The last condition can be arranged for in�nitely many `'s (see

proposition 6.10).

Let n be a product of distinct primes ` 2 S(k). Nekov�a�r associates with n a coho-

mology class y

n

2 H

1

(K

n

; T ), where K

n

is the ring class �eld of K of conductor n.

The classes y

n

are de�ned as the images of certain CM cycles under the Abel-Jacobi

map of M

f

. When n = m` the relation

cor

K

n

;K

m

(y

n

) = a

`

y

m

holds, as well as some local congruence condition which we will not discuss here.

Let G

n

:= Gal(K

n

=K

1

). Then G

n

=

Q

`jn

G

`

. For each prime ` 2 S(k) we

associate the element D

`

2 Z[G

`

] which is given by

D

`

=

`

X

i=1

i�

i

; G

`

= h�i;

and let D

n

=

Q

`jn

D

`

2 Z[G

n

]. One now notices, following Kolyvagin, that

D

n

(red

p

k y

n

) 2 H

1

(K

n

; A

p

k) is G

n

-invariant. By [Nek92, Proposition 6.3]

p

M

A

p

k (K

n

) = 0; (3.1)

with some constant M independent of n and k. An application of the in
ation restric-

tion sequence shows that there is a canonically de�ned class z

n

2 H

1

(K

1

; A

p

k�2M )

such that

res

K

1

;K

n

z

n

= D

n

(red

p

k�2M y

n

):
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Indeed, one has the commutative diagram with exact in
ation restriction rows:

H

1

(K

1

; A

p

k )

res

K

1

;K

n

������! H

1

(K

n

; A

p

k)

G

n

����! H

2

(G

n

; A

p

k (K

n

))

red

p

k�M

?

?

y

red

p

k�M

?

?

y

red

p

k�M

?

?

y

H

1

(K

1

; A

p

k�M )

res

K

1

;K

n

������! H

1

(K

n

; A

p

k�M )

G

n

����! H

2

(G

n

; A

p

k�M (K

n

))

and the rightmost vertical map is 0 by (3.1) because the reduction map kills p

M

torsion. It follows that

red

p

k�M y

n

2 Im

�

res

K

1

;K

n

: H

1

(K

1

; A

p

k�M ) ! H

1

(K

n

; A

p

k�M )

�

:

We get the canonical class z

n

by further reduction as in [Nek92, x7]. Finally, de�ne

P (n) := cor

K

1

;K

z

n

:

Note the important di�erence between Nekov�a�r's de�nition of the same classes and

ours: in Nekov�a�r's de�nition res

K

1

;K

n

z

n

= p

M

D

n

(red

p

k�M y

n

). To simplify the nota-

tion, we may notice that the de�nition is entirely independent of the value of M . To

de�ne classes in the cohomology of A

p

r

we need to start with n whose prime divisors

satisfy certain congruences depending on r and M and we may freely assume that we

have chosen the n correctly whatever the congruences are. It will be convenient to

make the change of variable k = k�2M here. Note that P (1) can be considered mod

p

k

for any k and its de�nition is independent of M .

Proposition 3.2. The classes P (n) enjoy certain fundamental properties:

1. P (n) belongs to the (�1)

par(n)

"

L

-eigenspace of the complex conjugation � acting

on H

1

(K;A

p

k ), where par(n) is the parity of the number of prime factors in n

and "

L

is the negative of the sign of the functional equation of L(f; s).

2. For a place v of K such that v - Nn, P (n) 2 H

1

f

�

(K

v

; A

p

k
).

3. If n = m�` and � is the unique prime of K above `, then there is an isomorphism

between H

1

f

(K

�

; A

p

k ) and H

1

sin

(K

�

; A

p

k ) which takes P (m)

�

to P (n)

�;sin

. In

particular, if P (m)

�

6= 0, then P (n)

�;sin

6= 0.

