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0 Introduction

Our main concern in this work is to provide concrete formulas for the invariant inner

products and hermitian forms on spaces of holomorphic functions on Cartan domains

D of tube type. As will be explained below, the group Aut(D) of all holomorphic

automorphisms of D acts transitively. Aut(D) acts projectively on function spaces

on D via f 7! U

(�)

(')f := (f � ') (J')

�=p

; ' 2 Aut(D); � 2 C, but these actions

are not irreducible in general. The inner products we consider are those obtained

from the holomorphic discrete series by analytic continuation. The associated Hilbert

spaces generalize the weighted Bergman spaces, the Hardy and the Dirichlet space. By

\concrete" formulas we mean Besov-type formulas, namely integral formulas involving

the functions and some of their derivatives. Possible applications include the study

of operators (Toeplitz, Hankel) acting on function spaces and the theory of invariant

Banach spaces of analytic functions (where the pairing between an invariant space

and its invariant dual is computed via the corresponding invariant inner product).

Our problem is closely related to �nding concrete realizations (by means of inte-

gral formulas) of the analytic continuation of the Riesz distribution. [Ri], [Go], [FK2],

Chapter VII.

1

Authors supported

by a grant from the German-Israeli Foundation (GIF), I-415-023.06/95.

Documenta Mathematica 2 (1997) 213{261



214 Arazy and Upmeier

In principle, the analytic continuation is obtained from the integral formulas

associated with the weighted Bergman spaces (i.e. the holomorphic discrete series)

by \partial integration with respect to the radial variables". This program has been

successful in the case of rank 1 (i.e. when D is the open unit ball of C

d

, see [A3]).

The case of rank r > 1 is more di�cult, and concrete formulas are known only in

special cases, see [A2], [Y4], [Y1], [Y2].

This paper consists of two main parts. In the �rst part (Sections 2, 3, and 4) we

develop in full generality the techniques of [A2], [Y4], and obtain integral formulas

for the invariant inner products associated with the so-called Wallach set and pole

set. In the second part (section 5) we introduce new techniques (integration on

boundary orbits), to obtain new integral formulas for the invariant inner products

in the important special cases of Cartan domains of type I and IV. This approach

has the potential for further generalizations and applications, including the in�nite

dimensional setup.

The paper is organized as follows. Section 1 provides background information on

Cartan domains, the associated symmetric cones and Siegel domains and the Jordan

theoretic approach to the study of bounded symmetric domains [Lo], [FK2], [U2].

We also explain some general facts concerning invariant Hilbert spaces of analytic

functions on Cartan domains and the connection to the Riesz distribution. Section 2 is

devoted to the study of invariant di�erential operators on symmetric cones. We study

the \shifting operators" introduced by Z. Yan and their derivatives with respect to

the \spectral parameter". Section 3 is devoted to our generalization of Yan's shifting

method, to �nd explicit integral formulas for the invariant inner products obtained

by analytic continuation of the holomorphic discrete series. In section 4 we study the

expansion of Yan's operators, and obtain applications to concrete integral formulas

for the invariant inner products. Some of these results were obtained independently

by Z. Yan, J. Faraut and A. Kor�anyi, [FK2], [Y4]. We include these results and our

proofs, in order to make the paper self contained, and also because in most cases our

results go beyond the results in [FK2], [Y4].

In section 5 we propose a new type of integral formulas for the invariant inner

products. These formulas involve integration on boundary orbits and the applica-

tion of the localized versions of the radial derivative associated with the boundary

components of Cartan domains. We are able to establish the desired formulas in the

important special cases of type I and IV. The techniques established in this section

can be used in the study of the remaining cases.

Finally, in the short section 6 we use the quasi-invariant measures on the bound-

ary orbits of the associated symmetric cone in order to obtain integral formulas for

some of the invariant inner products in the context of the unbounded realization of the

Cartan domains (tube domains). These results are essentially implicitly contained in

[VR], where the authors use the Lie-theoretic and Fourier-analytic approach to analy-

sis on symmetric Siegel domains. We use the Jordan-theoretic approach which yields

simpler formulation of the results and simpler proofs.

Acknowledgment: We would like to thank Z. Yan, J. Faraut, and A. Kor�anyi for

sending us drafts of their work and for many stimulating discussions. We also thank

the referee for valuable comments on the �rst version of the paper.
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Invariant Inner Products 215

1 Preliminaries

A Cartan domain D � C

d

is an irreducible bounded symmetric domain in its Harish-

Chandra realization. Thus D is the open unit ball of a Banach space Z = (C

d

; k � k)

which admits the structure of a JB

�

-triple, namely there exists a continuous mapping

Z � Z � Z 3 (x; y; z) ! fx; y; zg 2 Z (called the Jordan triple product) which is

bilinear and symmetric in x and z, conjugate-linear in y, and so that the operators

D(x; x) : Z ! Z de�ned for every x 2 Z by D(x; x)z := fx; x; zg are hermitian,

have positive spectrum, satisfy the "C

�

-axiom" kD(x; x)k = kxk

2

, and the operators

�(x) := iD(x; x) are triple derivations, i.e. the Jordan triple identity holds

�(x)fy; z; wg = f�(x)y; z; wg+ fy; �(x)z; wg+ fy; z; �(x)wg; 8y; z; w 2 Z:

The norm k � k is called the spectral norm. We put also D(x; y)z := fx; y; zg. An

element v 2 Z is called a tripotent if fv; v; vg = v. Every tripotent v 2 Z gives rise to

a direct-sum Peirce decomposition

Z = Z

1

(v) + Z

1

2

(v) + Z

0

(v); where Z

�

(v) := fz 2 Z; D(v; v)z = �zg; � = 1;

1

2

; 0:

The associated Peirce projections are de�ned for z

�

2 Z

�

(v), � = 1;

1

2

; 0, by

P

�

(v)(z

1

+ z

1

2

+ z

0

) = z

�

; � = 1;

1

2

; 0:

In this paper we are interested in the important special case where Z contains

a unitary tripotent e, for which Z = Z

1

(e). In this case Z has the structure of a

JB

�

-algebra with respect to the binary product x � y := fx; e; yg and the involution

z

�

:= fe; z; eg, and e is the unit of Z. The binary Jordan product is commutative,

but in general non-associative. The triple product is expressed in terms of the binary

product and the involution via fx; y; zg = (x�y

�

)�z+(z �y

�

)�x� (x�z)�y

�

. In this

case the open unit ball D of Z is a Cartan domain of tube-type. This terminology is

related to the unbounded realization of D, to be explained later.

Let X := fx 2 Z;x

�

= xg be the real part of Z. It is a formally-real (or

euclidean) Jordan algebra. Every x 2 X has a spectral decomposition x =

P

r

j=1

�

j

e

j

,

where fe

j

g

r

j=1

is a frame of pairwise orthogonal minimal idempotents in X , and

f�

j

g

r

j=1

are real numbers called the eigenvalues of x. The trace and determinant (or,

\norm") are de�ned in X via

tr(x) :=

r

X

j=1

�

j

; N(x) :=

r

Y

j=1

�

j

respectively, and they are polynomials on X . The maximal number r of pairwise

orthogonal minimal idempotents in X is called the rank of X . The positive-de�nite

inner product in X , hx; yi = tr(x � y); x; y 2 X , satis�es

hx � y; zi = hx; y � zi; x; y; z 2 X:

Equivalently, the multiplication operators L(x)y := x � y; x; y 2 X , are self-adjoint.

