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ABSTRACT. In this paper we extend the finiteness result on the p-primary
torsion subgroup in the Chow group of zero cycles on the selfproduct of a
semistable elliptic curve obtained in joint work with S. Saito to primes p
dividing the conductor. On the way we show the finiteness of the Selmer
group associated to the symmetric square of the elliptic curve for those
primes. The proof uses p-adic techniques, in particular the Fontaine-Jannsen
conjecture proven by Kato and Tsuji.
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INTRODUCTION.

In this note we extend the main finiteness result on p-primary torsion zero-cycles
on the selfproduct of a semistable elliptic curve in [L-S] to primes p > 3 where E
has (bad) multiplicative reduction, at least under a certain standard assumption. In
the course of the proof we will also derive the finiteness of the Selmer group of the
symmetric square Sym? H*(E)(1) for these primes. However, this latter result has
already been proven, under the additional condition that the Galois representation

Op: Gal(@/Q) — Aut(Ep)

is absolutely irreducible (here E, = E,(Q) is the subgroup of p-torsion elements of
E), in a much more general context by Wiles in his main paper ([W] Theorem 3.1)

for Selmer groups associated to deformation theories.

To state the Theorems, let E be a semistable elliptic curve over @ with conductor
N and let X = E x E be its self-product. Consider the Chow group CHy(X) of
Q
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48 ANDREAS LANGER

zero-cycles on X modulo rational equivalence and let CHy(X){p} be — for a fixed
prime p — its p-primary torsion subgroup. For a prime p dividing N consider the
following hypothesis:

H 1) The Gersten-Conjecture holds for the Quillen-(Milnor)-sheaf Iy on a regular
model X of X over Z,.

Then we have

THEOREM A: Let E be a semistable elliptic curve and p > 3 a prime such thatp | N,
i.e., E has (bad) multiplicative reduction at p. Assume that the condition H 1) is
satisfied. Then CHoy(X){p} is a finite group.

Let A = H*(X,Q,/%,(2)) be the Q,/Z,-realization of the motive H>(X)(2) with
its Gal(Q/Q)-action. Then we have

THEOREM B: Let E be a semistable elliptic curve over Q and p > 3 a prime such
that p | N. Then the Selmer group S(Q, A) is finite.

REMARKS:

— In [L-S] we showed the finiteness of C Hy(X){p} for primes p such that pJ6 and E
has good reduction at p. We also proved that C Hy(X){p} is zero for almost all p.
Therefore Theorem A extends this result to bad primes and provides a further step
towards a proof that the full torsion subgroup C'Hy(X )tors is finite. In order to
find a first example where this is true it remains to consider the 2- and 3-primary
torsion in CHp(X).

— The Selmer group S(Q, A) coincides with S(Q,Sym® H'(E, Q,/Z,(1))) that was
studied by [F1], because S(Q,Q,/Z,(1)) is zero. In [F1] Flach proved the finite-
ness of S(Q, A) for primes p > 5 such that E has good reduction at p and the
representation p, is surjective. We were able to remove the latter hypothesis
by using a rank-argument of Bloch-Kato and reproved Flach’s finiteness result
for primes p such that p J 6N (compare [L-S]). In the proof of Theorem B we
combine the criterium of Bloch-Kato with Kolyvagin’s argument that was used
in Flach’s paper. Flach’s additional condition on the surjectivity of p, can be
avoided by applying a certain lemma, due to J. Nekovaf, that bounds the order

of H'(Gal(Q(E,»)/Q), (Sym® H'(E,Z/p™(1)))(—1)) independently of n.

