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Abstract. We show that the Chern{Connes character induces a natural

transformation from the six term exact sequence in (lower) algebraic K{

Theory to the periodic cyclic homology exact sequence obtained by Cuntz

and Quillen, and we argue that this amounts to a general \higher index

theorem." In order to compute the boundary map of the periodic cyclic

cohomology exact sequence, we show that it satis�es properties similar to

the properties satis�ed by the boundary map of the singular cohomology long

exact sequence. As an application, we obtain a new proof of the Connes{

Moscovici index theorem for coverings.
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264 Victor Nistor

Introduction

Index theory and K-Theory have been close subjects since their appearance [1, 4].

Several recent index theorems that have found applications to Novikov's Conjecture

use algebraic K-Theory in an essential way, as a natural target for the generalized

indices that they compute. Some of these generalized indices are \von Neumann

dimensions"{like in the L

2

{index theorem for coverings [3] that, roughly speaking,

computes the trace of the projection on the space of solutions of an elliptic di�er-

ential operator on a covering space. The von Neumann dimension of the index does

not fully recover the information contained in the abstract (i.e., algebraic K-Theory

index) but this situation is remedied by considering \higher traces," as in the Connes{

Moscovici Index Theorem for coverings [11]. (Since the appearance of this theorem,

index theorems that compute the pairing between higher traces and the K{Theory

class of the index are called \higher index theorems.")

In [30], a general higher index morphism (i.e., a bivariant character) was de�ned

for a class of algebras{or, more precisely, for a class of extensions of algebras{that is

large enough to accommodate most applications. However, the index theorem proved

there was obtained only under some fairly restrictive conditions, too restrictive for

most applications. In this paper we completely remove these restrictions using a

recent breakthrough result of Cuntz and Quillen.

In [16], Cuntz and Quillen have shown that periodic cyclic homology, denoted

HP

�

, satis�es excision, and hence that any two{sided ideal I of a complex algebra A

gives rise to a periodic six-term exact sequence

HP

0

(I)

//

HP

0

(A)

//

HP

0

(A=I)

��

@

HP

1

(A=I)

OO

@

HP

1

(A)

oo

HP

1

(I)

oo

(1)

similar to the topologicalK{Theory exact sequence [1]. Their result generalizes earlier

results from [38]. (See also [14, 15].)

IfM is a smooth manifold and A = C

1

(M), then HP

�

(A) is isomorphic to the de

Rham cohomology of M , and the Chern{Connes character on (algebraic) K{Theory

generalizes the Chern{Weil construction of characteristic classes using connection and

curvature [10]. In view of this result, the excision property, equation (1), gives more

evidence that periodic cyclic homology is the \right" extension of de Rham homology

from smooth manifolds to algebras. Indeed, if I � A is the ideal of functions vanishing

on a closed submanifold N �M , then

HP

�

(I) = H

�

DR

(M;N)

and the exact sequence for continuous periodic cyclic homology coincides with the

exact sequence for de Rham cohomology. This result extends to (not necessarily

smooth) complex a�ne algebraic varieties [22].

The central result of this paper, Theorem 1.6, Section 1, states that the Chern{

Connes character

ch : K

alg

i

(A)! HP

i

(A);

where i = 0; 1, is a natural transformation from the six term exact sequence in

(lower) algebraic K{Theory to the periodic cyclic homology exact sequence. In this
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Higher Index Theorems 265

formulation, Theorem 1.6 generalizes the corresponding result for the Chern character

on the K{Theory of compact topological spaces, thus extending the list of common

features of de Rham and cyclic cohomology.

The new ingredient in Theorem 1.6, besides the naturality of the Chern{Connes

character, is the compatibility between the connecting (or index) morphism in alge-

braic K{Theory and the boundary map in the Cuntz{Quillen exact sequence (Theo-

rem 1.5). Because the connecting morphism

Ind : K

alg

1

(A=I)! K

alg

0

(I)

associated to a two-sided ideal I � A generalizes the index of Fredholm operators,

Theorem 1.5 can be regarded as an abstract \higher index theorem," and the com-

putation of the boundary map in the periodic cyclic cohomology exact sequence can

be regarded as a \cohomological index formula."

We now describe the contents of the paper in more detail.

If � is a trace on the two{sided ideal I � A, then � induces a morphism

�

�

: K

alg

0

(I)! C :

More generally, one can{and has to{allow � to be a \higher trace," while still getting

a morphism �

�

: K

alg

1

(I)! C . Our main goal in Section 1 is to identify, as explicitly

as possible, the composition �

�

� Ind : K

alg

1

(A=I) ! C . For traces this is done in

Lemma 1.1, which generalizes a formula of Fedosov. In general,

�

�

� Ind = (@�)

�

;

where @ : HP

0

(I) ! HP

1

(A=I) is the boundary map in periodic cyclic cohomology.

Since @ is de�ned purely algebraically, it is usually easier to compute it than it is to

compute Ind, not to mention that the group K

alg

0

(I) is not known in many interesting

situations, which complicates the computation of Ind even further.

In Section 2 we study the properties of @ and show that @ is compatible with

various product type operations on cyclic cohomology. The proofs use cyclic vector

spaces [9] and the external product � studied in [30], which generalizes the cross-

product in singular homology. The most important property of @ is with respect to

the tensor product of an exact sequence of algebras by another algebra (Theorem 2.6).

We also show that the boundary map @ coincides with the morphism induced by the

odd bivariant character constructed in [30], whenever the later is de�ned (Theorem

2.10).

As an application, in Section 3 we give a new proof of the Connes{Moscovici

index theorem for coverings [11]. The original proof uses estimates with heat kernels.

Our proof uses the results of the �rst two sections to reduce the Connes{Moscovici

index theorem to the Atiyah{Singer index theorem for elliptic operators on compact

manifolds.

The main results of this paper were announced in [32], and a preliminary version

of this paper has been circulated as \Penn State preprint" no. PM 171, March 1994.

Although this is a completely revised version of that preprint, the proofs have not

been changed in any essential way. However, a few related preprints and papers have

appeared since this paper was �rst written; they include [12, 13, 33].

I would like to thank Joachim Cuntz for sending me the preprints that have

lead to this work and for several useful discussions. Also, I would like to thank the
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266 Victor Nistor

Mathematical Institute of Heidelberg University for hospitality while parts of this

manuscript were prepared, and to the referee for many useful comments.

1. Index theorems and Algebraic K{Theory

We begin this section by reviewing the de�nitions of the groups K

alg

0

and K

alg

1

and of

the index morphism Ind : K

alg

1

(A=I)! K

alg

0

(I) associated to a two-sided ideal I � A.

There are easy formulas that relate these groups to Hochschild homology, and we

review those as well. Then we prove an intermediate result that generalizes a formula

of Fedosov in our Hochschild homology setting, which will serve both as a lemma in

the proof of Theorem 1.5, and as a motivation for some of the formalisms developed in

this paper. The main result of this section is the compatibility between the connecting

(or index) morphism in algebraic K{Theory and the boundary morphism in cyclic

cohomology (Theorem 1.5). An equivalent form of Theorem 1.5 states that the Chern{

Connes character is a natural transformation from the six term exact sequence in

algebraic K{Theory to periodic cyclic homology. These results extend the results in

[30] in view of Theorem 2.10.

All algebras considered in this paper are complex algebras.

1.1. Pairings with traces and a Fedosov type formula. It will be conve-

nient to de�ne the group K

alg

0

(A) in terms of idempotents e 2 M

1

(A), that is, in

terms of matrices e satisfying e

2

= e. Two idempotents, e and f , are called equivalent

(in writing, e � f) if there exist x; y such that e = xy and f = yx. The direct sum of

two idempotents, e and f , is the matrix e�f (with e in the upper{left corner and f in

the lower{right corner). With the direct{sum operation, the set of equivalence classes

of idempotents in M

1

(A) becomes a monoid denoted P(A). The group K

alg

0

(A) is

de�ned to be the Grothendieck group associated to the monoid P(A). If e 2M

1

(A)

is an idempotent, then the class of e in the group K

alg

0

(A) will be denoted [e].

Let � : A ! C be a trace. We extend � to a trace M

1

(A) ! C , still denoted

� , by the formula �([a

ij

]) =

P

i

�(a

ii

). If e � f , then e = xy and f = yx for some

x and y, and then the tracial property of � implies that �(e) = �(f). Moreover

�(e � f) = �(e) + �(f), and hence � de�nes an additive map P(A) ! C . From the

universal property of the Grothendieck group associated to a monoid, it follows that

we obtain a well de�ned group morphism (or pairing with �)

K

alg

0

(A) 3 [e] �! �

�

([e]) = �(e) 2 C :(2)

The pairing (2) generalizes to not necessarily unital algebras I and traces � : I !

C as follows. First, we extend � to I

+

= I + C 1, the algebra with adjoint unit, to be

zero on 1. Then, we obtain, as above, a morphism �

�

: K

alg

0

(I

+

)! C . The morphism

�

�

: K

alg

0

(I) ! C is obtained by restricting from K

alg

0

(I

+

) to K

alg

0

(I), de�ned to be

the kernel of K

alg

0

(I

+

)! K

alg

0

(C ).

The de�nition of K

alg

1

(A) is shorter:

K

alg

1

(A) = lim

!

GL

n

(A)=[GL

n

(A); GL

n

(A)]:

In words, K

alg

1

(A) is the abelianization of the group of invertible matrices of the form

1 + a, where a 2 M

1

(A). The pairing with traces is replaced by a pairing with

Hochschild 1{cocycles as follows.
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Higher Index Theorems 267

If � : A
A is a Hochschild 1-cocycle, then the the functional � de�nes a morphism

�

�

: K

alg

1

(A) ! C , by �rst extending � to matrices over A, and then by pairing it

with the Hochschild 1{cycle u
 u

�1

. Explicitly, if u = [a

ij

], with inverse u

�1

= [b

ij

],

then the morphism �

�

is

K

alg

1

(A) 3 [u] �! �

�

([u]) =

X

i;j

�(a

ij

; b

ji

) 2 C :(3)

The morphism �

�

depends only on the class of � in the Hochschild homology group

HH

1

(A) of A.

If 0 ! I ! A ! A=I ! 0 is an exact sequence of algebras, that is, if I is a

two{sided ideal of A, then there exists an exact sequence [26],

K

alg

1

(I)! K

alg

1

(A)! K

alg

1

(A=I)

Ind

���! K

alg

0

(I)! K

alg

0

(A)! K

alg

0

(A=I);

of Abelian groups, called the algebraic K{theory exact sequence. The connecting (or

index) morphism

Ind : K

alg

1

(A=I)! K

alg

0

(I)

will play an important role in this paper and is de�ned as follows. Let u be an

invertible element in some matrix algebra ofA=I . By replacingA=I withM

n

(A=I), for

some large n, we may assume that u 2 A=I . Choose an invertible element v 2M

2

(A)

that projects to u� u

�1

in M

2

(A=I), and let e

0

= 1 � 0 and e

1

= ve

0

v

�1

. Because

e

1

2 M

2

(I

+

), the idempotent e

1

de�nes a class in K

alg

0

(I

+

). Since e

1

� e

0

2 M

2

(I),

the di�erence [e

1

]� [e

0

] is actually in K

alg

0

(I) and depends only on the class [u] of u

in K

alg

1

(A=I). Finally, we de�ne

Ind([u]) = [e

1

]� [e

0

]:(4)

To obtain an explicit formula for e

1

, choose liftings a; b 2 A of u and u

�1

and let

v, the lifting, to be the matrix

v =

�

2a� aba ab� 1

1� ba b

�

;

as in [26], page 22. Then a short computation gives

e

1

=

�

2ab� (ab)

2

a(2� ba)(1� ba)

(1� ba)b (1� ba)

2

�

:(5)

Continuing the study of the exact sequence 0 ! I ! A ! A=I ! 0, choose an

arbitrary linear lifting, l : A=I

2

! A. If � is a trace on I , we let

�

�

(a; b) = �([l(a); l(b)]� l([a; b])):(6)

Because [a; xy] = [ax; y]+[ya; x], we have �([A; I

2

]) = 0, and hence �

�

is a Hochschild

1{cocycle on A=I

2

(i.e., �

�

(ab; c)��

�

(a; bc)+�

�

(ca; b)). The class of �

�

in HH

1

(A=I

2

),

denoted @� , turns out to be independent of the lifting l. If A is a locally convex

algebra, then we assume that we can choose the lifting l to be continuous. If

�([A; I ]) = 0, then it is enough to consider a lifting of A! A=I .