Proof. This is [Nek92, Proposition 10.2] with a couple of modi�cations. First of all

we remark that there is a miss-print in [Nek92] and the eigenvalue of � on P (n) is

indeed (�1)

par(n)

"

L

as can be seen from the proof. To get the second statement when

v - p we note that if such a v is a prime of good reduction one has H

1

f

�

(K

v

; A

p

k ) =

H

1

f

(K

v

; A

p

k ) = H

1

ur

(K

v

; A

p

k ) (see lemma 4.4) and that the auxiliary power of p that

appear in [Nek92] is not needed here because of the change in the de�nition of P (n)

alluded to above. The case vjp follows from [Nek92, Lemma 11.1]. Here, two remarks

are in place: First of all, Nekov�a�r uses the comparison theorem of Faltings for open

varieties [Fal89]. As is well known, this result is not universally accepted. However,

in the last 2 years Nekov�a�r himself [Nek96] and Nizio l [Niz97, Theorem 3.2] have

supplied alternative proofs that the image of the Abel-Jacobi map lies inside H

f

in

the case of good reduction. The second remark is that this is all we need because our

assumption p - 2N imply that vjp is a place of good reduction.
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One of the main points of this work is to analyze the dual �nite conditions

at primes of bad reduction and to show that by further reduction (i.e. by possibly

increasing M) one may assume that the classes P (n) are dual �nite at these primes

(see corollary 5.2).

4 Finite and dual finite conditions at `

Let F be a �nite extension of Q

`

(` 6= p) and let T be a free Z

p

-module of �nite rank

with a continuous action of G = Gal(

�

F=F ). Again let V = T 
Q

p

and A = V=T . Let

I = Gal(

�

F=F

ur

) be the inertial group. We assume the following condition is satis�ed

(as is in the case at hand, see [Nek92, proposition 3.1]):

Condition 4.1. There is a Galois invariant, non-degenerate bilinear pairing V �V !

Q

p

(1) and V

I

(�1) has no nontrivial �xed vector with respect to any power of Frobenius

(true if V

I

has no part of weight �2).

Proposition 4.2. Under the above condition there exists a constant M such that for

any �nite unrami�ed extension L=F we have

1. p

M

H

1

(L

ur

; T )

Gal(L

ur

=L)

= 0;

2. H

1

f

(L; V ) = H

1

(L; V );

3. V (L) = 0.

Proof. The second statement immediately follows from the �rst. For the �rst state-

ment we begin by noticing that I is independent of L. By making a �nite rami�ed

extension we may assume that the action of I factors through the p-primary part of its

tame quotient. It then follows that H

1

(I; T )

�

=

T

I

(�1) as Gal(L

ur

=L)-modules. The

condition now implies that T

I

(�1) is a direct sum of a torsion group and a Z

p

-free

module on which Frobenius has no invariants. Finally, the third statement follows

since by duality one gets that 1 is not an eigenvalue of any power of Frobenius on

V

I

.

Remark 4.3. If T is the Tate module of an elliptic curve with split semi-stable re-

duction, then the constant M is essentially the p-adic valuation of the number of

components of the special �ber of E.

It follows from part 2 of proposition 4.2 that for any �nite unrami�ed extension

L=F we have H

1

f

(L; T ) = H

1

(L; T ), and therefore by lemma 2.4 we get

H

1

f

�

(L;A

p

k
) = ImH

1

(L; T )

red

��! H

1

(L;A

p

k
):

Lemma 4.4. If the G-module T is unrami�ed, then for any L as above

H

1

f

�

(L;A

p

k) = H

1

f

(L;A

p

k ) = H

1

ur

(L;A

p

k) := KerH

1

(L;A

p

k ) ! H

1

(L

ur

; A

p

k ):

Proof. It is enough to show the second equality as the condition of being unrami�ed

is self dual. It is clear that any class in H

1

f

(L;A

p

k) is unrami�ed. Conversely, a class

in H

1

ur

(L;A

p

k) is in
ated from H

1

(L

ur

=L;A

p

k). Since Gal(L

ur

=L)

�

=

^

Z, H

1

is just

coinvariants. It follows that the reduction map H

1

(L

ur

=L; T ) ! H

1

(L

ur

=L;A

p

k) is

surjective.
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5 The local condition under restriction

Keeping the assumption of the previous section, suppose now that L=F is a �nite

unrami�ed extension with Galois group �. The short exact sequence 0 �! T

p

k

�!