The paper is organized as follows:

In the first paragraph we reduce the proof of Theorem A to two Lemmas I and II.
Lemma I was already proven in ([L-S], Lemma A). Lemma II is similar to ([L-S],
Lemma B), but the statement is different. The difference is caused by the particular
semistable situation. In the second paragraph we derive Lemma II and Theorem B
from a key proposition that bounds the possible corank (at most 1!) of the cokernel
of the map defining the Selmer group. Finally this proposition is proven in the last
paragraph. The methods of the proof are similar to those developed in [L-S]. At the
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point where the crystalline conjecture was used in the good reduction case, we now
use the Fontaine-Jannsen conjecture (proven by Kato/Tsuji for p > 3) that relates the
log-crystalline cohomology to the p-adic étale cohomology. The role of the syntomic
cohomology in the context of Schneider’s p-adic points conjecture is now replaced
by a semistable analog relating log-syntomic cohomology to H,(Q,, H*(X,Q,(2)))
(compare [L]). When we apply this argument we will also need the computation, due
to Hyodo and used by Tsuji, on a filtration on the sheaf of p-adic vanishing cycles in
terms of modified logarithmic Hodge-Witt sheaves.

This paper was written during a visit at the University of Cambridge. I want to thank
J. Coates and J. Nekovar for their invitation and J. Nekovai for many discussions and
the permission to include his proof of Lemma (2.5) in this paper. Finally I thank S.
Saito for encouraging me to look at the remaining semistable reduction case of our
main finiteness result in [L-S] and I consider this work as having been done very much
in the spirit of our joint paper and a continuation of it.

§1

We first fix some notations.

For an Abelian group M let Mg;, be the maximal divisible subgroup_of M an(_i M{p}
its p-primary torsion subgroup. For a scheme Z over a field k let Z = Z X k where
k

k is an algebraic closure of k. Denote by G = Gal(k/k) the absolute Galois group
of k. We will consider the Zariski sheaf ICy associated to the presheaf U — K2 (U) of
Quillen (-Milnor) K-groups on Z and let H}, (Z,Ks) be its Zariski cohomology. Let
E be a semistable elliptic curve over § with conductor N, ¢ : Xo(N) — E a modular
parametrization of F, X = EE E. Let T, A,V be the following G = Gg-modules:

T:H2(77ZP(2)) ) A:H2(77QP/ZP(2)) ) V:H2(77Qp(2)) .

Note that as Abelian groups T' & Z5, A = Q, /7S, because the integral cohomology
of an Abelian variety is torsion-free and the second Betti number of X b, is 6.

Let K be the function field of X. For a prime p let

NHS(Xa Qp/Zy(2)) = ker(HS(X, Qy/Zy(2)) — HS(Ka Q,/7Zy(2)))
and
KnH?(X, Qp/%Zy(2)) := ker(NH?(X, Qp/Zy(2)) — H*(X, Qp/ %y (2)))

By results of Bloch and Merkurjev-Suslin ([Bl], §5 and [M-S] we have the following
exact sequence

(1-1) 00— H'Y(X,K2) ® Qp/Zp - NH*(X,Q, /%y (2)) = CHo(X){p} = 0
Since H'(X,K3) ® Q,/%Z, = 0 we get an exact sequence

(1-2) 0 — HY(X,K:) ® Q,/Z, — KnH*(X,Q,/%Z,(2))
— ker(CHo(X){p} — C’HO(Y){p}G) —0
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50 ANDREAS LANGER

Since X is identified with its Albanese variety, the map CHo(X)irs —
CHy(X)$ ., is the Albanese map and therefore (C Hy(X){p})“ = X (Q){p} is finite.

tors
Consider the Hochschild-Serre spectral sequence

E;,b = H"(Q,H"(X, Qp/Zp(2)) = H*PP(X, Qp/%Zy(2)) -

Then we have

LEMMA I: Let the assumptions be as above. Then the composite map
E§71 — H*(X,Q,/%,(2)) — H*(K,Qp/Zy(2))
18 injective.
This is shown in ([L-S], Lemma (A)) without any assumption on the prime p.

COROLLARY (1.3) The composite map
¢ KnH(X,Q,/Z,(2) — H'(Go, 4)

that is obtained by the Hochschild-Serre spectral sequence is injective.
The Corollary will play an important role in the proof of

LEMMA II: Under the above assumptions let p > 3 be a prime such that p | N and
assume that the condition H 1) in the introduction is satisfied. Then we have

H' (X, K2) @ Qp/ Ty = KNH (X, Q) Zp(2)) v

REMARK:

Lemma IT was proven for primes p /6N in ([L-S, Lemma (B)) because in this case
KNH?*(X,Q,/Zy(2))aiv coincides with H*(Q, A)aiy. This is not stated there explic-
itly but follows from the proof of Lemma (B) in [L-S].

