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Abstract. We prove that a projective manifold of dimension n = 2 or

3 and Kodaira dimension 1 has a numerically e�ective cotangent bundle if

and only if the Iitaka �bration is almost smooth, i.e. the only singular �bres

are multiples of smooth elliptic curves (n = 2) resp. multiples of smooth

Abelian or hyperelliptic surfaces (n = 3). In the case of a threefold which is

�bred over a rational curve the proof needs an extra assumption concerning

the multiplicities of the singular �bres. Furthermore, we prove the following

theorem: let X be a complex manifold which is hyberbolic with respect

to the Carath�eodory-Rei�en-pseudometric, then any compact quotient of X

has a numerically e�ective cotangent bundle.

1991 Mathematics Subject Classi�cation: 32C10, 32H20

Introduction

It is a natural question in algebraic geometry to classify manifolds by positivity prop-

erties of their tangent resp. cotangent bundles. The �rst result of this kind was

obtained by Mori who solved the Hartshorne-Frankel conjecture [Mo]: every projec-

tive n-dimensional manifold with ample tangent bundle is isomorphic to the complex

projective space P

n

. A degenerate condition of ampleness is numerical e�ectivity. A

line bundle L on a projective manifold X is called numerically e�ective (abbreviated

\nef") if L:C � 0 for all curves C � X . A vector bundle E is said to be nef if the

tautological quotient line bundle O

P(E)

(1) on P(E), the projective bundle of hyper-

planes in the �bres of E, is nef.

Taking the Hartshorne-Frankel conjecture as a guideline, Campana and Peternell

considered projective manifolds whose tangent bundles are nef and classi�ed them in

dimension 2 and 3 [CP]. For dimension 3 this has been done by Zheng [Zh] too. In

general, for arbitrary compact complex manifolds the \nefness" of the tangent bundle

leads to strong structural constraints [DPS].

The purpose of this paper is to investigate some aspects of manifolds X whose cotan-

gent bundles 


1

X

are nef. In the �rst part we will give a characterization of 2 and 3

dimensional manifolds with Kodaira dimension �(X) = 1 and nef cotangent bundle.

We will prove:
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Theorem 1 Let X be a minimal projective manifold of dimension n = 2 or 3 with

�(X) = 1 and let � : X ! C be the Iitaka �bration of X. Then the following

conditions are equivalent:

(i) 


1

X

is nef.

(ii) � is almost smooth, in the sense that the only singular �bres of � are multiples of

smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).

� Exception: To prove (ii))(i) in the case n = 3 and g(C) = 0 we need the assumption

that

P

m

i

�1

m

i

� 2, where the m

i

are the multiplicities of the singular �bres.

� The equivalence of (i) and (ii) holds also for compact K�ahler surfaces.

This theorem generalizes a result of Fujiwara [Fu] who worked in arbitrary dimension

but under the stronger assumption that 


1

X

is semi-ample, i.e. that some power of

O

P(


1

X

)

(1) is globally generated. The implication (i) ) (ii) relies on the topological

constraints, namely the Chern class inequalities, which hold, when the cotangent

bundle is nef. To prove (ii) ) (i) we will proceed in two steps. First, we will show

that the assertion is true for a smooth �bration. This follows basically from Gri�ths's

theory on the variation of the Hodge structure. Then, we will study the base-change

which reduces an almost smooth �bration to a smooth one and show that this process

allows to carry over the \nefness" of the cotangent bundle.

In fact, we will prove in any dimension that a projective manifold has a nef cotangent

bundle if (a) it admits a smooth Abelian �bration over a manifold with nef cotangent

bundle or (b) it admits an almost smooth Abelian �bration over a curve C such that

either (i) g(C) � 1 or (ii) g(C) = 0 and

P

m

i

�1

m

i

� 2.

We remark that the �bres F of the Iitaka �brations in Theorem 1 are paraAbelian

varieties, i.e. there exists an unrami�ed cover T ! F where T is an Abelian variety.

In view of this, we expect in any dimension that a manifold with Kodaira dimension

1 has a nef cotangent bundle if and only if the Iitaka �bration is almost smooth with

para-Abelian �bres.