The trace and determinant polynomials, as well as the multiplication operators, have

unique extensions to the complexi�cation X

C

:= X + iX = Z. Let


 := fx

2

;x 2 X;N(x) 6= 0g:
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216 Arazy and Upmeier

Then 
 is a symmetric, open convex cone, i.e. 
 is self polar and homogeneous with

respect to the group GL(
) of linear automorphisms of 
. We denote the connected

component of the identity in GL(
) by G(
). De�ne

P (x) := 2L(x)

2

� L(x

2

); x 2 X; (1.1)

then P (x) 2 G(
) for every x 2 
, and x = P (x

1=2

)e. Thus G(
) is transitive on


. The map x ! P (x) from X into End(X) is called the quadratic representation

because of the identity

P (P (x)y) = P (x)P (y)P (x); 8x; y 2 X: (1.2)

The domain T (
) := X + i
, called the tube over 
. It is an irreducible symmetric

domain which is biholomorphically equivalent to D by means of the Cayley transform

c : D ! T (
), de�ned by

c(z) := i

e+ z

e� z

; z 2 Z:

This explains why D is called a tube-type Cartan domain.

Let e

1

; e

2

; : : : ; e

r

be a �xed frame of minimal, pairwise orthogonal idempotents

satisfying e

1

+ e

2

+ : : :+ e

r

= e, where e is the unit of Z. Let

Z =

X

1�i�j�r

Z

i;j

be the associated joint Peirce decomposition, namely Z

i;j

:= Z

1

2

(e

i

) \ Z

1

2

(e

j

) for

1 � i < j � r and Z

i;i

:= Z

1

(e

i

) for 1 � i � r. The characteristic multiplicity is the

common dimension a = dim(Z

i;j

); 1 � i < j � r, and d = r + r(r � 1)a=2. The

number p := (r � 1)a+ 2 is called the genus of D. It is known that

Det(P (x)) = N(x)

p

; 8x 2 X;

where \Det" is the usual determinant polynomial in End(Z). From this and (1.2) it

follows that

N(P (x)y) = N(x)

2

N(y) 8x; y 2 X: (1.3)

Let u

j

:= e

1

+ e

2

+ : : :+ e

j

and let Z

j

:=

P

1�i�k�j

Z

i;k

be the JB

�

- subalgebra

of Z whose unit is u

j

. Let N

j

be the determinant polynomials of the Z

j

; 1 � j � r;

they are called the principal minors associated with the frame fe

j

g

r

j=1

. Notice that

Z

r

= Z and N

r

= N . For an r-tuple of integersm = (m

1

;m

2

; : : : ;m

r

) writem � 0 if

m

1

� m

2

� : : : � m

r

� 0. Such r-tuples m are called signatures (or, \partitions").

The conical polynomial associated with the signature m is

N

m

(z) := N

1

(z)

m

1

�m

2

N

2

(z)

m

2

�m

3

N

3

(z)

m

3

�m

4

: : :N

r

(z)

m

r

; z 2 Z:

Notice that N

m

(

P

r

j=1

t

j

e

j

) =

Q

r

j=0

t

m

j

j

, thus the conical polynomials are natural

generalizations of the monomials. Let Aut(D) be the group of all biholomorphic

automorphisms of D, and let G be its connected component of the identity. Let

K := fg 2 G; g(0) = 0g = G \ GL(Z) be the maximal compact subgroup of G.

For any signature m let P

m

:= spanfN

m

� k; k 2 Kg. Clearly, P

m

� P

`

, where
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Invariant Inner Products 217

` = jmj =

P

r

j=1

m

j

and P

`

is the space of homogeneous polynomials of degree `.

By de�nition, P

m

are invariant under the composition with members of K. Let

hf; gi

F

:= @

f

(g

]

)(0) =

1

�

d

Z

Z

f(z)g(z) e

�jzj

2

dm(z) (1.4)

be the Fock-Fischer inner product on the space P of polynomials, where g

]

(z) :=

g(z

�

), @

f

= f(

@

@z

), jzj is the unique K-invariant Euclidean norm on Z normalized

so that je

1

j = 1, and dm(z) is the corresponding Lebesgue volume measure. (Thus

h1; 1i

F

= 1). The following result (Peter-Weyl decomposition) is proved in [Sc], see

also [U1]. Here the group K acts on functions on D via �(k)f := f � k

�1

; k 2 K.

Notice that P

`

, ` = 0; 1; 2; : : : and P are invariant under this action.

Theorem 1.1 (i) The spaces fP

m

g

m�0

, are K-invariant and irreducible. The rep-

resentations of K on the spaces P

m

are mutually inequivalent, the P

m

's are mutually

orthogonal with respect to h�; �i

F

, and P =

P

m�0

P

m

.

(ii) If H is a Hilbert space of analytic functions on D with a K-invariant inner

product in which the polynomials are dense, then H is the orthogonal direct sum

H =

P

m�0

�P

m

. Namely, every f 2 H is expanded in the norm convergent series

f =

P

m�0

f

m

, with f

m

2 P

m

, and the spaces P

m

are mutually orthogonal in H.

Moreover, there exist positive numbers fc

m

g

m�0

so that for every f; g 2 H with

expansions f =

P

m�0

f

m

and g =

P

m�0

g

m

we have

hf; gi

H

=

X

m�0

c

m

hf

m

; g

m

i

F

:

For every signature m let K

m

(z; w) be the reproducing kernel of P

m

with respect to

(1.4). Clearly, the reproducing kernel of the Fock-Fischer space F (the completion of

P with respect to h�; �i

F

) is

F (z; w) :=

X

m

K

m

(z; w) = e

hz;wi

:

An important property of the norm polynomial N is its transformation rule under

the group K

N(k(z)) = �(k)N(z); k 2 K; z 2 Z (1.5)

where � : K ! T := f� 2 C; j�j = 1g is a character. In fact, �(k) = N(k(e)) =

Det(k)

2=p

8k 2 K. Notice that (1.5) implies that P

(m;m;:::;m)

= CN

m

for m =

0; 1; 2; : : :.

The subgroup L of K de�ned via

L := fk 2 K; k(e) = 1g (1.6)

plays an important role in the theory.

Lemma 1.1 For every signature m � 0 the function

�

m

(z) :=

Z

L

N

m

(`(z))d` (1.7)

is the unique spherical (i.e., L-invariant) polynomial in P

m

satisfying �

m

(e) = 1.
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218 Arazy and Upmeier

For example, �

(m;m;:::;m)

= N

m

by (1.5). The L-invariant real polynomial on X

h(x) = h(x; x) := N(e� x

2

)

admits a unique K-invariant, hermitian extension h(z; w) to all of Z. Thus,

h(k(z); k(w)) = h(z; w) for all z; w 2 Z and k 2 K, h(z; w) is holomorphic in z

and anti-holomorphic in w, and h(z; w) = h(w; z), [FK1]. The transformation rule of

h(z; w) under Aut(D) is

h('(z); '(w)) = J'(z)

1

p

h(z; w) J'(w)

1

p

; ' 2 Aut(D); z; w 2 D; (1.8)

where J'(z) := Det('

0

(z)) is the complex Jacobian of ', and p is the genus of D.

For s = (s

1

; s

2

; : : : ; s

r

) 2 C

r

one de�nes the conical function N

s

on 
 via

N

s

(x) := N

s

1

�s

2

1

(x)N

s

2

�s

3

2

(x)N

s

3

�s

4

3

(x) : : : �N

s

r

r

(x); x 2 
;

which generalize the conical polynomials N

m

. In what follows use the following no-

tation:

�

j

:= (j � 1)

a

2

; 1 � j � r:

The Gindikin - Koecher Gamma function is de�ned for s = (s

1

; s

2

; : : : ; s

r

) 2 C

r

with

<(s

j

) > �

j

; 1 � j � r, via

�




(s) :=

Z




e

�tr(x)

N

s

(x)d�




(x):

Here tr(x) = hx; ei is the Jordan-theoretic trace of x, and

d�




(x) := N(x)

�

d

r

dx

is the (unique, up to a multiplicative constant) G(
)-invariant measure on 
. The

following formula [Gi] reduces the computation of �




(s) to that of ordinary Gamma

functions:

�




(s) = (2�)

(d�r)=2

Y

1�j�r

�(s

j

� �

j

); (1.9)

and provides a meromorphic continuation of �




to all of C

r

. In particular, �




(�) :=

�




(�; �; : : : ; �) is given by

�




(�) =

Z




e

�tr(x)

N(x)

�

d�




(x) = (2�)

(d�r)=2

Y

1�j�r

�(�� �

j

);

and it is an entire meromorphic function. The pole set of �




(�) is precisely

P(D) := [

1�j�r

(�

j

�N) = f�

j

� n; 1 � j � r; n 2 Ng: (1.10)

For � 2 C and a signature m = (m

1

;m

2

; : : : ;m

r

) one de�nes

(�)

m

:=

�




(m+ �)

�




(�)

=

r

Y

j=1

(� � �

j

)

m

j

=

r

Y

j=1

m

j

�1

Y

n=0

(n+ �� �

j

);
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where m+ � := (m

1

+ �;m

2

+ �; : : : ;m

r

+ �).

