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ABSTRACT. We prove that if X is a smooth projective threefold with by = 1
and Y is a Fano threefold with b, = 1, then for a non-constant map f : X —
Y, the degree of f is bounded in terms of the discrete invariants of X and
Y. Also, we obtain some stronger restrictions on maps between certain Fano
threefolds.
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1. INTRODUCTION
Let X, Y be smooth complex n-dimensional projective varieties with Pic(X) =2
Pic(Y) 2 Z. Let f: X — Y be a non-constant morphism. It is a trivial conse-
quence of Hurwitz’s formula

Kx =f*Ky +R

that if Y is a variety of general type, then deg(f) is bounded in terms of the numerical
invariants of X and Y, and in particular all the morphisms from X to Y fit in a finite
number of families.

If we drop the assumption that Y is of general type, then this assertion is no longer
quite true. Indeed, if Y is a projective space P™, for any X we can construct infinitely
many families of maps X — Y: take an embedding of X in PN by any very ample
divisor on X and then project the image to P™. However, one might ask if P™ is the
only variety with this property (the following conjectures are suggested by A. Van de
Ven) :

CONJECTURE A: Let X, Y be as above andY 22 P™. Then there is only finitely many
families of maps from X to Y. Moreover, the degree of a map f : X — Y can be

bounded in terms of the discrete invariants of X and Y.

A weaker version is the following
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CONJECTURE B: Let X, Y be smooth n-dimensional projective varieties with by(X) =
b2(Y) = 1. Suppose Y 2 P™ and, if n =1, that Y is not an elliptic curve. Then the
degree of a map f: X = Y can be bounded in terms of the discrete invariants of X
and Y.

REMARK: If n = 1, the Conjecture A is empty and the Conjecture B is trivial. If
n = 2, one must check the Conjecture A with Y a K3-surface, and at the moment I
do not know how to do this. This problem, of course, does not arise for Conjecture B,
which again becomes a triviality in dimension two (note that if for a smooth complex
projective variety V' we have b1 (V) # 0 and b2(V) = 1, then V is a curve). The
assumption in the Conjecture B that Y is not an elliptic curve is , of course, necessary:
any torus has endomorphisms of arbitrarily high degree given by multiplication by an
integer.

EVIDENCE: It seems likely that “the more ample is the canonical sheaf on Y, the more
difficult it becomes to produce maps from X to Y”. Of course, the projective space
has the “least ample” canonical sheaf: Kp» = —(n + 1)H, where H is a hyperplane.
The next case is that of a quadric: Ko, = —nH with H a hyperplane section. For
n = 3, it has been proved by C.Schuhmann ([S]) that the degree of a map from a
smooth threefold X with Picard group Z to the three-dimensional quadric is bounded
in terms of the invariants of X. In [A], T have suggested a simpler method to prove
results of this kind, which also generalizes to higher dimensions.

The main purpose of this paper is to show by a rather simple method that for Fano
threefolds Y, at least for those with very ample generator of the Picard group, the
above Conjecture B is true (we also show that for many of such threefolds Conjecture
A holds). The boundedness results are proved in the next section. In Section 3,
we obtain in a similar way a strong restriction on maps between “almost all” Fano
threefolds with Picard group Z. This is related to the “index conjecture” of Peternell
which states that if f : X — Y is a map between Fano varieties of the same dimension
with cyclic Picard group, then the index of Y is not smaller than that of X. This
conjecture is studied for Fano threefolds by C.Schuhmann in her thesis, and one of
her main results is that there are no maps from such a Fano threefold of index two to
a Fano threefold of index one with reduced Hilbert scheme of lines. An extension of
this result appears also in Theorem 3.1 of this paper ; however, there is at least one
Fano threefold of index one with non-reduced Hilbert scheme of lines, namely, Mukai
and Umemura’s V52. The last section of this paper deals with this variety: it is proved
that a Fano threefold of index two with Picard group Z does not admit a map onto
it. One would think that the Mukai-Umemura V5, is the only Fano threefold of genus
at least four with cyclic Picard group and non-reduced Hilbert scheme of lines. The
proof of this would be a solution to the “index conjecture” in the three-dimensional
case (recall that a Fano threefold of index one and genus at most three has the third
Betti number which is bigger than the third Betti number of any Fano threefold of
index two ([I1] ,table 3.5), so we do not have to consider the case of genus less than
four to prove the index conjecture). In fact even a weaker statement would suffice
(see Theorem 3.1).
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This paper can be viewed as a very extensive appendix to [A], as a large part of the
method is described there.

We will often use the following notations: Generally, for X C P™, Hx denotes the
hyperplane section divisor on X. Also, for X with cyclic Picard group, we will call
Hx the ample generator of Pic(X) (in this paper it will mostly be assumed that Hx
is very ample). By Vj, following Iskovskih, we will often denote a Fano threefold with
cyclic Picard group, which has index one and for which HY = k (k will be called the
degree of this Fano threefold). For Grassmann varieties, we use projective notation:
G(k,n) denotes the variety of projective k-subspaces in the projective n-space.
Finally, throughout the paper we work over the field of complex numbers.