The morphisms (@�)

�

: K

alg

1

(A=I

2

) ! C and �

�

: K

alg

0

(I

2

) ! C are related

through the following lemma.
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268 Victor Nistor

Lemma. 1.1. Let � be a trace on a two-sided ideal I � A. If

Ind : K

alg

1

(A=I

2

)! K

alg

0

(I

2

)

is the connecting morphism of the algebraic K{Theory exact sequence associated to

the two-sided ideal I

2

of A, then

�

�

� Ind = (@�)

�

:

If �([A; I ]) = 0, then we may replace I

2

by I.

Proof. We check that �

�

� Ind([u]) = (@�)

�

([u]), for each invertible u 2 M

n

(A=I

2

).

By replacing A=I

2

with M

n

(A=I

2

), we may assume that n = 1.

Let l : A=I

2

! A be the linear lifting used to de�ne the 1{cocycle �

�

representing

@� , equation (6), and choose a = l(u) and b = l(u

�1

) in the formula for e

1

, equation

(5). Then, the left hand side of our formula becomes

�

�

�

Ind([u])

�

= �

�

(1� ba)

2

�

� �

�

(1� ab)

2

�

= 2�([a; b])� �([a; bab]):(7)

Because (1� ba)b is in I

2

, we have �([a; bab]) = �([a; b]), and hence

�

�

(Ind([u])) = �

�

([e

1

]� [e

0

]) = �(e

1

� e

0

) = �([a; b]):

Since the right hand side of our formula is

(@�)

�

([u]) = (@�)(u; u

�1

) = �([l(u); l(u

�1

)]� l([u; u

�1

])) = �([a; b]);

the proof is complete.

Lemma 1.1 generalizes a formula of Fedosov in the following situation. Let B(H)

be the algebra of bounded operators on a �xed separable Hilbert spaceH and C

p

(H) �

B(H) be the (non-closed) ideal of p{summable operators [36] on H:

C

p

(H) = fA 2 B(H); T r(A

�

A)

p=2

<1g:(8)

(We will sometimes omit H and write simply C

p

instead of C

p

(H).) Suppose now that

the algebra A consists of bounded operators, that I � C

1

, and that a is an element

of A whose projection u in A=I is invertible. Then a is a Fredholm operator, and, for

a suitable choice of a lifting b of u

�1

, the operators 1 � ba and 1 � ab become the

orthogonal projection onto the kernel of a and, respectively, the kernel of a

�

. Finally,

if � = Tr, this shows that

Tr

�

�

Ind([u])

�

= dimker(a)� dimker(a

�

)

and hence that Tr

�

� Ind recovers the Fredholm index of a. (The Fredholm index

of a, denoted ind(a), is by de�nition the right-hand side of the above formula.) By

equation (7), we see that we also recover a form of Fedosov's formula:

ind(a) = Tr

�

(1� ba)

k

�

� Tr

�

(1� ab)

k

�

if b is an inverse of a modulo C

p

(H) and k � p.

The connecting (or boundary) morphism in the algebraic K{Theory exact se-

quence is usually denoted by `@'. However, in the present paper, this notation be-

comes unsuitable because the notation `@' is reserved for the boundary morphism in

the periodic cyclic cohomology exact sequence. Besides, the notation `Ind' is supposed

to suggest the name `index morphism' for the connecting morphism in the algebraic

K{Theory exact sequence, a name justi�ed by the relation that exists between Ind

and the indices of Fredholm operators, as explained above.
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Higher Index Theorems 269

1.2. \Higher traces" and excision in cyclic cohomology. The example of

A = C

1

(M), for M a compact smooth manifold, shows that, in general, few mor-

phisms K

alg

0

(A)! C are given by pairings with traces. This situation is corrected by

considering `higher-traces,' [10].

Let A be a unital algebra and

b

0

(a

0


 : : :
 a

n

) =

n�1

X

i=0

(�1)

i

a

0


 : : :
 a

i

a

i+1


 : : :
 a

n

;

b(a

0


 : : :
 a

n

) = b

0

(a

0


 : : :
 a

n

) + (�1)

n

a

n

a

0


 : : :
 a

n�1

;

(9)

for a

i

2 A. The Hochschild homology groups of A, denoted HH

�

(A), are the homology

groups of the complex (A 
 (A=C 1)


n

; b). The cyclic homology groups [10, 24, 37]

of a unital algebra A; denoted HC

n

(A); are the homology groups of the complex

(C(A); b+B), where

C

n

(A) =

M

k�0

A
 (A=C 1)


n�2k

:(10)

b is the Hochschild homology boundary map, equation (9), and B is de�ned by

B(a

0


 : : :
 a

n

) = s

n

X

k=0

t

k

(a

0


 : : :
 a

n

):(11)

Here we have used the notation of [10], that s(a

0


 : : :
 a

n

) = 1
 a

0


 : : :
 a

n

and

t(a

0


 : : :
 a

n

) = (�1)

n

a

n


 a

0


 : : :
 a

n�1

:

More generally, Hochschild and cyclic homology groups can be de�ned for \mixed

complexes," [21]. A mixed complex (X ; b; B) is a graded vector space (X

n

)

n�0

, en-

dowed with two di�erentials b and B, b : X

n

! X

n�1

and B : X

n

! X

n+1

, satisfying

the compatibility relation b

2

= B

2

= bB+Bb = 0. The cyclic complex, denoted C(X ),

associated to a mixed complex (X ; b; B) is the complex

C

n

(X ) = X

n

�X

n�2

�X

n�4

: : : =

M

k�0

X

n�2k

;

with di�erential b+B. The cyclic homology groups of the mixed complex X are the

homology groups of the cyclic complex of X :

HC

n

(X ) = H

n

(C(X ); b+B):

Cyclic cohomology is de�ned to be the homology of the complex

(C(X )

0

= Hom(C(X ); C ); (b +B)

0

);

dual to C(X ). From the form of the cyclic complex it is clear that there exists a

morphism S : C

n

(X )! C

n�2

(X ). We let

C

n

(X ) = lim

 

C

n+2k

(X )

as k ! 1, the inverse system being with respect to the periodicity operator S.

Then the periodic cyclic homology of X (respectively, the periodic cyclic cohomology

of X ), denoted HP

�

(X ) (respectively, HP

�

(X )) is the homology (respectively, the

cohomology) of C

n

(X ) (respectively, of the complex lim

!

C

n+2k

(X )

0

).

If A is a unital algebra, we denote by X (A) the mixed complex obtained by

letting X

n

(A) = A
 (A=C 1)


n

with di�erentials b and B given by (9) and (11). The
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270 Victor Nistor

various homologies of X (A) will not include X as part of notation. For example, the

periodic cyclic homology of X is denoted HP

�

(A).

For a topological algebra A we may also consider continuous versions of the

above homologies by replacing the ordinary tensor product with the projective tensor

product. We shall be especially interested in the continuous cyclic cohomology of A,

denoted HP

�

cont

(A). An important example is A = C

1

(M), for a compact smooth

manifold M . Then the Hochschild-Kostant-Rosenberg map

� : A

^


n+1

3 a

0


 a

1


 : : :
 a

n

�! (n!)

�1

a

0

da

1

: : : da

n

2 


n

(M)(12)

to smooth forms gives an isomorphism

HP

cont

i

(C

1

(M)) '

M

k

H

i+2k

DR

(M)

of continuous periodic cyclic homology with the de Rham cohomology of M [10, 24]

made Z

2

{periodic. The normalization factor (n!)

�1

is convenient because it trans-

forms B into the de Rham di�erential d

DR

. It is also the right normalization as far

as Chern characters are involved, and it is also compatible with products, Theorem

3.5. From now on, we shall use the de Rham's Theorem

H

i

DR

(M) ' H

i

(M)

to identify de Rham cohomology and singular cohomology with complex coe�cients

of the compact manifold M .

Sometimes we will use a version of continuous periodic cyclic cohomology for

algebras A that have a locally convex space structure, but for which the multiplication

is only partially continuous. In that case, however, the tensor products A


n+1

come

with natural topologies, for which the di�erentials b and B are continuous. This is

the case for some of the groupoid algebras considered in the last section. The periodic

cyclic cohomology is then de�ned using continuous multi-linear cochains.

One of the original descriptions of cyclic cohomology was in terms of \higher

traces" [10]. A higher trace{or cyclic cocycle{is a continuous multilinear map � :

A


n+1

! C satisfying � � b = 0 and �(a

1

; : : : ; a

n

; a

0

) = (�1)

n

�(a

0

; : : : ; a

n

). Thus

cyclic cocycles are, in particular, Hochschild cocycles. The last property, the cyclic

invariance, justi�es the name \cyclic cocycles." The other name, \higher traces" is

justi�ed since cyclic cocycles on A de�ne traces on the universal di�erential graded

algebra of A.

If I � A is a two{sided ideal, we denote by C(A; I) the kernel of C(A)! C(A=I).

For possibly non-unital algebras I , we de�ne the cyclic homology of I using the

complex C(I

+

; I). The cyclic cohomology and the periodic versions of these groups are

de�ned analogously, using C(I

+

; I). For topological algebras we replace the algebraic

tensor product by the projective tensor product.

An equivalent form of the excision theorem in periodic cyclic cohomology is the

following result.

Theorem. 1.2 (Cuntz{Quillen). The inclusion C(I

+

; I) ,! C(A; I) induces an iso-

morphism, HP

�

(A; I) ' HP

�

(I), of periodic cyclic cohomology groups.
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This theorem is implicit in [16], and follows directly from the proof there of the

Excision Theorem by a sequence of commutative diagrams, using the Five Lemma

each time.

2

This alternative de�nition of excision sometimes leads to explicit formulae for @.

We begin by observing that the short exact sequence of complexes 0 ! C(A; I) !

C(A)! C(A=I)! 0 de�nes a long exact sequence

:: HP

n

(A; I) HP

n

(A) HP

n

(A=I)

@

 � HP

n�1

(A; I) HP

n�1

(A) ::

in cyclic cohomology that maps naturally to the long exact sequence in periodic cyclic

cohomology.

Most important for us, the boundary map @ : HP

n

(A; I) ! HP

n+1

(A=I) is

determined by a standard algebraic construction. We now want to prove that this

boundary morphism recovers a previous construction, equation (6), in the particular

case n = 0. As we have already observed, a trace � : I ! C satis�es �([A; I

2

]) = 0,

and hence de�nes by restriction an element of HC

0

(A; I

2

). The traces are the cycles of

the group HC

0

(I), and thus we obtain a linear map HC

0

(I)! HC

0

(A; I

2

). From the

de�nition of @ : HP

0

(A; I)! HP

1

(A=I), it follows that @[� ] is the class of the cocycle

�(a; b) = �([l(a); l(b)]� l([a; b])), which is cyclically invariant, by construction. (Since

our previous notation for the class of � was @� , we have thus obtained the paradoxical

relation @[� ] = @� ; we hope this will not cause any confusions.)

Below we shall also use the natural map (transformation)

HC

n

! HP

n

= lim

k!1

HC

n+2k

:

Lemma. 1.3. The diagram

HC

0

(I)

��

//

HC

0

(A; I

2

)

��

//

@

HC

1

(A=I

2

)

��

HC

1

(A=I)

��

oo

HP

0

(I)

//

�

HP

0

(A; I

2

)

//

@

HP

1

(A=I

2

) HP

1

(A=I)

oo

�

commutes. Consequently, if � 2 HC

0

(I) is a trace on I and [� ] 2 HP

0

(I) is its class

in periodic cyclic homology, then @[� ] = [@� ] 2 HP

1

(A=I), where @� 2 HC

1

(A=I

2

) is

given by the class of the cocycle � de�ned in equation (6) (see also above).