Now we deduce Theorem A from Lemma II.

The exact sequence (1-1) also holds for a smooth proper model X’ of X over Z [Nip] .
So CHy(X){p} is a subquotient of H3(X,Q,/%Z,(2)) and one knows that the latter
group is co-finitely generated. Therefore CHy(X){p} is co-finitely generated as Z,-
module. Since the kernel of the canonical map

CHo(X){p} — CHo(X){p}

is a torsion group by the main result in [Mi], the localization sequence in the Zariski
K-cohomology over X’ yields a surjection

CHo(X){p} = CHo(X){p} -
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So we also know that CHy(X){p} is co-finitely generated.

On the other hand, by (1-2), the finiteness of C Hy(X){p}“ and Lemma, IT we conclude
that the maximal divisible subgroup of C Hy(X){p} is zero. Therefore CHy(X){p} is
a finite group.

To complete the proof of Theorem A it remains to show Lemma II.
§2
For each prime ¢ let
H}(Q,V) CHp(Qe,V) C Hy(Qe,V) C H'(Qr, V)
be defined as in ([BK], 3.7)). Let
H{(Q,T) C Hy(Qe,T) C H' (Qq, T)

be the inverse image of H(Q,, V) and H (Q,,V). Put

Hi(Qe, A) == H}(Q¢,T) ® Qp /%y, C H' (Qq, A)
and

H;(Qu,A):=H,(Qo,T) ® Q,/Z, C H' (Qq, A)
Write Ap = H'(Qe, T)/H(Q¢, T). Then we have

Ne @ Qp/ Ty = H' (Qe, A)aiv/H} (Qe, A)

Consider as in ([L-S], §3) the composite map
Y H' (X, ’C2) ® Qp/zp — KNHS(Ya Qp/%p(z))div - ? Ne ® Qp/%p
where o’ is the restriction of the map

;. H'(Qq, A)
@D = O T Q)

the kernel of which defines the Selmer group S(Q, A).

In analogy to ([L-S], Lemma 3.1) we will prove the following
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PROPOSITION (2.1): Let the notations be as in §1. Let p > 3 a prime, such that E
has multiplicative reduction at p. Assume that condition (H 1) holds. Then we have

a) coker ) = Hl(Qp,A)div/Hgl(Qp,A)
b) Im¢ =Ima’

We will give the proof of Proposition 2.1 in the next section.
In the following we will compute the coranks of H'(Q,, A)aiv/H,(Qp, A) and
H;(QP,A)/H}(QP,A). Let

0, = H;(Qp,V)/H}Qp,V) and 6, = H'(Q,,V)/H,(Q,,V)

as in ([L-S], §4). It is well known that Xq, = E x Eq, has a regular proper model &
over Z, with semistable reduction. Let X, be its closed fiber. By local Tate-Duality
([B-K], §3.8), Q,, is the Q,-dual of H(Q,,V(-1))/H;(Q,,V(~1)) and this quotient
is — by the computations in [B-K], 3.8 — isomorphic t0 (Berys ® V(—1))%@ /1 — f,
which is by Kato’s and Tsuji’s proof of the Fontaine-Jannsen-Conjecture ([Ka], §6),
([Tsu]) isomorphic to (D2)N=0/1 — f), where

Dy = Hipg erys((Xp, M1)/W (F,), W(L), 0°*) @ @,

denotes the log-crystalline cohomology introduced by Hyodo-Kato [H-K], N = 0 de-
notes the kernel under the action of the monodromy operator N, and f acts as p~ ',
where ¢ is the Frobenius acting on Dy. Therefore we have by Poincaré duality for
Hyodo-Kato cohomology that €, is isomorphic to (coker N : Dy — D5)¥?=P. Since
the functor Dy (-) = (By ® -)“®» commutes with tensor products and a Tate-elliptic
curve has ordinary semistable reduction in the sense of ([Il], Definition 1.4) we have
a Hodge-Witt-decomposition ([Il], Proposition 1.5)