ACKNOWLEDGMENTS: I would like to thank Professor A. Van de Ven for many helpful
discussions. I am grateful to Frank-Olaf Schreyer for explaining me many facts on
Vs and for letting me use his unfinished manuscript [Sch], and also to Aleksandr
Kuznetsov for giving me his master’s thesis [K]. The final version of this paper was
written during my stay at the University of Bayreuth, to which I am grateful for its
hospitality and support.

2. BOUNDEDNESS

Let Y be a Fano threefold such that Pic(Y) = Z, and suppose that the positive
generator of the Picard group is very ample. When speaking of deg(Y) and other
notions related to the projective embedding ( e.g. the sectional genus g(Y") of V) we
will suppose that this embedding is given by global sections of the generator.

It is well-known ([I],I, section 5 ) that if V" is of index two, then lines on Y are
parameterized by a smooth surface Fy (the Fano surface) on Y. A general line on Y
has trivial normal bundle, and there is a curve on F' which parametrizes lines with
the normal bundle Op1(—1) ® Op1 (1) (let us call them (-1,1)-lines). If V" is of index
one, than Y contains a one-dimensional family of lines ([I], II, section 3); the normal
bundle of a line is then either Op1(—1) ® Op1, or Op:(—2) ® Op1(1). In the last case
such a line is of course a singular point of the Hilbert scheme. In the sequel we will
use the simple fact that if the Hilbert scheme of lines on a Fano threefold of index one
is non-reduced, i.e. every line of one of its irreducible components is (-2,1), then the
surface covered by the lines of this component is either a cone, or a tangent surface
to a curve.

If the generator Hy of Pic(Y') is not very ample, there still exist “lines” on Y: we call
a curve C a line if C' - Hy = 1. In this case, however, there exist other possibilities
for the normal sheaf Ney. If Y is a threefold of index 2 and Hy = 1, C' can even be
a singular curve and, moreover, if we want our “lines” to fit into a Hilbert scheme,
we must also allow embedded points ([T]).

At this point, it is convenient to recall from [I] which Fano threefolds have very
ample/not very ample generator of the Picard group. For index two, the threefolds
with very ample generator are cubics, intersections of two quadrics and the linear
section of G(1,4); the other threefolds are double covers of P? branched in a quartic
(quartic double solids) and double covers of the Veronese cone branched in a cubic
section of it, (double Veronese cones). For index one, we have nine families of threefolds
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with very ample generators, plus double covers of the quadric branched in a quartic
section and double covers of P? branched in a sextic.

Often we will assume here for simplicity that Hy is very ample, and discuss the other
case in remarks.

We start by proving the following

PROPOSITION 2.1 A) IfY is a Fano threefold (with Pic(Y') =2 Z, Hy very ample) of
index 2 such that the surface Uy CY which is the union of all (-1,1)-lines on'Y is in
the linear system |iHy| with i > 5, then for any threefold X, Pic(X) 2 Z, the degree
of a map f: X =Y is bounded in terms of the discrete invariants of X.

B) If Y is a Fano threefold of index 1 with Pic(Y) = Z, Hy very ample, such that
the surface Sy C 'Y which is the union of all lines on Y is in the linear system iHy
with i > 3, then for any threefold X, Pic(X) = Z, the degree of a map f: X =Y is
bounded in terms of the discrete invariants of X .

Proof: Let m be such that f*Hy = mHyx. Notice that by Hurwitz’ formula, our
conditions on Uy resp. Sy just mean that if deg(f) is big enough, then not the whole
inverse image of Uy resp. Sy is contained in the ramification. Indeed, if Y is, say, of
index one, we have Ky = —Hy. The Hurwitz formula reads

Kx =—mHx + R.

If the whole inverse image of Sy is in the ramification, then R is at least %mHX,
so m cannot get very big. Therefore one gets that the inverse image D of a general
(-1,1)-line on Y (in the index-two case) or a general line on Y (in the index-one case)
has a reduced irreducible component C'.
Let Y be a Fano threefold of index two satisfying Uy = iHy with ¢ > 5. For C' and
D as above, there is a natural morphism

¢+ (Ic/128)" = (Ip/Ip) e = Oc(m) ® Oc(—m),

and this map must be an isomorphism at a smooth point of D, i.e. at a sufficiently
general point of C, as C' is reduced. Now, also due to the fact that C' is reduced, the
natural map

¢ Txlo = (To/12)*

is a generic surjection. Therefore if we find an integer j such that T'x (j) is globally
generated, we must have m < j.

Such j depends only on the discrete invariants of X. Indeed, let A be a very ample
multiple of Hx. A linear subsystem of the sections of A gives an embedding of a
threefold X into P7. We have

Tx(Kx) = A*Qx.

A2Qx is a quotient of A?Qpr|x, and we deduce from this that A?Qx (34) is generated
by the global sections. So Tx (Kx + 3A) is generated by the global sections, and j
can be taken such that Kx +3A = jHx. So one only needs to know which multiple
of Hx is very ample, and this can be expressed in terms of the discrete invariants of
X (see for example [D] for many results in this direction).
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The case of index one is completely analogous: a normal bundle of any line on a Fano
threefold of index one has a negative summand.