We recall two important formulas for integration in polar coordinates [FK2],

Chapters VI and IX. The �rst formula uses the fact that K � 
 = Z, namely the

fact that every z 2 Z can be written (not uniquely) in the form z = k(x), where

x 2 
 and k 2 K. This is the �rst (or \conical") type of polar decomposition of x,

and it generalizes the polar decomposition of matrices. This leads to the formula

Z

Z

f(z)dm(z) =

�

d

�




(

d

r

)

Z




�

Z

K

f(k(x

1

2

)) dk

�

dx (1.11)

which holds for every f 2 L

1

(Z;m). Next, �x a frame e

1

; : : : ; e

r

, and de�ne

R := span

R

fe

j

g

r

j=1

and R

+

:= f

r

X

j=1

t

j

e

j

; t

1

> t

2

> : : : > t

r

> 0g

and

R

r

+

:= ft = (t

1

; : : : t

r

); t

1

> t

2

> : : : > t

r

> 0g:

Then Z = K �R, namely every z 2 Z has a representation z = k(

P

r

j=1

t

j

e

j

) for some

(again, not unique)

P

r

j=1

t

j

e

j

2 R and k 2 K. This representation is the second

type of polar decomposition of z. Moreover, m(Z n K � R

+

) = 0, namely up to a

subset of measure zero, every z 2 Z has a representation z = k(

P

r

j=1

t

1=2

j

e

j

) with

t

1

> t

2

> : : : > t

r

> 0. This leads to the formula

Z

Z

f(z)dm(z) = c

0

Z

R

r

+

0

@

Z

K

f(k(

r

X

j=1

t

1

2

j

e

j

)) dk

1

A

Y

1�i<j�r

(t

i

� t

j

)

a

dt

1

dt

2

: : : dt

r

;

(1.12)

which holds for every f 2 L

1

(Z;m). The constant c

0

will be determined as a by-

product of our work in section 5 below. For convenience, we can write (1.12) in the

form

Z

Z

f(z)dm(z) = c

0

Z

R

r

+

f

#

(t)w(t)

a

dt; (1.13)

where

f

#

(t) :=

Z

K

f(k(

r

X

j=1

t

1

2

j

e

j

)) dk; t = (t

1

; t

2

; : : : ; t

r

) 2 R

r

+

is the radial part of F and

w(t) :=

Y

1�i<j�r

(t

i

� t

j

); t = (t

1

; t

2

; : : : ; t

r

) 2 R

r

+

(1.14)

is the Vandermonde polynomial.

By [Hu], [Be], [La1], [FK1], we have the binomial formula:

Theorem 1.2 For � 2 C we have

N(e� x)

��

=

X

m�0

(�)

m

�

m

(x)

k�

m

k

2

F

; 8x 2 
 \ (e� 
); (1.15)
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220 Arazy and Upmeier

and

h(z; w)

��

=

X

m�0

(�)

m

K

m

(z; w); 8z; w 2 D: (1.16)

The two series converge absolutely, (1.15) converges uniformly on compact subsets of

(�; x) 2 C � (
 \ (e � 
)), and (1.16) converges uniformly on compact subsets of

(�; z; w) 2 C�D �D.

In particular, it follows that for �xed z; w 2 D, the function �! h(z; w)

��

is analytic

in all of C (this can be proved also by showing that h(z; w) 6= 0 for z; w 2 D).

The Wallach set of D, denoted by W(D), is the set of all � 2 C for which the

function (z; w)! h(z; w)

��

is non-negative de�nite in D �D, namely

X

i;j

a

i

a

j

h(z

i

; z

j

)

��

� 0

for all �nite sequences fa

j

g � C and fz

j

g � D. For � 2 W(D) let H

�

be the

completion of the linear span of the functions fh(�; w)

��

; w 2 Dg with respect to the

inner product h�; �i

�

determined by

hh(�; w)

��

; h(�; z)

��

i

�

= h(z; w)

��

; z; w 2 D:

Since h(z; w)

��

is continuous in D � D, it is the reproducing kernel of H

�

. The

transformation rule (1.8) implies that h�; �i

�

is K-invariant, namely hf � k; g � ki

�

=

hf; gi

�

for all f; g 2 H

�

and k 2 K. Thus, by Theorems 1.1 and 1.2, for every

f; g 2 H

�

with Peter-Weyl expansions f =

P

m�0

f

m

, g =

P

m�0

g

m

, we have

hf; gi

�

=

X

m�0

hf

m

; g

m

i

F

(�)

m

: (1.17)

This formula de�nes � 7! hf; gi

�

as a meromorphic function in all of C, whose poles

are contained in the pole set P(D) of �




, see (1.10) and (1.16). Of course, for

� 2 C nW(D) (1.17) is not an inner product, but merely a sesqui-linear form; it is

hermitian precisely when � 2 R.

Using (1.16) and (1.17) one obtains a complete description of the Wallach set

W(D) and the Hilbert spaces H

�

for � 2W(D).

Theorem 1.3 (i) The Wallach set is given by W(D) = W

d

(D) [W

c

(D) where

W

d

(D) := f�

j

= (j � 1)

a

2

; 1 � j � rg is the discrete part, and W

c

(D) :=

(�

r

;1) is the continuous part.

(ii) For � 2 W

c

(D) the polynomials are dense in H

�

and H

�

=

P

m�0

�P

m

as in

Theorem 1.1;

(iii) For 1 � j � r, let S

0

(�

j

) := fm � 0;m

j

= m

j+1

= : : : = m

r

= 0g. Then

H

�

j

=

P

m2S

0

(�

j

)

P

m

and

h(z; w)

��

j

=

X

m2S

0

(�

j

)

(�

j

)

m

K

m

(z; w); z; w 2 D:
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For � 2 C, ' 2 G and a functions f on D, we de�ne

U

(�)

(')f := (f � ') � (J')

�

p

Then, U

(�)

(id

D

) = I and for ';  2 G we have

U

(�)

(' �  ) = c

�

(';  ) U

(�)

( ) U

(�)

(');

where c

�

(';  ) is a unimodular scalar which transforms as a cocycle (projective rep-

resentation of G). In particular, U

(�)

('

�1

) = U

(�)

(')

�1

.

Using (1.8) we see that

J'(z)

�

p

h('(z); '(w))

��

J'(w)

�

p

= h(z; w)

��

; 8z; w 2 D; 8' 2 G:

From this it follows that the hermitian forms h�; �i

�

given by (1.17) are U

(�)

-invariant:

hU

(�)

(')f ; U

(�)

(')g i

�

= hf; gi

�

; 8f; g 2 H

�

; 8' 2 G:

In particular, for � 2 W(D) the inner products h�; �i

�

are U

(�)

-invariant and

U

(�)

('); ' 2 G, are unitary operators on H

�

.

There are other spaces of analytic functions on D which carry U

(�)

-invariant

hermitian forms, some of which are non-negative. For any signaturem and � 2 C let

q(�;m) := deg

�

(�)

m

be the multiplicity of � as a zero of the polynomial � 7! (�)

m

.

