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Abstract. In this paper we extend the �niteness result on the p-primary

torsion subgroup in the Chow group of zero cycles on the selfproduct of a

semistable elliptic curve obtained in joint work with S. Saito to primes p

dividing the conductor. On the way we show the �niteness of the Selmer

group associated to the symmetric square of the elliptic curve for those

primes. The proof uses p-adic techniques, in particular the Fontaine-Jannsen

conjecture proven by Kato and Tsuji.
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Introduction.

In this note we extend the main �niteness result on p-primary torsion zero-cycles

on the selfproduct of a semistable elliptic curve in [L-S] to primes p � 3 where E

has (bad) multiplicative reduction, at least under a certain standard assumption. In

the course of the proof we will also derive the �niteness of the Selmer group of the

symmetric square Sym

2

H

1

(E)(1) for these primes. However, this latter result has

already been proven, under the additional condition that the Galois representation

%

p

: Gal(Q=Q) �! Aut(E

p

)

is absolutely irreducible (here E

p

= E

p

(Q) is the subgroup of p-torsion elements of

E), in a much more general context by Wiles in his main paper ([W] Theorem 3.1)

for Selmer groups associated to deformation theories.

To state the Theorems, let E be a semistable elliptic curve over Q with conductor

N and let X = E�

Q

E be its self-product. Consider the Chow group CH

0

(X) of
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48 Andreas Langer

zero-cycles on X modulo rational equivalence and let CH

0

(X)fpg be | for a �xed

prime p | its p-primary torsion subgroup. For a prime p dividing N consider the

following hypothesis:

H 1) The Gersten-Conjecture holds for the Quillen-(Milnor)-sheaf K

2

on a regular

model X of X over ZZ

p

.

Then we have

Theorem A: Let E be a semistable elliptic curve and p � 3 a prime such that p j N ,

i.e., E has (bad) multiplicative reduction at p. Assume that the condition H 1) is

satis�ed. Then CH

0

(X)fpg is a �nite group.

Let A = H

2

(X;Q

p

=ZZ

p

(2)) be the Q

p

=ZZ

p

-realization of the motive H

2

(X)(2) with

its Gal(Q=Q)-action. Then we have

Theorem B: Let E be a semistable elliptic curve over Q and p � 3 a prime such

that p j N . Then the Selmer group S(Q; A) is �nite.

Remarks:

| In [L-S] we showed the �niteness of CH

0

(X)fpg for primes p such that p 6 j 6 and E

has good reduction at p. We also proved that CH

0

(X)fpg is zero for almost all p.

Therefore Theorem A extends this result to bad primes and provides a further step

towards a proof that the full torsion subgroup CH

0

(X)

tors

is �nite. In order to

�nd a �rst example where this is true it remains to consider the 2- and 3-primary

torsion in CH

0

(X).

| The Selmer group S(Q; A) coincides with S(Q; Sym

2

H

1

(E;Q

p

=ZZ

p

(1))) that was

studied by [Fl], because S(Q;Q

p

=ZZ

p

(1)) is zero. In [Fl] Flach proved the �nite-

ness of S(Q; A) for primes p � 5 such that E has good reduction at p and the

representation %

p

is surjective. We were able to remove the latter hypothesis

by using a rank-argument of Bloch-Kato and reproved Flach's �niteness result

for primes p such that p 6 j 6N (compare [L-S]). In the proof of Theorem B we

combine the criterium of Bloch-Kato with Kolyvagin's argument that was used

in Flach's paper. Flach's additional condition on the surjectivity of %

p

can be

avoided by applying a certain lemma, due to J. Nekov�a�r, that bounds the order

of H

1

(Gal(Q(E

p

n

)=Q); (Sym

2

H

1

(E;ZZ=p

n

(1)))(�1)) independently of n.

The paper is organized as follows:

In the �rst paragraph we reduce the proof of Theorem A to two Lemmas I and II.