REMARK A: The assumption on the very ampleness of the generator of Pic(Y) is
not really necessary to prove Proposition 2.1. Otherwise, we call “lines” curves C'
satisfying C' - Hy=1. These curves are rational. One has then to count with the
possibility that e. g. some of the “lines” on such a Fano 3-fold of index two can have
normal bundle Op:1(—2) ® Op1(2), but this is not really essential for the argument:
as soon as we can find sufficiently big 1-parameter family of smooth rational curves
with a negative summand in the normal bundle, our method works.

EXAMPLES OF FANO THREEFOLDS Y SATISFYING OUR ASSUMPTIONS ON Sy, Uy:

1) Y a cubic in P* and

2) Y an intersection of two quadrics in P3. To check this is more or less standard and
almost all details can be found in [CG] for a cubic and in [GH] (Chapter 6) for an
intersection of two quadrics. For convenience of the reader, we give here the argument
for Y an intersection of two quadrics in P>:

Let F C G(1,5) be a surface which parametrizes lines on Y (Fano surface) , and let
U — F be the family of these lines. The ramification locus of the natural finite map
U — 'Y consists exactly of (-1,1)-lines, that is, the surface M covered by (-1,1)-lines
on Y is exactly the set of points of Y through which there pass less than four lines
(of course there are four lines through a general point of Y). F is the zero-scheme
of a section of the bundle S2U* & S?U* on G(1,5). A standard computation with
Chern classes yields then that Kr = Op (in fact, F' is an abelian variety ([GH])).
For a general line | C Y consider a curve C; C F which is the closure in F' of lines
intersecting [ and different from [. C; contains [ iff [ is (-1,1). C; is smooth for any
! ([GH]). By adjunction, C; has genus 2. So the ramification R of the natural 3:1
morphism h; : C; — [ sending I' to I N1' ( with [ general, i.e. not a (-1,1)-line) has
degree 8. The branch locus of h consists of intersection points of [ and the surface
M of (-1,1)-lines, and so we have that this surface is in |[iHy| with i > 4 and i = 4
only if there are only 2 lines through a general point of M. This is again impossible:
otherwise, for [ a (-1,1)-line, C; would be birational to I. In fact, one gets that ¢ = 8.
3) Y a quartic double solid. The computations are rather similar, and the best
reference is [W]. Bitangent lines to the quartic surface give pairs of “lines” on Y as
their inverse images under the covering map. Welters proves the following results:
the Fano surface Fy has only isolated singularities (and is smooth for a general Y);
the curve C; for a general [ is smooth except for one double point; there are 12 “lines”
through a general point of Y; p,(Cy) = 71. We use these results to conclude that ¥
satisfies our assumptions.

4) Y is a “sufficiently general” Fano threefold of index one ( of course we assume that
Pic(Y) =2 Z and that the positive generator of Pic(Y") is very ample), deg(Y) # 22:
see [I], II, proof of th. 6.1. It is computed there that a Fano threefold Y of index one
(with very ample Hy) with reduced scheme of lines satisfies our assumption on Sy
iff deg(Y') # 22. By the classification of Mukai ([M]), any Fano threefold of index one
as above except Vay’s is a hyperplane section of a smooth (Fano) fourfold. Clearly, a
general line on a Fano fourfold of index two has trivial normal bundle. So a general
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hyperplane section of such a fourfold has reduced Hilbert scheme of lines.
5) Y any Fano threefold of index one and genus 10: Prokhorov shows in [P] that the
Hilbert scheme of lines on any such threefold is reduced.
6) Y any Fano threefold V14 of index one and genus 8: such a threefold is a linear
section of G(1,5) in the Pliicker embedding. Iskovskih shows in [I], II, proof of th. 6.1
(vi), that on such a threefold with reduced scheme of lines, lines will cover a surface
which is linearly equivalent to 5H. So one sees that if the lines cover only H or 2H,
the scheme of lines is non-reduced and the surface covered by lines consists of one
or two components which are hyperplane sections of Y. Moreover, as a V14 does not
contain cones, all the lines in one of the components must be tangent to some curve
A. One checks easily that this curve is a rational normal octic. A is then the Gauss
image of a rational normal quintic B in P® ([A], proof of Proposition 3.1(ii)). This
makes it possible to check that there is no smooth three-dimensional linear section of
G(1,5) containing the tangent surface to A. Indeed, one can assume that B is given
as

(x : Tamy = . 2), (zo s 1) € P

one computes then that the Gauss image of B in G(1,5) C P (where G(1,5) is
embedded to P'* by Pliicker coordinates (z;), the order of which we take as follows:
for aline l through p = (po : ... : p5) and ¢ = (qo : ... : ¢5) we take 2o = pPoq1 —P1Qo; 21 =
Pog2 — P2qo; - 5 = P1g2 — P2qi; - 214 = Pags — Psqa ) generates the linear subspace
L given by the following equations:

2o = 325,23 = 226,24 = 929,
27 = 329,28 = 2210, 211 = 3212.