Notice that 0 � q(�;m) � r for all � and m. Let

q(�) := maxfq(�;m);m � 0g: (1.18)

Let

P

(�)

:= spanfU

(�)

(')f ; f polynomial ; ' 2 Gg

For 0 � j � q(�) set

S

j

(�) := fm � 0; q(�;m) � jg M

(�)

j

:= ff 2 P

(�)

; f =

X

m2S

j

(�)

f

m

; f

m

2 P

m

g:

(1.19)

The following result is established in [FK1], see also [A1], [O].

Theorem 1.4 Let � 2 C and let 0 � j � q(�).

(i) The spaces M

(�)

j

; 0 � j � q(�), are U

(�)

-invariant,

M

(�)

0

�M

(�)

1

�M

(�)

2

� : : : �M

(�)

q(�)

= P

(�)

; (1.20)

and every non-zero U

(�)

-invariant subspace of P

(�)

is one of the spaces

M

(�)

j

; 0 � j � q(�).

(ii) The quotients M

(�)

j

=M

(�)

j�1

, 1 � j � q(�), are U

(�)

-irreducible.
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(iii) The sesqui-linear forms h�; �i

�;j

on M

(�)

j

, 1 � j � q(�), de�ned for f; g 2 M

(�)

j

by

hf; gi

�;j

:= lim

�!�

(� � �)

j

hf; gi

�

are U

(�)

-invariant and ff 2 M

(�)

j

; hf; gi

�;j

= 0;8g 2M

(�)

j

g =M

(�)

j�1

.

(iv) For f; g 2 M

(�)

j

with Peter-Weyl expansions f =

P

m

f

m

and g =

P

m

g

m

,

we have

hf; gi

�;j

=

X

m2S

j

(�)nS

j�1

(�)

hf

m

; g

m

i

F

(�)

m;j

where

(�)

m;j

:= lim

�!�

(�)

m

(� � �)

j

=

1

j!

(

d

d�

)

j

(�)

m

j�=�

: (1.21)

(v) The forms h�; �i

�;j

are hermitian if and only if � 2 R.

(vi) The quotient M

(�)

j

=M

(�)

j�1

is unitarizable (namely, h�; �i

�;j

is either positive def-

inite or negative de�nite on M

(�)

j

=M

(�)

j�1

) if and only if either: � 2W(D) and

j = 0, or: � 2 P(D), j = q(�), and �

r

� � 2 N.

The sequence (1.20) is called the composition series of P

(�)

.

Definition 1.1 H

�;j

= H

�;j

(D) is the completion of M

(�)

j

=M

(�)

j�1

with respect to

h�; �i

�;j

.

Observe that H

�;0

= H

�

for � 2W(D). Also, q(�) > 0 if and only if � 2 P(D).

The main objective of this work is to provide natural integral formulas for the

U

(�)

-invariant hermitian forms h�; �i

�;j

, with special emphasis on the case where the

forms are de�nite, namely the case whereH

�;j

is a U

(�)

-invariant Hilbert space. These

integral formulas provide a characterization of the membership in the spaces H

�;j

in

terms of �niteness of some weighted L

2

-norms of the functions or of some of their

derivatives. We discuss now some examples which motivate our study.

The weighted Bergman spaces: It is known [FK1] that for � 2 R the integral c(�)

�1

:=

R

D

h(z; z)

��p

dm(z) is �nite if and only if � > p� 1, and in this case

c(�) =

�




(�)

�

d

�




(��

d

r

)

: (1.22)

For � > p� 1 we consider the probability measure

d�

�

(z) := c(�)h(z; z)

��p

dm(z) (1.23)

on D. The weighted Bergman space L

2

a

(D;�

�

) consists of all analytic functions in

L

2

(D;�

�

). Using (1.8) one obtains the transformation rule of �

�

under composition

with ' 2 G:

d�

�

('(z)) = jJ'(z)j

2�

p

d�

�

(z):
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(The same argument yields the invariance of the measure d�

0

(z) := h(z; z)

�p

dm(z)).

From this it follows that the operators U

(�)

(') are isometries of L

2

(D;�

�

) which leave

L

2

a

(D;�

�

) invariant. It is easy to verify that point evaluations are continuous linear

functionals on L

2

a

(D;�

�

) and that the reproducing kernel of L

2

a

(D;�

�

) is h(z; w)

��

.

(For w = 0 this is trivial, and the general case follows by invariance.) It follows that

H

�

= L

2

a

(D;�

�

).

The Hardy space: The Shilov boundary S of a general Cartan domain D is the set of

all maximal tripotents in Z. S is invariant and irreducible under both of G and K.

Let � be the unique K-invariant probability measure on S, de�ned via

Z

S

f(�) d�(�) :=

Z

K

f(k(e)) dk:

The Hardy space H

2

(S) is the space of all analytic functions f on D for which

kfk

2

H

2

(S)

:= lim

�!1�

Z

S

jf(��)j

2

d�(�)

is �nite. The polynomials are dense in H

2

(S) and every f 2 H

2

(S) has radial

limits

~

f(�) := lim

�!1�

f(��) at �-almost every � 2 S. Moreover, for f 2 H

2

(S),

kfk

H

2

(S)

= k

~

fk

L

2

(S;�)

. This identi�es H

2

(S) as the closed subspace of L

2

(S; �)

consisting of those functions f 2 L

2

(S; �) which extend analytically to D by means of

the Poisson integral. Again, the point evaluations f 7! f(z); z 2 D, are continuous

linear functionals on H

2

(S). The corresponding reproducing kernel is called the Szeg�o

kernel and is given (as a function on S) by S

z

(�) = S(�; z) := h(�; z)

�d=r

. See [Hu],

[FK1]. This non-trivial fact implies that H

d=r

= H

2

(S). The transformation rule of

the measure � under the automorphisms ' 2 G is

d�('(�)) = jJ'(�)j d�(�):

Hence, U

(d=r)

(')f = (f � ') (J')

1=2

, ' 2 G, are isometries of L

2

(S; �) which leave

H

2

(S) invariant.

The Dirichlet space: The classical Dirichlet space B

2

consists of those analytic func-

tions f on the open unit disk D � C for which the Dirichlet integral

kfk

2

B

2

:=

Z

D

jf

0

(z)j

2

dA(z) (1.24)

is �nite. Here dA(z) :=

1

�

dx dy. Clearly, B

2

is a Hilbert space modulo constant

functions, and kf � 'k

B

2

= kfk

B

2

for every f 2 B

2

and ' 2 Aut(D). Thus, B

2

is

U

(0)

-invariant. The composition series corresponding to � = �

1

= 0 is C1 =M

(0)

0

�

M

(0)

1

= P

(0)

. Hence B

2

= H

0;1

(D). The inner product in B

2

can be computed also

via integration on the boundary T := @D (which coincides with the Shilov boundary

in this simple case):

hf; gi

B

2

=

1

2�

Z

T

�f

0

(�) g(�) jd�j: (1.25)

Motivated by this example we call the spaces H

0;q(0)

for a general Cartan domain

D the (generalized) Dirichlet space of D. The paper [A2] provides integral formulas
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generalizing (1.24) and (1.25) for the norms in H

�;q(�)

for � 2W

d

(D), in the context

of a Cartan domain of tube type (in [A1] these formulas are extended to all � 2 P(D)).

Formula (1.24) says that f 2 B

2

= H

0;1

if and only if f

0

2 H

2

. Namely, di�erentiation

\shifts" the space corresponding to � = 0 to the one corresponding to � = 2. This

shifting technique is developed in [Y3] in order to get integral formulas for the inner

products in certain spaces H

�

with � � p � 1. The general idea is to obtain such

integral formulas via \partial integration in the radial directions", see [Ri], [Go], and

[FK2], Chapter VII. (For the open unit ball of C

d

, the simplest (i.e. rank-one) non-

tube Cartan domain, cf. [A3], [Pel]).

