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ABSTRACT. We prove that a projective manifold of dimension n = 2 or
3 and Kodaira dimension 1 has a numerically effective cotangent bundle if
and only if the Titaka fibration is almost smooth, i.e. the only singular fibres
are multiples of smooth elliptic curves (n = 2) resp. multiples of smooth
Abelian or hyperelliptic surfaces (n = 3). In the case of a threefold which is
fibred over a rational curve the proof needs an extra assumption concerning
the multiplicities of the singular fibres. Furthermore, we prove the following
theorem: let X be a complex manifold which is hyberbolic with respect
to the Carathéodory-Reiffen-pseudometric, then any compact quotient of X
has a numerically effective cotangent bundle.

1991 Mathematics Subject Classification: 32C10, 32H20

INTRODUCTION

It is a natural question in algebraic geometry to classify manifolds by positivity prop-
erties of their tangent resp. cotangent bundles. The first result of this kind was
obtained by Mori who solved the Hartshorne-Frankel conjecture [Mo]: every projec-
tive n-dimensional manifold with ample tangent bundle is isomorphic to the complex
projective space P,,. A degenerate condition of ampleness is numerical effectivity. A
line bundle L on a projective manifold X is called numerically effective (abbreviated
“nef”) if L.C' > 0 for all curves C C X. A vector bundle E is said to be nef if the
tautological quotient line bundle Op(g)(1) on P(E), the projective bundle of hyper-
planes in the fibres of E, is nef.

Taking the Hartshorne-Frankel conjecture as a guideline, Campana and Peternell
considered projective manifolds whose tangent bundles are nef and classified them in
dimension 2 and 3 [CP]. For dimension 3 this has been done by Zheng [Zh] too. In
general, for arbitrary compact complex manifolds the “nefness” of the tangent bundle
leads to strong structural constraints [DPS].

The purpose of this paper is to investigate some aspects of manifolds X whose cotan-
gent bundles Q% are nef. In the first part we will give a characterization of 2 and 3
dimensional manifolds with Kodaira dimension k(X) = 1 and nef cotangent bundle.
We will prove:
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THEOREM 1 Let X be a minimal projective manifold of dimension n = 2 or 3 with
k(X) =1 and let # : X — C be the Ilitaka fibration of X. Then the following
conditions are equivalent:

(i) Q% is nef.

(i) m is almost smooth, in the sense that the only singular fibres of ™ are multiples of
smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).

e Exception: To prove (ii)=(i) in the case n = 3 and g(C) = 0 we need the assumption
that > mTfl > 2, where the m; are the multiplicities of the singular fibres.

e The equivalence of (i) and (ii) holds also for compact Kihler surfaces.

This theorem generalizes a result of Fujiwara [Fu] who worked in arbitrary dimension
but under the stronger assumption that Q% is semi-ample, i.e. that some power of
Op(a1)(1) is globally generated. The implication (i) = (ii) relies on the topological
constraints, namely the Chern class inequalities, which hold, when the cotangent
bundle is nef. To prove (ii) = (i) we will proceed in two steps. First, we will show
that the assertion is true for a smooth fibration. This follows basically from Griffiths’s
theory on the variation of the Hodge structure. Then, we will study the base-change
which reduces an almost smooth fibration to a smooth one and show that this process
allows to carry over the “nefness” of the cotangent bundle.

In fact, we will prove in any dimension that a projective manifold has a nef cotangent
bundle if (a) it admits a smooth Abelian fibration over a manifold with nef cotangent
bundle or (b) it admits an almost smooth Abelian fibration over a curve C such that
either (i) g(C) > 1 or (i) g(C) = 0 and 3 =1 > 2.

We remark that the fibres F' of the Titaka fibrations in Theorem 1 are paraAbelian
varieties, i.e. there exists an unramified cover T'— F where T is an Abelian variety.
In view of this, we expect in any dimension that a manifold with Kodaira dimension
1 has a nef cotangent bundle if and only if the Iitaka fibration is almost smooth with
para-Abelian fibres.

In the second part of this paper we consider complex manifolds X which are hyperbolic
with respect to the Carathéodory-Reiffen pseudometric. We will show :

THEOREM 2 Let X be a complex manifold which is hyperbolic with respect to the
Carathéodory-Reiffen pseudometric and let Q) be a compact quotient of X with respect
to a subgroup of the automorphism group of X which operates fixpointfree and properly
discontinuously. Then Q%Q is nef.