So we must consider all the projective 9-subspaces through L and prove that the
intersection of every such space with G(1,5) is singular. This can be done for example
as follows: let £ = P® be a parametrizing variety for these 9-subspaces. Notice that
the points . = (1:0:...:0) and y = (0 : ... : 0 : 1) belong to our curve A. Notice
that if ¢ is a point of A, then the set £; = {M € £ : M N G(1,5) is singular at ¢}
is a hyperplane in £. If we see that these sets are different at different points ¢, we
are done. It is not difficult to check explicitly (writing down the matrix of partial
derivatives) that forz = (1:0:...:0) € Aandy=(0:...:0:1) € A, L, # L,: if a
9-space M through L is given by the equations

a1i(z2 — 325) + a2i(z3 — 226) + asi(z7 — 329)+

+a4i(28 — 2210) + as5i(211 — 3212) + @6i(24 — 529) =0
fori =1,...,5, then M € L, if and only if

i=1,2,3,4,5
det(ari)—155.46 = 0

and M € L, if and only if

i=1,2,3,4,5
det(aki)k:1’2’3’4,5 0.

These conditions are clearly different.
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EXAMPLES OF FANO THREEFOLDS NOT SATISFYING ASSUMPTIONS OF PROPOSITION
2.1:

1) Y is a linear section of G(1,4) in the Pliicker embedding: the surface Uy has degree
10.

2) Y is a Fano variety of index one and genus 12 (V22). The surface of lines belongs
to | — 2Ky| for all Vas’s but one ([P]), for which the scheme of lines is non-reduced
and the surface covered by lines belongs to | — Ky|. This threefold with non-reduced
Hilbert scheme of lines (the Mukai-Umemura variety) will be denoted VZ5,.

QUESTION: Are these the only examples?

REMARK B: Though any V5, violates the assumption of the Proposition 2.1, for a
Voo with the reduced Hilbert scheme of lines (therefore for all Vas’s but one) the
boundedness of the degree of a map f : X — V5o can be proved. The point is that
a general line on such a V35 has the normal bundle Op: & Op1(—1), so if U is the
universal family of lines on V53 and 7w : U — Vs is the natural map, then 7 is an
immersion along a general line. Now if the preimage of a general line [ is not contained
in the ramification R, one can proceed as before. If it is, then let C' be the reduction
of an irreducible component of f~!(I), and let k£ be such that at a general point of
the component of R containing C', the ramification index is k — 1 (i.e. “k points come
together”.) It turns out that using our observation about 7, we can then estimate
the arithmetic genus of C' (see [A], section 5). Namely, let f*Hy,, = mHx and let
Kx =rHx. We get then

294(C) =2 < (r = T)CHx.

Suppose now that k£ — 1 is a smallest ramification index for R. Hurwitz’ formula
implies that if » < %, then k = 2. So if m gets big, p,(C) becomes negative, and this
is impossible.

Concerning the remaining Fano threefolds (in particular, Vi, and G(1,4) N P9), we
can prove a weaker result (as in Conjecture B):

PROPOSITION 2.2 Let Y be a Fano threefold with Pic(Y) = Z and with Hy very
ample, let X be a smooth threefold with bo(X) =1 and let f : X — Y be a morphism.
If either Y is of index two, or Y is of index one with non-reduced Hilbert scheme of
lines, then the degree of f is bounded in terms of the discrete invariants of X .

Proof: Consider for example the index one case. We have that Y has a one-dimensional
family of (—2, 1)-lines. If we take a smooth hyperplane section H through a line [ of
this family, the sequence of the normal bundles

0— Nl,H — Nl,y — NH,y|l —0

splits.
Therefore, if M is the inverse image of H and C' is the inverse image of [ (scheme-
theoretically), the sequence

0— NC,M — NC’,X — NM,X|C —0
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also splits.

It is not difficult to see that for a general choice of I and H, the surface M has
only isolated singularities. As M is a Cartier divisor on a smooth variety X (say
M € |Ox(m)|), M is normal.

Now we are in the situation which is very similar to that of the following

THEOREM (R. Braun, [B]): Let W be a Cartier divisor on a variety V of dimension
n,2<n <N, in PN such that W has an open neighborhood in V which is locally a
complete intersection in PN . If the sequence of the normal bundles

0— NW7V — NW,PN — NV,PN|W —0 (*)
splits, then W is numerically equivalent to a multiple of a hyperplane section of V.

It turns out that if we replace here W, V, PN by C, M, X as in our situation, the
similar statement is true. The only additional assumption we must make is that M
is sufficiently ample, i.e. m is sufficiently big:

Claim: Let X be a smooth projective 3-fold with ba(X) = 1, and let M be a sufficiently
ample normal Cartier divisor on X. If C is a Cartier divisor on M and the sequence

0— NC,M — NC’,X — NM,X|C —0

splits, then C' is numerically equivalent to a multiple of Hx |n.