In the second part of this paper we consider complex manifoldsX which are hyperbolic

with respect to the Carath�eodory-Rei�en pseudometric. We will show :

Theorem 2 Let X be a complex manifold which is hyperbolic with respect to the

Carath�eodory-Rei�en pseudometric and let Q be a compact quotient of X with respect

to a subgroup of the automorphism group of X which operates �xpointfree and properly

discontinuously. Then 


1

Q

is nef.

In particular, any compact quotient of a bounded domain G � C

n

possesses a nef

cotangent bundle. Since the canonical bundle of such a quotient is ample, this yields

a class of manifolds with maximal Kodaira dimension and nef cotangent bundle.

To prove theorem 2 we apply the technique of singular hermitian metrics which

was developed by Demailly. The Carath�eodory-Rei�en pseudometric of X de�nes a

Finsler structure on the tangent bundle of Q and this gives us a singular hermitian

metric on O

P(


1

Q

)

(1). The hyperbolicity of X guarantees that this metric is contin-

uous and that the associated curvature current is positive. These conditions imply

that O

P(


1

Q

)

(1) is nef.

Acknowledgments: I would like to thank M. Schneider and Th. Peternell for

their help and encouragement.
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1 Basic definitions and properties

Let X and Y be compact complex manifolds and let L be a holomorphic line bundle

on X .

Definition 1 (i) When X is projective, L is said to be nef, if L � C =

R

C

c

1

(L) � 0

for every curve C in X.

(ii) Let X be an arbitrary compact complex manifold equipped with a hermitian metric

!. Then L is said to be nef, if for all � > 0 there exists a smooth hermitian metric

h

�

on L such that the associated curvature form satis�es




h

�

(L) � �� � !:

(iii) Let E be a holomorphic vector bundle on X and P(E) the projective bundle of

hyperplanes in the �bres of E. Then we call E nef over X, if the tautological quotient

line bundle O

P(E)

(1) is nef over P(E).

We will frequently use the following propositions which are proved in [DPS].

Proposition 1 Let f : Y ! X be a holomorphic map and let E be a holomorphic

vector bundle over X. Then E nef implies f

�

E nef, and the converse is true if f is

surjective and has equidimensional �bres.

Proposition 2 Let E and F be holomorphic vector bundles. Then

(i) E;F nef ) E 
 F nef.

(ii) E nef ) det(E) nef.

Proposition 3 Let 0 ! F ! E ! Q ! 0 be an exact sequence of holomorphic

vector bundles. Then

(i) E nef ) Q nef.

(ii) F;Q nef ) E nef.

Proposition 1 immediately implies

Proposition 4 Let Y be a �nite unrami�ed covering of X. Then 


1

X

is nef if and

only if 


1

Y

is nef.

A �bration of X over Y is a surjective holomorphic map � : X ! Y whose �bres are

connected. A point x 2 X is said to be critical if the tangent map D�(x) has not

maximal rank. The images �(x) 2 Y of the critical points are the critical values of

�. They form a proper analytic subset of Y , i.e. in the case, where Y is a curve, a

�nite subset fa

1

; : : : ; a

l

g.

Let y 2 Y and let J be the ideal sheaf of y in O

Y

. Then the �bre X

y

is the complex

subspace (�

�1

(y);O

X

=�

�

(J ) � O

X

) of X , and a �bre X

y

is singular if and only if y

is a critical value. A �bration, for which D� has maximal rank everywhere, is called

smooth.

When we consider a �bration � : X ! C over a curve C, we will always assume

that C is smooth. Such a �bration is said to be almost smooth, if the only singular

�bres of � are multiples of smooth irreducible subvarieties. Their multiplicities will

be denoted by m

i

with 1 � i � l, so that the singular �bres are X

a

i

= m

i

F

i

, where

the F

i

are smooth irreducible subvarieties.
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We will denote the Kodaira dimension of X by �(X). Let X be a projective

manifold with �(X) � 1 for which a power of the canonical bundle is globally gen-

erated. Then for m big enough the m�canonical map gives us a holomorphic map

� : X ! Z where Z is a projective variety with dimZ = �(X). Such a map � is

called Iitaka �bration (cf. [Ue]).