Finally, we describe the relationship between the invariant inner product and the

Riesz distribution. The Riesz distribution was introduced in [Ri] for the Lorentz

cone, i.e. the symmetric cone associated with the Cartan domain of type IV (the \Lie

ball"). It was studied in [Go] for the cone of symmetric, positive de�nite real matrices

(associated with the Cartan domain of type III) and for a general symmetric cone in

[FK2], chapter VII. Let 
 be the symmetric cone associated with the Cartan domain

of tube type D. For � 2 C with <� > (r� 1)

a

2

let R

�

be the linear functional on the

Schwartz space S(X) of X de�ned via

R

�

(f) :=

1

�




(�)

Z




f(x)N(x)

��

d

r

dx:

Then R

�

is a tempered distribution satisfying @

N

R

�

= R

��1

; R

�

?R

�

= R

�+�

; R

0

=

�; i.e. R

1

is the fundamental solution for the \wave operator" @

N

:= N(

@

@x

). These

formulas permit analytic continuation of � 7! R

�

to an entire meromorphic function.

It is very interesting to �nd the explicit description of the action of R

�

for general �,

but this is still open. What is known is that the Riesz distribution R

�

is represented

by a positive measure if and only if � 2W (D).

Writing the inner products h�; �i

�

in conical polar coordinates (1.11), we get for

� > p� 1

hf; gi

�

=

�




(�)

�




(

d

r

) �




(��

d

r

)

Z


\(e�
)

(fg)

~

(x) N(e� x)

��p

dx; 8f; g 2 H

�

(D);

where (f�g)

~

(x) :=

R

K

f(k(x

1

2

)) g(k(x

1

2

)) dk. Thus

hf; gi

�

=

�




(�)

�




(

d

r

)

�

R

��

d

r

? (f�g)

~

�

(e);

where the convolution of functions u and v on 
 is

(u ? v)(x) :=

Z


\(x�
)

u(y) v(x� y) dy:

Also, the inner product h�; �i

�

, � > p � 1, in the context of the tube domain

T (
) := X + i
 (holomorphically equivalent to D) is

hf; gi

�

:= c(�)

Z




�

Z

X

f(x+ iy) g(x+ iy) dx

�

N(2y)

��p

dy:
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See section 6 for the details. Thus

hf; gi

�

= �

�d

2

��p

�




(�) R

��

d

r

�

(f �g)

[

�

;

where (f �g)

[

)(y) :=

R

X

f(x+ iy) g(x+ iy) dx; y 2 
.

In view of these formulas the problem of obtaining an explicit description of

the analytic continuation of the maps � 7! hf; gi

�

is equivalent to the problem of

determining the analytic continuation of the maps � 7! R

��

d

r

(u).

2 G(
)-invariant differential operators

Let 
 be the symmetric cone associated with the Cartan domain of tube type D,

i.e. the interior of the cone of squares in the Euclidean Jordan algebra X . In this

section we study G(
)-invariant di�erential operators that will be used later for the

invariant inner products. The ring Di�(
)

G(
)

of G(
)-invariant di�erential opera-

tors is a (commutative) polynomial ring C[X

1

; X

2

; : : : ; X

r

], [He], [FK2]. By [FK2],

Proposition IX.1.1, 
 is a set of uniqueness for analytic functions on Z (namely, if

an analytic function on Z vanishes identically on 
, it vanishes identically on Z).

Similarly, 
 \ D = 
 \ (e � 
) is a set of uniqueness for analytic functions on D.

Thus, if f; g and q are polynomials on Z so that @

f

(g)(x) = f(

d

dx

)g(x) = q(x) for

every x 2 
, then @

f

(g)(z) = f(

@

@z

)g(z) = q(z) for every z 2 Z. We begin with the

following known result [FK2], Proposition VII.1.6.

Lemma 2.1 For every s = (s

1

; s

2

; : : : ; s

r

) 2 C

r

and ` 2 N, we have

N

`

(

d

dx

)N

s

(x) = �

s

(`) N

s�`

(x); 8x 2 
;

where

�

s

(`) :=

(

d

r

)

s

(

d

r

)

s�`

=

�




(s+

d

r

)

�




(s+

d

r

� `)

=

r

Y

j=1

`�1

Y

�=0

(s

j

� � + (r � j)

a

2

);

and

�




(s)N(

d

dx

)N

s

(x

�1

) = (�1)

r

�




(s+ 1) N

s+1

(x

�1

):

Let N

�

j

be the norm polynomial of the JB

�

-subalgebra V

j

:=

P

r�j+1�j�k�r

Z

i;k

,

where Z

i;k

are the Peirce subspaces of Z associated with the �xed frame fe

j

g

r

j=1

. For

every s = (s

1

; : : : ; s

r

) 2 C

r

let

N

�

s

(x) := N

�

1

(x)

s

1

�s

2

N

�

2

(x)

s

2

�s

3

: : : N

�

r

(x)

s

r

; x 2 
;

and

s

�

:= (s

r

; s

r�1

; s

r�2

; : : : ; s

1

):

Then we have N

s

(x

�1

) = N

�

�s

�

(x) for x 2 
, [FK2],Proposition VII.1.5.

Definition 2.1 For ` 2 N and � 2 C let D

`

(�) be the operator on C

1

(
) de�ned

by

D

`

(�) = N

d

r

��

(x)N

`

(

d

dx

)N

`+��

d

r

(x): (2.1)
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In the special case of the Cartan domain of type II the operators D

1

(�) have been

considered by Selberg (see [T], p.208). The operators D

`

(�) were studied in full

generality in [Y3], see also [FK2], Chapter XIV. Notice that by Lemma 2.1 we have

D

`

(�)N

s

=

�




(s+ �+ `)

�




(s+ �)

N

s

: (2.2)

In section 4 below we will extend D

`

(�) to a polynomial di�erential operator on

Z, i.e. D

`

(�) = Q

`;�

(z;

@

@z

) for some polynomial Q

`;�

.

Lemma 2.2 The operator D

`

(�) is K-invariant, i.e.

D

`

(�)(f � k) = (D

`

(�)f) � k 8f 2 C

1

(
); 8k 2 K:

Proof: We have N(kz) = �(k)N(z) for every z 2 Z. Since the operator @

N

= N(

@

@z

)

is the adjoint of the operator of multiplication by N with respect to the inner product

h�; �i

F

, K-invariance of h�; �i

F

implies @

N

(f � k) = �(k)(@

N

f) � k: It follows that

D

`

(�)(f(kz)) = �(k)

`+��

d

r

N(z)

d

r

��

N

`

(

@

@z

)

�

N

`+��

d

r

(kz)f(kz)

�

= �(k)

`+��

d

r

N(z)

d

r

��

�(k)

`

�

N

`

(

@

@z

)(N

`+��

d

r

f)

�

(kz)

= N

d

r

��

(kz)

�

N

`

(

@

@z

)(N

`+��

d

r

f)

�

(kz) = (D

`

(�)f)(kz):

Using (2.2) and the fact that 
 \D = 
 \ (e� 
) is a set of uniqueness for analytic

functions on D, we obtain the following result.

Corollary 2.1 The spaces P

m

are eigenspaces of D

`

(�) with eigenvalues

�

`;m

(�) :=

�




(m+ �+ `)

�




(m+ �)

: (2.3)

Thus for every analytic function f on D with Peter-Weyl expansion f =

P

m�0

f

m

,

D

`

(�)f =

X

m�0

�




(m+ �+ `)

�




(m+ �)

f

m

= (�)

(`;`;:::;`)

X

m�0

(�+ `)

m

(�)

m

f

m

: (2.4)

Indeed, for every signature m and every k 2 K,

D

`

(�)(N

m

� k) = (D

`

(�)N

m

) � k =

�




(m+ �+ `)

�




(m+ �)

N

m

� k:

Since P

m

= spanfN

m

� k; k 2 Kg, (2.4) follows from the continuity of D

`

(�) with

respect to the topology of compact convergence on D.