T

red

p

k

���! A

p

k �! 0 gives rise to the following commutative diagram with exact rows:

0 ����! H

1

(F; T )=p

k

red

p

k

����! H

1

(F;A

p

k ) ����! H

2

(F; T )

p

k ����! 0

res

F;L

?

?

y

res

F;L

?

?

y

res

F;L

?

?

y

0 ����!

�

H

1

(L; T )=p

k

�

�

red

p

k

����! H

1

(L;A

p

k )

�

����! H

2

(L; T )

�

p

k

(5.1)

Given x 2 H

1

(F;A

p

k ) such that res

F;L

x is in H

1

f

�

(L;A

p

k), we would like to know

how far is x from being in H

1

f

�

(F;A

p

k
). In view of (5.1) the obstruction is given by

KerH

2

(F; T )

p

k

res

F;L

����! H

2

(L; T )

�

p

k

: (5.2)

Proposition 5.1. The kernel (5.2) is annihilated by a constant p

M

independent of

k and L.

Proof. Since � is �nite, there is a Hochschild-Serre spectral sequence

E

i;j

2

= H

i

(�; H

j

(L; T )) ) H

i+j

(F; T ):

Note that the cohomology here is the continuous cohomology. The Hochschild-Serre

spectral sequence does not exist in general for continuous cohomology. A proof that

it does exits in our case is found in the appendix. For i+ j = 2 the spectral sequence

converges to a �ltration F

0

� F

1

� F

2

� 0 on H

2

(F; T ) with

F

1

= KerH

2

(F; T )

res

F;L

����! H

2

(L; T )

�

;

F

1

=F

2

�

=

E

1;1

1

= E

1;1

3

= Ker

�

H

1

(�; H

1

(L; T )) ! H

3

(�; T (L))

�

= H

1

(�; H

1

(L; T ));

F

2

�

=

E

2;0

1

� E

2;0

2

= H

2

(�; T (L)) = 0;

since T (L) = 0 by part 3 of proposition 4.2. Therefore,

Ker

�

H

2

(F; T )

p

k

res

F;L

����! H

2

(L; T )

�

p

k

�

�

=

H

1

(�; H

1

(L; T ))

p

k
:

Applying the in
ation restriction sequence to Gal(L

ur

=L) / Gal(

�

L=L) and T we �nd

0 �! H

1

(L

ur

=L; T (L

ur

)) �! H

1

(L; T ) �! H

1

(L

ur

; T )

Gal(L

ur

=L)

�! 0:

The right exactness is a consequence of the fact that Gal(L

ur

=L)

�

=

^

Z has co-

homological dimension 1. Applying the Hochschild-Serre spectral sequence to

Gal(L

ur

=L) / Gal(L

ur

=F ) and T (L

ur

) we �nd that H

1

(�; H

1

(L

ur

=L; T (L

ur

))) in-

jects into H

2

(L

ur

=F; T (L

ur

)) and is therefore 0 since Gal(L

ur

=F )

�

=

^

Z. Therefore,

H

1

(�; H

1

(L; T )) ,! H

1

(�; H

1

(L

ur

; T )

Gal(L

ur

=L)

) and the result follows from propo-

sition 4.2
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Corollary 5.2. Let p

M

be the constant given by proposition 5.1. Then, if x 2

H

1

(F;A

p

k+M ) and res

F;L

x 2 H

1

f

�

(L;A

p

k+M ), then red

p

k x 2 H

1

f

�

(F;A

p

k ).