The proof of this claim is almost identical to that of Braun’s theorem (which is itself
a refinement of the argument of [EGPS] where the theorem is proved for V' a smooth
surface). Recall that the main steps of this proof are:

1) The sequence (x) splits iff W is a restriction of a Cartier divisor from the second
infinitesimal neighborhood V5 of V in PV;
2)The image of the natural map Pic(V2) = Num(V') is one-dimensional.

In the situation of the lemma, 1) goes through without changes with W, V, PV
replaced by C', M, X (M will of course denote the second infinitesimal neighborhood
of M in X). The second step is an obvious modification of that in [B], [EGPS]: as in
these works, it is enough to prove that the image of the natural map

Pic(Msy) — H'(M,Q},)

is contained in a one-dimensional complex subspace, and this follows from the com-
mutative diagram

Pic(M,) — " Pic(M) Num(M) H' (M, Q%))

dlog /

H' (M2, Q) — H'(M,Qy,|v) —— H' (M, Qx|nr)

(where « exists because the sheaves Q) [rs and Q) |ps are isomorphic)
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and the fact that for sufficiently ample M,
HY (M, Q% |v) = HY(X,04) = C
as follows from the restriction exact sequence
0— Q% (—M) = Q% — Q%|x — 0.

Note that we can give an effective estimate for “sufficient ampleness” of M in terms
of numerical invariants of X using the Griffiths vanishing theorem ([G]).

Applying this to our situation of a map onto a Fano threefold Y of index one with
non-reduced Hilbert scheme of lines, we get that C' = f~!(I) must be numerically
equivalent to a multiple of the hyperplane section divisor on M = f~1(H) if the
number m (defined by f*Hy = mHx) is large enough. As it is easy to show that C
and the hyperplane section of M are independent in Num/(M), it follows that m and
therefore deg(f) must be bounded. The case of index two is exactly the same (use
the existence of a divisor covered by (-1,1)-lines). So the Proposition is proved.

We summarize our results in the following

THEOREM 2.3 Let X be a smooth projective threefold with ba(X) =1, let Y be a Fano
threefold with b2(Y) = 1 and very ample Hy and let f : X — Y be a morphism. If
Y 2 P3, then the degree of f is bounded in terms of the discrete invariants of X,Y .

Proof: Indeed, there are only four possibilities:

a) Y is a quadric: this is proved in [S], [A].

b) Proposition 2.1 applies;

c) Y is Vao with reduced scheme of lines: the boundedness for deg(f) is obtained in
Remark B;

d) Y is either G(1,4) N PY, or a Fano threefold with non-reduced Hilbert scheme of
lines: then Proposition 2.2 applies.

Notice that in the first three cases it is sufficient that Pic(X) = Z.

3. MAPS BETWEEN FANO THREEFOLDS

It turns out that we obtain especially strong bound if X is also a Fano variety. In
many cases,this even implies non-existence of maps:

THEOREM 3.1 Let X, Y be Fano threefolds, Pic(X) = Pic(Y)
Hx, Hy are very ample. If either

i) Y is of index one and Sy is at least 2Hy,

or

it) Y is of index two and Uy is at least 4Hy(where Sy, Uy are as in Proposition 2.1),
then for a non-constant map f: X — Y we must have

1%

Z. Suppose that

f*(HY) = HX:
i.e. 78
deg(f) = H—é;
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Before starting the proof, we formulate the following result from [S]:

Let f : X — Y be a non-trivial map between Fano threefolds with Picard group Z.
Then:

A) If X,Y are of index two, then the inverse image of any line is a union of lines;
B) If X,Y are of index one, then the inverse image of any conic is a union of conics;
C) If X is of index one and Y is of index two, then the inverse image of any line is
a union of conics;

D) If X is of index two and Y is of index one, then the inverse image of any conic is
a union of lines.

(here a conic is allowed to be reducible or non-reduced. Unions of lines and conics
are understood in set-theoretical sense, i.e. a line or a conic from this union can, of
course, have a multiple structure.)

We will also need some facts on conics on a Fano threefold V' of index one, with very
ample —Ky and cyclic Picard group. Iskovskih proves ([I],II, Lemma 4.2) that if C
is a smooth conic on such a threefold, then N¢,y = Opi(—a) ® Op1(a) with a equal
to 0,1,2 or 4. The following lemma is an almost obvious refinement of this:

LEMMA 3.2 a) Let C C V be a smooth conic. Then N¢,y = Op1(—4) ® Op1(4) if and
only if there is a plane tangent to V along C. In particular, such conics exist only if
V is a quartic.

b) Let C C V be a reducible conic: C =1y Jls, 1 # lo. Let N be the (locally free
with trivial determinant) normal sheaf of C in V. Then N|;;, = Opi(—a;) ® Op1(a;)
with 0 < a; < 2, and if a; = 2 for both i, then there is a plane tangent to V along C
(and V is a quartic ).