Corollary 2.2 Let � 2 C nP(D), ` 2 N, and w 2 D. Then

D

`

(�)h(�; w)

��

= (�)

(`;`;:::;`)

h(�; w)

�(�+`)

: (2.5)
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Proof: Using (1.16) and Corollary 2.2, we get

D

`

(�)h(�; w)

��

=

X

m�0

(�)

m

D

`

(�)K

m

(�; w)

= (�)

(`;:::;`)

X

m�0

(�)

m

(�+ `)

m

(�)

m

K

m

(�; w)

= (�)

(`;:::;`)

X

m�0

(�+ `)

m

K

m

(�; w) = (�)

(`;:::;`)

h(�; w)

�(�+`)

:

Notice that the assumption that � is not in P(D) is used in the above proof to ensure

that (�)

m

6= 0 for every m � 0. This is due to the fact that the zero set of the

polynomial (�)

m

is

Z((�)

m

) = [

r

j=1

f�

j

� k; k = 0; 1; : : : ;m

j

� 1g; (2.6)

while P(D) = [

r

j=1

(�

j

�N) = [

m�0

Z((�)

m

). Similarly, for each m � 0 the zero

set of the polynomial de�ned by (2.3) is given by

Z(�

`;m

(�)) = [

r

j=1

f�

j

� k; m

j

� k � m

j

+ `� 1g: (2.7)

The multiplicities of the zeros are equal to the number of their appearances on the

right hand side of (2.7).

Corollary 2.3 Let � 2 C, ` 2 N be so that fm � 0; (�)

m

= 0g � fm � 0; (� +

`)

m

= 0g. Then (2.5) holds.

Proof: Notice �rst that (�)

(`;`;:::;`)

(� + `)

m

= (�)

m+`

for all � 2 C, ` 2 N, and

m � 0. Hence, using the fact that fm; (�+ `)

m

6= 0g � fm; (�)

m

6= 0g, we get for

every w 2 D

D

`

(�)h(�; w)

��

= D

`

(�)

X

(�)

m

6=0

(�)

m

K

m

(�; w)

= (�)

(`;`;:::;`)

X

(�)

m

6=0

(�+ `)

m

K

m

(�; w)

= (�)

(`;:::;`)

X

(�+`)

m

6=0

(�+ `)

m

K

m

(�; w)

= (�)

(`;:::;`)

h(�; w)

�(�+`)

:

For � 2 P(D) let q = q(�) be as in (1.18), and for 0 � j � q consider S

j

(�) and

M

(�)

j

as in (1.19).

Lemma 2.3 Let �, and q = q(�) be as above, and choose an integer ` so that �+ ` �

d

r

= �

r

+ 1: Then

(i) deg

�

((�)

(`;`;:::;`)

) = q.
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(ii) For every j = 0; 1; 2; : : : ; q and every m 2 S

j

(�) n S

j�1

(�), deg

�

(�

`;m

) = q � j.

(iii) If 0 � j � q and m 2 S

j�1

(�), then deg

�

(�

`;m

) � q � j + 1.

Proof: Using (2.6) it is clear that

q(�;m) = q , �

j

�m

j

+ 1 � � 8j , �

r

�m

r

+ 1 � �:

Since �

r

+1 � �+`, we see thatm = (`; `; : : : ; `) satis�es the above condition, namely

deg

�

((�)

(`;:::;`)

) = q(�; (`; : : : ; `)) = q. This establishes (i). Next, m 2 S

(�)

j

n S

(�)

j�1

is

equivalent to q(�;m) = j. By the argument given above, q(�;m+ `) = q. Since

deg

�

(f=g) = deg

�

(f)� deg

�

(g), we get

deg

�

(�

`;m

) = deg

�

�

(�)

m+`

(�)

m

�

=

= deg

�

((�)

m+`

)� deg

�

((�)

m

) = q(�;m+ `)� q(�;m) = q � j:

This yields (ii). Finally, (iii) follows by similar computations.

Let � 2 P(D), ` 2 N, and q = q(�) as above. For every m � 0 and � 2 N we

de�ne

�

�

`;m

(�) :=

1

�!

(

@

@�

)

�

�

`;m

(�)

j�=�

:

Using Lemma 2.3 (ii), we have

Corollary 2.4 (i) If m 2 S

j

(�) n S

j�1

(�) then

�

q�j

`;m

(�) =

r

Y

i=1

0

Y

m

i

+`�1

k=m

i

(�+ k � �

i

);

where the product

Q

0

m

j

+`�1

k=m

j

ranges over all non-zero terms. In particular,

�

q�j

`;m

(�) 6= 0.

(ii) If m 2 S

j�1

(�) then �

q�j

`;m

(�) = 0.

Definition 2.2 For � 2 C and �; ` 2 N let D

�

`

(�) be the operator on C

1

(D) de�ned

by

D

�

`

(�)f :=

1

�!

(

@

@�

)

�

(D

`

(�)f)

j�=�

: (2.8)

Notice that if f =

P

m�0

f

m

is analytic in D, then D

�

`

(�)f :=

P

m�0

�

�

`;m

(�) f

m

:

By [FK2], Chapter VI the group G(
) admits an Iwasawa decomposition G(
) =

NAL, where L is the group de�ned via (1.6), and NA is a maximal solvable subgroup

of G(
) (called the triangular subgroup with respect to the frame fe

i

g

r

i=1

) which acts

simply transitively on 
 and for which all the conical functions N

s

, s 2 C

r

, are

eigenfunctions:

N

s

(�(x)) = N

s

(�(e))N

s

(x); 8� 2 NA; 8x 2 
: (2.9)

Documenta Mathematica 2 (1997) 213{261



Invariant Inner Products 229

Lemma 2.4 The operators D

`

(�) are G(
)-invariant, i.e. D

`

(�)(f �') = (D

`

(�)f) �

'; 8f 2 C

1

(
); 8' 2 G(
).

Proof: By the L-invariance of D

`

(�) (see Lemma 2.2) it is enough to verify the

NA-invariance of D

`

(�) for functions f of the form f = N

s

� ` for some s 2 C

r

and

` 2 L. Let � 2 NA, and decompose ` � � uniquely as ` � � = �

0

� `

0

with �

0

2 NA and

`

0

2 L. Then, using (2.2) and (2.9), we get

D

`

(�)(f � �) = D

`

(�)(N

s

� ` � �) = D

`

(�)(N

s

� �

0

� `

0

)

= (D

`

(�)(N

s

� �

0

)) � `

0

= N

s

(�

0

(e))(D

`

(�)N

s

) � `

0

= N

s

(�

0

(e))

�




(s+ �+ `)

�




(s+ �)

N

s

� `

0

=

�




(s+ �+ `)

�




(s+ �)

N

s

� �

0

� `

0

=

�




(s+ �+ `)

�




(s+ �)

N

s

� ` � � =

�




(s+ �+ `)

�




(s+ �)

f � �

= (D

`

(�)f) � �:

Corollary 2.5 The operators D

�

`

(�) are G(
)-invariant.

3 Integral formulas via the shifting method

In this section we develop general shifting techniques (introduced in [Y3], for the case

of integer shifts). The simplest case where this technique is applied is the case of the

Dirichlet space D = H

0;1

over the unit disk D (see Section 2). For any � 2 C and

� 2 C nP(D) we de�ne an operator S

�;�

on H(D) via

S

�;�

(

X

m�0

f

m

) :=

X

m�0

(�)

m

(�)

m

f

m

:

Theorem 5 of [A4] and the known estimate

(x)

m

(y)

m

�

r

Y

j=1

(m

j

+ 1)

x�y

; 8x; y 2 R

(an easy consequence of (1.9) and Stirling's formula) ensures that S

�;�

is continuous

on H(D). For � 2 P(D) we de�ne operators S

�;�;j

, 0 � j � q(�), on the space of

analytic functions on D of the form f =

P

m2S

j

(�)

f

m

by

S

�;�;j

f := lim

�!�

(� � �)

j

S

�;�

f =

X

m2S

j

(�)nS

j�1

(�)

(�)

m

(�)

m;j

f

m

;

where (�)

m;j

are de�ned by (1.21). Again, S

�;�;j

is continuous in the topology of

H(D). Also, S

�;�;0

= S

�;�

:
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Proposition 3.1 Let �; � > (r � 1)

a

2

. Then hf; gi

�

= hS

�;�

f; gi

�

for every f; g 2

H

�

.