Proof. The commuting diagram with exact rows

0 ����! T

p

k+M

����! T

red

p

k+M

�����! A

p

k+M ����! 0

p

M

?

?

y

=

?

?

y

red

p

k

?

?

y

0 ����! T

p

k

����! T

red

p

k

����! A

p

k ����! 0

gives rise to

H

1

(F; T )

red

p

k+M

�����! H

1

(F;A

p

k+M
) ����! H

2

(F; T )

p

k+M

=

?

?

y

red

p

k

?

?

y

p

M

?

?

y

H

1

(F; T )

red

p

k

����! H

1

(F;A

p

k ) ����! H

2

(F; T )

p

k

The corollary now follows by a diagram chase on this last diagram as well as on (5.1)

with k replaced by k + M .

6 Proof of theorem 1.2

In this section we give the proof of the main theorem using a variant of the Kolyvagin

argument following mostly [Gro91]. By proposition 3.2 and corollary 5.2 we may

assume that the class P (n) is dual �nite at all primes which do not divide n. Recall

that this involves �xing some large integer M , constructing the classes modulo p

k+M

and then reducing them mod p

k

.

We will concentrate on the case where f has no CM. The CM case can be handled

similarly (see the remark in [Nek92] page 121). Recall that E is the �eld generated by

the Fourier coe�cients of the form f . We �rst exclude primes p which are rami�ed in

E. If p is not excluded, let p be a prime of E above p and recall that we are considering

T = T

f;p

which is a rank 2 free O

E

p

-module with an action of Gal(

�

Q=Q). Let again

�

f;p

be the p-adic representation associated with f . Consider the p component of

�

f;p

which is a representation of Gal(

�

Q=Q) on a 2-dimensional E

p

vector space V

�

f

;p

.

According to a result of Ribet [Rib85, theorem 3.1] if p is outside a �nite set of

primes then there is a sub�eld E

0

of E

p

such that in an appropriate basis the image

of Gal(

�

Q=Q) in Aut(V

�

f

;p

)

�

=

GL

2

(E

p

) contains

fg 2 GL

2

(O

E

0

); det g 2 ((Z

�

p

)

2r�1

)g

(in fact, the result of Ribet is stronger and treats the image of Galois in all the

completions of E above p simultaneously), and therefore contains in particular

fg 2 GL

2

(Z

p

); det g 2 ((Z

�

p

)

2r�1

)g: (6.1)

We exclude all other primes and the prime 2. This concludes our exclusions which we

may sum up in:
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Definition 6.1. The set 	(f) of excluded primes for theorem 1.2 is the set contain-

ing the primes dividing 2N , primes that ramify in E = Q(a

i

) and primes where the

image of Gal(

�

Q=Q) in Aut(V

�

f

;p

) does not contains (6.1) (in some basis).

We consider non excluded primes from now onward.

Lemma 6.2. Let

~

G

p

be the image of Gal(

�

Q=Q) in Aut(T )

�

=

GL

2

(O

E

p

) (p not ex-

cluded). Then,

~

G

p

contains a subgroup conjugate to GL

2

(Z

p

).

Proof. By (2.1), T 
 E

p

is just the r-th Tate twist of V

�

f

;p

. From that and Ribet's

theorem it follows easily that after �xing an appropriate basis for T every matrix

A 2 GL

2

(O

E

p

) has a scalar multiple in

~

G

p

. Since SL

2

(O

E

p

) is the commutator

subgroup of GL

2

(O

E

p

), it follows that SL

2

(O

E

p

) �

~

G

p

. The lemma follows because

for almost all `, Frob(`) has determinant `

�1

and because

~

G

p

is closed.

Let F = O

E

p

=p

k

. Let G

p

k

�

=

Gal(Q(A

p

k )=Q) be the image of Gal(

�

Q=Q) in

Aut(A

p

k
)

�

=

GL

2

(F). Then, G

p

k
contains a group G

0

p

k

conjugate to SL

2

(Z=p

k

).