Lemma I was already proven in ([L-S], Lemma A). Lemma II is similar to ([L-S],

Lemma B), but the statement is di�erent. The di�erence is caused by the particular

semistable situation. In the second paragraph we derive Lemma II and Theorem B

from a key proposition that bounds the possible corank (at most 1 !) of the cokernel

of the map de�ning the Selmer group. Finally this proposition is proven in the last

paragraph. The methods of the proof are similar to those developed in [L-S]. At the
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point where the crystalline conjecture was used in the good reduction case, we now

use the Fontaine-Jannsen conjecture (proven by Kato/Tsuji for p � 3) that relates the

log-crystalline cohomology to the p-adic �etale cohomology. The role of the syntomic

cohomology in the context of Schneider's p-adic points conjecture is now replaced

by a semistable analog relating log-syntomic cohomology to H

1

g

(Q

p

; H

2

(X;Q

p

(2)))

(compare [L]). When we apply this argument we will also need the computation, due

to Hyodo and used by Tsuji, on a �ltration on the sheaf of p-adic vanishing cycles in

terms of modi�ed logarithmic Hodge-Witt sheaves.

This paper was written during a visit at the University of Cambridge. I want to thank

J. Coates and J. Nekov�a�r for their invitation and J. Nekov�a�r for many discussions and

the permission to include his proof of Lemma (2.5) in this paper. Finally I thank S.

Saito for encouraging me to look at the remaining semistable reduction case of our

main �niteness result in [L-S] and I consider this work as having been done very much

in the spirit of our joint paper and a continuation of it.

x1

We �rst �x some notations.

For an Abelian groupM let M

div

be the maximal divisible subgroup ofM andMfpg

its p-primary torsion subgroup. For a scheme Z over a �eld k let Z = Z �

k

k where

k is an algebraic closure of k. Denote by G

k

= Gal(k=k) the absolute Galois group

of k. We will consider the Zariski sheaf K

2

associated to the presheaf U ! K

2

(U) of

Quillen (-Milnor) K-groups on Z and let H

j

Zar

(Z;K

2

) be its Zariski cohomology. Let

E be a semistable elliptic curve over Q with conductor N , � : X

0

(N)! E a modular

parametrization of E, X = E�

Q

E. Let T;A; V be the following G = G

Q

-modules:

T = H

2

(X;ZZ

p

(2)) ; A = H

2

(X;Q

p

=ZZ

p

(2)) ; V = H

2

(X;Q

p

(2)) :

Note that as Abelian groups T

�

=

ZZ

6

p

, A

�

=

Q

p

=ZZ

6

p

, because the integral cohomology

of an Abelian variety is torsion-free and the second Betti number of X b

2

is 6.

Let K be the function �eld of X . For a prime p let

NH

3

(X;Q

p

=ZZ

p

(2)) := ker(H

3

(X;Q

p

=ZZ

p

(2))! H

3

(K;Q

p

=ZZ

p

(2)))

and

K

N

H

3

(X;Q

p

=ZZ

p

(2)) := ker(NH

3

(X;Q

p

=ZZ

p

(2))! H

3

(X;Q

p

=ZZ

p

(2)))

By results of Bloch and Merkurjev-Suslin ([Bl], x5 and [M-S] we have the following

exact sequence

(1� 1) 0! H

1

(X;K

2

)
Q

p

=ZZ

p

! NH

3

(X;Q

p

=ZZ

p

(2))! CH

0

(X)fpg ! 0

Since H

1

(X;K

2

)
Q

p

=ZZ

p

= 0 we get an exact sequence

0 �! H

1

(X;K

2

)
Q

p

=ZZ

p

�! K

N

H

3

(X;Q

p

=ZZ

p

(2))(1� 2)

�! ker(CH

0

(X)fpg �! CH

0

(X)fpg

G

) �! 0
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Since X is identi�ed with its Albanese variety, the map CH

0

(X)

tors

�!

CH

0

(X)

G

tors

is the Albanese map and therefore (CH

0

(X)fpg)

G

�

=

X(Q)fpg is �nite.

Consider the Hochschild-Serre spectral sequence

E

a;b

2

= H

a

(Q; H

b

(X;Q

p

=ZZ

p

(2)) =) H

a+b

(X;Q

p

=ZZ

p

(2)) :

Then we have

Lemma I: Let the assumptions be as above. Then the composite map

E

2;1

2

�! H

3

(X;Q

p

=ZZ

p

(2)) �! H

3

(K;Q

p

=ZZ

p

(2))

is injective.