2 Manifolds with � = 1 and nef cotangent bundle

We will now prove

Theorem 3 Let X be a minimal projective manifold of dimension n = 2 or 3 with

�(X) = 1 and let � : X ! C be the Iitaka �bration of X. Then the following

conditions are equivalent:

(i) 


1

X

is nef.

(ii) � is almost smooth, in the sense that the only singular �bres of � are multiples of

smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).

� Exception: To prove (ii))(i) in the case n = 3 and g(C) = 0 we need the assumption

that

P

m

i

�1

m

i

� 2, where the m

i

are the multiplicities of the singular �bres.

� The equivalence of (i) and (ii) holds also for compact K�ahler surfaces.

Proof: (i)) (ii) If X is an n-dimensional projective manifold with 


1

X

nef, it satis�es

the Chern class inequality c

1

(X)

2

� c

2

(X) � 0, i.e.

c

1

(X)

2

�H

1

� : : : �H

n�2

� c

2

(X) �H

1

� : : : �H

n�2

� 0

for all ample divisors H

i

(cf. [DPS], Thm. 2.5). For n = 2 and 3 the abundance

conjecture holds which means that a power of the canonical bundle of X has to

be globally generated so that we get from �(X) = 1 that c

1

(X)

2

� 0 and hence

c

1

(X)

2

� c

2

(X) � 0. Here � denotes numerical equivalence.

So for n = 2 we have an elliptic surface X whose topological Euler characteristic is

e(X) = c

2

(X) = 0. On the other hand, if � : X ! C is the Iitaka �bration of X and

X

a

i

are the singular �bres (1 � i � l), we calculate e(X) =

P

e(X

a

i

) . But now the

assertion follows, because e(X

a

i

) � 0 and e(X

a

i

) = 0 if and only if the �bre X

a

i

is a

multiple of a smooth elliptic curve (cf. [BPV], Chap. III, Prop. 11.4). This argument

remains true for a compact K�ahler surface.

For n = 3 we have a minimal threefold with the extremal Chern classes c

1

(X)

2

�

3c

2

(X) � 0 and the assertion follows from [PW], Theorem 2.1.

(ii)) (i) We will prove this direction by reducing it to the case of a smooth �bration.

2.1 Smooth fibrations

We will consider smooth Abelian �brations �rst:

Proposition 5 Let X and Y be projective manifolds and let � : X ! Y be a smooth

�bration, whose �bres are Abelian varieties. Then the relative cotangent bundle 


1

X=Y

is nef. If 


1

Y

is nef, 


1

X

is nef too.

Proof: (1) We claim that �

�

(�

�




1

X=Y

) = 


1

X=Y

. For all y 2 Y the cotangent bundle of

the �bre 


1

X

y

is trivial, so that �

�




1

X=Y

is locally free of rank equal to the dimension
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of the �bres (cf. [Ha], Chap. III, Cor. 12.9). Moreover for all y 2 Y we have

(�

�




1

X=Y

)

y

�

=

H

0

(X

y

;


1

X

y

) and thus (�

�

(�

�




1

X=Y

))

x

�

=

H

0

(X

y

;


1

X

y

) for �(x) = y .

Now, the canonical homomorphism � : �

�

(�

�




1

X=Y

) ! 


1

X=Y

is described stalkwise

by �

x

: � 7! �(x) with � 2 H

0

(X

y

;


1

X

y

). Since 


1

X=Y

j

X

y

is globally generated, �

x

is surjective and hence bijective.

(2) Any smooth �bration � : X ! Y of projective manifolds gives rise to a variation

of the Hodge structure in its �bres X

y

(y 2 Y ). From this Gri�ths deduces [Gr], Cor.

7.8

Theorem 4 For all n 2 f1; : : : ; dim

C

X

y

g the bundles R

n

�

�

(O

X

) are seminegative

in the sense of Gri�ths.