In particular, any compact quotient of a bounded domain G C C" possesses a nef
cotangent bundle. Since the canonical bundle of such a quotient is ample, this yields
a class of manifolds with maximal Kodaira dimension and nef cotangent bundle.

To prove theorem 2 we apply the technique of singular hermitian metrics which
was developed by Demailly. The Carathéodory-Reiffen pseudometric of X defines a
Finsler structure on the tangent bundle of ) and this gives us a singular hermitian
metric on OP(QE y(1). The hyperbolicity of X guarantees that this metric is contin-
uous and that the associated curvature current is positive. These conditions imply
that OP(Qb)(l) is nef.

Acknowledgments: 1 would like to thank M. Schneider and Th. Peternell for
their help and encouragement.
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1 BASIC DEFINITIONS AND PROPERTIES

Let X and Y be compact complex manifolds and let L be a holomorphic line bundle
on X.

DEFINITION 1 (i) When X is projective, L is said to be nef, if L - C = fc (L) >0
for every curve C in X.

(ii) Let X be an arbitrary compact complex manifold equipped with a hermitian metric
w. Then L is said to be nef, if for all € > 0 there exists a smooth hermitian metric
he on L such that the associated curvature form satisfies

Q. (L) > —€-w.

(iii) Let E be a holomorphic vector bundle on X and P(E) the projective bundle of
hyperplanes in the fibres of E. Then we call E nef over X, if the tautological quotient
line bundle Op(g)(1) is nef over P(E).

We will frequently use the following propositions which are proved in [DPS].

ProproSITION 1 Let f : Y — X be a holomorphic map and let E be a holomorphic
vector bundle over X. Then E nef implies f*E nef, and the converse is true if f is
surjective and has equidimensional fibres.

PROPOSITION 2 Let E and F be holomorphic vector bundles. Then
(i) E,F nef = E® F nef.
(ii) E nef = det(E) nef.

PROPOSITION 3 Let 0 - F — E — @ — 0 be an exact sequence of holomorphic
vector bundles. Then

(i) E nef = Q nef.

(ii) F,Q nef = E nef.

Proposition 1 immediately implies

PROPOSITION 4 Let Y be a finite unramified covering of X. Then QY is nef if and
only if O is nef.

A fibration of X over Y is a surjective holomorphic map 7 : X — Y whose fibres are
connected. A point z € X is said to be critical if the tangent map Dm(x) has not
maximal rank. The images 7(z) € Y of the critical points are the critical values of
m. They form a proper analytic subset of Y, i.e. in the case, where Y is a curve, a
finite subset {a1,...,a;}.

Let y € Y and let J be the ideal sheaf of y in Oy. Then the fibre X, is the complex
subspace (7 !(y),Ox/7*(J) - Ox) of X, and a fibre X, is singular if and only if y
is a critical value. A fibration, for which Dz has maximal rank everywhere, is called
smooth.

When we consider a fibration 7 : X — C over a curve C, we will always assume
that C' is smooth. Such a fibration is said to be almost smooth, if the only singular
fibres of 7 are multiples of smooth irreducible subvarieties. Their multiplicities will
be denoted by m; with 1 < i <[, so that the singular fibres are X,, = m;F;, where
the F; are smooth irreducible subvarieties.
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We will denote the Kodaira dimension of X by x(X). Let X be a projective
manifold with x(X) > 1 for which a power of the canonical bundle is globally gen-
erated. Then for m big enough the m—canonical map gives us a holomorphic map
m: X — Z where Z is a projective variety with dimZ = k(X). Such a map 7 is
called Iitaka fibration (cf. [Ue]).

2 MANIFOLDS WITH Kk = 1 AND NEF COTANGENT BUNDLE

We will now prove

THEOREM 3 Let X be a minimal projective manifold of dimension n = 2 or 3 with
K(X) =1 and let 7 : X — C be the Litaka fibration of X. Then the following
conditions are equivalent:

(i) Q% is nef.

(ii) m is almost smooth, in the sense that the only singular fibres of @ are multiples of
smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).

e Exception: To prove (ii)=(i) in the case n = 3 and g(C') = 0 we need the assumption
that > mT_l > 2, where the m; are the multiplicities of the singular fibres.

e The equivalence of (i) and (ii) holds also for compact Kdihler surfaces.