This is shown in ([L-S], Lemma (A)) without any assumption on the prime p.

Corollary (1.3) The composite map

' : K

N

H

3

(X;Q

p

=ZZ

p

(2)) �! H

1

(G

Q

; A)

that is obtained by the Hochschild-Serre spectral sequence is injective.

The Corollary will play an important role in the proof of

Lemma II: Under the above assumptions let p � 3 be a prime such that p j N and

assume that the condition H 1) in the introduction is satis�ed. Then we have

H

1

(X;K

2

)
Q

p

=ZZ

p

= K

N

H

3

(X;Q

p

=ZZ

p

(2))

div

:

Remark:

Lemma II was proven for primes p 6 j 6N in ([L-S, Lemma (B)) because in this case

K

N

H

3

(X;Q

p

=ZZ

p

(2))

div

coincides with H

1

(Q; A)

div

. This is not stated there explic-

itly but follows from the proof of Lemma (B) in [L-S].

Now we deduce Theorem A from Lemma II.

The exact sequence (1-1) also holds for a smooth proper model X of X over ZZ

h

1

Np

i

.

So CH

0

(X )fpg is a subquotient of H

3

(X ;Q

p

=ZZ

p

(2)) and one knows that the latter

group is co-�nitely generated. Therefore CH

0

(X )fpg is co-�nitely generated as ZZ

p

-

module. Since the kernel of the canonical map

CH

0

(X )fpg �! CH

0

(X)fpg

is a torsion group by the main result in [Mi], the localization sequence in the Zariski

K-cohomology over X yields a surjection

CH

0

(X )fpg !! CH

0

(X)fpg :
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So we also know that CH

0

(X)fpg is co-�nitely generated.

On the other hand, by (1-2), the �niteness of CH

0

(X)fpg

G

and Lemma II we conclude

that the maximal divisible subgroup of CH

0

(X)fpg is zero. Therefore CH

0

(X)fpg is

a �nite group.

To complete the proof of Theorem A it remains to show Lemma II.

x2

For each prime ` let

H

1

e

(Q

`

; V ) � H

1

f

(Q

`

; V ) � H

1

g

(Q

`

; V ) � H

1

(Q

`

; V )

be de�ned as in ([BK], 3.7)). Let

H

1

f

(Q

`

; T ) � H

1

g

(Q

`

; T ) � H

1

(Q

`

; T )

be the inverse image of H

1

f

(Q

`

; V ) and H

1

g

(Q

`

; V ). Put

H

1

f

(Q

`

; A) := H

1

f

(Q

`

; T )
Q

p

=ZZ

p

� H

1

(Q

`

; A)

and

H

1

g

(Q

`

; A) := H

1

g

(Q

`

; T )
Q

p

=ZZ

p

� H

1

(Q

`

; A)

Write ^

`

= H

1

(Q

`

; T )=H

1

f

(Q

`

; T ). Then we have

^

`


Q

p

=ZZ

p

= H

1

(Q

`

; A)

div

=H

1

f

(Q

`

; A)

Consider as in ([L-S], x3) the composite map

 : H

1

(X;K

2

)
Q

p

=ZZ

p

�! K

N

H

3

(X;Q

p

=ZZ

p

(2))

div

�

0

�! �

`

^

`


Q

p

=ZZ

p

where �

0

is the restriction of the map

� : H

1

(Q; A) �! �

all `

H

1

(Q

`

; A)

H

1

f

(Q

`

; A)

the kernel of which de�nes the Selmer group S(Q; A).

In analogy to ([L-S], Lemma 3.1) we will prove the following
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Proposition (2.1): Let the notations be as in x1. Let p � 3 a prime, such that E

has multiplicative reduction at p. Assume that condition (H 1) holds. Then we have

coker = H

1

(Q

p

; A)

div

=H

1

g

(Q

p

; A)a)

Im = Im�

0

b)

We will give the proof of Proposition 2.1 in the next section.