Now the bundle E = R

n

�

�

(O

X

) is conjugate linear to

�

E = �

�

(


n

X=Y

) so that the

curvature matrices with respect to unitary bases behave as




�

E

=

�




E

= �


t

E

:

Since the transposition of the curvature matrix does not change its positivity proper-

ties, the preceding theorem can equivalently be formulated as

Theorem 5 For all n 2 f1; : : : ; dim

C

X

y

g the bundles �

�

(


n

X=Y

) are semipositive in

the sense of Gri�ths.

In particular, since semipositivity implies \nefness", �

�

(


n

X=Y

) is nef and hence for

a smooth Abelian �bration 


1

X=Y

= �

�

(�

�




1

X=Y

) is nef too. The second assertion

follows immediately from the relative cotangent sequence and Proposition 3.

Remark: Proposition 5 holds also for compact elliptic surfaces � : X ! C, because

for a smooth � one knows from the study of the period map that deg(�

�

!

X=C

) = 0

(cf. [BPV], Chap. III, Thm. 18.2).

We have a similar proposition for smooth hyperelliptic �brations:

Proposition 6 Let X be a projective 3-dimensional manifold and let � : X ! C be

a smooth �bration, whose �bres are hyperelliptic surfaces. Furthermore, let g(C) � 1.

Then 


1

X

is nef.

Proof: We consider the relative Albanese factorization of �, i.e. the commutative

diagram

X

A

�

�! A(X=C)

� & # Alb(�)

C;

where A(X=C) is a smooth �bration over C whose �bres over a 2 C are the Albanese

tori Alb(X

a

) of the �bresX

a

of �. The existence of such a relative Albanese diagram is

proved in [Ca]. Since the tangent bundle of a hyperelliptic surface is nef, the Albanese

map A

�

j

X

a

: X

a

! Alb(X

a

) is a surjective submersion with smooth elliptic curves as

�bres ([DPS], Prop. 3.9.). But also A

�

is smooth: let x 2 X; �(x) = a and A

�

(x) = y,

then both tangent directions of TA(X=C)

y

lie in the image of DA

�

(x). First, we can

Documenta Mathematica 2 (1997) 183{193



188 Henrik Kratz

�nd a tangent vector v 2 (TA(X=Y ) j

Alb(X

a

)

)

y

in the image of DA

�

(x) j

X

a

(because

A

�

j

X

a

is smooth). Now let (x

1

; x

2

; x

3

) be a coordinate system centered in x and let z

1

be a coordinate centered in a, such that D�(x):

@

@x

1

=

@

@z

1

. Using the commutativity

of the relative Albanese diagram, we get

0 6= D�(x):

@

@x

1

= DAlb(�)(y) �DA

�

(x):

@

@x

1

:

In particular, w := DA

�

(x):

@

@x

1

6= 0; and since DAlb(�)(y):v = 0 the vectors v and

w have to be linear independent.

We can now apply Proposition 5 twice to conclude that 


1

X

is nef: Alb(�) : A(X=C)!

C is a smooth �bration of projective manifolds whose �bres are elliptic curves and

by assumption g(C) � 1, so that 


1

A(X=C)

has to be nef. Since A

�

: X ! A(X=C) is

a smooth elliptic �bration too, 


1

X

is also nef.

2.2 Almost smooth fibrations

Let X be a compact complex manifold of dimension n and let � : X ! C be an

almost smooth �bration over a smooth curve C. As above we will denote the critical

values of � by a

1

; : : : ; a

l

and their multiplicities bym

i

where 1 � i � l, so that the

singular �bres are X

a

i

= m

i

F

i

, where the F

i

are smooth irreducible subvarieties.

To get rid of the multiple �bres we will now perform a base change which was in-

troduced by Kodaira for elliptic surfaces ([Kod], Thm 6.3), but may be used in this

general context as well. Let m

0

be the lowest common multiple of the multiplicities

and let d be their product. Then we choose a �nite covering � : C

0

! C, which has

d

m

i

rami�cation points of order m

i

� 1 over the points a

i

where 0 � i � l. Remark that

we have to add one extra point a

0

which is not contained in the set of critical values.