Proof: (i) = (ii) If X is an n-dimensional projective manifold with Q% nef, it satisfies
the Chern class inequality ¢; (X)2 > ¢2(X) >0, i.e.

Cl(X)Z'Hl'...'Hn,2ZC2(X)'H1'...'Hn,220

for all ample divisors H; (cf. [DPS], Thm. 2.5). For n = 2 and 3 the abundance
conjecture holds which means that a power of the canonical bundle of X has to
be globally generated so that we get from k(X) = 1 that ¢;(X)? = 0 and hence
c1(X)? = c3(X) = 0. Here = denotes numerical equivalence.

So for n = 2 we have an elliptic surface X whose topological Euler characteristic is
e(X) = ¢2(X) = 0. On the other hand, if 7 : X — C'is the Iitaka fibration of X and
X,, are the singular fibres (1 < i < [), we calculate e(X) = Y e(X,,) . But now the
assertion follows, because e(X,,) > 0 and e(X,,) = 0 if and only if the fibre X, is a
multiple of a smooth elliptic curve (cf. [BPV], Chap. III, Prop. 11.4). This argument
remains true for a compact Kéhler surface.

For n = 3 we have a minimal threefold with the extremal Chern classes ¢;(X)
3c2(X) = 0 and the assertion follows from [PW], Theorem 2.1.

(ii) = (i) We will prove this direction by reducing it to the case of a smooth fibration.

2

2.1 SMOOTH FIBRATIONS

We will consider smooth Abelian fibrations first:

PROPOSITION 5 Let X and Y be projective manifolds and let m : X — 'Y be a smooth
fibration, whose fibres are Abelian varieties. Then the relative cotangent bundle Qk./y

is nef. If Q3 is nef, U is nef too.

Proof: (1) We claim that 71'*(71'*9%(/),) = Qk/y. For all y € Y the cotangent bundle of
the fibre Qky is trivial, so that m, Qk/y is locally free of rank equal to the dimension
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of the fibres (cf. [Ha], Chap. III, Cor. 12.9). Moreover for all y € Y we have
(1 Q% )y )y = HO(X,, 0%, ) and thus (7*(m. Q% y))e = HO(X,, Q) for n(z) =y .
Now, the canonical homomorphism a : (7. QY y) = Q- is described stalkwise
by ay : 0 = o(z) with o € H°(X,, QY ). Since QY |x, is globally generated, o
is surjective and hence bijective.

(2) Any smooth fibration 7 : X — Y of projective manifolds gives rise to a variation
of the Hodge structure in its fibres X, (y € Y'). From this Griffiths deduces [Gr], Cor.
7.8

THEOREM 4 For all n € {1,...,dimc X} the bundles R"m.(Ox) are seminegative
in the sense of Griffiths.

Now the bundle E = R"r,(Ox) is conjugate linear to F = m(Q}/Y) so that the
curvature matrices with respect to unitary bases behave as

Qp = O = QL.

Since the transposition of the curvature matrix does not change its positivity proper-
ties, the preceding theorem can equivalently be formulated as

THEOREM 5 For alln € {1,...,dimec X, } the bundles m, (Q}/Y) are semipositive in
the sense of Griffiths.

In particular, since semipositivity implies “nefness”, . (Q% /Y) is nef and hence for

a smooth Abelian fibration Qy,, = 7*(m.QY/y) is nef too. The second assertion
follows immediately from the re{ative cotangent sequence and Proposition 3.

Remark: Proposition 5 holds also for compact elliptic surfaces 7 : X — C, because
for a smooth 7 one knows from the study of the period map that deg(m.wx/c) =0
(cf. [BPV], Chap. IIT, Thm. 18.2).

We have a similar proposition for smooth hyperelliptic fibrations:

PROPOSITION 6 Let X be a projective 3-dimensional manifold and let m : X — C be

a smooth fibration, whose fibres are hyperelliptic surfaces. Furthermore, let g(C) > 1.
Then Q% is nef.