D= @ HI(X,,Wuw)oQ, .
i+j=2

Here H!(X,,Ww’) is the cohomology of the modified Hodge-Witt-sheaves.
From the action of the Frobenius ¢ on D it is clear that (D),—=p is contained
in H'(X,,Ww')q,. By ([Mo], §6) we know that the monodromy filtration and the
weight filtration on Ds coincide. Using the formula Ny = pp N we have that

N(H(X,, Ww?)) C H' (X, Wu')

and the map
N?: HY(X,,Ww?) — H*(X,, Wu")

is an isomorphism. Since dim H*(X,, Ww/)q, = dim H*(Xq, /) by ([Il], Corollaire
2.6), we see that

dim(coker N : Dy — D2)¥=? = dim(D>))=) <3 .
On the other hand the Bg;-comparison-isomorphism provides an injection
Pic(X) ® Q, = H*(X, Qp(1))%er — (Dy))5) .

Since Pic(X) has rank 3 we have
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LEMMA (2.2):
dimQ, = dim(D,)}=5) =3 .

By the same methods and the proof of ([L-S], Lemma 4.4) we get

LEMMA (2.3):
dimf, =1

From Lemma (2.2) and ([L-S], Lemma 4.1) we get

LEMMA (2.4): The image of the composite map

(Pic(X) ® Q) ® O, /%), — H (X, Ks) ® Qp/ Ty 25 Ay @ Q, /T,
18

Hy(Qp, A)/H(Qp, A)
Now we will give the proof of Theorem B and we distinguish between two cases.

Cask I
The map aj,, i.e. the p-component of o' is surjective.

This case is actually obstructed by the Gersten-conjecture as we will see in the proof
of Proposition (2.1). Since we do not assume (H 1) in Theorem B we also consider
this case. Using the surjectivity-property of ¢, i.e. the £-component of v, for £ # p
that follows from Prop. 2.1, and where the condition (H 1) is not needed, we see that
coker a has Z,-corank 0. Now apply the modified version of ([B-K], Lemma 5.16)
that is given in ([L-S], Lemma (3.3)): All the assumptions there are also satisfied for
our choice of p:

— V is a de Rham representation of Gal(@p/Qp) by Falting’s proof of the de Rham
conjecture.

— For the characteristic polynomial P;(V,t) we have Py(V,1) # 0. For £ # p the

proof is the same as in ([L-S], §3). For £ = p, we have Crys(V)leNio(Dz)g::I?z.

By the same methods as in the proof of Lemma (2.2) we have (D2) =5 =
By the same arguments as in the proof of ([L-S], Theorem 3.2) we get the formula
corank(ker a) = corank(coker &) = 0. Therefore S(Q, A) = ker « is finite.

Case II:
Ima, = Hy(Qp, A)/H(Q,p, A)
By Lemmas (2.3) and (2.4) this is the only remaining case to consider.

Let T' = Sym”>H'(E,Z,(1)). By Lemma (2.2) and Lemma (2.4) we have
H;(Qp,T")/H(Qyp, T') = 0. Let c() for £/ N be the elements in H'(X,K>) that
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were constructed by Mildenhall and Flach. In the notation of ([Fl], Prop. (1.1)) we
therefore have res,—pc(f) € H } (Qp,T"). We get this property with little effort whereas
in [F1] this was one of the harder parts in the whole paper. It is now easy to check
that all the other required properties on the elements ¢(¢) in ([Fl], Prop. (1.1)) are
also satisfied for our choice of p. Thus we apply Kolyvagin’s argument in ([F1], Prop.
(1.1)). At the point where Flach needs the surjectivity of the Galois representation
op in order to derive the finiteness of S(Q, A(—1)), we use the following Lemma, due
to Nekovar, that finishes, after applying Poitou-Tate Duality, the proof of Theorem
B.

LEMMA (2.5): Let Q(Ep»)/Q be the Galois extension obtained by adjoining the co-
ordinates of all p"-torsion points on E and let T' be as above. Then there erists a
¢ > 0, such that the exponent of H'(Gal(Q(Ey»)/Q),T'(—1)/p") divides p° for all
n > 0.