Then the normalization of the �bre product X �

C

C

0

gives us a smooth �bration

' : X

0

! C

0

and a commutative diagram (cf. [Kod], Thm 6.3)

X

0

f

�! X

' # # �

C

0

�

�! C :

Here f is a �nite covering which is unrami�ed over X � �

�1

(a

0

), because the multi-

plicities of � and � compensate each other over a

i

(i � 1), and f has

d

m

0

rami�cation

divisors of order m

0

� 1 over �

�1

(a

0

).

Assume that we knew 


1

X

0

is nef, then we would like to carry this over to 


1

X

. How-

ever, it is not possible to apply Proposition 4 since f is rami�ed. But we have the

following commutative diagram with exact rows which was already used in [Fu]

0 �! f

�

(L) �! f

�

(


1

X

) �! 


1

X

0

=C

0

�! 0

# # k

0 �! '

�

(K

C

0

) �! 


1

X

0

�! 


1

X

0

=C

0

�! 0:

Let D =

P

l

i=1

(m

i

� 1)F

i

then L = �

�

(K

C

) 
 O

X

(D) is the full subbundle of 


1

X

associated to �

�

(K

C

) (cf. [Re]). To prove the commutativity of this diagram one uses
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basically the fact that the restriction of f to a �bre of ' is unrami�ed. For i � 1 we

have �

�

(a

i

) = m

i

F

i

. So, de�ning A :=

P

l

i=1

(m

i

�1)

m

i

�a

i

we get L = �

�

(K

C


O

C

(A)).

Combining the diagram and Proposition 5, we obtain

Corollary 1 Let X be a projective manifold of arbitrary dimension and let � :

X ! C be an almost smooth �bration, whose �bres are Abelian varieties. Assume

furthermore that (i) g(C) � 1 or (ii) g(C) = 0 and degA � 2. Then 


1

X

is nef.

Proof: The process described above allows us to pass to a smooth Abelian �bration ',

for which 


1

X

0

=C

0

is nef by Proposition 5. Moreover the line bundle L = �

�

(K

C


A)

is nef, since our assumptions guarantee that deg(K

C


A) = 2g(C)�2+degA � 0. If

L is nef, then f

�

(L) and f

�

(


1

X

) are nef (Proposition 3). Since f is a �nite surjective

map, we �nally deduce from Proposition 1 that 


1

X

is nef.

Remark: (i) The corollary holds for arbitrary compact surfaces too, because

Proposition 5 remains true in that case.

(ii) If S is a surface with �(S) = 1 and � : S ! P

1

is an almost smooth elliptic

�bration, the condition that degA � 2 (resp. that L is nef) is automatically satis�ed.

We have deg(�

�

(!

S=P

1

)) = 0 and therefore �

�

(!

S=P

1

) = O

P

1

(cf. [BPV]). Now the

formula for the canonical bundle of an elliptic �bration yieldsK

S

= �

�

(K

P

1

)
O

S

(D),

so that L = K

S

is nef since �(S) = 1.

Similarly we get

Corollary 2 Let X be a projective 3-dimensional manifold with �(X) � 0 and let

� : X ! C be an almost smooth �bration, whose �bres are hyperelliptic surfaces.

Assume furthermore that (i) g(C) � 1 or (ii) g(C) = 0 and degA � 2. Then 


1

X

is

nef.

Proof: To deduce from Proposition 6 that 


1

X

0

=C

0

is nef as a quotient of 


1

X

0

, we

have to assure that g(C

0

) � 1. But g(C

0

) = 0 leads to �1 = �(X

0

) � �(X) which

contradicts our assumptions.

In particular, these two corollaries yield the direction (ii)) (i) in Theorem 3

which is now completely proved.