Proof: We consider the relative Albanese factorization of m, i.e. the commutative
diagram

X 25 AXx/0)
71'\{ J,Alb(w)
C,

where A(X/C) is a smooth fibration over C' whose fibres over a € C' are the Albanese
tori Alb(X,,) of the fibres X, of m. The existence of such a relative Albanese diagram is
proved in [Ca]. Since the tangent bundle of a hyperelliptic surface is nef, the Albanese
map A, |x,: X. = Alb(X,) is a surjective submersion with smooth elliptic curves as
fibres ([DPS], Prop. 3.9.). But also A, is smooth: let z € X, n(x) = a and A, (z) =y,
then both tangent directions of TA(X/C), lie in the image of DA, (z). First, we can

DOCUMENTA MATHEMATICA 2 (1997) 183-193
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find a tangent vector v € (TA(X/Y) |A1b(Xa))y in the image of DA, (z) |x, (because
A |x, is smooth). Now let (x1,z2,z3) be a coordinate system centered in x and let 2;

be a coordinate centered in a, such that Dﬂ'(av).a%1 82 . Using the commutativity
of the relative Albanese diagram, we get
0 # Dn(z) 9 _ DAIb(m)(y) o DA, (z) 9
) 6$1 B y T ’ 69:1 ’

In particular, w := DA,T(QU).E,%1 # 0, and since DAIb(7)(y).v = 0 the vectors v and
w have to be linear independent.

We can now apply Proposition 5 twice to conclude that QY is nef: Alb(r) : A(X/C) —
C is a smooth fibration of projective manifolds whose fibres are elliptic curves and
by assumption g(C) > 1, so that Q}MX/C) has to be nef. Since Ay : X — A(X/C) is
a smooth elliptic fibration too, Q% is also nef.

2.2 ALMOST SMOOTH FIBRATIONS

Let X be a compact complex manifold of dimension n and let # : X — C be an
almost smooth fibration over a smooth curve C. As above we will denote the critical
values of m by aq,...,a; and their multiplicities bym; where 1 < i < [, so that the
singular fibres are X,, = m;F;, where the F; are smooth irreducible subvarieties.

To get rid of the multiple fibres we will now perform a base change which was in-
troduced by Kodaira for elliptic surfaces ([Kod], Thm 6.3), but may be used in this
general context as well. Let mg be the lowest common multiple of the multiplicities
and let d be their product. Then we choose a finite covering o : C' — C', which has %+
ramification points of order m; — 1 over the points a; where 0 < i < [. Remark that
we have to add one extra point ag which is not contained in the set of critical values.
Then the normalization of the fibre product X xo C' gives us a smooth fibration
p: X" = C" and a commutative diagram (cf. [Kod], Thm 6.3)

f

X - X
ol I
c = C

Here f is a finite covering which is unramified over X — 77 !(ag), because the multi-
plicities of 7 and o compensate each other over a; (1 > 1), and f has mio ramification
divisors of order mg — 1 over 7~ !(ap).

Assume that we knew QY is nef, then we would like to carry this over to Q% . How-
ever, it is not possible to apply Proposition 4 since f is ramified. But we have the
following commutative diagram with exact rows which was already used in [Fu]

0— f(L) — f9Qx) — Qe —0
I I I

0— ¢ (Ker) — Q% — Q%0 —0.

Let D = Zi.:l (m; — 1)F; then L = n*(K¢) ® Ox(D) is the full subbundle of Q%
associated to 7*(K¢) (cf. [Re]). To prove the commutativity of this diagram one uses
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basically the fact that the restriction of f to a fibre of ¢ is unramified. For i > 1 we
have 7*(a;) = m;F;. So, defining A := 22:1 (m;;l) ~a; we get L =7 (Ko ® Oc(A)).
Combining the diagram and Proposition 5, we obtain

COROLLARY 1 Let X be a projective manifold of arbitrary dimension and let w :
X — C be an almost smooth fibration, whose fibres are Abelian varieties. Assume
furthermore that (i) g(C) > 1 or (ii) g(C) =0 and deg A > 2. Then QY is nef.

Proof: The process described above allows us to pass to a smooth Abelian fibration ¢,
for which Q%{!/c' is nef by Proposition 5. Moreover the line bundle L = 7* (K¢ ® A)
is nef, since our assumptions guarantee that deg(Kc ® A) = 2g(C) —2+deg A > 0. If
L is nef, then f*(L) and f*(2%) are nef (Proposition 3). Since f is a finite surjective
map, we finally deduce from Proposition 1 that QY is nef.

Remark: (i) The corollary holds for arbitrary compact surfaces too, because
Proposition 5 remains true in that case.