Proof: a) This is a simple consequence of the fact that for C C V C P", Ngy C
Nc¢pr, and the only subbundle of degree 4 in Ngpn is Ng p with P the plane
containing C'. One concludes that V' is a quartic as all the other Fano threefolds V'
considered here are intersections of quadrics and cubics which contain this V' ([I], II,
sections 1,2) and therefore must contain this P, which is impossible.
b) We have embeddings

0— Nli,V — N

Liy

this implies the first statement: 0 < a; < 2. If a; = 2, then [; should be a (-2,1)-line;
therefore there are planes P; tangent to V along [;, giving the degree 1 subbundle of
N, v and the exceptional section in P(N;, v) = F5. In fact P, = P,. This is easy to
see using so-called “ elementary modifications” of Maruyama (of which I learned from
[AW] ,p.11): if we blow P(N, v) up in the point p corresponding to the direction of
l> and then contract the proper preimage of the fiber, we will get P(N|;,). Under our
circumstances, p must lie on the exceptional section of P(Ny, v), so lo C P;. In the
same way, l; C P, q.e.d..

Proof of the Theorem:

Let f: X = Y be a finite map between Fano threefolds as above.

Again, the condition on Sy, Ty means that not the whole inverse image of Sy, Ty
can be contained in the ramification. If Y is of index one resp. index two, we will
denote by C' be a reduced irreducible component of the inverse image of a general line
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resp. (-1,1)-line l on Y (so C' is not contained in the ramification), and by D the full
scheme-theoretic inverse image of such a line.

Let f*Oy (1) = Ox(m). If X is of index two, then T'x (1) is globally generated. As
in the Proposition 2.1, we conclude that m = 1.

If X is of index one and Y is of index two, then, by the result quoted in the beginning
of this section, C is a line or a conic.

If C' is a smooth conic, we look at the generic isomorphism

¢+ (Ic/T8)" = (Ip/ID)lc = Oc(m) ® Oc(—m).

Immediately we get that m is equal to one or two. Suppose m = 2. Then, by the
Lemma, X is a quartic and there is a plane P tangent to X along C'. Choose the
coordinates so that P is given by z3 = x4 = 0. Then the equation of X can be written
as

(¢(w0, 71, 22))* + 23 F + 24G = 0,

where ¢ defines C' and F, G are cubic polynomials. Denote as A and B the curves cut
out on P by these cubics. The necessary condition for smoothness of X is

ANBNX =40.

Now recall that C' resp. P varies in a one-dimensional (complete) family C; resp. P;.
A and B also vary, and for every ¢t we must have

AnNBNX=0.

This means that all the planes P; pass through the same point, not lying on X.
Projecting from this point, we see that the surface W formed by our conics C; is in
the ramification locus of this projection. The Hurwitz formula then gives W € |Ox (7)|
with 7 < 3. Now Y is, by assumption, a cubic or an intersection of two quadrics. But
then, as we saw, the surface Uy of (-1,1)-lines is at least 5Hy, and an elementary
calculation shows that it is impossible that the inverse image of the surface of (-1,1)-
lines Uy consists only from W and the ramification.

If C is a line, then the argument is similar. One only needs to prove the following
Claim:In this situation, if m = 2, the scheme D has another reduced irreducible
component C, which intersects C'.

Then of course either C7, or C'|JC is a conic, and one can proceed as above. The
proof of this claim is elementary algebra. We will sketch it after finishing the following
last step of the Theorem:

If X and Y are both of index one, we have that the inverse image of a line [ on Y
should consist of lines and conics; for C' as above, we have a map

¢: (Ic/12)" = Oc & Oc(—m),

if I is (0,-1), or
¢': (Zo/T2)* = Oc(m) ® Oc(—2m),

if 1 is (1,-2). As these maps must be generic isomorphisms, we get that in both cases
m = 1, whether C' is a conic or a line.
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Proof of the claim: Notice that C' must be (1,-2)-line. The cokernel of the natural
map
ﬂ :ID/Z%|C — Ic/Igv

is the sheaf Z¢ p /I% s supported on intersection points of C' and other components
of D. We see from our assumptions that it must have length one (so be supported at
one point z). Suppose that C' intersects non-reduced components of D at z. Let A
be a local ring of D at z and p C A a fiber of Z¢ p. Of course p/p> # 0 by Nakayama.
To see that dimp/p> > 2, we find an ideal a C p, not contained in p?. For example,
we can take an ideal defining the union of C' and the reduction of an irreducible but
non-reduced component of D intersecting C'. We have a surjection

p/p*> = (p/a)/(p*/(p* Na)) = 0,

which has non-trivial (again by Nakayama) image and non-trivial kernel, q. e. d..

COROLLARY 3.3 Let X, Y be Fano threefolds of index one as in Theorem 3.1 i). Then
any map between X and Y is an isomorphism.

Proof: Iskovskih computed the third Betti numbers of all Fano threefolds ( see also
[M]), and in fact as soon as deg(X) > deg(Y'), then b3(X) < b3(Y"), so a morphism
f: X — Y cannot exist.