3 Quotients with nef cotangent bundle

The goal of this section is to prove that compact quotients of a manifold which is hy-

perbolic with respect to the Carath�eodory-Rei�en pseudometric have a nef cotangent

bundle. We will use the notion of singular hermitian metrics as introduced in [De1]:

Definition 2 Let L be a holomorphic line bundle over a compact complex manifold

X and let �

�

: L j

U

�

'

�! U

�

� C be a local trivialization of L. Then a singular

hermitian metric on L is given by

k�k = j�

�

(�)j � e

�'

�

(x)

; x 2 U

�

; � 2 L

x

;

where '

�

2 L

1

loc

(U

�

) is an arbitrary real valued function, called the weight function

of the metric with respect to the trivialization �

�

.
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The curvature form of the singular metric on L is locally given by the closed (1; 1)-

current c(L) =

i

�

@

�

@'

�

. We will write c(L) � 0, if c(L) is a positive current in the

sense of distribution theory, i.e. if the weight functions '

�

are plurisubharmonic.

Remark: We will say that a singular metric is continuous (or simply that it is a

continuous metric), if the weight functions '

�

are continuous on the trivialization

sets.

The main ingredient for the following arguments will be the next proposition which

is independently due to Demailly, Shi�man and Tsuji (see e.g. [De2])

Proposition 7 Let L be a holomorphic line bundle on a compact complex manifold

X. Then L is nef, if there exists a continuous metric with c(L) � 0.

In fact the proposition is even true in the case where the Lelong numbers of the metric

(which are zero everywhere for a continuous metric) are zero except for a countable

set of points (cf. Thm. 4.2 in [JS]).

Let E be a holomorphic vector bundle over a compact complex manifold X . As in

[Rei] and [Ko] we de�ne

Definition 3 A Finsler structure on E is a continuous function F : E ! R

�0

, so

that for all � 2 E:

(i) F (�) > 0 for � 6= 0,

(ii) F (��) = j�jF (�) for all � 2 C .

If we require in (i) only �, F is said to be a Finsler pseudostructure.

Let P (E) denote the projective bundle of lines in the �bres of E, p : P (E) ! X

the projection and O

P (E)

(�1) the subbundle of p

�

E whose �bre over a point in

P (E) is given by the complex line represented by that point. Then we have a map

~p : O

P (E)

(�1) ! E which is biholomorphic outside the zero sections of O

P (E)

(�1)

and E. The set of all plurisubharmonic functions on a complex manifold Y will be

denoted by PSH(Y ).

Proposition 8 (a) Any Finsler structure F on E de�nes via

k�k := F � ~p(�); � 2 O

P (E)

(�1):

a continuous metric on O

P (E)

(�1).

(b) If logF 2 PSH(Enf0g), then �'

�

2 PSH(U

�

).

Proof: (a) Let �

�

: O

P (E)

(�1) j

U

�

'

�! U

�

� C be a local trivialization and let s

�

be a

local holomorphic section of O

P (E)

(�1) j

U

�

which describes the trivialization. Then

the corresponding weight function is

�'

�

(x) = log ks

�

(x)k = logF � ~p(s

�

(x)); x 2 U

�

:

The map ~p � s

�

: U

�

! E is clearly holomorphic. Moreover for x 2 U

�

we have

s

�

(x) 6= 0, so that property (i) in the de�nition of Finsler structures leads to

F � ~p(s

�

(x)) > 0. From this we conclude �'

�

2 C

0

(U

�

).

(b) If f : Y ! Z is a holomorphic map between complex manifolds and the function

u 2 PSH(Z), then u � f 2 PSH(Y ) (cf. [JP], Appendix, PSH 7). So, since ~p � s

�

is

holomorphic, we have �'

�

2 PSH(U

�

).
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Proposition 9 Let E ! X be a holomorphic vector bundle over a compact complex

manifold X. If there exists a Finsler structure F : E ! R

�0

such that logF 2

PSH(Enf0g), then E

�

is nef.

Proof: To prove that E

�

is nef, we have to show that L := O

P (E)

(1)

�

=

O

P(E

�

)

(1)

is nef. According to Proposition 8 the Finsler structure F : E ! R

�0

induces a

continuous metric on O

P (E)

(�1) so that �'

�

2 PSH(U

�

). For the dual bundle

L = O

P (E)

(1) equipped with the dual metric the weight functions are given by

'

�

�

= �'

�

, hence we have a continuous metric on L whose current is positive and

the assertion follows from Proposition 7.