Proof. The commutativity of the diagram follows from de�nitions. If we start with a

trace � 2 HC

0

(I) and follow counterclockwise through the diagram from the upper{

left corner to the lower{right corner we obtain @[� ]; if we follow clockwise, we obtain

the description for @[� ] indicated in the statement.

1.3. An abstract \higher index theorem". We now generalize Lemma 1.1 to

periodic cyclic cohomology. Recall that the pairings (2) and (3) have been generalized

to pairings

K

alg

i

(A) 
HC

2n+i

(A) �! C ; i = 0; 1:

[10]. Thus, if � be a higher trace representing a class [�] 2 HC

2n+i

(A), then, using the

above pairing, � de�nes morphisms �

�

: K

alg

i

(A) ! C , where i = 0; 1. The explicit

formulae for these morphisms are �

�

([e]) = (�1)

n

(2n)!

n!

�(e; e; : : : ; e), if i = 0 and e

2

I am indebted to Joachim Cuntz for pointing out this fact to me.
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is an idempotent, and �

�

([u]) = (�1)

n

n!�

�

(u; u

�1

; u; : : : ; u

�1

), if i = 1 and u is an

invertible element. The constants in these pairings are meaningful and are chosen so

that these pairings are compatible with the periodicity operator.

Consider the standard orthonormal basis (e

n

)

n�0

of the space l

2

(N) of square

summable sequences of complex numbers; the shift operator S is de�ned by Se

n

=

e

n+1

. The adjoint S

�

of S then acts by S

�

e

0

= 0 and S

�

e

n+1

= e

n

, for n � 0. The

operators S and S

�

are related by S

�

S = 1 and SS

�

= 1�p, where p is the orthogonal

projection onto the vector space generated by e

0

.

Let T be the algebra generated by S and S

�

and C [w;w

�1

] be the algebra of

Laurent series in the variable w, C [w;w

�1

] = f

P

N

n=�N

a

k

w

k

; a

k

2 C g ' C [Z]. Then

there exists an exact sequence

0!M

1

(C ) ! T ! C [w;w

�1

]! 0;

called the Toeplitz extension, which sends S to w and S

�

to w

�1

.

Let C h a; b i be the free non-commutative unital algebra generated by the symbols

a and b and J = ker(C h a; b i ! C [w;w

�1

]), the kernel of the unital morphism that

sends a! w and b! w

�1

. Then there exists a morphism  

0

: C h a; b i ! T , uniquely

determined by  

0

(a) = S and  

0

(b) = S

�

, which de�nes, by restriction, a morphism

 : J !M

1

(C ), and hence a commutative diagram

0

//

J

��

 

//

C h a; b i

��

 

0

//

C [w;w

�1

]

��

//

0

0

//

M

1

(C )

//

T

//

C [w;w

�1

]

//

0

Lemma. 1.4. Using the above notations, we have that HC

�

(J) is singly generated by

the trace � = Tr �  .

Proof. We know that HP

i

(C [w; w

�1

]) ' C , see [24]. Then Lemma 1.1, Lemma

1.3, and the exact sequence in periodic cyclic cohomology prove the vanishing of the

reduced periodic cyclic cohomology groups:

g

HC

�

(T ) = ker(HP

�

(T )! HP

�

(C )):

The algebra C h a; b i is the tensor algebra of the vector space C a � C b, and hence

the groups

g

HC

�

(T (V )) also vanish [24]. It follows that the morphism  

0

induces

(trivially) an isomorphism in cyclic cohomology. The comparison morphism between

the Cuntz{Quillen exact sequences associated to the two extensions shows, using

\the Five Lemma," that the induced morphisms  

�

: HP

�

(M

1

(C )) ! HP

�

(J) is

also an isomorphism. This proves the result since the canonical trace Tr generates

HP

�

(M

1

(C )).

We are now ready to state the main result of this section, the compatibility of the

boundary map in the periodic cyclic cohomology exact sequence with the index (i.e.,

connecting) map in the algebraic K{Theory exact sequence. The following theorem

generalizes Theorem 5.4 from [30].

Theorem. 1.5. Let 0 ! I ! A ! A=I ! 0 be an exact sequence of complex

algebras, and let Ind : K

alg

1

(A=I) ! K

alg

0

(I) and @ : HP

0

(I) ! HP

1

(A=I) be the
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connecting morphisms in algebraic K{Theory and, respectively, in periodic cyclic co-

homology. Then, for any ' 2 HP

0

(I) and [u] 2 K

alg

1

(A=I), we have

'

�

(Ind[u]) = (@')

�

[u] :(13)

Proof. We begin by observing that if the class of ' can be represented by a trace

(that is, if ' is the equivalence class of a trace in the group HP

0

(I)) then the boundary

map in periodic cyclic cohomology is computed using the recipe we have indicated,

Lemma 1.3, and hence the result follows from Lemma 1.1. In particular, the theorem

is true for the exact sequence

0 �! J ! C h a; b i ! C [w;w

�1

] �! 0;

because all classes in HP

0

(J) are de�ned by traces, as shown in Lemma 1.4. We will

now show that this particular case is enough to prove the general case \by universal-

ity."

Let u be an invertible element inM

n

(A=I). After replacing the algebras involved

by matrix algebras, if necessary, we may assume that n = 1, and hence that u is

an invertible element in A=I . This invertible element then gives rise to a morphism

� : C [w;w

�1

] ! A=I that sends w to u. A choice of liftings a

0

; b

0

2 A of u and

u

�1

de�nes a morphism  

0

: C h a; b i ! A, uniquely determined by  

0

(a) = a

0

and

 

0

(b) = b

0

, which restricts to a morphism  : J ! I . In this way we obtain a

commutative diagram

0

//

J

��

 

//

C h a; b i

��

 

0

//

C [w; w

�1

]

��

�

//

0

0

//

I

//

A

//

A=I

//

0

of algebras and morphisms.

We claim that the naturality of the index morphism in algebraic K{Theory and

the naturality of the boundary map in periodic cyclic cohomology, when applied to

the above exact sequence, prove the theorem. Indeed, we have

 

�

� Ind = Ind ��

�

: K

alg

1

(C [w;w

�1

])! K

alg

0

(I); and

@ �  

�

= �

�

� @ : HP

�

(I)! HP

�+1

(C [w;w

�1

]):

As observed in the beginning of the proof, the theorem is true for the cocycle  

�

(')

on J , and hence ( 

�

('))

�

(Ind [w]) = (@ � 

�

('))

�

[w]. Finally, from de�nition, we have

that �

�

[w] = [u]. Combining these relations we obtain

'

�

(Ind [u]) = '

�

(Ind ��

�

[w]) = '

�

( 

�

� Ind[w]) = ( 

�

('))

�

(Ind [w]) =

= (@ �  

�

('))

�

[w] = (�

�

� @('))

�

[w] = (@')

�

(�

�

[w]) = (@')

�

[u]:

The proof is complete.

The theorem we have just proved can be extended to topological algebras and

topological K{Theory. If the topological algebras considered satisfy Bott periodicity,

then an analogous compatibility with the other connecting morphism can be proved

and one gets a natural transformation from the six-term exact sequence in topological

K{Theory to the six-term exact sequence in periodic cyclic homology. However, a

factor of 2�{ has to be taken into account because the Chern-Connes character is not
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directly compatible with periodicity [30], but introduces a factor of 2�{. See [12] for

details.

So far all our results have been formulated in terms of cyclic cohomology, rather

than cyclic homology. This is justi�ed by the application in Section 3 that will use this

form of the results. This is not possible, however, for the following theorem, which

states that the Chern character in periodic cyclic homology (i.e., the Chern{Connes

character) is a natural transformation from the six term exact sequence in (lower)

algebraic K{Theory to the exact sequence in cyclic homology.

Theorem. 1.6. The diagram

K

alg

1

(I)

��

//

K

alg

1

(A)

��

//

K

alg

1

(A=I)

��

//

Ind

K

alg

0

(I)

��

//

K

alg

0

(A)

��

//

K

alg

0

(A=I)

��

HP

1

(I)

//

HP

1

(A)

//

HP

1

(A=I)

//

@

HP

0

(I)

//

HP

0

(A)

//

HP

0

(A=I);

in which the vertical arrows are induced by the Chern characters ch : K

alg

i

! HP

i

,

for i = 0; 1, commutes.

Proof. Only the relation ch � Ind = @ � ch needs to be proved, and this is dual to

Theorem 1.5.

2. Products and the boundary map in periodic cyclic cohomology

Cyclic vector spaces are a generalization of simplicial vector spaces, with which they

share many features, most notably, for us, a similar behavior with respect to products.

2.1. Cyclic vector spaces. We begin this section with a review of a few needed

facts about the cyclic category � from [9] and [30]. We will be especially interested

in the �{product in bivariant cyclic cohomology. More results can be found in [23].

Definition. 2.1. The cyclic category, denoted �, is the category whose objects are

�

n

= f0; 1; : : : ; ng, where n = 0; 1; : : : and whose morphisms Hom

�

(�

n

;�

m

) are

the homotopy classes of increasing, degree one, continuous functions ' : S

1

! S

1

satisfying '(Z

n+1

) � Z

m+1

.

A cyclic vector space is a contravariant functor from � to the category of complex

vector spaces [9]. Explicitly, a cyclic vector space X is a graded vector space, X =

(X

n

)

n�0

, with structural morphisms d

i

n

: X

n

! X

n�1

, s

i

n

: X

n

! X

n+1

, for 0 �

i � n, and t

n+1

: X

n

! X

n

such that (X

n

; d

i

n

; s

i

n

) is a simplicial vector space

([25], Chapter VIII,x5) and t

n+1

de�nes an action of the cyclic group Z

n+1

satisfying

d

0

n

t

n+1

= d

n

n

and s

0

n

t

n+1

= t

2

n+2

s

n

n

, d

i

n

t

n+1

= t

n

d

i�1

n

, and s

i

n

t

n+1

= t

n+2

s

i�1

n

for

1 � i � n. Cyclic vector spaces form a category.

The cyclic vector space associated to a unital locally convex complex algebra A

is A

\

= (A


n+1

)

n�0

, with the structural morphisms

s

i

n

(a

0


 : : :
a

n

) = a

0


 : : :
a

i


1
a

i+1


 : : :
a

n

;

d

i

n

(a

0


 : : :
a

n

) = a

0


 : : :
a

i

a

i+1


 : : :
a

n

; for 0 � i < n; and

d

n

n

(a

0


 : : :
a

n

) = a

n

a

0


 : : :
a

i

a

i+1


 : : :
a

n�1

;

t

n+1

(a

0


 : : :
a

n

) = a

n


 a

0


 a

1


 : : :
a

n�1

:
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If X = (X

n

)

n�0

and Y = (Y

n

)

n�0

are cyclic vector spaces, then we can de�ne

on (X

n


 Y

n

)

n�0

the structure of a cyclic space with structural morphisms given by

the diagonal action of the corresponding structural morphisms, s

i

n

; d

i

n

, and t

n+1

, of

X and Y . The resulting cyclic vector space will be denoted X � Y and called the

external product of X and Y . In particular, we obtain that (A
B)

\

= A

\

�B

\

for all

unital algebras A and B, and that X � C

\

' X for all cyclic vector spaces X . There

is an obvious variant of these constructions for locally convex algebras, obtained by

using the complete projective tensor product.

The cyclic cohomology groups of an algebra A can be recovered as Ext{groups.

For us, the most convenient de�nition of Ext is using exact sequences (or resolutions).

Consider the set E = (M

k

)

n

k=0

of resolutions of length n + 1 of X by cyclic vector

spaces, such that M

n

= Y . Thus we consider exact sequences

E : 0! Y =M

n

!M

n�1

! � � � !M

0

! X ! 0;

of cyclic vector spaces. For two such resolutions, E and E

0

, we write E ' E

0

whenever

there exists a morphism of complexes E ! E

0

that induces the identity on X and

Y . Then Ext

n

�

(X;Y ) is, by de�nition, the set of equivalence classes of resolutions

E = (M

k

)

n

k=0

with respect to the equivalence relation generated by '. The set

Ext

n

�

(X;Y ) has a natural group structure. The equivalence class in Ext

n

�

(X;Y ) of

a resolution E = (M

k

)

n

k=0

is denoted [E]. This de�nition of Ext coincides with the

usual one{using resolutions by projective modules{because cyclic vector spaces form

an Abelian category with enough projectives.