(ii) If S is a surface with k(S) = 1 and 7 : S — Py is an almost smooth elliptic
fibration, the condition that deg A > 2 (resp. that L is nef) is automatically satisfied.
We have deg(m«(ws/p,)) = 0 and therefore m.(wg/p,) = Op, (cf. [BPV]). Now the
formula for the canonical bundle of an elliptic fibration yields K¢ = 7*(Kp,)®Os(D),
so that L = Kg is nef since £(S) = 1.

Similarly we get

COROLLARY 2 Let X be a projective 8-dimensional manifold with x(X) > 0 and let
m: X = C be an almost smooth fibration, whose fibres are hyperelliptic surfaces.
Assume furthermore that (i) g(C) > 1 or (ii) g(C) = 0 and deg A > 2. Then QY is
nef.

Proof: To deduce from Proposition 6 that Qg('/c*' is nef as a quotient of QY,, we

have to assure that g(C') > 1. But g(C") = 0 leads to —oo = k(X') > k(X) which
contradicts our assumptions.

In particular, these two corollaries yield the direction (ii)= (i) in Theorem 3
which is now completely proved.

3 QUOTIENTS WITH NEF COTANGENT BUNDLE

The goal of this section is to prove that compact quotients of a manifold which is hy-
perbolic with respect to the Carathéodory-Reiffen pseudometric have a nef cotangent
bundle. We will use the notion of singular hermitian metrics as introduced in [Del]:
DEFINITION 2 Let L be a holomorphic line bundle over a compact complex manifold

X and let 8, : L |Uai> Uy x C be a local trivialization of L. Then a singular
hermitian metric on L is given by

€]l =18a(E)] e 9@, zeUs, €€ Ly,

where @ € L}, (Uy) is an arbitrary real valued function, called the weight function
of the metric with respect to the trivialization 6.,
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The curvature form of the singular metric on L is locally given by the closed (1, 1)-
current ¢(L) = £9d¢p,. We will write ¢(L) > 0, if ¢(L) is a positive current in the
sense of distribution theory, i.e. if the weight functions ¢, are plurisubharmonic.
Remark: We will say that a singular metric is continuous (or simply that it is a
continuous metric), if the weight functions ¢, are continuous on the trivialization
sets.

The main ingredient for the following arguments will be the next proposition which

is independently due to Demailly, Shiffman and Tsuji (see e.g. [De2])

PROPOSITION 7 Let L be a holomorphic line bundle on a compact complexr manifold
X. Then L is nef, if there exists a continuous metric with ¢(L) > 0.

In fact the proposition is even true in the case where the Lelong numbers of the metric
(which are zero everywhere for a continuous metric) are zero except for a countable
set of points (cf. Thm. 4.2 in [JS]).

Let E be a holomorphic vector bundle over a compact complex manifold X. As in
[Rei] and [Ko] we define

DEFINITION 3 A Finsler structure on E is a continuous function F : E — Rxq, so
that for alln € E:

(i) F(n) >0 forn #0,

(ii) F(An) = |MF(n) for all X € C.

If we require in (i) only >, F is said to be a Finsler pseudostructure.

Let P(E) denote the projective bundle of lines in the fibres of E, p : P(E) — X
the projection and Op(g)(—1) the subbundle of p*E whose fibre over a point in
P(E) is given by the complex line represented by that point. Then we have a map
P : Opgy(—1) = E which is biholomorphic outside the zero sections of Op(g)(—1)
and E. The set of all plurisubharmonic functions on a complex manifold Y will be
denoted by PSH(Y).

PROPOSITION 8 (a) Any Finsler structure F on E defines via

Il := Fop(§), &€ O0pm(-1).

a continuous metric on Op(g)(—1).
(b) Iflog F € PSH(E\{0}), then —p, € PSH(U,).

Proof: (a) Let 0, : Op(g)(—1) |v. — U, x C be alocal trivialization and let s, be a
local holomorphic section of Op(gy(—1) |y, which describes the trivialization. Then
the corresponding weight function is

—¢a(z) =log||sa(z)[| =log F o p(sa(z)), = € Ua-

The map po s, : Uy — FE is clearly holomorphic. Moreover for x € U, we have
sa(z) # 0, so that property (i) in the definition of Finsler structures leads to
F o p(sq(z)) > 0. From this we conclude —p, € C°(Uy).

(b) If f : Y — Z is a holomorphic map between complex manifolds and the function
u€ PSH(Z), thenuo f € PSH(Y) (cf. [JP], Appendix, PSH 7). So, since po s, is
holomorphic, we have —p, € PSH(U,).
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PROPOSITION 9 Let E — X be a holomorphic vector bundle over a compact complex
manifold X. If there exists a Finsler structure F' : E — R>o such that logF €
PSH(E\{0}), then E* is nef.