Proposition 6.3. Let L = K(A

p

k ).

1. When k = 1, A

p

is an irreducible F[Gal(L=K)]-module.

2. H

i

(Gal(L=K); A

p

k) = 0 for all i � 0.

3. There is a natural pairing [ ; ] : H

1

(K;A

p

k ) � Gal(

�

Q=L) ! A

p

k inducing an

isomorphism of F-modules H

1

(K;A

p

k )

�

=

Hom

Gal(L=K)

(Gal(

�

Q=L); A

p

k).

4. The F-module A

p

k is the direct sum of its �1 eigenspaces with respect to the

generator � of Gal(K=Q), each free of rank 1.

Proof. Since SL

2

(F

p

) has no nontrivial Z=2 quotients when p > 2 and Gal(L=K) is

of index at most 2 in G

p

, it follows that Gal(L=K) contains G

0

p

and therefore that

A

p

is an irreducible F[Gal(L=K)]-module. It also follows that Gal(L=K), consid-

ered as embedded in Aut(A

p

k
), contains the central Subgroup of order 2 generated

by �1. Since p 6= 2, H

i

(�1; A

p

k) = 0 for all i � 0 and the second assertion fol-

lows from the Hochschild-Serre spectral sequence H

i

(Gal(L=K)=�1;H

j

(�1; A

p

k)) )

H

i+j

(Gal(L=K); A

p

k
). An in
ation restriction sequence now implies that

H

1

(K;A

p

k )

�

=

H

1

(L;A

p

k )

Gal(L=K)

�

=

Hom

Gal(L=K)

(Gal(

�

Q=L); A

p

k)

hence the third assertion. Finally, part 4 follows because the determinant of � on T

is �1.

Let S be a �nitely generated F-submodule of H

1

(K;A

p

k ). We consider the

elements of S as elements of Hom

Gal(L=K)

(Gal(

�

Q=L); A

p

k
) and let L

S

be the �eld

�xed by the common kernel of these elements. The following lemma is immediate:

Lemma 6.4. The pairing [ ; ] induces a pairing

[ ; ]

S

: S �Gal(L

S

=L) ! A

p

k ;
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which in turn induces an injection

Gal(L

S

=L) ,! Hom

F

(S;A

p

k ) as Gal(L=K)-modules. (6.2)

This injection has the property that

x 2 S and [x;Gal(L

S

=L)]

S

= 0 =) x = 0:

In addition, this pairing induces an injection

S ,! Hom

Gal(L=K)

(Gal(L

S

=L); A

p

k
) as F-modules

Remark 6.5. Unlike the situation for elliptic curves [Gro91, proposition 9.3] we can

not in general expect the injection (6.2) to be an isomorphism. For instance, if G

p

k

is contained in GL

2

(Z=p

k

), then there might exist a homomorphism � : Gal(

�

Q=L) !

A

p

k
whose image is contained in (Z=p

k

)

2

. If we take S to be the F-span of �, then

Gal(L

S

=L)

�

=

(Z=p

k

)

2

and is not in general an F-module whereas Hom

F

(S;A

p

k ) is.

The failure of (6.2) to be an isomorphism forces some changes in the �nal arguments.

Our chosen complex conjugation � acts on all the groups above. We will denote

by G

�

the �1-eigenspace of � acting on an abelian group G.

Lemma 6.6. Let C � Hom

F

(S;A

p

k ) be a Gal(L=K)-submodule with the property that

x 2 S and [x;C]

S

= 0 imply x = 0. Let 0 6= s 2 S and let a 2 Hom

F

(S;A

p

k )

+

. Let

C

0

= a + C

+

; C

00

= fc 2 C

0

; [s; c]

S

6= 0g:

Then, C

0

and C

00

have the same property as C with respect to eigenvectors of � in S,

that is, if x 2 S

�

and [x;C

0

]

S

= 0 or [x;C

00

]

S

= 0, then x = 0.