Given a cyclic vector space X = (X

n

)

n�0

de�ne b; b

0

: X

n

! X

n�1

by

b

0

=

P

n�1

j=0

(�1)

j

d

j

; b = b

0

+(�1)

n

d

n

. Let s

�1

= s

n

n

�t

n+1

be the `extra degeneracy' of

X , which satis�es s

�1

b

0

+b

0

s

�1

= 1. Also let � = 1�(�1)

n

t

n+1

, N =

P

n

j=0

(�1)

nj

t

j

n+1

and B = �s

�1

N . Then (X; b;B) is a mixed complex and hence HC

�

(X), the cyclic ho-

mology of X , is the homology of (�

k�0

X

n�2k

; b+B), by de�nition. Cyclic cohomology

is obtained by dualization, as before.

The Ext{groups recover the cyclic cohomology of an algebra A via a natural

isomorphism,

HC

n

(A) ' Ext

n

�

(A

\

; C

\

);(14)

[9]. This isomorphism allows us to use the theory of derived functors to study cyclic

cohomology, especially products.

The Yoneda product,

Ext

n

�

(X;Y )
 Ext

m

�

(Y; Z) 3 � 
 � ! � � � 2 Ext

n+m

�

(X;Z);

is de�ned by splicing [18]. If E = (M

k

)

n

k=0

is a resolution of X , and E

0

= (M

0

k

)

m

k=0

a

resolution of Y , such that M

n

= Y and M

0

m

= Z, then E

0

�E is represented by

0! Z =M

0

m

!M

0

m�1

! � � � !

M

0

0

//

��

M

n�1

! � � � !M

0

! X ! 0

Y

;;

x

x

x

x

x

x

x

x

x
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The resulting product generalizes the composition of functions. Using the same no-

tation, the external product E �E

0

is the resolution

E �E

0

=

0

@

X

k+j=l

M

0

k

�M

j

1

A

n+m

l=0

:

Passing to equivalence classes, we obtain a product

Ext

m

�

(X;Y )
 Ext

n

�

(X

1

; Y

1

)

�

�! Ext

m+n

�

(X �X

1

; Y � Y

1

):

If f : X ! X

0

is a morphism of cyclic vector spaces then we shall sometimes denote

E

0

� f = f

�

(E

0

), for E

0

2 Ext

n

�

(X

0

; C

\

).

The Yoneda product, \�," and the external product, \�," are both associative

and are related by the following identities, [30], Lemma 1.2.

Lemma. 2.2. Let x 2 Ext

n

�

(X;Y ), y 2 Ext

m

�

(X

1

; Y

1

), and � be the natural transfor-

mation Ext

m+n

�

(X

1

�X;Y

1

� Y ) ! Ext

m+n

�

(X �X

1

; Y � Y

1

) that interchanges the

factors. Then

x� y = (id

Y

� y) � (x� id

X

1

) = (�1)

mn

(x� id

Y

1

) � (id

X

� y);

id

X

� (y � z) = (id

X

� y) � (id

X

� z);

x� y = (�1)

mn

�(y � x); and x� id

C

\ = x = id

C

\ � x:

We now turn to the de�nition of the periodicity operator. A choice of a generator

� of the group Ext

2

�

(C

\

; C

\

), de�nes a periodicity operator

Ext

n

�

(X;Y ) 3 x! Sx= x� � 2 Ext

n+2

�

(X;Y ):(15)

In the following we shall choose the standard generator � that is de�ned `over Z',

and then the above de�nition extends the periodicity operator in cyclic cohomology.

This and other properties of the periodicity operator are summarized in the following

Corollary ([30], Corollary 1.4)

Corollary. 2.3. a) Let x 2 Ext

n

�

(X;Y ) and y 2 Ext

m

�

(X

1

; Y

1

). Then (Sx)� y =

S(x� y) = x� (Sy).

b) If x 2 Ext

n

�

(C

\

; X), then Sx= � � x.

c) If y 2 Ext

m

�

(Y; C

\

), then Sy= y � �.

d) For any extension x, we have Sx= � � x.

Using the periodicity operator, we extend the de�nition of periodic cyclic coho-

mology groups from algebras to cyclic vector spaces by

HP

i

(X) = lim

!

Ext

i+2n

�

(X; C

\

);(16)

the inductive limit being with respect to S; clearly, HP

i

(A

\

) = HP

i

(A). Then Corol-

lary 2.3 a) shows that the external product � is compatible with the periodicity

morphism, and hence de�nes an external product,

HP

i

(A) �HP

j

(B)




�! HP

i+j

(A
B);(17)

on periodic cyclic cohomology.
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2.2. Extensions of algebras and products. Cyclic vector spaces will be used

to study exact sequences of algebras. Let I � A be a two{sided ideal of a complex

unital algebra A (recall that in this paper all algebras are complex algebras.) Denote

by (A; I)

\

the kernel of the map A

\

! (A=I)

\

, and by [A; I ] 2 Ext

1

�

((A=I)

\

; (A; I)

\

)

the (equivalence class of the) exact sequence

0! (A; I)

\

! A

\

! (A=I)

\

! 0(18)

of cyclic vector spaces.

Let HC

i

(A; I) = Ext

i

�

((A; I)

\

; C

\

), then the long exact sequence of Ext{groups

associated to the short exact sequence (18) reads

� � �! HC

i

(A=I)! HC

i

(A)! HC

i

(A; I)! HC

i+1

(A=I)! HC

i+1

(A)!� � �

By standard homological algebra, the boundary map of this long exact sequence is

given by the product

HC

i

(A; I) 3 � ! � � [A; I ] 2 HC

i+1

(A=I):

For an arbitrary algebra I , possibly without unit, we let I

[

= (I

+

; I)

\

: Then

the isomorphism (14) becomes HC

n

(I) ' Ext

n

�

(I

[

; C

\

), and the excision theorem in

periodic cyclic cohomology for cyclic vector spaces takes the following form.

Theorem. 2.4 (Cuntz{Quillen). The inclusion j

I;A

: I

[

,! (A; I)

\

of cyclic vector

spaces induces an isomorphism HP

�

(A; I) ' HP

�

(I).

It follows that every element � 2 HP

�

(I) is of the form � = �

0

� j

I;A

, and that

the boundary morphism @

A;I

: HP

�

(I)! HP

�+1

(A=I) satis�es

@

A;I

(�

0

� j

I;A

) = �

0

� [A; I ](19)

for all �

0

2 HC

i

(A; I) = Ext

i

�

((A; I)

\

; C

\

). Formula (19) then uniquely determines

@

I;A

.

We shall need in what follows a few properties of the isomorphisms j

I;A

. Let B

be an arbitrary unital algebra and I an arbitrary, possibly non{unital algebra. The

inclusion (I 
B)

+

! I

+


B, of unital algebras, de�nes a commutative diagram

0

//

(I 
B)

[

��

�

I;B

//

(I 
B)

+\

��

//

C

\

��

//

0

0

//

I

[

� B

\

//

(I

+


B)

\

//

B

\

//

0

with exact lines. The morphism �

I;B

, de�ned for possibly non-unital algebras I , will

replace the identi�cation A

\

�B

\

= (A
B)

\

, valid only for unital algebras A.

Using the notation of Theorem 2.4, we see that �

I;B

= j

I
B;I

+


B

, and hence,

by the same theorem, it follows that �

I;B

induces an isomorphism

HP

�

(I

[

� B

\

) 3 �! � � �

I;B

2 HP

�

(I 
B):

Using this isomorphism, we extend the external product


 : HP

�

(I)
HP

�

(B)! HP

�

(I 
B)

to a possibly non-unital algebra I by
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HP

i

(I)
HP

j

(B) = lim

!

Ext

i+2n

�

(I

[

; C

\

)
 lim

!

Ext

j+2m

�

(B

\

; C

\

)

�

�! lim

!

Ext

i+j+2l

�

(I

[

�B

\

; C

\

) = HP

�

(I

[

�B

\

) ' HP

i+j

(I 
B):

This extension of the external tensor product 
 to possibly non-unital algebras will be

used to study the tensor product by B of an exact sequence 0! I ! A! A=I ! 0

of algebras.

Tensoring by B is an exact functor, and hence we obtain an exact sequence

0! I 
B ! A
B ! (A=I)
B ! 0:(20)

Lemma. 2.5. Using the notation introduced above, we have the relation

[A
B; I 
B] = [A; I ]� id

B

2 Ext

1

�

((A=I 
B)

\

; (A
B; I 
B)

\

):

Proof. We need only observe that the relation A

\

�B

\

= (A�B)

\

and the exactness

of the functor X ! X �B

\

imply that (A; I)

\

�B

\

= (A
B; I 
B)

\

:

2.3. Properties of the boundary map. The following theorem is a key tool in

establishing further properties of the boundary map in periodic cyclic homology.

Theorem. 2.6. Let A and B be complex unital algebras and I � A be a two-sided

ideal. Then the boundary maps

@

I;A

: HP

�

(I)! HP

�+1

(A=I)

and

@

I
B;A
B

: HP

�

(I 
B)! HP

�+1

((A=I)
B)

satisfy

@

I
B;A
B

(� 
 �) = @

I;A

(�)
 �

for all � 2 HP

�

(I) and � 2 HP

�

(B).

Proof. The groups HP

k

(I) is the inductive limit of the groups Ext

k+2n

�

(I

[

; C

\

) so �

will be the image of an element in one of these Ext{groups. By abuse of notation, we

shall still denote that element by �, and thus we may assume that � 2 Ext

k

�

(I

[

; C

\

),

for some large k. Similarly, we may assume that � 2 Ext

j

�

(B

\

; C

\

). Moreover, by

Theorem 2.4, we may assume that � = �

0

� j

I;A

, for some �

0

2 Ext

i

�

((A; I)

\

; C

\

).

We then have

@

I;A

(�) 
 � = @(�

0

� j

I;A

)� � =

= (�

0

� [A; I ])� � by equation (19)

= (id

C

\ � �) � ((�

0

� [A; I ])� id

B

) by Lemma 2.2

= (id

C

\ � �) � (�

0

� id

B

) � ([A; I ]� id

B

) by Lemma 2.2

= (�

0

� �) � [A
B; I 
 B] by Lemma 2.2 and Corollary 2.3

= @

A
B;I
B

((�

0

� �) � j

I
B;A
B

) by equation (19).

By de�nition, the morphism j

I;A

introduced in Theorem 2.4 satis�es

j

I
B;A
B

= (j

I;A

� id

B

) � �

I;B

:(21)

Equation (21) then gives

@

I;A

(�)
 � = @

I
B;A
B

((� � �) � �

I;B

)

in Ext

i+j+1

�

((A=I
B)

\

; C

\

). This completes the proof in view of the de�nition of the

external product 
 in the non-unital case: � 
 � = (� � �) � �

I;B

.
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We now consider crossed products. Let A be a unital algebra and � a discrete

group acting on A by � � A 3 (
; a) ! �




(a) 2 A. Then the (algebraic) crossed

product Ao � consists of �nite linear combinations of elements of the form a
, with

the product rule (a
)(b


1

) = a�




(b)



1

. Let �(a
) = a


, which de�nes a morphism

� : A o � ! A o � 
 C [�]. Using �, we de�ne on HP

�

(A o �) a HP

�

(C [�]){module

structure [28] by

HP

�

(Ao �)
HP

�

(C [�])




�! HP

�

((A o �)
 C [�])

�

�

�! HP

�

(Ao �):

A �{invariant two-sided ideal I � A gives rise to a \crossed product exact se-

quence"

0! I o �! Ao �! (A=I)o �! 0

of algebras. The following theorem describes the behavior of the boundary map of this

exact sequence with respect to the HP

�

(C [�]){module structure on the corresponding

periodic cyclic cohomology groups.