Proof: By (1.17) the operator S

1

2

�;�

: H

�

! H

�

de�ned by

S

1

2

�;�

(

X

m�0

f

m

) :=

X

m�0

�

(�)

m

(�)

m

�

1

2

f

m

is a surjective isometry, and kfk

2

�

= kS

1

2

�;�

fk

2

�

= hS

�;�

f; fi

�

: Now the result follows

by polarization.

In a similar way one proves the following result.

Proposition 3.2 Let � > (r � 1)

a

2

and let � 2 P(D). Then for every 0 � j � q(�)

and all f; g 2 H

�;j

,

hf; gi

�;j

= hS

�;�;j

f; gi

�

: (3.1)

The operators S

�;�;j

allow the computation of the invariant hermitian forms

hf; gi

�;j

by \shifting" the point � to the point �. This is the \shifting method". One

typically chooses either � =

d

r

or � > p � 1, so the forms hf; gi

�;j

can be computed

by the integral-type inner products of H

2

(D) or L

2

a

(D;�

�

). In order for the shifting

method to be useful, one has to identify the operators S

�;�;j

as di�erential or pseudo-

di�erential operators. Essentially, this is our aim in the rest of the paper. Yan's paper

[Y3] deals with the case where ` := �� � is a su�ciently large natural number. The

following result is a minor generalization of a result of [Y3].

Theorem 3.1 Let � > �

r

=

d

r

� 1 and let ` 2 N. Then for all f; g 2 H

�

hf; gi

�

= �(�; `)hD

`

(�)f; gi

�+`

; (3.2)

where

�(�; `) =

�




(�)

�




(� + `)

=

1

(�)

(`;`;:::;`)

:

We include a short proof for the sake of completeness.

Proof: Let f; g 2 H

�

with expansions f =

P

m�0

f

m

and g =

P

m�0

g

m

respectively.

Then

hD

`

(�)f; gi

�+`

=

X

m�0

�

`;m

(�)

(�+ `)

m

hf

m

; g

m

i

F

=

�




(�+ `)

�




(�)

X

m�0

hf

m

; g

m

i

F

(�)

m

= �(�; `)

�1

hf; gi

�

:

Corollary 3.1 Let � > �

r

=

d

r

� 1, and ` 2 N be so that � + ` > p � 1. Then

H

�+`

= L

2

a

(D;�

�+`

), and for every f; g 2 L

2

a

(D;�

�+`

),

hf; gi

�

= �(�; `) c(�+ `)

Z

D

(D

`

(�)f)(z) g(z) h(z; z)

�+`�p

dm(z):
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Our main result in this section is a generalization of both Theorem 3.1 and the

other results of [Y3] to the case of invariant hermitian forms associated with the pole

set P(D) = [

r

j=1

(�

j

� N). Since W(D) � P(D), this covers cases not studied in

[A1].

Theorem 3.2 Let � 2 P(D), ` 2 N and assume that � + ` �

d

r

= �

r

+ 1. Let

q = q(�), 0 � j � q, and � = q � j. Then for all f; g 2 H

�;j

,

hf; gi

�;j

= 
hD

�

`

(�)f; gi

�+`

; (3.3)

where 
 = 
(�; `) is the non-zero constant


 :=

1

q!

(

@

@�

)

q

�

(�)

(`;`;:::;`)

�

j�=�

: (3.4)

In particular, if �+ ` > p� 1, then

hf; gi

�;j

= 
 c(�+ `)

Z

D

(D

�

`

(�)f)(z) g(z) dm(z): (3.5)

Moreover, if �

r

� � 2 N and ` is chosen so that �+ ` =

d

r

= �

r

+ 1, then

hf; gi

�;j

= 


Z

S

(D

�

`

(�)f)(�) g(�) d�(�): (3.6)

We shall also give a new proof of the following known result (see [FK1], Theorem

5.3) and of a part of Theorem 1.4 above, based on our analysis of the structure of

zeros of the polynomials (�)

m

. Recall that H

�;j

is said to be unitarizable if h�; �i

�;j

is

either positive de�nite or negative de�nite.

Theorem 3.3 Let �; `; q, and j be as in Theorem 3.2. Then H

�;j

is unitarizable if

and only if either

(a) j = q and �

r

� � 2 N, or

(b) j = 0 and � 2W

d

(D) = f�

j

g

r

j=1

.

For the proof of Theorems 3.2 and 3.3 we consider separately the cases j = 0,

j = q, and 1 � j � q � 1.

Case 1: j = 0. Since � 2 P(D), there is a smallest k 2 f1; 2; : : : ; rg and a unique

s 2 N so that � = �

k

� s. We claim that S

0

(�) = fm � 0;m

k

� sg. Indeed,

if m � 0, then

Q

k�1

i=1

Q

m

i

�1

�=0

(� + � � �

i

) 6= 0, by the minimality of k. The term

Q

m

k

�1

�=0

(� + � � �

k

) =

Q

m

k

�1

�=0

(� � s) is non-zero if and only if m

k

� s. If m

k

� s

and k < n � r then

m

k

�1

Y

�=0

(�+ � � �

k

) =

m

k

�1

Y

�=0

((�

k

� �

n

) + (� � s)) 6= 0
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because m

n

� m

k

� s. This establishes the claim. Notice that since �+ ` � �

r

+ 1,

we have (� + `)

m

> 0 for any m � 0. Also, deg

�

((�)

(`;`;:::;`)

) = q by Lemma 2.3. It

follows that for m 2 S

0

(�), deg

�

(�

`;m

) = q, and

�

q

`;m

(�) =

1

q!

(

@

@�

)

q

�

`;m

(�)

j�=�

=

1

q!

(

@

@�

)

q

�

(� + `)

m

(�)

m

(�)

(`;`;:::;`)

�

j�=�

=

(�+ `)

m

(�)

m

1

q!

(

@

@�

)

q

(�)

(`;`;:::;`)

j�=�

= 


(�+ `)

m

(�)

m

:

Hence, for f; g 2 H

�;0

,

hD

q

`

(�)f; gi

�+`

=

X

m2S

0

(�)

�

q

`;m

(�)

hf

m

; g

m

i

F

(�+ `)

m

= 


X

m2S

0

(�)

hf

m

; g

m

i

F

(�)

m

= 
hf; gi

�;0

:

This proves Theorem 3.2 in case j = 0. If � 2 W

d

(D), i.e. � = �

k

and s = 0,

then (�)

m

> 0 for every m 2 S

0

(�), namely 0 = m

k

= m

k+1

= � � � = m

r

. If

� 2 P(D) nW

d

(D), then � = �

k

� s with 1 � s. In this case (�)

m

assumes both

positive and negative values as m ranges over S

0

(�). Indeed, if m and n are de�ned

by m

i

= n

i

= 0 for 1 � i � k � 1 and k < i � r, and m

k

= 0, n

k

= s� 1, then (�)

m

and (�)

n

have di�erent signs. Thus h�; �i

�;0

is not de�nite (positive or negative), and

thus H

�;0

is not unitarizable. This proves Theorem 3.3 in case j = 0.