In the following we will compute the coranks of H

1

(Q

p

; A)

div

=H

1

g

(Q

p

; A) and

H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A). Let




p

= H

1

g

(Q

p

; V )=H

1

f

(Q

p

; V ) and �

p

= H

1

(Q

p

; V )=H

1

g

(Q

p

; V )

as in ([L-S], x4). It is well known that X

Q

p

= E�E

Q

p

has a regular proper model X

over ZZ

p

with semistable reduction. Let X

p

be its closed �ber. By local Tate-Duality

([B-K], x3.8), 


p

is the Q

p

-dual of H

1

f

(Q

p

; V (�1))=H

1

e

(Q

p

; V (�1)) and this quotient

is | by the computations in [B-K], 3.8 | isomorphic to (B

crys


 V (�1))

G

Q

p

=1� f ,

which is by Kato's and Tsuji's proof of the Fontaine-Jannsen-Conjecture ([Ka], x6),

([Tsu]) isomorphic to (D

2

)

N=0

=1� f), where

D

2

= H

2

log crys

((X

p

;M

1

)=W (IF

p

);W (L); O

crys

)
Q

p

denotes the log-crystalline cohomology introduced by Hyodo-Kato [H-K], N = 0 de-

notes the kernel under the action of the monodromy operator N , and f acts as p

�1

',

where ' is the Frobenius acting on D

2

. Therefore we have by Poincar�e duality for

Hyodo-Kato cohomology that 


p

is isomorphic to (cokerN : D

2

! D

2

)

'=p

. Since

the functor D

st

(�) = (B

st


 �)

G

Q

p

commutes with tensor products and a Tate-elliptic

curve has ordinary semistable reduction in the sense of ([Il], De�nition 1.4) we have

a Hodge-Witt-decomposition ([Il], Proposition 1.5)

D

2

= �

i+j=2

H

i

(X

p

;Ww

j

)
Q

p

:

Here H

i

(X

p

;Ww

j

) is the cohomology of the modi�ed Hodge-Witt-sheaves.

From the action of the Frobenius ' on D

2

it is clear that (D

2

)

'=p

is contained

in H

1

(X

p

;Ww

1

)

Q

p

. By ([Mo], x6) we know that the monodromy �ltration and the

weight �ltration on D

2

coincide. Using the formula N' = p'N we have that

N(H

0

(X

p

;Ww

2

)) � H

1

(X

p

;Ww

1

)

and the map

N

2

: H

0

(X

p

;Ww

2

) �! H

2

(X

p

;Ww

0

)

is an isomorphism. Since dimH

i

(X

p

;Ww

j

)

Q

p

= dimH

i

(X

Q

p




j

) by ([Il], Corollaire

2.6), we see that

dim(cokerN : D

2

! D

2

)

'=p

= dim(D

2

)

N=0

'=p

� 3 :

On the other hand the B

St

-comparison-isomorphism provides an injection

Pic(X)
Q

p

,! H

2

(X;Q

p

(1))

G

Q

p

,! (D

2

)

N=0

'=p

:

Since Pic(X) has rank 3 we have
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Lemma (2.2):

dim


p

= dim(D

2

)

N=0

'=p

= 3 :

By the same methods and the proof of ([L-S], Lemma 4.4) we get

Lemma (2.3):

dim �

p

= 1 :

From Lemma (2.2) and ([L-S], Lemma 4.1) we get

Lemma (2.4): The image of the composite map

(Pic(X)
Q

�

)
Q

p

=ZZ

p

�! H

1

(X;K

2

)
Q

p

=ZZ

p

 

p

�! ^

p


Q

p

=ZZ

p

is

H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A) :

Now we will give the proof of Theorem B and we distinguish between two cases.

Case I:

The map �

0

p

, i.e. the p-component of �

0

is surjective.

This case is actually obstructed by the Gersten-conjecture as we will see in the proof

of Proposition (2.1). Since we do not assume (H 1) in Theorem B we also consider

this case. Using the surjectivity-property of  

`

, i.e. the `-component of  , for ` 6= p

that follows from Prop. 2.1, and where the condition (H 1) is not needed, we see that

coker� has ZZ

p

-corank 0. Now apply the modi�ed version of ([B-K], Lemma 5.16)

that is given in ([L-S], Lemma (3.3)): All the assumptions there are also satis�ed for

our choice of p:

| V is a de Rham representation of Gal(Q

p

=Q

p

) by Falting's proof of the de Rham

conjecture.

| For the characteristic polynomial P

`

(V; t) we have P

`

(V; 1) 6= 0. For ` 6= p the

proof is the same as in ([L-S], x3). For ` = p, we have Crys(V )

f=1

= (D

2

)

N=0

'=p

2

.