Theorem. 2.7. Let � be a discrete group acting on the unital algebra A, and let I

be a �-invariant ideal. Then the boundary map

@

Io�;Ao�

: HP

�

(I o �)! HP

�+1

((A=I)o �)

is HP

�

(C [�])-linear.

Proof. The proof is based on the previous theorem, Theorem 2.6, and the naturality

of the boundary morphism in periodic cyclic cohomology.

From the commutative diagram

0

//

I o �

��

//

Ao �

��

//

(A=I)o �

��

//

0

0

//

(I o �)
 C [�]

//

(Ao �)
 C [�]

//

(A=I)o �
 C [�]

//

0;

we obtain that �

�

@ = @�

�

(we have omitted the subscripts). Then, for each x 2

HP

�

(C [�]) and � 2 HP

�

(I o �), we have �x = �

�

(� 
 x); and hence, using also

Theorem 2.6, we obtain

@(�x) = @(�

�

(� 
 x)) = �

�

(@(� 
 x)) = �

�

((@�)
 x) = (@�)x :

The proof is complete.

For the rest of this subsection it will be convenient to work with continuous

periodic cyclic homology. Recall that this means that all algebras have compatible

locally convex topologies, that we use complete projective tensor products, and that

the projections A ! A=I have continuous linear splittings, which implies that A '

A=I � I as locally convex vector spaces. Moreover, since the excision theorem

is known only for m{algebras [13], we shall also assume that our algebras are m{

algebras, that is, that their topology is generated by a family of sub-multiplicative

seminorms. Slightly weaker results hold for general topological algebras and discrete

periodic cyclic cohomology.

There is an analog of Theorem 2.7 for actions of compact Lie groups. If G is

a compact Lie group acting smoothly on a complete locally convex algebra A by
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� : G�A! A, then the smooth crossed product algebra is AoG = C

1

(G;A), with

the convolution product �,

f

0

� f

1

(g) =

Z

G

f

0

(h)�

h

(f

1

(h

�1

g))dh;

the integration being with respect to the normalized Haar measure on G. As before,

if I � A is a complemented G-invariant ideal of A, we get an exact sequence of smooth

crossed products

0! I oG! AoG! (A=I)oG! 0:(22)

Still assuming that G is compact, let R(G) be the representation ring of G. Then

the group HP

�

(A oG) has a natural R(G){module structure de�ned as follows (see

also [31]). The diagonal inclusion A o G ,! M

n

(A) o G induces an isomorphism in

cyclic cohomology, with inverse induced by the morphism

1

n

Tr :M

n

(AoG)

\

! (AoG)

\

of cyclic objects. Then, for any representation � : G ! M

n

(C ), we obtain a unit

preserving morphism

�

�

: AoG!M

n

(AoG);

de�ned by �

�

(f)(g) = f(g)�(g) 2 C

1

(G;M

n

(A)), for any f 2 C

1

(G;A). Finally, if

� 2 R(G), we de�ne the multiplication by � to be the morphism

(Tr � �

�

)

�

: HP

�

cont

(AoG)! HP

�

cont

(AoG):

Thus, �x = x � Tr � �

�

.

Theorem. 2.8. Let A be a locally convex m{algebra and I � A a complemented

G{invariant two-sided ideal. Then the boundary morphism associated to the exact

sequence (22),

@

IoG;AoG

: HP

�

cont

(I oG)! HP

�+1

cont

((A=I) oG);

is R(G)-linear.

Proof. First, we observe that the morphism Tr : M

n

(A)

\

! A

\

is functorial, and,

consequently, that it gives a commutative diagram

0

//

X

��

//

M

n

(AoG)

\

��

//

(M

n

(A=I)oG)

\

��

//

0

0

//

(AoG; I oG)

\

//

(AoG)

\

//

((A=I)oG)

\

//

0

where X = (M

n

(AoG);M

n

(I oG))

\

and whose vertical arrows are given by Tr.

Regarding this commutative diagram as a morphism of extensions, we obtain

that

Tr � [M

n

(A) oG;M

n

(I) oG] = [AoG; I oG] � Tr:(23)

Then, using a similar reasoning, we also obtain that

[M

n

(A) oG;M

n

(I)oG] � �

�

= �

�

� [AoG; I oG]:(24)

Now let � 2 HP

�

cont

(I o G), which we may assume, by Theorem 2.4, to be an

element of the form � = �

0

�j

IoG;AoG

, for some �

0

2 Ext

i

�

((AoG; IoG)

\

; C

\

). Using
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equations (23) and (24) and that the inclusion j = j

IoG;AoG

, by the naturality of �

�

,

is R(G)-linear, we �nally get

@(��) = @(�(�

0

� j)) = @((��

0

) � j) =

= @(�

0

� Tr � �

�

� j) = �

0

� Tr � �

�

� [AoG; I oG] =

= �

0

� [M

n

(AoG);M

n

(I oG)] � Tr � �

�

= @(�) � Tr � �

�

= �@(�)

The proof is now complete.

In the same spirit and in the same framework as in Theorem 2.8, we now con-

sider the action of Lie algebra cohomology on the periodic cyclic cohomology exact

sequence.

Assume that G is compact and connected, and denote by g its Lie algebra and

by H

�

(g) the Lie algebra homology of g. Since G is compact and connected, we

can identify H

�

(g) with the bi-invariant currents on G. Let � : G � G ! G be

the multiplication. Then one can alternatively de�ne the product on H

�

(g) as the

composition

H

�

(g)
H

�

(g) ' HP

�

cont

(C

1

(G))
HP

�

cont

(C

1

(G))

�

�! HP

�

cont

(C

1

(G�G))

�

�

�! HP

�

cont

(C

1

(G)) ' H

�

(g):

We now recall the de�nition of the product H

�

(g) 
 HP

�

cont

(A) ! HP

�

cont

(A):

Denote by ' : A ! C

1

(G;A) the morphism '(a)(g) = �

g

(a), where, this time,

C

1

(G;A) is endowed with the pointwise product. Then x � � 2 HP

�

cont

(C

1

(G)

b


A)

is a (continuous) cocycle on C

1

(G;A) ' C

1

(G)

b


A, and we de�ne x� = '

�

(x 
 �).

The associativity of the �-product shows that HP

�

cont

(A) becomes a H

�

(g){module

with respect to this action.

Theorem. 2.9. Suppose that a compact connected Lie group G acts smoothly on a

complete locally convex algebra A and that I is a closed invariant two-sided ideal of

A, complemented as a topological vector space. Then

@(x�) = x(@�);

for any x 2 H

�

(g) and � 2 HP

�

cont

(I) .

Proof. The proof is similar to the proof of Theorem 2.8, using the morphism of exact

sequences

0

//

(A; I)

\

��

//

A

\

��

//

(A=I)

\

��

//

0

0

//

X

//

C

1

(G;A)

\

//

C

1

(G;A=I)

\

//

0

where X = (C

1

(G;A); C

1

(G; I))

\

.

2.4. Relation to the bivariant Chern{Connes character. A di�erent type

of property of the boundary morphism in periodic cyclic cohomology is its compat-

ibility (e�ectively an identi�cation) with the bivariant Chern-Connes character [30].

Before we can state this result, need to recall a few constructions from [30].

Let A and B be unital locally convex algebras and assume that a continuous

linear map

� : A! B(H)

b


B
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is given, such that the cocycle `(a

0

; a

1

) = �(a

0

)�(a

1

) � �(a

0

a

1

) factors as a compo-

sition A

b


A ! C

p

(H)

b


B ! B(H)

b


B of continuous maps. (Recall that C

p

(H) is the

ideal of p{summable operators and that

b


 is the complete projective tensor product.)

Using the cocycle `, we de�ne on E

�

= A � C

p

(H)

^


B an associative product by the

formula

(a

1

; x

1

)(a

2

; x

2

) = (a

1

a

2

; �(a

1

)x

2

+ x

1

�(a

2

) + `(a

1

; a

2

)):

Then the algebra E

�

�ts into the exact sequence

0! C

p

(H)

b


B ! E

�

! A! 0:(25)

An exact sequence

[E] : 0! C

p

(H)

b


B ! E ! A! 0:(26)

that is isomorphic to an exact sequence of the form (25) will be called an admissible

exact sequence. If [E] is an admissible exact sequence and n � p � 1, then [30,

Theorem 3.5] associates to [E] an element

ch

2n+1

1

([E]) 2 Ext

2n+1

�;cont

(A

\

; B

\

);(27)

which for B = C recovers Connes' Chern character in K-homology [10]. (The sub-

script \cont" stresses that we are considering the version of the Yoneda Ext de�ned

for locally convex cyclic objects.)

Let Tr : C

1

(H) ! C be the ordinary trace, i.e., Tr(T ) =

P

n

(Te

n

; e

n

) for any

orthonormal basis (e

n

)

n�0

of the Hilbert space H. Using the trace Tr we de�ne

Tr

n

2 HC

2n

(C

p

(H)), for 2n � p� 1, to be the class of the cyclic cocycle

Tr

n

(a

0

; a

1

; : : : ; a

2n

) = (�1)

n

n!

(2n)!

Tr(a

0

a

1

: : : a

2n

):(28)

The normalization factor was chosen such that Tr

n

= S

n

Tr

1

= S

n

Tr on C

1

(H). We

have the following compatibility between the bivariant Chern-Connes character and

the Cuntz{Quillen boundary morphism.

Let HP

�

cont

3 � ! �

disc

2 HP

�

disc

:= HP

�

be the natural transformation that \for-

gets continuity" from continuous to ordinary (or discrete) periodic cyclic cohomology.

We include the subscript \disc" only when we need to stress that discrete homology

is used. By contrast, the subscript \cont" will always be included.

Theorem. 2.10. Let 0 ! C

p

(H)

b


B ! E ! A ! 0 be an admissible exact se-

quence and ch

2n+1

1

([E]) 2 Ext

2n+1

�;cont

(A

\

; B

\

) be its bivariant Chern{Connes character,

equation (27). If Tr

n

is as in equation (28) and n � p� 1, then

@(Tr

n


 �)

disc

= (� � ch

2n+1

1

([E]))

disc

2 HP

q+1

(A);

for each � 2 HP

q

cont

(B).

This theorem provides us{at least in principle{with formul� to compute the

boundary morphism in periodic cyclic cohomology, see [29] and [30], Proposition 2.3.

Before proceeding with the proof, we recall a construction implicit in [30]. The

algebra RA = �

j�0

A

^


j

is the tensor algebra of A, and rA is the kernel of the map

RA ! A

+

. Because A has a unit, we have a canonical isomorphism A

+

' C � A.

We do not consider any topology on RA, but in addition to (RA)

\

; the cyclic object

associated to RA, we consider a completion of it in a natural topology with respect
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to which all structural maps are continuous. The new, completed, cyclic object is

denoted (RA)

\

cont

and is obtained as follows. Let R

k

A = �

k

j=0

A

^


j

. Then

(RA)

\

cont;n

= lim

k!1

(R

k

A)

^


n+1

;

with the inductive limit topology.

Proof. We begin with a series of reductions that reduce the proof of the Theorem to

the proof of (29).

Since [E] is an admissible extension, there exists by de�nition a continuous linear

section s : A ! E of the projection � : E ! A (i.e., � � s = id). Then s de�nes a

commutative diagram

0

//

rA

��

'

//

RA

��

 

//

A

+

��

�

A

//

0

0

//

C

p

b


B

//

E

//

A

//

0 ;

where the right hand vertical map is the projection A

+

' C �A! A.

By increasing q if necessary, we may assume that the cocycle � 2 HP

q

cont

(B)

comes from a cocycle, also denoted �, in HC

q

cont

(B). Let

�

1

= (Tr

n


 �)

disc

2 HC

q+2n

disc

(C

p

b


B) := HC

q+2n

(C

p

b


B)

be as in the statement of the theorem.

We claim that it is enough to show that

@('

�

�

1

) � j

A

= (� � ch

2n+1

1

([E]))

disc

;(29)

where j

A

= A

\

! (A

+

)

\

is the inclusion.