Proof. Suppose �rst that [x;C

+

]

S

= 0. Then F � [x;C]

S

is an F[Gal(L=K)]-submodule

of A

p

k which is contained in the proper submodule A

�

p

k

. Considering p-torsion and

using part 1 of proposition 6.3 one �nds that F � [x;C]

S

is trivial. It follows in

particular that [s; C

+

]

S

is non trivial and since p � 3 it contains at least 3 elements.

From that it follows that for any c 2 C

+

one may always �nd c

1

; c

2

2 C

+

such that

c = (a + c

1

)� (a + c

2

) and [s; a+ c

i

]

S

6= 0 for i = 1; 2. The lemma follows easily.

Lemma 6.7. Let ` be a prime in S(M+k). Then, ` is inert in K. Let � be the unique

prime of K above `. Then, for any choice of Frob(�) in a decomposition group of �,

Frob(�) acts trivially on A

p

k and therefore � splits completely in L.

Proof. Both assertions follow from remark 3.1. In Gal(K=Q), Frob(`) = � hence ` is

inert in K. It now follows that Frob(�) is conjugate to �

2

and is therefore the identity

on A

p

k .

Let ` and � be as in the previous lemma, let �

0

be a prime of L

S

above � and let

Frob(�

0

) 2 Gal(L

S

=L) be the associated Frobenius substitution. It is easy to see that

the formula

�

�

0

(x) := [x;Frob(�

0

)]

S

de�nes an element of Hom

F

(S;A

p

k ) which depends only on ` up to conjugation on

A

p

k by some element of Gal(L=K). Using lemma 6.7 one has:
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Lemma 6.8. There is a Gal(K=Q)-equivariant isomorphism

H

1

f

(K

�

; A

p

k )

�

=

H

1

(K

ur

�

=K

�

; A

p

k)

�

=

A

p

k ; (6.3)

where the last step is evaluation at the Frobenius. If x 2 H

1

(K;A

p

k ) and x

�

2

H

1

f

(K

�

; A

p

k ) then, up to conjugation as before, the image of x

�

under this isomor-

phism is �

�

0

(x).

Lemma 6.9. Let � be as above.

1. The pairing h ; i

�

de�ned in lemma 2.4 induces nondegenerate pairings:

h ; i

�

�

: H

1

f

(K

�

; A

p

k
)

�

�H

1

sin

(K

�

; A

p

k
)

�

! Z=p

k

:

2. Both H

1

f

(K

�

; A

p

k ) and H

1

sin

(K

�

; A

p

k) are direct sums of their �1 eigenspaces

with respect to � . All eigenspaces are free of rank 1 over F.

Proof. The �rst assertion follows since h ; i

�

is Gal(L=K) equivariant. The second

assertion follows for H

1

f

(K

�

; A

p

k) by lemma 6.8 and part 4 of proposition 6.3 and the

same now follows for H

1

sin

(K

�

; A

p

k
)

�

by the �rst assertion.

Proposition 6.10. Let x; y 2 S and suppose that y 6= 0. Then there exists some

` 2 S(M + k) such that y

�

6= 0. If for almost all ` 2 S(M + k) with y

�

6= 0 we have

x

�

= 0, then x = 0.

Proof. Let L

M

= K(A

p

M+k+1). Let C be the image of Gal(

�

Q=L

M

) in Gal(L

S

=L).

We �rst claim that when considered in Hom

F

(S;A

p

k
), C satis�es the assumption

of lemma 6.6. To show that, we �rst notice that the same argument used to

prove that H

i

(Gal(L=K); A

p

k) = 0 for all i � 0 in proposition 6.3 shows that

H

i

(Gal(L

M

=K); A

p

k) = 0 for all such i. An in
ation restriction sequence now shows

that

Hom

Gal(L=K)

(Gal(L

M

=L); A

p

k) = H

1

(Gal(L

M

=L); A

p

k)

Gal(L=K)

= 0:

This implies that if x 2 S satis�es [x;C]

S

= 0, then in fact [x;Gal(L

S

=L)]

S

= 0 and

the claim follows from lemma 6.4.