By the same methods as in the proof of Lemma (2.2) we have (D

2

)

N=0

'=p

2

= 0.

By the same arguments as in the proof of ([L-S], Theorem 3.2) we get the formula

corank(ker�) = corank(coker�) = 0. Therefore S(Q; A) = ker� is �nite.

Case II:

Im�

0

p

= H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A)

By Lemmas (2.3) and (2.4) this is the only remaining case to consider.

Let T

0

= Sym

2

H

1

(E;ZZ

p

(1)). By Lemma (2.2) and Lemma (2.4) we have

H

1

g

(Q

p

; T

0

)=H

1

f

(Q

p

; T

0

) = 0. Let c(`) for ` 6 j N be the elements in H

1

(X;K

2

) that
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were constructed by Mildenhall and Flach. In the notation of ([Fl], Prop. (1.1)) we

therefore have res

r=p

c(`) 2 H

1

f

(Q

p

; T

0

). We get this property with little e�ort whereas

in [Fl] this was one of the harder parts in the whole paper. It is now easy to check

that all the other required properties on the elements c(`) in ([Fl], Prop. (1.1)) are

also satis�ed for our choice of p. Thus we apply Kolyvagin's argument in ([Fl], Prop.

(1.1)). At the point where Flach needs the surjectivity of the Galois representation

%

p

in order to derive the �niteness of S(Q; A(�1)), we use the following Lemma, due

to Nekov�a�r, that �nishes, after applying Poitou-Tate Duality, the proof of Theorem

B.

Lemma (2.5): Let Q(E

p

n

)=Q be the Galois extension obtained by adjoining the co-

ordinates of all p

n

-torsion points on E and let T

0

be as above. Then there exists a

c > 0, such that the exponent of H

1

(Gal(Q(E

p

n

)=Q); T

0

(�1)=p

n

) divides p

c

for all

n � 0.

Remark: Flach uses the vanishing of this cohomology group that follows from his

additional assumption on the surjectivity of %

p

.

Proof: Put G := Im(Gal(Q=Q) ! Aut

ZZ

p

(T

p

(E))). Since E is without complex

multiplication over Q, G is of �nite index in Aut

ZZ

p

(T

p

(E)) = GL

2

(ZZ

p

). Put G

n

:=

ker(G ! GL

2

(ZZ=p

n

); T

0

:= Sym

2

(T

p

(E)),

~

G := Im(G ! Aut

ZZ

p

(T

0

)) = G=Z \ G,

where Z = center of GL

2

(ZZ

p

) =

��

� 0

0 �

�

; � 2 ZZ

�

p

�

.

Consider the following diagram with horizontal and vertical exact sequences:

(note that G=G

n

�

=

Gal(Q(E

p

n

)=Q).

0

#

H

1

(G; T

0

(�1))
 ZZ=p

n

#

0! H

1

(G=G

n

; T

0

(�1)=p

n

)

inf

�! H

1

(G; T

0

(�1)=p

n

)

res

�!H

1

(G

n

; T

0

(�1)=p

n

)

G=G

n

#

H

2

(G; T

0

(�1))

p

n

It is clear that H

i

(G; T

0

(�1)) = H

i

cont

(G; T

0

(�1)) = H

i

naive

(G; T

0

(�1)) are ZZ

p

-

modules of �nite type. Therefore H

2

(G; T

0

(�1))

p

1

is �nite. We have an exact

sequence

0! H

1

(

~

G; T

0

(�1))

inf

�! H

1

(G; T

0

(�1))

res

�!H

1

(Z \G; T

0

(�1))

G=Z\G

=

Hom

cont

(Z \G; (T

0

(�1))

G=Z\G

)
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But (T

0

(�1))

G=Z\G

is zero (E has no CM). Thus H

1

(

~

G; T

0

(�1)) = H

1

(G; T

0

(�1)).