Indeed, assuming (29) and using the above commutative diagram and the natu-

rality of the boundary morphism, we obtain

(� � ch

2n+1

1

([E]))

disc

= @('

�

�

1

) � j

A

= �

�

A

(@�

1

) � j

A

= @�

1

� �

A

� j

A

= @�

1

;

as stated in theorem, because �

A

� j

A

= id.

Let j

rA;RA

: (rA)

[

,! (RA; rA)

\

be the morphism (inclusion) considered in The-

orem 2.4. Also, let �

2

2 HC

n

disc

((RA; rA)

\

) = Ext

n

�

((RA; rA)

\

; C

\

) satisfy

�

2

� j

rA;RA

= '

�

�

1

2 HC

n

disc

((rA)

[

) = Ext

n

�

((rA)

[

; C

\

):(30)

(In words: \�

2

restricts to '

�

�

1

on (rA)

[

.") Then, using equation (19), we have

@('

�

�

1

) = �

2

� [RA; rA]:(31)

The rest of the proof consists of showing that the construction of the odd bivariant

Chern-Connes character [30] provides us with �

2

satisfying equations (30) and (32):

�

2

� [RA; rA] � j

A

= (� � ch

2n+1

1

([E]))

disc

:(32)

This is enough to complete the proof because equations (31) and (32) imply (29) and,

as we have already shown, equation (30) implies equation (31). So, to complete the

proof, we now proceed to construct �

2

satisfying (30) and (32).

Recall from [30] that the ideal rA de�nes a natural increasing �ltration of

(RA)

\

cont

by cyclic vector spaces:

(RA)

\

cont

= F

0

(RA)

\

cont

� F

�1

(RA)

\

cont

� : : : ;
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such that (rA)

[

� F

�1

(RA)

\

cont

= (RA; rA)

\

. If (rA)

[

k

is the k{th component of the

cyclic vector space (rA)

[

(and if, in general, the lower index stands for the Z

+

{grading

of a cyclic vector space) then we have the more precise relation

(rA)

[

k

� (F

�n�1

(RA)

\

cont

)

k

; for k � n:(33)

It follows that the morphism of cyclic vector spaces

~�

n

= Tr � F

�n�1

( ) : F

�n�1

(RA)

\

cont

! B

\

(de�ned in [30], page 579) satis�es ~�

n

= Tr �' on (rA)

[

k

, for k � n � p� 1. Fix then

k = q + 2n, and conclude that �

1

= Tr

n


 �

disc

2 HC

q+2n

(C

p

b


B) satis�es

'

�

�

1

= '

�

(Tr

n


 �) = �

disc

� S

n

~�

n

(34)

on (rA)

[

k

� F

�n�1

(RA)

\

cont

, because Tr

n

restricts to S

n

Tr on C

1

(H). Now recall the

crucial fact that there exists an extension

C

2n

0

(RA) 2 Ext

2n

�;cont

(F

�1

(RA)

\

cont

; F

�n�1

(RA)

\

cont

)

that has the property that C

2n

0

(RA) � i = S

n

, if i : F

�n�1

(RA)

\

cont

! F

�1

(RA)

\

cont

is

the inclusion (see [30], Corollary 2.2). Using this extension, we �nally de�ne

�

2

= (� � ~�

n

� C

2n

0

(RA))

disc

2 Ext

n

�

(F

�1

(RA)

\

cont

; C

\

):

Since �

2

has order k = q + 2n � 2n � n, we obtain from the equations (33) and

(34) that �

2

satis�es (30) (i.e., that it restricts to '

�

�

1

on (rA)

[

k

� F

�n�1

(RA)

\

cont

),

as desired.

The last thing that needs to be checked for the proof to be complete is that �

2

satis�es equation (32). By de�nition, the odd bivariant Chern-Connes character ([30],

page 579) is

ch

2n+1

1

([E]) = ~�

n

� ch

2n+1

1

(RA) � j

A

;(35)

where ch

2n+1

1

(RA) = C

2n+1

1

(RA) = C

2n

0

(RA) � q

0

(RA), and j

A

: A

\

! (A

+

)

\

is the

inclusion (see [30], page 568, de�nition 2.4. page 574, and the discussion on page

579). Moreover q

0

(RA) is nothing but a continuous version of [RA; rA], that is

q

0

(RA)

disc

= [RA; rA];

and hence

�

2

� [RA; rA] � j

A

= (� � ~�

n

� C

2n

0

(RA) � q

0

(RA) � j

A

)

disc

= (� � ch

2n+1

1

([E]))

disc

:

Since �

2

satis�es equation (30) and (32), which imply equation (29), the proof is

complete.

For any locally convex algebra B and � 2 HP

�

(B), the discrete periodic cyclic

cohomology of B, we say that � is a continuous class if it can be represented by

a continuous cocycle on B. Put di�erently, this means that � = �

disc

, for some

� 2 HP

�

cont

(B). Since the bivariant Chern{Connes character can, at least in principle,

be expressed by an explicit formula, it preserves continuity. This gives the following

corollary.

Corollary. 2.11. The periodic cyclic cohomology boundary map @ associated to

an admissible extension maps a class of the form Tr

n


 �, for � a continuous class,

to a continuous class.
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It is likely that recent results of Cuntz, see [12, 13], will give the above result for

all continuous classes in HP

�

(C

p

^


B) (not just the ones of the form Tr

n


 �).

Using the above corollary, we obtain the compatibility between the bivariant

Chern{Connes character and the index morphism in full generality. This result had

been known before only in particular cases [30].

Theorem. 2.12. Let 0! C

p

(H)

b


B ! E ! A! 0 be an admissible exact sequence

and ch

2n+1

1

([E]) 2 Ext

2n+1

�

(A

\

; B

\

) be its bivariant Chern{Connes character, equation

(27). If Tr

n

is as in equation (28) and Ind : K

alg

1

(A) ! K

alg

0

(C

p

(H)

b


B) is the

connecting morphism in algebraic K{Theory then, for any ' 2 HP

0

cont

(B) and [u] 2

K

alg

1

(A), we have

hTr

n


 '; Ind[u] i = h ch

2n+1

1

([E]) � '; [u] i :(36)

3. The index theorem for coverings

Using the methods we have developed, we now give a new proof of Connes{Moscovici's

index theorem for coverings. To a covering

f

M ! M with covering group �, Connes

and Moscovici associated an extension

0 �! C

n+1


 C [�] �! E

CM

�! C

1

(S

�

M) �! 0; n = dimM;

(the Connes{Moscovici exact sequence), de�ned using invariant pseudodi�erential

operators on

f

M ; see equation (45). If ' 2 H

�

(�) � HP

�

cont

(C

n+1


 C [�]) is an even

cyclic cocycle, then the Connes{Moscovici index theorem computes the morphisms

'

�

� Ind : K

alg

1

(C

1

(S

�

M)) �! C ;

where Ind is the index morphism associated to the Connes{Moscovici exact sequence.

Our method of proof then is to use the compatibility between the connecting mor-

phisms in algebraic K{Theory and @, the connecting morphism in periodic cyclic

cohomology (Theorem 1.5), to reduce the proof to the computation of @. This com-

putation is now a problem to which the properties of @ established in Section 2 can

be applied.

We �rst show how to obtain the Connes{Moscovici exact sequence from another

exact sequence, the Atiyah{Singer exact sequence, by a purely algebraic construc-

tion. Then, using the naturality of @ and Theorem 2.6, we determine the connecting

morphism @

CM

of the Connes{Moscovici exact sequence in terms of the connecting

morphism @

AS

of the Atiyah{Singer exact sequence. For the Atiyah{Singer exact

sequence the procedure can be reversed and we now use the Atiyah-Singer Index

Theorem and Theorem 1.5 to compute @

AS

.

A comment about the interplay of continuous and discrete periodic cyclic co-

homology in the proof below is in order. We have to use continuous periodic cyclic

cohomology whenever we want explicit computations with the periodic cyclic coho-

mology of groupoid algebras, because only the continuous version of periodic cyclic

cohomology is known for groupoid algebras associated to �etale groupoids [7]. On the

other hand, in order to be able to use Theorem 1.5, we have to consider ordinary (or

discrete) periodic cyclic cohomology as well. This is not an essential di�culty because,

using Corollary 2.11, we know that the index classes are represented by continuous

cocycles.
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3.1. Groupoids and the cyclic cohomology of their algebras. Our com-

putations are based on groupoids, so we �rst recall a few facts about groupoids.

A groupoid is a small category in which every morphism is invertible. (Think of

a groupoid as a set of points joined arrows; the following examples should clarify this

abstract de�nition of groupoids.) A smooth �etale groupoid is a groupoid whose set of

morphisms (also called arrows) and whose set of objects (also called units) are smooth

manifolds such that the domain and range maps are �etale (i.e., local di�eomorphisms).

To any smooth �etale groupoid G, assumed Hausdor� for simplicity, there is associated

the algebra C

1

c

(G) of compactly supported functions on the set of arrows of G and

endowed with the convolution product �,

(f

0

� f

1

)(g) =

X

r(
)=r(g)

f

0

(
)f

1

(


�1

g):

Here r is the range map and r(
) = r(g) is the condition that 


�1

and g be compos-

able. Whenever dealing with C

1

c

(G), we will use continuous cyclic cohomology, as

in [7]. See [7] for more details on �etale groupoids, and [35] for the general theory of

locally compact groupoids.

�

Etale groupoids conveniently accommodate in the same framework smooth man-

ifolds and (discrete) groups, two extreme examples in the following sense: the smooth

�etale groupoid associated to a smooth manifold M has only identity morphisms,

whereas the smooth �etale groupoid associated to the (discrete) group � has only one

object, the identity of �. The algebras C

1

c

(G) associated to these groupoids are

C

1

c

(M) and, respectively, the group algebra C [�]. Here are other examples used in

the paper.

The groupoid R

I

associated to an equivalence relation on a discrete set I has I

as the set of units and exactly one arrow for any ordered pair of equivalent objects.

If I is a �nite set with k elements and all objects of I are equivalent (i.e., if R

I

is

the total equivalence relation on I) then C

1

c

(R

I

) ' M

k

(C ) and its classifying space

in the sense of Grothendieck [34], the space BR

I

, is contractable [17, 34].

Another example, the gluing groupoid G

U

, mimics the de�nition a manifold M

in terms of \gluing coordinate charts." The groupoid G

U

is de�ned [7] using an open

cover U = (U

�

)

�2I

of M , i.e., M = [

�2I

U

�

. Then G

U

has units G

0

U

= [

�2I

U

�

�f�g

and arrows

G

(1)

U

= f(x; �; �); �; � 2 I; x 2 U

�

\ U

�

g:

If R

I

is the total equivalence relation on I , then there is an injective morphism

l : G

U

,!M �R

I

of �etale groupoids.

Let f : G

1

! G

2

be an �etale morphism of groupoids, that is, a morphism of

�etale groupoids that is a local di�eomorphism. Then the map f de�nes a con-

tinuous map, Bf : BG

2

! BG

1

, of classifying spaces and a group morphism,

f

Tr

: HP

�

cont

(C

1

c

(G

1

)) ! HP

�

cont

(C

1

c

(G

2

)). If f is injective when restricted to

units, then there exists an algebra morphism �(f) : C

1

c

(G

1

) ! C

1

c

(G

2

) such that

f

TR

= �(f)

�

.

The following theorem, a generalization of [7], Theorem 5.7. (2), is based on the

fact that all isomorphisms in the proof of that theorem are functorial with respect to

�etale morphisms. It is the reason why we use continuous periodic cyclic cohomology

when working with groupoid algebras. Note that the cyclic object associated to

C

1

c

(G), for G an �etale groupoid, is an inductive limit of locally convex nuclear spaces.
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Theorem. 3.1. If G is a Hausdor� �etale groupoid of dimension n, and if o is

the complexi�ed orientation sheaf of BG, then there exists a natural embedding

� : H

�+n

(BG; o) ,! HP

�

cont

(C

1

c

(G)). Here \natural" means that if f : G

1

! G

2

is an �etale morphism of groupoids, then the diagram

H

�+n

(BG

2

; o

2

)

��

(B f)

�

//

HP

�

cont

(C

1

c

(G

2

))

��

f

Tr

H

�+n

(BG

1

; o

1

)

//

HP

�

cont

(C

1

c

(G

1

));

whose horizontal lines are the morphisms �, commutes.