Proof: To prove that E* is nef, we have to show that L := Opg)(1) = Op(g-)(1)
is nef. According to Proposition 8 the Finsler structure F' : E — Rs>o induces a
continuous metric on Op(g)(—1) so that —p, € PSH(U,). For the dual bundle
L = Op(g)(1) equipped with the dual metric the weight functions are given by
@ = —pa, hence we have a continuous metric on L whose current is positive and
the assertion follows from Proposition 7.

Let X be a connected complex manifold. A Finsler (pseudo-) structure on the
tangent bundle TX is called a differential (pseudo-) metric. Any such X admits a
differential pseudometric: for p € X and n € T X, we define

vx (p,n) = sup{|Dg(p)-n| : g € O(X,A), g(p) = 0},

where A is the open unit disc in C and O(X, A) the set of all holomorphic maps from
X to A. Reiffen shows in [Rei]:

PROPOSITION 10 The map vx : TX — Rx¢ is a differential pseudometric, which has
the following invariance property. Let f : X — Y be a holomorphic map of connected
complex manifolds, then

w (f(p), Df(p)-m) < vx(pim),
in particular, for a biholomorphic map [ the equality holds.

The function vx is called the Carathéodory-Reiffen pseudometric and X is said to be
~-hyperbolic, if vx is a differential metric.

Examples: (i) Any bounded domain G C C" is y-hyperbolic (cf. [JP], Chap. II, Prop.
2.3.2).

Proposition 10 immediately implies: let 2 : X — Y be a holomorphic immersion and
let Y be y-hyperbolic, then X is y-hyperbolic too. This gives us

(ii) Let Y be a Stein manifold and let G be a bounded domain in Y, i.e. there exists
an embedding ¥ < CN and a bounded domain G ¢ CN, such that G = Y NG is
connected. Then G is y-hyperbolic.

PROPOSITION 11 Let X be a y-hyperbolic manifold. Then the function
logyx : TX\{0} = (=00, +0)
is plurisubharmonic.
Proof: Since the logarithm is strictly increasing, we have
logvx (p,n) = sup{log|Dg(p) 1| : g € O(X, A), g(p) = 0}

The tangent map of a holomorphic map is again holomorphic, so that g(p,n) :=
log |Dg(p).n| is in PSH(TX) (see [JP], Appendix, PSH 4). Hence logyx = sup,{g}
is the supremum of plurisubharmonic functions. By assumption vx is a differential
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metric, i.e. yx is continuous and vx : TX\{0} — Ry, thus logyx : TX\{0} —
(—00,00) is also continuous. Now we get our assertion from the following fact ([JP],
Appendix, PSH 14). If a family (uqy)aca of plurisubharmonic functions is locally
uniformly bounded from above, then the function

up := (sup uqy)*
acA

is again plurisubharmonic, where “x” denotes the upper semicontinuous regulariza-

tion. But we don’t need to regularize logyx, since it is already continuous and this
assures also that the family {g} is locally uniformly bounded from above.

Let G be a subgroup of the automorphism group Aut(X), which operates fixpointfree
and properly discontinuously on X. Then the quotient @) = X /G is a Hausdorff space
which admits a unique complex structure, such that the projection 7 : X — @ is a
holomorphic and locally biholomorphic map. We can now prove

THEOREM 6 Let X be a y-hyperbolic manifold and let Q = X /G be a compact quotient
as above. Then the cotangent bundle Qb is nef.

Proof: As local coordinates ¢ for @ we can take 7—! restricted to appropriate open
sets such that a coordinate change is described by ¢y o ¢61 = f, where f € G (cf.
[W], Chap. V, Prop. 5.3.). Then we define for ¢ € Q and £ € TQ,

F(q,) == vx (¥(q), DY (q)-£)-

Since the Carathéodory-Reiffen metric vyx is invariant under biholomorphic transfor-
mations (Proposition 10), this definition does not depend on the choice of the local
coordinate and gives us a differential metric F' on T'QQ. Moreover Proposition 11
implies that log F' € PSH(TQ\{0}). Now the assertion follows from Proposition 9.

In particular, compact quotients of a bounded domain in C"® or in a Stein manifold
have nef cotangent bundles.
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