REMARK C: Some part of the argument of Theorem 3.1 goes through without assump-
tions on the very ampleness of the generator H of the Picard group. For example,
when X is a quartic double solid, which is a Fano threefold of index two, all the
“lines” C on X except possibly a finite number, have either trivial normal bundle, or
the normal bundle Oc(H) ® Oc(—H) (in other words, the surface which parametrizes
lines on X, has only isolated singularities). One can then replace the words “T'x (H)
is globally generated”, which are not true in general, by some “normal bundle argu-
ments” as in the above proof. The same should hold for the Veronese double cone.
See [W], [T] for details. As for maps to the quartic double solid, the argument goes
through without changes.

EXAMPLES: Any cubic in P* satisfies the assumption we made on Y. By our Theorem
3.1, we get that if a Fano threefold X of index one with cyclic Picard group is mapped
onto a cubic, then the degree of this map can only be %. So if X admits such a
map, then deg(X) is divisible by 3. Of course there are Fano threefolds of index one
which admit a map onto a cubic: we can take an intersection of a cubic cone and
a quadric in P®. Theorem 3.1 shows that if a smooth complete intersection of type
(2,3) in P® maps to a cubic, then it is contained in a cubic cone and the map is the
projection from the vertex of this cone.

The same applies of course to maps from a complete intersection of three quadrics
in P to a complete intersection of two quadrics in P®. Notice that any smooth
complete intersection of two quadrics in P® admits a map g onto a quadric in P* such
that the inverse image of the hyperplane section is the hyperplane section (any pencil
of quadrics with non-singular base locus contains a quadratic cone). Therefore if a
smooth intersection of three quadrics in P® can be mapped onto a smooth complete
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intersection of two quadrics in P%, it must lie in a quadric of corank 2 in P®. Of
course a general intersection of three quadrics in P® does not have this property, as
the space of quadrics of corank 2 is of codimension four in the space of all quadrics.

ADDITIONAL EXAMPLES OF VARIETIES SATISFYING THE ASSUMPTION OF THEOREM
3.1:

1) any complete intersection of a cubic and a quadric in P® or

2) any complete intersection of three quadrics in P8. Indeed, if lines on these varieties
cover only a hyperplane section divisor, then the scheme of lines must be non-reduced,
i.e. each line must have normal bundle Opi(—2) & Op1(1). So the surface of lines
is either a cone or the tangent surface to a curve. But one can check that these
varieties do not contain cones; neither do they contain a tangent surface to a curve
as a hyperplane section, because by a version of Zak’s theorem on tangencies (see
for example [FL]), a hyperplane section of a complete intersection has only isolated
singularities.

3) Any Vay with reduced Hilbert scheme of lines. By ([P]), there is exactly one Vay
such that its Hilbert scheme of lines is non-reduced.

4) any Fano threefold Vj¢ of index one and genus 9. This can be shown by the method
of Prokhorov ([P]) :

First, notice that if the lines on Vjg cover only a hyperplane section, the scheme of
lines is non-reduced. So all the lines are tangent to a curve. This is actually a rational
normal curve, so the lines never intersect.

For convenience of the reader, we recall from [I2] the notion of double projection from
a line and its application to Vig :

Let X be a Fano threefold of index one, g(X) > 7, and let [ be a line on X. On X,
the blow-up of X, we consider the linear system |o* H — 2E|, where o is the blow-up,
H = Ky and F is the exceptional divisor. This is not base-point-free, namely, its
base locus consists of proper preimages of lines intersecting [, and, if [ is (-2,1), from
the exceptional section of the ruled surface E = F3. However, after a flop (i.e. a
birational transformation which is an isomorphism outside this locus) we can make it
into a base-point-free system |(o* H)* — 2ET| on the variety X .

If g(X) =9, i.e.X is a Vig, the variety X is birationally mapped by this linear
system onto P3. This map, say g, is a blow-down of the surface of conics intersecting
[ to a curve Y C P3, which is smooth of degree 7 and genus three (smoothness of Y’
is obtained from Mori’s extremal contraction theory). Y lies on a cubic surface which
is the image of E+. Moreover, the inverse rational map from P? to X is given by the
linear system |7H — 2Y|.

One has therefore that the lines from X, different from [, must be mapped by g
to trisecants of Y. Note that if lines on X form only a hyperplane section, the
desingularization of the surface of lines on X is rational ruled, and it remains so after
the blow-up and the flop. So, as in [P], we must have a morphism F, — P?, which
is given by some linear system |C + kF'| with C the canonical section and f a fiber,
such that the inverse image of " belongs to the system |3C' +1F|. deg(Y) = 7 implies

(3C +IF)(C + kF) = -3¢ + 3k +1 =1,
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and as degKy =4,
(C+(1—-2—-e)F)(3C+IF)=—6e+4l—6 =41,
Combining these two equations, we get
2k —e =3,