Let X be a connected complex manifold. A Finsler (pseudo-) structure on the

tangent bundle TX is called a di�erential (pseudo-) metric. Any such X admits a

di�erential pseudometric: for p 2 X and � 2 TX

p

we de�ne




X

(p; �) := supfjDg(p):�j : g 2 O(X;�); g(p) = 0g;

where � is the open unit disc in C and O(X;�) the set of all holomorphic maps from

X to �. Rei�en shows in [Rei]:

Proposition 10 The map 


X

: TX ! R

�0

is a di�erential pseudometric, which has

the following invariance property. Let f : X ! Y be a holomorphic map of connected

complex manifolds, then




Y

(f(p); Df(p):�) � 


X

(p; �);

in particular, for a biholomorphic map f the equality holds.

The function 


X

is called the Carath�eodory-Rei�en pseudometric and X is said to be


-hyperbolic, if 


X

is a di�erential metric.

Examples: (i) Any bounded domain G � C

n

is 
-hyperbolic (cf. [JP], Chap. II, Prop.

2.3.2).

Proposition 10 immediately implies: let i : X ! Y be a holomorphic immersion and

let Y be 
-hyperbolic, then X is 
-hyperbolic too. This gives us

(ii) Let Y be a Stein manifold and let

~

G be a bounded domain in Y , i.e. there exists

an embedding Y ,! C

N

and a bounded domain G � C

N

, such that

~

G = Y \ G is

connected. Then

~

G is 
-hyperbolic.

Proposition 11 Let X be a 
-hyperbolic manifold. Then the function

log 


X

: TXnf0g ! (�1;+1)

is plurisubharmonic.

Proof: Since the logarithm is strictly increasing, we have

log 


X

(p; �) = supflog jDg(p):�j : g 2 O(X;�); g(p) = 0g:

The tangent map of a holomorphic map is again holomorphic, so that ~g(p; �) :=

log jDg(p):�j is in PSH(TX) (see [JP], Appendix, PSH 4). Hence log 


X

= sup

g

f~gg

is the supremum of plurisubharmonic functions. By assumption 


X

is a di�erential
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metric, i.e. 


X

is continuous and 


X

: TXnf0g ! R

>0

, thus log 


X

: TXnf0g !

(�1;1) is also continuous. Now we get our assertion from the following fact ([JP],

Appendix, PSH 14). If a family (u

�

)

�2A

of plurisubharmonic functions is locally

uniformly bounded from above, then the function

u

0

:= (sup

�2A

u

�

)

�

is again plurisubharmonic, where \�" denotes the upper semicontinuous regulariza-

tion. But we don't need to regularize log 


X

, since it is already continuous and this

assures also that the family f~gg is locally uniformly bounded from above.

Let G be a subgroup of the automorphism group Aut(X), which operates �xpointfree

and properly discontinuously on X . Then the quotient Q = X=G is a Hausdor� space

which admits a unique complex structure, such that the projection � : X ! Q is a

holomorphic and locally biholomorphic map. We can now prove

Theorem 6 Let X be a 
-hyperbolic manifold and let Q = X=G be a compact quotient

as above. Then the cotangent bundle 


1

Q

is nef.

Proof: As local coordinates  for Q we can take �

�1

restricted to appropriate open

sets such that a coordinate change is described by  

1

�  

�1

0

= f , where f 2 G (cf.

[W], Chap. V, Prop. 5.3.). Then we de�ne for q 2 Q and � 2 TQ

q

F (q; �) := 


X

( (q); D (q):�):

Since the Carath�eodory-Rei�en metric 


X

is invariant under biholomorphic transfor-

mations (Proposition 10), this de�nition does not depend on the choice of the local

coordinate and gives us a di�erential metric F on TQ. Moreover Proposition 11

implies that logF 2 PSH(TQnf0g). Now the assertion follows from Proposition 9.

In particular, compact quotients of a bounded domain in C

n

or in a Stein manifold

have nef cotangent bundles.
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