For discrete groups, Theorem 3.1 recovers the embedding

H

�

(�) = H

�

(B�; C ) ,! HP

�

cont

(C [�])

of [8, 20].

For smooth manifolds, the embedding � of Theorem 3.1 is just the Poincar�e

duality{an isomorphism. This isomorphism has a very concrete form. Indeed, let

� 2 H

n�i

(M; o) be an element of the singular cohomology of M with coe�cients in

the orientation sheaf, let � 2 H

i

c

(M) be an element of the singular cohomology of M

with compact supports (all cohomology groups have complex coe�cients), and let

� : HP

cont

i

(C

1

c

(M)) ' �

k

H

i+2k

c;DR

(M) = �

k

H

i+2k

c

(M)

be the canonical isomorphism induced by the Hochschild-Kostant-Rosenberg map �,

equation (12). Then the isomorphism � is determined by

h�(�); �i = h� ^ �(�); [M ]i 2 C ;(37)

where the �rst pairing is the map HP

�

cont

(C

1

c

(M)) 
 HP

cont

�

(C

1

c

(M)) ! C and the

second pairing is the evaluation on the fundamental class.

Typically, we shall use these results for the manifold S

�

M , for which there is

an isomorphism H

��1

(S

�

M) ' HP

�

cont

(C

1

(S

�

M)), because S

�

M is oriented. (The

orientation of S

�

M is the one induced from that of T

�

M as in [5]. More precisely

B

�

M , the disk bundle ofM , is given the orientation in which the \the horizontal part

is real and the vertical part is imaginary," and S

�

M is oriented as the boundary of

an oriented manifold.) The shift in the Z

2

-degree is due to the fact that S

�

M is odd

dimensional.

3.2. Morita invariance and coverings. Let M be a smooth compact manifold

and q :

f

M !M be a covering with Galois group �; said di�erently,

f

M is a principal

�{bundle over M . We �x a �nite cover U = (U

�

)

�2I

of M by trivializing open

sets, i.e., q

�1

(U

�

) ' U

�

� � and M = [U

�

. The transition functions between two

trivializing isomorphisms on their common domain, the open set U

�

\ U

�

, de�nes a

1{cocycle 


��

that completely determines the covering q :

f

M !M .

In what follows, we shall need to lift the covering q :

f

M ! M to a covering

q : S

�

f

M ! S

�

M , using the canonical projection p : S

�

M ! M . All constructions

then lift, from M to S

�

M , canonically. In particular, V

�

= p

�1

(U

�

) is a �nite

covering of S

�

M with trivializing open sets, and the associated 1{cocycle is (still)




��

. Moreover, if f

0

: M ! B� classi�es the covering q :

f

M ! M , then f = f

0

� p

classi�es the covering S

�

f

M ! S

�

M .
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Suppose that the trivializing cover V = (V

�

)

�2I

of S

�

M consists of k open sets,

and let

P

'

2

�

= 1 be a partition of unity subordinated to V . The cocycle identity




��




��

= 


��

ensures then that the matrix

p = ['

�




��

'

�

]

�;�2I

2M

k

(C

1

(M))
 C [�](38)

is an idempotent, called the Mishchenko idempotent; a di�erent choice of a trivializing

cover and of a partition of unity gives an equivalent idempotent.

Using the Mishchenko idempotent p, we now de�ne the morphism

� : C

1

(S

�

M)!M

k

(C

1

(S

�

M))
 C [�]

by �(a) = ap, for a 2 C

1

(S

�

M); explicitly,

�(a)(x) = a(x)p(x) = [a(x)'

�

(x)'

�

(x)
 


��

]:(39)

Because the morphism � is used to de�ne the Connes{Moscovici extension, equation

(45) below, we need to identify the induced morphism

�

�

: HP

�

cont

(C

1

(S

�

M)
 C [�]) ! HP

�

cont

(C

1

(S

�

M)):

The identi�cation of �, Proposition 3.3, is based on writing � as a composition of

three simpler morphisms, morphisms that will play an auxiliary role. The next few

paragraphs before Proposition 3.3 will deal with the de�nition and properties of these

morphisms.

We de�ne the �rst auxiliary morphism �(g) to be induced by an �etale morphism

of groupoids. Let G

V

be the gluing groupoid associated to the cover V = (V

�

)

�2I

of S

�

M . Using the cocycle (


��

)

�;�2I

associated to V that identi�es the covering

S

�

f

M ! S

�

M , we de�ne the �etale morphism of groupoids g by

G

V

3 (x; �; �)

g

�! (x; �; �; 


��

) 2 G

V

� �;

which induces a morphism �(g) : C

1

c

(G

V

) ! C

1

c

(G

V

) 
 C [�] and a continuous map

B g : BG

V

! B(G

V

� �) = BG

V

� B�.

The projection t : G

V

! S

�

M is an etale morphism of groupoids that induces a

homotopy equivalence BG

V

! S

�

M and hence also an isomorphism

t

Tr

: HP

�

cont

(C

1

(S

�

M))! HP

�

cont

(C

1

c

(G

V

)):

By de�nition, t

Tr

= Tr � �(l)

�

, where l : G

V

! S

�

M � R

I

is the natural inclu-

sion considered also before, and Tr is the generic notation for the isomorphisms

Tr : HP

�

(M

n

(A)) ' HP

�

(A), induced by the trace. In particular, �(l)

�

is also an

isomorphism.

Using the homotopy equivalence B t of BG

V

and S

�

M , we obtain a continuous

map

h

0

: S

�

M ! S

�

M � B�;

uniquely determined by the condition h

0

� B t = (B t� id) � B g.

Lemma. 3.2. The map h

0

de�ned above coincides, up to homotopy, with the product

function (id

S

�

M

; f), where f : S

�

M ! B� classi�es S

�

f

M ! S

�

M .

Proof. Denote by p

1

and p

2

the projections of S

�

M�B� onto components. The map

p

1

� h

0

is easily seen to be the identity, so h

0

= id

S�M

� h

1

where h

1

: S

�

M ! B� is

induced by the non-�etale morphism of topological groupoids G

V

3 (x; �; �)! 


��

2 �.

In order to show that h

1

coincides with f , up to homotopy, it is enough to show

Documenta Mathematica 2 (1997) 263{295



Higher Index Theorems 289

that the principal �-bundle (i.e., covering) that h

1

pulls back from B� to S

�

M is

isomorphic to the covering S

�

f

M !

f

M .

Let G

U

be the gluing groupoid associated to the cover U = (U

�

)

�2I

of M . It is

seen from the de�nition that G

V

! � factors as G

V

! G

U

! �, where the function

G

V

! � acts as (m;�; �)! 


��

. Thus we may replace S

�

M by M everywhere in the

proof.

Since the the covering

f

M ! M is determined by its restriction to loops, we

may assume that M is the circle S

1

. Cover M = S

1

by two contractable intervals

I

0

\ I

1

which intersect in two small disjoint neighborhoods of 1 and �1: I

0

\ I

1

=

(z; z

�1

)[ (�z;�z

�1

) where z 2 S

0

and jz�1j is very small. We may also assume that

the transition cocycle is the identity on (z; z

�1

) and 
 2 � on (�z;�z

�1

) (we have

replaced constant �{cocycles with locally constant �{cocycles). The map h

1

maps

each of the units of G

U

and each of the 1-cells corresponding to the right hand interval

(z; z

�1

) to the only 0-cell of B�, the cell corresponding to the identity e 2 �. (Recall

that the classifying space of a topological groupoid is the geometrical realization of the

simplicial space of composable arrows [34], and that that there is a 0 cell for each unit,

a 1-cell for each non-identity arrow, a 2-cell for each pair of non-identity composable

arrows, and so on). The other 1-cells (i.e., corresponding to the arrows leaving from

a point on the left hand side interval) will map to the 1-cell corresponding 
. This

shows that, on homotopy groups, the induced map Z= �

1

(S

1

)! � = �

1

(B�) sends

the generator 1 to 
. This completes the proof of the lemma.

We need to introduce one more auxiliary morphism before we can determine �

�

.

Using the partition of unity

P

�

'

2

�

= 1 subordinated to V = (V

�

)

�2I

, we de�ne

� : C

1

(S

�

M)! C

1

c

(G

V

) by

�(f)(x; �; �) = f(x)'

�

(x)'

�

(x);

which turns out to be a morphism of algebras. Because the composition

C

1

(S

�

M)

�

�! C

1

c

(G

V

)

�(l)

�! C

1

c

(S

�

M �R

I

) =M

k

(C

1

(S

�

M))

is (unitarily equivalent to) the upper{left corner embedding, we obtain that the mor-

phism �

�

: HP

�

cont

(C

1

c

(G

V

))! HP

�

cont

(C

1

(S

�

M)) is the inverse of t

Tr

.

We are now ready to determine the morphism

�

�

: HP

�

cont

(C

1

(S

�

M)
 C [�]) ! HP

�

cont

(C

1

(S

�

M)):

In order to simplify notation, in the statement of the following result we shall identify

HP

�

cont

(M

k

(C

1

(S

�

M))
 C [�]) with HP

�

cont

(C

1

(S

�

M)
 C [�]), and we shall do the

same in the proof.

Proposition. 3.3. The composition

H

��1

(S

�

M � B�; C ) ,! HP

�

cont

(C

1

(S

�

M)
 C [�])

�

�

�!

! HP

�

cont

(C

1

(S

�

M)) ' H

��1

(S

�

M ; C )

is �

�1

� �

�

�� = (id� f)

�

.

Proof. Consider as before the morphism l : G

V

! S

�

M � R

I

of groupoids, which

de�nes an injective morphism of algebras �(l) : C

1

(G

V

) ! C

1

(S

�

M � R

I

) =

M

k

(C

1

(S

�

M)), and hence also a morphism

�(l)
 id = �(l � id) : C

1

(G

V

� �) ,! C

1

(S

�

M �R

I

� �) =M

k

(C

1

(S

�

M))
 C [�]:
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Then we can write

� = �(l � id) � �(g) � �;

where g : G

V

! G

V

� � is as de�ned before: g(x; �; �) = (x; �; �; 


��

).

Because �

�

= (t

Tr

)

�1

, we have that �

�1

� �

�

� � = (B t)

��1

, by Theorem 3.1.

Also by Theorem 3.1, we have �(g)

�

�� = �� (B g)

�

and �(l� id)

�

�� = �� (B l� id)

�

.

This gives then

�

�1

��

�

�� = �

�1

��

�

���(B g)

�

�(B l� id)

�

= (B t)

��1

���(B g)

�

�(B l� id)

�

= h

�

0

:

Since Lemma 3.2 states that h

0

= id� f , up to homotopy, the proof is complete.

3.3. The Atiyah{Singer exact sequence. Let M be a smooth compact man-

ifold (without boundary). We shall denote by 	

k

(M) the space of classical, order

at most k pseudodi�erential operators on M . Fix a smooth, nowhere vanishing den-

sity on M . Then 	

0

(M) acts on L

2

(M) by bounded operators and, if an operator

T 2 	

0

(M) is compact, then it is of order �1. More precisely, it is known that order

�1 pseudodi�erential operators satisfy 	

�1

(M) � C

p

= C

p

(L

2

(M)) for any p > n.

(Recall that C

p

(H) is the ideal of p{summable operators on H, equation (8)).

It will be convenient to include all (n + 1){summable operators in our calculus,

so we let E

AS

= 	

0

(M) + C

n+1

, and obtain in this way an extension of algebras,

0! C

n+1

! E

AS

�

0

�! C

1

(S

�

M)! 0;(40)

called the Atiyah-Singer exact sequence. The boundary morphisms in periodic cyclic

cohomology associated to the Atiyah-Singer exact sequence de�nes a morphism

@

AS

: HP

�

(C

n+1

)! HP

�+1

(C

1

(S

�

M)):

Let Tr

n

2 HP

0

cont

(C

n+1

) be as in (28) (i.e., Tr

n

(a

0

; : : : ; a

2n

) = CTr(a

0

: : : a

2n

), for

some constant C), and denote

J (M) = @

AS

(Tr

n

) 2 HP

1

cont

(C

1

(S

�

M)) � HP

1

(C

1

(S

�

M));(41)

which is justi�ed by Corollary 2.11.