However, we must have e > 0 and k > e, as otherwise the linear system |C + kF|
does not define a morphism. This leaves only two possibilities for & and e: either
e =k =3,0r e =1k = 2. The first case actually cannot occur: this would imply
that Y is singular. So the image of F, = F in P? is a cubic which is a projection of F}
from P*. By assumption, Y is also contained in another irreducible cubic (the image
of ET). But one check that this cannot happen, using e.g. a theorem by d’Almeida
([Al]), which asserts that if a smooth non-degenerate curve Y of degree d > 6 and
genus g in P? satisfies H'(Zy (d — 4)) # 0, then Y has a (d-2)-secant provided that

(d,g) # (7,0),(7,1),(8,0).
4. Voo

Let us now take Y = V3%, i.e. the only variety of type V22 which has non-reduced
Hilbert scheme of lines. This V55 violates the assumptions of Theorem 3.1. However,
using Mukai’s and Schreyer’s descriptions of conics on varieties of type Vs, it is still
possible to say something on maps from Fano threefolds onto Y. We will show the
following:

PROPOSITION 4.1 A Fano threefold X of index two with cyclic Picard group and
irreducible Hilbert scheme of lines does not admit a map onto V55 .

Asg for the last assumption on X, one believes that this is always satisfied. In fact
this is easy to check (and well-known) for a cubic or a complete intersection of two
quadrics (the Hilbert scheme is smooth in this case, so it is enough to show that it
is connected). The irreducibility is also known for Vi, in fact, the Hilbert scheme is
isomorphic to P2 ([I], I, Corollary 6.6). For a quartic double solid, see [W]. As for
a double Veronese cone, in [T] it is proven that a general double Veronese cone has
irreducible Hilbert scheme of lines. So the only possible exception could be a special
double Veronese cone.

In fact our argument will work for a sufficiently general V55, but for all of them except
V55 this assertion is already proved in the last paragraph.

Proof: Let S be the Fano surface ( = reduced Hilbert scheme) of lines on X and T the
Fano surface of conics on the Vas. If f : X — Va5 is a finite map, then, as Schuhmann
proves in [S], the inverse image of any conic is a union of lines, and, moreover, in this
way f induces a finite surjective morphism g : S — T ( thanks to irreducibility of S,
any line on X is in the inverse image of a conic on Va2).

F.-O. Schreyer ([Sch]) gives the following description of a general conic on Vaz:
Consider Vs, as the variety of polar hexagons of a plane quartic curve C' C P? (a polar
hexagon of C' is the union of six lines Iy, ...Ig given by equations L; = 0,...,Lg =0 ,

DOCUMENTA MATHEMATICA 2 (1997) 195-211



MAPs ONTO CERTAIN FANO THREEFOLDS 209

such that L{ + ... + Lt = F where F = 0 defines C; “the variety of polar hexagons”
means here the closure of the set of 6-tuples Iy,...ls with L{ + ... + L = F in the
Hilbert scheme H ilbe(PQ*); a general Vo, is isomorphic to such a variety for a certain
curve C; V3 is the variety of polar hexagons of a double conic). Then there is a
birational isomorphism between (P2)* and T given as follows:

for a general I C P2 the curve of polar hexagons to C' containing I is a conic on Vay.
This description and the fact that through any point on a Va5 there is only a finite
number of conics ([I], II, Theorem 4.4) gives that

there are sixz conics through a general point of Vas.

In [M], Mukai claims that the Fano surface of conics on a Vas is even isomorphic to
P2. Unfortunately, this paper does not contain a proof of this fact. The proof appears
in the paper of A. Kuznetsov ([K]): he uses another description of a general Vs, as
a subvariety of G(2,6). Namely, if V and N are 7- and 3-dimensional vector spaces
respectfully and f : N — A2V* is a general net of skew-symmetric forms on V', then
a general Vs (including V3, [Sch]) appears as a set of all 3-subspaces of V' which are
isotropic with respect to this net (i.e. to all forms of the net simultaneously). Let
U (resp. @) denote restriction on a Vay of the universal (resp. universal quotient)
bundle on G(2,6). Kuznetsov proves that every (possibly singular) conic on a Vas is
a degeneracy locus of a homomorphism U — Q*; the Fano surface of conics is thus
P(Hom(U,Q*)) = P2.

Now if there is a finite map f : X — V52 as above, then X must be a cubic: indeed,
a Fano threefold with cyclic Picard group and with 6 lines through a general point is
a cubic. Let f*Hy,, = mHx, then one easily computes that the inverse image of a
general conic consists of deg(g) = s = =m? lines.

For simplicity, we will use the same notation for points of T' (resp. S) and correspond-
ing conics on Vas (resp. lines on X). We have T' = P2. Let a be such that conics on
Vao intersecting a given (general) conic A, form a divisor D4 from |Op2(a)]

On S, denote as Er, the divisor of lines intersecting a given line L. It is well-known
and easy to compute that Ep - Epy = 5 for any L, M.

If g7 (A) = {Ly, ..., Ls}, then

g*((’)pz(a)) = OS(EL1 + ...+ ELS)-

We therefore have another formula for deg(g):

52
deg(g) = o

From the equality s = 5[%; we get that (2)> = 11, however, this is impossible as 11

15’ 5
is not a square of a rational number.
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