REMARK: Flach uses the vanishing of this cohomology group that follows from his
additional assumption on the surjectivity of g,.

Proor: Put G := Im(Gal(Q/Q) — Autz, (T,(E))). Since E is without complex
multiplication over Q, G is of finite index in Autz, (T,(E)) = GLy(%,). Put G, :=
ker(G — GL»(Z/p"),T' := Sym®(T,(E)), G := Im(G — Autg, (T")) = G/Z NG,

where Z = center of GL2(Z,) = {(3 ?\) JAE Z;}.

Consider the following diagram with horizontal and vertical exact sequences:
(note that G/Gy = Gal(Q(Ep»)/Q).

0
d
HYG,T'(-1)) ® Z/p"
1
0= H'(G/Gn, T'(-1)/p") 25 H'(G,T'(=1)/p") S5 H' (G, T'(=1) /p") /G
1
H(G,T'(~1)),»

It is clear that HY(G,T'(-1)) = H!,..(G,T'(-1)) = H., (G, T'(-1)) are Z,-
modules of finite type. Therefore H*(G,T'(—1))p~ is finite. We have an exact

sequence

0— H'(G,T'(-1)) 25 HY(G,T'(-1)) ™% HY(ZN G, T'(~1))¢/71¢

Homeont(Z NG, (T'(~1)) /70
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But (7"(—1))%/77¢ is zero (E has no CM). Thus H'(G,T'(-1)) = H'(G,T'(-1)).
By result of Lazard there is an injection

HY (G, T'(-1)®Q < H'(Lie(G),T'(-1) 2 Q)
=H'(s1(2), T'"(-1) ® Q)

and H! vanishes for semisimple Lie-algebras (and every representation). So
H'(G,T'(-1)) is finite and Lemma 2.5 follows.

Finally it is easy to see that Corollary (1.3), Proposition (2.1) b) and Theorem B imply
Lemma IT and as a consequence also Theorem A. It remains to show Proposition (2.1).
This will be accomplished in the next paragraph.

§3

The surjectivity of the map
Y= zf Yo HY(X,K2) ® Qp/ 2y — zf H' (Qe, A)aiv/Hp(Qe, A)
P P

follows from ([L-S], Lemmas (4.1), (4.3), (4.4) and (4.5)). On the other hand the
composite map

Pic(X) @ p¥%) ® Q, /%y — H'(X,K2) ® Q)% 3 HL(Qy, A)/HHQ,, A)

is surjective by Lemma (2.2), whereas the image of (Pic(X) ® p%) ® Q, /%, under
the map 1’ is zero. To finish the proof of Proposition (2.1) we therefore have to show
that the image of aj,, the p-component of o' is contained in H;(Qp, A)/H}(Qp, A).

By the theory of Bloch-Ogus and the work of Merkurjev-Suslin [M-S] we have an
isomorphism
HY(X,K/p") = NH7,(X,Z/p"(2))

Let X be a proper regular semistable model of Xq, over Z,, i : X, — A and
j: Xq, = & the inclusions of the closed and generic fiber.

Let H2,(X,7<2Rj.Z/p™(2)) be the cohomology of the truncated complex of p-adic
vanishing cycles. Then we have

LEMMA (3.1): Assume that the Gersten-Congjecture holds for the Zariski sheaf Ko on
the reqular scheme X . Then we have the inclusion

H'(Xq,,K2/p") C Ho(X, <2 RjZ/p"(2))

PRroOF:
This follows from the proof of ([L-S], Lemma (5.4)).
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LemmA (3.2): H?(Xq,,Q,(2))%% =0.

PROOF:
Using the Kiinneth formula and the fact that H2(E,Q,(1)) = Q, (the Brauer

group of a curve over an algebraically closed field is zero), it suffices to show that
H'(E,Q,(1))“er = 0. This follows from ([J], Theorem 5a).