By result of Lazard there is an injection

H

1

(

~

G; T

0

(�1))
Q ,! H

1

(Lie(

~

G); T

0

(�1)
Q)

= H

1

(sl(2); T

0

(�1)
Q)

and H

1

vanishes for semisimple Lie-algebras (and every representation). So

H

1

(G; T

0

(�1)) is �nite and Lemma 2.5 follows.

Finally it is easy to see that Corollary (1.3), Proposition (2.1) b) and Theorem B imply

Lemma II and as a consequence also Theorem A. It remains to show Proposition (2.1).

This will be accomplished in the next paragraph.

x3

The surjectivity of the map

 

0

= �

` 6=p

 

`

: H

1

(X;K

2

)
Q

p

=ZZ

p

�! �

` 6=p

H

1

(Q

`

; A)

div

=H

1

f

(Q

`

; A)

follows from ([L-S], Lemmas (4.1), (4.3), (4.4) and (4.5)). On the other hand the

composite map

Pic(X)
 p

ZZ

)
Q

p

=ZZ

p

! H

1

(X;K

2

)
Q

p

=ZZ

p

 

p

! H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A)

is surjective by Lemma (2.2), whereas the image of (Pic(X) 
 p

ZZ

) 
 Q

p

=ZZ

p

under

the map  

0

is zero. To �nish the proof of Proposition (2.1) we therefore have to show

that the image of �

0

p

, the p-component of �

0

is contained in H

1

g

(Q

p

; A)=H

1

f

(Q

p

; A).

By the theory of Bloch-Ogus and the work of Merkurjev-Suslin [M-S] we have an

isomorphism

H

1

(X;K

2

=p

n

)

�

=

NH

3

et

(X;ZZ=p

n

(2)) :

Let X be a proper regular semistable model of X

Q

p

over ZZ

p

, i : X

p

! X and

j : X

Q

p

,! X the inclusions of the closed and generic �ber.

Let H

3

et

(X ; �

�2

Rj

�

ZZ=p

n

(2)) be the cohomology of the truncated complex of p-adic

vanishing cycles. Then we have

Lemma (3.1): Assume that the Gersten-Conjecture holds for the Zariski sheaf K

2

on

the regular scheme X . Then we have the inclusion

H

1

(X

Q

p

;K

2

=p

n

) � H

3

et

(X ; �

�2

Rj

�

ZZ=p

n

(2)) :

Proof:

This follows from the proof of ([L-S], Lemma (5.4)).
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Lemma (3.2): H

3

(X

Q

p

;Q

p

(2))

G

Q

p

= 0.

Proof:

Using the K�unneth formula and the fact that H

2

(E;Q

p

(1))

�

=

Q

p

(the Brauer

group of a curve over an algebraically closed �eld is zero), it su�ces to show that

H

1

(E;Q

p

(1))

G

Q

p

= 0. This follows from ([J], Theorem 5a).

Using Lemma (3.2) and the Hochschild-Serre spectral sequence we get a canonical

map

� : lim

 �

n

H

1

(X

Q

p

;K

2

=p

n

)
Q

p

�! H

1

(Q

p

; V ) :

When we deal with a variety over a local �eld, all cohomology groups under

consideration are (co-)�nitely generated. The map �

0

p

certainly factors through

lim

�!

n

H

1

(X

Q

p

;K

2

=p

n

)

div

. The assertion that lim

�!

n

H

1

(X

Q

p

;K

2

=p

n

)

div

is contained in

H

1

g

(Q

p

; A) is therefore equivalent to the assertion that the image of � is contained in

H

1

g

(Q

p

; V ). In view of Lemma (3.1) we see that Proposition (2.1) follows from the

following

Lemma (3.3): Under the condition H1) we have: Im� � H

1

g

(Q

p

; V ).

To prove Lemma (3.3) it su�ces to show that the image of the map

H

3

(X ; �

�2

Rj

�

Q

p

(2)) �! H

1

(Q

p

; V )

is contained in H

1

g

(Q

p

; V ).