We shall determine J (M) using Theorem 1.5. In order to do this, we need to

make explicit the relation between ch, the Chern character in cyclic homology, and

Ch, the classical Chern character as de�ned, for example, in [27]. Let E ! M be a

smooth complex vector bundle, embedded in a trivial bundle: E � M � C

N

, and

let e 2 M

N

(C

1

(M)) be the orthogonal projection on E. If we endow E with the

connection ed

DR

e, acting on �

1

(E) � C

1

(M)

N

, then the curvature 
 of this con-

nection turns out to be 
 = e(d

DR

e)

2

. The classical Chern character Ch(E) is then

the cohomology class of the form Tr(exp(




2�{

)) in the even (de Rham) cohomology

of M . Comparing this de�nition with the de�nition of the Chern character in cyclic

cohomology via the Hochschild-Kostant-Rosenberg map, we see that the two of them

are equal{up to a renormalization with a factor of 2�{. (If � 2 H

�

(M) = �

k

H

k

(M)

is a cohomology class, we denote by �

k

its component in H

k

(M).) Explicitly, let

� : HP

cont

i

(C

1

c

(S

�

M)) ' �

k2Z

H

i+2k

(S

�

M) be the canonical isomorphism induced

by the Hochschild-Kostant-Rosenberg map �, equation (12), then

�(ch(�)) =

X

k2Z

(2�{)

m

Ch(�)

2m�i

2 H

2m�i

(M)(42)

for i 2 f0; 1g and � 2 K

alg

i

(C

1

(M)). (Note the `�i').
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Proposition. 3.4. Let T (M) 2 H

even

(S

�

M) be the Todd class of the complexi�-

cation of T

�

M , lifted to S

�

M , and � : H

even

(S

�

M) ! HP

1

cont

(C

1

(S

�

M)) be the

isomorphism of Theorem 3.1. Then

J (M) = (�1)

n

X

k

(2�{)

n�k

�(T (M)

2k

) 2 HP

1

cont

(C

1

(S

�

M)):

Proof. We need to verify the equality of two classes in HP

1

cont

(C

1

(S

�

M)). It is

hence enough to check that their pairings with ch([u]) are equal, for any [u] 2

K

alg

1

(C

1

(S

�

M)), because of the classical result that the Chern character

ch : K

alg

1

(C

1

(S

�

M))! HP

cont

1

(C

1

(S

�

M))

is onto.

If Ind is the index morphism of the Atiyah{Singer exact sequence then the Atiyah-

Singer index formula [5] states the equality

Ind[u] = (�1)

n

hCh[u]; T (M) i:(43)

Using equation (41) and Theorem 1.5 (see also the discussion following that theorem),

we obtain that Ind[u] = h ch[u];J (M) i. Equations (37) and (43) then complete the

proof.

3.4. The Connes{Moscovici exact sequence and proof of the theorem.

We now extend the constructions leading to the Atiyah{Singer exact sequence, equa-

tion (40), to covering spaces.

Let M be a smooth compact manifold and let E

1

= M

k

(E) 
 C [�], which �ts

into the exact sequence

0 �!M

k

(C

n+1

)
 C [�] �! E

1

�

0

�!M

k

(C

1

(S

�

M))
 C [�] �! 0:(44)

Let � !

f

M ! M be a covering of M with Galois group �. Using the Mishchenko

idempotent p associated to this covering and the injective morphism

� : C

1

(S

�

M)! p(M

k

(C

1

(S

�

M))
 C [�])p;

equation 39, we de�ne the Connes{Moscovici algebra E

CM

as the �bered product

E

CM

= f(T; a) 2 pE

1

p� C

1

(S

�

M); �

0

(T ) = �(a)g:

By de�nition, the algebra E

CM

�ts into the exact sequence

0 �! p

�

M

k

(C

n+1

)
 C [�]

�

p �! E

CM

�! C

1

(S

�

M) �! 0:

We now take a closer look at the algebra E

CM

and the exact sequence it de�nes.

Observe �rst that p acts on (L

2

(M)
 l

2

(�))

k

and that p(L

2

(M)
 l

2

(�))

k

' L

2

(

f

M)

via a �{invariant isometry. Since E

1

can be regarded as an algebra of operators on

(L

2

(M) 
 l

2

(�))

k

that commute with the (right) action of �, we obtain that E

CM

can also be interpreted as an algebra of operators commuting with the action of � on

L

2

(

f

M). Using also [11], Lemma 5.1, page 376, this recovers the usual description of

E

CM

that uses properly supported �{invariant pseudodi�erential operators on

f

M .

Also observe that \M

k

" is super
uous in M

k

(C

n+1

) because M

k

(C

n+1

) ' C

n+1

;

actually, even \p" is super
uous in p

�

M

k

(C

n+1

)
 C [�]

�

p because

p

�

M

k

(C

n+1

)
 C [�]

�

p ' C

n+1


 C [�]
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by an isomorphism that is uniquely determined up to an inner automorphism. Thus

the Connes{Moscovici extension becomes

0 �! C

n+1


 C [�] �! E

CM

�! C

1

(S

�

M)) �! 0;(45)

up to an inner automorphism.

We now proceed as for the Atiyah{Singer exact sequence. The boundary mor-

phisms in periodic cyclic cohomology associated to the Connes{Moscovici extensions

de�nes a map

@

CM

: HP

�

(C

n+1


 C [�]) ! HP

�+1

(C

1

(S

�

M));

and the Connes{Moscovici Index Theorem amounts to the identi�cation of the classes

@

CM

(Tr

n


 �) 2 HP

�+1

cont

(C

1

(S

�

M)) � HP

�+1

(C

1

(S

�

M));

for cocycles � coming from the cohomology of �.

In order to determine @

CM

(Tr

n


 �); we need the following theorem.

Theorem. 3.5. Let G

1

and G

2

be smooth �etale groupoids. Then the diagram

H

�+n

(BG

1

; o

1

)
H

�+m

(BG

2

; o

2

)

��

�

//

�

HP

�

cont

(C

1

c

(G

2

))
HP

�

cont

(C

1

c

(G

2

))

��




H

�+n+m

(B(G

1

� G

2

); o)

//

�

HP

�

cont

(C

1

c

(G

1

� G

2

))

is commutative. Here the left product � is the external product in cohomology and o

1

,

o

2

, and o are the orientation sheaves.

Proof. The proof is a long but straightforward veri�cation that the sequence of

isomorphisms in [7] is compatible with products.

Using [30], Proposition 1.5. (c), page 563, which states that the �-products are

compatible with the tensor products of mixed complexes, we replace everywhere cyclic

vector spaces by mixed complexes. Then we go through the speci�c steps of the proof

as in [7]. This amounts to verify the following facts:

(i) The Hochschild-Kostant-Rosenberg map � (equation (12)) transforms the

di�erential B 
 1 + 1
B into the de Rham di�erential of the product.

(ii) By the Eilenberg-Zilber Theorem [25], the augmentation map � ([7] Proposi-

tion 4.2 (1)), and the isomorphism it induces, are compatible with products.

(iii) The chain map f in the Moore isomorphism (see [6], Theorems 4.1 and

4.2, page 32) is compatible with products. This too involves the Eilenberg-Zilber

theorem.

We remark that the proof of the above theorem is easier if both groupoids are of

the same \type," i.e., if they are both groups or smooth manifolds, in which case our

theorem is part of folklore. However, in the case we shall use this theorem{that of a

group and a manifold{there are no signi�cant simpli�cations: one has to go through

all the steps of the proof given above.

Lemma. 3.6. Let � : C

1

(S

�

M)!M

k

(C

1

(S

�

M))
 C [�] be as de�ned in (39) and

Tr

n

2 HP

0

(C

n+1

) be as in (28). Then, for any cyclic cocycle � 2 HP

�

cont

(C [�]), we

have

@

CM

(Tr

n


 �) = �

�

(J (M)
 �) 2 HP

�+1

cont

(C

1

(S

�

M)) � HP

�+1

(C

1

(S

�

M)):
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Proof. Denote by @

1

: HP

�

cont

(C

n+1


C [�]) ! HP

�+1

(C

1

(S

�

M
C [�])) the boundary

morphism of the exact sequence (44). Using Theorem 2.6, we obtain

@

1

(Tr

n


 �) = @

AS

(Tr

n

)
 � = J (M)
 � 2 HP

�+1

cont

(C

1

(S

�

M)
 C [�]) �

HP

�+1

(C

1

(S

�

M)
 C [�]):

Then, the naturality of the boundary map and Theorem 2.10 show that @

CM

= �

�

�@

1

.

This completes the proof.

Let T (M) 2 H

even

(S

�

M) be the Todd class of TM 
 C lifted to S

�

M and Ch

be the classical Chern character on K{Theory, as before. Also, recall that Theorem

3.1 de�nes an embedding � : H

�

(B�) = H

�

(�)! HP

�

cont

(C [�]) = HP

�

(C [�]).

We are now ready to state Connes{Moscovici's Index Theorem for elliptic sys-

tems, see [11][Theorem 5.4], page 379, which computes the \higher index" of a matrix

of P of properly supported, order zero, �-invariant elliptic pseudodi�erential operators

on

f

M , with principal symbol the invertible matrix u = �

0

(P ) 2M

m

(C

1

(S

�

M)).

Theorem. 3.7 (Connes{Moscovici). Let

f

M ! M be a covering with Galois group

� of a smooth compact manifold M of dimension n, and let f : S

�

M ! B� the

continuous map that classi�es the covering S

�

f

M ! S

�

M . Then, for each cohomology

class � 2 H

2q

(B�) and each [u] 2 K

1

(S

�

M), we have

~

�

�

(Ind[u]) =

(�1)

n

(2�{)

q

hCh(u) ^ T (M) ^ f

�

�; [S

�

M ] i;

where

~

� = Tr

n


 �(�) 2 HP

0

(C

n+1


 C [�]).

Proof. All ingredients of the proof are in place, and we just need to put them together.

Let � 2 H

2q

(B�) and

~

� = Tr

n


 �(�) be as in the statement of the theorem. Then

(�1)

n

~

�

�

(Ind[u]) =

= (�1)

n

�

@

CM

~

�

�

�

[u] by Theorem 1:5

= (�1)

n

�

�

�

(J (M)
 �(�))

�

�

[u] by Lemma 3:6

= (�1)

n

�

�

�

��(�

�1

(J (M))� �)

�

�

[u] by Theorem 3:5

= (�1)

n

�

� � (id� f)

�

(�

�1

(J (M))� �)

�

�

[u] by Proposition 3:3

= (�1)

n

h�(�

�1

(J (M)) ^ f

�

�); ch([u])i

= (�1)

n

h�

�1

(J (M)) ^ f

�

�) ^ �(ch[u]); [S

�

M ] i by equation (37)

=

P

k+j=n�q

(2�{)

k�n

hT (M)

2k

^f

�

�^�(ch[u])

2j�1

; [S

�

M ]i by Proposition 3:4

=

P

k+j=n�q

(2�{)

�q

hT (M)

2k

^ f

�

� ^ Ch

2j�1

[u]; [S

�

M ]i by equation (42)

= (2�{)

�q

hCh[u] ^ T (M) ^ f

�

�; [S

�

M ]i:

The proof is now complete.

For q = 0 and � = 1 2 H

0

(B�) ' C , we obtain that � = �(�) is the von

Neumann trace on C [�], that is �(

P

a





) = a

e

, the coe�cient of the identity, and the

above theorem recovers Atiyah's L

2

{index theorem for coverings [2]. The reason for
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obtaining a di�erent constant than in [11] is due to di�erent normalizations. See [19]

for a discussion on how to obtain the usual index theorems from the index theorems

for elliptic systems.
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