Using Lemma (3.2) and the Hochschild-Serre spectral sequence we get a canonical
map

g l(ingl(XQp,/Cg/pn) ®Qp — Hl(Qpav)

When we deal with a variety over a local field, all cohomology groups under
consideration are (co-)finitely generated. The map a;, certainly factors through

1i_7rL>nH1(XQp,IC2/p”)diV. The assertion that l%nHl(XQp,ICg/p”)diV is contained in

H 91 (Qp, A) is therefore equivalent to the assertion that the image of o is contained in
H,(Qp,V). In view of Lemma (3.1) we see that Proposition (2.1) follows from the
following

LEMMA (3.3): Under the condition H1) we have: Imo C H,(Q,, V).

To prove Lemma (3.3) it suffices to show that the image of the map
H?*(X,7<2Rj.Qp(2)) — H'(Q,,V)

is contained in H,(Q,, V).

Let s!98(2) be the log-syntomic complex in D (X) constructed by Kato ([Ka], §6)
and Tsuji [Tsu] together with a canonical map

SIP8(2) — T<oiui* Rj.Z/P™(2)
This gives rise to a composite map

n: Hegt(Xasilgi(Q)) — Hl(Qpav)

Since (D2)}=% = (D3)}=% = 0 (D; denotes the i-th log-crystalline cohomology of
X,) we may apply the main result in [L] on a semistable analogue of Schneider’s
p-adic points conjecture to get
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LEMMA (3.4) Imn = H,(Q,,V).

Tsuji has proven that there is a canonical isomorphism between the cohomology
H2(i*s'98(2)) and the sheaf M2 = i*R%j,7Z/p"(2) of p-adic vanishing cycles ([Tsu],
Theorem 3.2). His proof relies on a filtration Fil' on M2 that was defined by Hyodo
([H], (1.4)) and is induced by a symbol map on Milnor K-Theory. Hyodo has shown
([H], Theorem (1.6)) that the highest graded quotient gr®M2 sits in an extension
(change of notation: Y := X,,, the closed fiber of X)

0 — Wawy oy — gr’M; — Wywy, , — 0

where an§,7log are the modified logarithmic Hodge-Witt-sheaves ([H] (1.5)). On
the other hand Hyodo and Kato ([H-K] Prop. 1.5) constructed an exact sequence of
Hodge-Witt-sheaves

0 — Wyhws — Wy — Wowi — 0

and used the connecting homomorphism on the level of cohomology to define the
monodromy operator on log-crystalline cohomology. It follows from the work of Tsuji
([Tsu], §2.4) that there is a commutative diagram

1 072 2
0 — any’log - gr'M; — anY’log — 0

l

0 - Wywh — Wywdy — Wywd — 0

such that the upper exact sequence is obtained by taking the kernel of 1 — F act-
ing on the lower exact sequence, where F' is the Frobenius. From the Hodge-Witt-
decomposition of H"(Y,Ww") ([Il], Proposition (1.5)) it is easy to derive a Hodge-
Witt-decomposition for H" (Y, Wwy,)

H™(Y,Wiy) = @ H'(Y,Wii) .
i+j=r

From the action of the Frobenius ¢ on H" (Y, Wy ) we get
H3 (Y, Wiby) pepe = HY(Y, Wi} ) =1

On the other hand it is shown in the proof of the semistable analogue of the p-adic
points conjecture on log-syntomic cohomology [L], (2.6), Prop. (2.9), Prop. (2.13) that
there is a surjection

HE (X, 5¢E(2)) = (H (Y, Wiy ), ) p=p?
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and the above arguments yield a commutative diagram

H (X, 595 (2)

l e

HY (X, 7o RjQp(2)) — H'(Y,gr'Mg ) — (H?(Y,Wiy)q,)p=p

l l

HY(Q),V) — H'(Qp, Berys @ V)

It follows from ([L], (2.10)) that the composite

(Hg(Ya V[/YUTY)(DP)w:p2 — Hl(Qpa Bcrys ® V) — Hl (QpaBst ® V)

1 _

is the zero map. Using the fact that Hg, = H; (unpublished result of Hyodo, see also
Nekovai ([Ne](1.24)) we conclude that the image of the map

Hgt(X7T§2Rj*QP(2)) — Hl (QP) V)

is Hy(Q,,V) in view of Lemma (3.4). This finishes the proof of Lemma (3.3) and
Proposition (2.1).

[BI]
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