Let s

log

n

(2) be the log-syntomic complex in D

et

(X ) constructed by Kato ([Ka], x6)

and Tsuji [Tsu] together with a canonical map

s

log

n

(2) �! �

�2

i

�

i

�

Rj

�

ZZ=p

n

(2) :

This gives rise to a composite map

� : H

3

et

(X ; s

log

Q

p

(2)) �! H

1

(Q

p

; V ) :

Since (D

2

)

N=0

'=p

2

= (D

3

)

N=0

'=p

2

= 0 (D

i

denotes the i-th log-crystalline cohomology of

X

p

) we may apply the main result in [L] on a semistable analogue of Schneider's

p-adic points conjecture to get
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Lemma (3.4) Im � = H

1

g

(Q

p

; V ).

Tsuji has proven that there is a canonical isomorphism between the cohomology

H

2

(i

�

s

log

n

(2)) and the sheaf M

2

n

= i

�

R

2

j

�

ZZ=p

n

(2) of p-adic vanishing cycles ([Tsu],

Theorem 3.2). His proof relies on a �ltration Fil

�

on M

2

n

that was de�ned by Hyodo

([H], (1.4)) and is induced by a symbol map on Milnor K-Theory. Hyodo has shown

([H], Theorem (1.6)) that the highest graded quotient gr

0

M

2

n

sits in an extension

(change of notation: Y := X

p

, the closed �ber of X )

0 �!W

n

w

1

Y;log

�! gr

0

M

2

n

�!W

n

w

2

Y;log

�! 0

where W

n

w

i

Y;log

are the modi�ed logarithmic Hodge-Witt-sheaves ([H] (1.5)). On

the other hand Hyodo and Kato ([H-K] Prop. 1.5) constructed an exact sequence of

Hodge-Witt-sheaves

0 �! W

n

w

1

Y

�!W

n

~w

2

Y

�!W

n

w

2

Y

�! 0

and used the connecting homomorphism on the level of cohomology to de�ne the

monodromy operator on log-crystalline cohomology. It follows from the work of Tsuji

([Tsu], x2.4) that there is a commutative diagram

0 ! W

n

w

1

Y;log

! gr

0

M

2

n

! W

n

w

2

Y;log

! 0

?

y

?

y

?

y

0 ! W

n

w

1

Y

! W

n

~w

2

Y

! W

n

w

2

Y

! 0

such that the upper exact sequence is obtained by taking the kernel of 1 � F act-

ing on the lower exact sequence, where F is the Frobenius. From the Hodge-Witt-

decomposition of H

r

(Y;Ww

�

) ([Il], Proposition (1.5)) it is easy to derive a Hodge-

Witt-decomposition for H

r

(Y;W ~w

�

Y

)

H

r

(Y;W ~w

�

Y

) =

M

i+j=r

H

i

(Y;W ~w

j

Y

) :

From the action of the Frobenius ' on H

r

(Y;W ~w

�

Y

) we get

H

3

(Y;W ~w

�

Y

)

'=p

2

= H

1

(Y;W ~w

2

Y

)

F=1

:

On the other hand it is shown in the proof of the semistable analogue of the p-adic

points conjecture on log-syntomic cohomology [L], (2.6), Prop. (2.9), Prop. (2.13) that

there is a surjection

H

3

et

(X ; s

log

Q

p

(2))!! (H

3

(Y;W ~w

�

Y

)

Q

p

)

'=p

2
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and the above arguments yield a commutative diagram

H

3

(X ; s

log

Q

p

(2))

?

y

&

H

3

et

(X ; �

�2

Rj

�

Q

p

(2)) ! H

1

(Y; gr

0

M

2

Q

p

) ! (H

3

(Y;W ~w

�

Y

)

Q

p

)

'=p

2

?

y

?

y

H

1

(Q

p

; V ) �! H

1

(Q

p

; B

crys


 V )

It follows from ([L], (2.10)) that the composite

(H

3

(Y;W ~w

�

Y

)

Q

p

)

'=p

2

�! H

1

(Q

p

; B

crys


 V ) �! H

1

(Q

p

; B

st


 V )

is the zero map. Using the fact that H

1

st

= H

1

g

(unpublished result of Hyodo, see also

Nekov�a�r ([Ne](1.24)) we conclude that the image of the map

H

3

et

(X ; �

�2

Rj

�

Q

p

(2)) �! H

1

(Q

p

; V )

is H

1

g

(Q

p

; V ) in view of Lemma (3.4). This �nishes the proof of Lemma (3.3) and

Proposition (2.1).
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