By lemma 6.2 the image of Gal(

�

Q=K) in Aut(A

p

M+k+1
)

�

=

GL

2

(O

E

p

=p

M+k+1

)

contains an element of the form a � I such that a 2 1 + p

M+k

(Z=p)

�

. One checks that

this element de�nes �

0

2 Gal(L

M

=L

M�1

) with the property that if Frob(`) contains

��

0

, then ` 2 S(M + k).

Now let L

0

= L

M

\ L

S

. Then C = Gal(L

S

=L

0

). Consider � 2 C

+

. Since C has

odd order we can �nd � 2 C such that � = �

�

�. Let � � �

0

2 Gal(L

M

� L

S

=K) be the

element whose restriction to Gal(L

M

=K) is �

0

and whose restriction to Gal(L

S

=L

0

)

is �. By

�

Cebotarev's density theorem, we may �nd in�nitely many primes ` whose

Frobenius conjugacy class in Gal(L

M

� L

S

=Q) contains � � � � �

0

. Every such ` is in

S(M + k). In addition, after projecting to Gal(L

S

=L

0

) we �nd Frob(�) = (��)

2

=

�

�

� � = �. Thus, we are able to generate a full coset of C in Gal(L

S

=L) with these

Frob(�). By lemma 6.8 we are also able to generate all elements � of this coset for

which [y; �]

S

= 0 with fFrob(�); y

�

6= 0g. The proposition therefore follows from

lemma 6.6.
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Lemma 6.11. Suppose x 2 Sel(K;A

p

k ) and n is a product of primes in S(M + k).

1.

X

`jn

hx

�

; P (n)

�;sin

i

�

= 0.

2. If x and P (n) are in the same eigenspace for � , p

k�I�1

P (n)

�;sin

6= 0 and we

have hFx

�

; P (n)

�;sin

i

�

= 0, then p

I

x

�

= 0.

Proof. 1. This follows from proposition 2.2, lemma 2.4 and the fact that the classes

P (n) are dual �nite at primes not dividing n.

2. Consider �rst the case k = 1 and I = 0. The conditions then imply that Fx

�

is a

proper subspace of an eigenspace of � on H

1

f

(K

�

; A

p

) which is 1-dimensional over F

by lemma 6.9 and it follows that Fx

�

= 0. If k is arbitrary but I = 0 then P (n)

�;sin

has a non trivial image in p-cotorsion hence by the previous case Fx

�

has trivial p-

torsion but this can only happen if x

�

= 0. Finally, if I 6= 0 the conditions imply

that P (n)

�;sin

= p

I

0

P

0

with I

0

� I and P

0

has a non trivial image in p-cotorsion.

Since hFp

I

0

x

�

; P

0

i

�

= 0 we get from the previous case p

I

0

x

�

= 0.

The proof of theorem 1.2 may now be completed as follows: Let I = I

p

and

let J = I + 1. We assume that k > I and we want to prove that p

2I

kills

Sel(K;A

p

k )=FP (1). Our assumption is that red

p

J P (1) 6= 0 in H

1

(K;A

p

J ). On

H

1

(K;A

p

k
), multiplication by p

k�J

factors as the composition of red

p

J with the

map H

1

(K;A

p

J ) ! H

1

(K;A

p

k ) induced by the inclusion in the short exact sequence

0 ! A

p

J
! A

p

k ! A

p

k�J ! 0. Since A

p

k�J (K) = 0, this induced map is injec-

tive and we conclude that p

k�J

P (1) 6= 0. Let x 2 Sel(K;A

p

k ). Suppose �rst that

x is in the opposite eigenspace to P (1), hence in the same eigenspace as P (`) for

` 2 S(M +k) by proposition 3.2. Let S be the F-submodule of H

1

(K;A

p

k ) generated

by x and P (1). Suppose ` 2 S(M +k) is such that (p

k�J

P (1))

�

6= 0. Then, by part 3

of proposition 3.2, p

k�J

P (`)

�;sin

6= 0 and from that and lemma 6.11 it follows that

p

I

x

�

= 0. Proposition 6.10 therefore implies that p

I

x = 0.

Suppose now that x is in the same eigenspace as P (1) and we claim that p

2I

x

has to be a multiple of P (1). By proposition 6.10 we may �nd ` 2 S(M + k) such

that (p

k�J

P (1))

�

6= 0. As before, this implies that p

k�J

P (`)

�;sin

6= 0 and hence

that p

k�J

P (`) 6= 0. Let S be generated by x, P (1) and P (`). Since p

k�J

P (1)

�

6= 0

and both P (1)

�

and x

�

are in the free rank 1 F-module H

1

f

(K

�

; A

p

k )

�

, it is easy

to see that we may �nd a combination x

0

= �P (1) + p

I

x 2 S, with � 2 F, such

that x

0

�

= 0. Consider now ` 6= `

1

2 S(M + k) such that p

k�J

P (`)

�

1

6= 0. Then

p

k�J

P (``

1

)

�

1

;sin

6= 0, again by part 3 of proposition 3.2. Let x

00

2 Fx

0

. Then

hx

00

�

; P (``

1

)

�;sin

i

�

+ hx

00

�

1

; P (``

1

)

�

1

;sin

i

�

1

= 0:

Since x

00

�

= 0 we �nd hx

00

�

1

; P (``

1

)

�

1

;sin

i

�

1

= 0. Lemma 6.11 implies that p

I

x

0

�

1

= 0.

From proposition 6.10 we get p

I

x

0

= 0 and so p

2I

x = ��p

I

P (1).
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A The Hochschild-Serre spectral sequence in continuous cohomology

Here we prove the following result:

Proposition A.1. Let G be a pro�nite group, M a continuous module of G which

is the inverse limit of discrete G-modules M

n

; n 2 N, and H a normal subgroup of

G with a �nite quotient group � = G=H. Then there is a Hochschild-Serre spectral

sequence

E

i;j

2

= H

i

(�; H

j

(H;M)) ) H

i+j

(G;M); (A.1)

where the cohomology of M is the continuous cohomology, i.e., the one computed with

respect to continuous cochains as in [Tat76].

Proof. The spectral sequence will be derived from the Grothendieck spectral sequence

for the composition of the functors U : A ! B and V : B ! C de�ned as follows:

� A is the category of inverse systems (M

n

)

n2N

of discrete G-modules;

� B is the category of �-modules and C of abelian groups;

� U is the functor which takes an inverse system of G-modules (M

n

) to lim

 

M

H

n

;

� V is the � invariants functor.

In this case, U�V is the functor which takes (M

n

) to lim

 

M

G

n

, because taking invariants

commutes with taking limits. The i-th right derived functor of (M

n

) ! lim

 

M

G

n

was

shown by Jannsen [Jan88a] to be the continuous cohomology H

i

(G; lim

 

M

n

) and the

same holds with G replaced by H . The only thing left to check is that U takes A

injectives to V acyclics, or even to injectives. For this fact, a proof can be given

along the lines of the proof of the usual Hochschild-Serre spectral sequence (see for

example [HS76, p.303]). One only needs to give a left adjoint

�

U to U which preserves

monomorphisms and this is easily done: for a �-module N , let

�

U(N) be the constant

inverse system of N considered as a G-module. Now it is very easy to check that

Hom

A

(

�

U(N); (M

n

)) = Hom

B

(N; lim

 

M

H

n

)

and so the proof is complete.
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