Case 2: j = q. In this case � = q � j = 0. Also, Lemma 2.3 yields deg

�

(�

`;m

) = 0

if m 2 S

q

(�) and deg

�

(�

`;m

) � 1 if m 2 S

q�1

(�). It follows that for f; g 2 H

�;q

,

hD

`

(�)f; gi

�+`

=

X

m2S

q

(�)

�

`;m

(�)

hf

m

; g

m

i

F

(� + `)

m

:

Now,

�

`;m

(�) = lim

�!�

(� + `)

m

(�)

m

(�)

(`;`;:::;`)

= (� + `)

m

lim

�!�

(�)

(`;`;:::;`)

(�)

m

= 


(�+ `)

m

(�)

m;q

;

where 
 is the non-zero constant de�ned in (3.4). It follows that

hD

`

(�)f; gi

�+`

= 


X

m2S

q

(�)

hf

m

; g

m

i

F

(�)

m;q

= 
hf; gi

�;q

:

This proves Theorem 3.2 in case j = q. To prove Theorem 3.3 in this case, assume

�rst that � = �

r

� s for some s 2 N. We claim now that

S

q

(�) n S

q�1

(�) = fm � 0;m

r

� s+ 1g: (3.7)

Indeed, if m

r

� s + 1 then

Q

m

r

�1

u=0

(� + u � �

r

) = 0. If � 2 �

i

� N, then

Q

m

i

�1

u=0

(�+u��

r

) = 0 because m

i

� m

r

� s+1. Thus deg

�

((�)

m

) = q. Conversely,
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if deg

�

((�)

m

) = q, then in order that

Q

m

r

�1

u=0

(� + u � �

r

) = 0 it is necessary that

s � m

r

� 1. This establishes (3.7).

Next, let m 2 S

q

(�), and let 1 � i � r be so that � 2 �

i

�N, say � = �

i

� k

i

.

Then

lim

�!�

(� � �)

�1

m

i

�1

Y

u=0

(� + u� �

i

) =

k

i

�1

Y

u=0

(�+ u� �

i

)

m

i

�1

Y

u=k

i

+1

(�+ u� �

i

) = 


i;m

�

i

with �

i

6= 0 and 


i;m

> 0. If � =2 �

i

�N we let �

i

=

Q

u<�

i

��

(� + u� �

i

) 6= 0 and




i;m

=

Q

u>�

i

��

(�+ u� �

i

) > 0. Then

(�)

m;q

= lim

�!�

(�)

m

(� � �)

q

=

r

Y

i=1




i;m

�

i

:

Hence, all the numbers f(�)

m;q

g

m2S

q

(�)

have constant sign (equal to sgn(

Q

r

i=1

�

i

)),

and thus H

�;q

is unitarizable. Assume now that � =2 �

r

�N. Then, necessarily, the

characteristic multiplicity a is odd and � 2 �

r�1

�N. Writing � = �

r�1

� s, s 2 N,

it is clear by the above arguments that

S

q

(�) n S

q�1

(�) = fm � 0; m

r�1

� s+ 1g:

Letm = (s+1; s+1; : : : ; s+1; 1) and n = (s+1; s+1; : : : ; s+1; 0). Thenm;n 2 S

q

(�)

and (�)

m;q

= (���

r

)(�)

n;q

. Thus (�)

m;q

and (�)

n;q

have di�erent signs, and so H

�;q

is not unitarizable. This proves Theorem 3.3 in case j = q.

Case 3: 1 � j � q� 1. Put � = q � j. As before, ` 2 N is chosen so that � + ` �

�

r

+1, and this guarantees that deg

�

((�)

m+`

) = q and (�+ `)

m

> 0 for all signatures

m � 0. Let f; g 2 H

�;j

. Then

hD

�

`

(�)f; gi

�+`

=

X

m2S

j

(�)

�

�

`;m

(�)

hf

m

; g

m

i

F

(�+ `)

m

:

If m 2 S

j

(�) n S

j�1

(�), then

deg

�

(�

`;m

) = deg

�

�

(�)

m+`

(�)

m

�

= q � j = �:

Thus,

�

�

`;m

(�) = lim

�!�

�

`;m

(�)

(� � �)

�

= lim

�!�

(� + `)

m

(� � �)

�q

(�)

(`;`;:::;`)

(� � �)

�j

(�)

m

= 


(�+ `)

m

(�)

m;j

:

If m 2 S

j�1

(�), then deg

�

(�

`;m

) � q � j + 1 = � + 1, and so �

�

`;m

(�) = 0. Thus

hD

�

`

(�)f; gi

�+`

= 


X

m2S

j

(�)nS

j�1

(�)

(�+ `)

m

(�)

m;j

hf

m

; g

m

i

F

(�+ `)

m

= 


X

m2S

j

(�)nS

j�1

(�)

hf

m

; g

m

i

F

(�)

m;j

= 
hf; gi

�;j

:
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This proves Theorem 3.2 in case 1 � j � q � 1. To prove Theorem 3.3 in this case

we need to show that as m varies in S

j

(�) n S

j�1

(�), (�)

m;j

assumes both positive

and negative values. Notice �rst that there exists a unique pair (k; s) of integers with

1 � k < s � r so that �

k

� � and �

s

� � are positive integers and

m 2 S

j

(�) n S

j�1

(�) () m

k

� �

k

� �+ 1 and m

s

� �

s

� �:

In fact, s = k + 1 if the characteristic multiplicity a is even, and s = k + 2 if a is

odd. Next, �

s

� � = �

k

� � + (s� k)

a

2

� 1. De�ne m, n by m

i

= n

i

= �

k

� � + 1

if 1 � i � k, m

i

= n

i

= 0 if k + 2 � i � r, and m

k+1

= 0, n

k+1

= 1. Then

m;n 2 S

j

(�) n S

j�1

(�) and (�)

n;j

= (�)

m;j

(� � �

s

). Thus (�)

n;j

and (�)

m;j

have

di�erent signs, and so H

�;j

is not unitarizable. This proves Theorem 3.3 in case

1 � j � q � 1.

A special case of Theorem 3.2 is the following essentially known result.

Corollary 3.2 Let � 2 P(D) be so that s = s(�) :=

d

r

� � 2 N. Then

(i) H

�;q

is unitarizable, and

hf; gi

�;q

= 


Z

S

N

s

(�)(@

s

N

f)(�) g(�) d�(�); 8f; g 2 H

�;q

:

Thus, an analytic function f on D belongs to H

�;q

if and only if (N

s

@

s

N

)

1=2

f 2

H

2

(S).

(ii) Moreover, if ` 2 N is chosen so that �+ ` > p� 1, then

hf; gi

�;q

= 


0

Z

D

(D

`

(�)f)(z) g(z) h(z; z)

�+`�p

dm(z); 8f; g 2 H

�;q

:

Consequently, an analytic function f on D belongs to H

�;q

if and only if

(D

`

(�))

1=2

f 2 L

2

a

(D;�

�+`

).

In the last statement (D

`

(�))

1=2

is the positive square root of the positive operator

D

`

(�), see Corollary 2.1 Indeed, part (i) follows from Theorem 3.2 with j = q, � =

q � j = 0, ` = s and D

s

(�) = N

s

@

s

N

. In this case H

�+s

= H d

r

is the Hardy space

H

2

(S) on the Shilov boundary S. Corollary 3.2 (i) for � 2 W

d

(D) was proved in

[A2]. The proof of part (ii) is similar.

The case where � 2 P(D) and s :=

d

r

� � 2 N (i.e. the highest quotient of the

composition series of U

(�)

-invariant spaces is unitarizable) is of particular interest.

Theorem 3.4 Let � 2 P(D) and assume that s :=

d

r

� � 2 N. Then, for each

' 2 Aut(D) and f 2 H(D)

@

s

N

(U

(�)

(')f) = U

(p��)

(')(@

s

N

f): (3.8)

Namely, the operator @

s

N

intertwines the actions U

(�)

and U

(p��)

of Aut(D). More-

over,

hf; gi

�;q

= c

1

h@

s

N

f; @

s

N

gi

p��

; 8f; g 2 H

�;q

; (3.9)
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where

c

�1

1

:= (

d

r

)

(s;s;:::;s)

r

Y

j=1

0

Y

s�1

u=0

(�+ u� �

j

); (3.10)

and the product

Q

0

s�1

u=0

ranges over all non-zero terms. In particular, if � < 1, then

hf; gi

�;q

= c

1

c(p� �)

Z

D

(@

s

N

f)(z) (@

s

N

g)(z) h(z; z)

��

dm(z); 8f; g 2 H

�;q

: (3.11)

Proof: (3.8) is proved in [A1], Theorem 6.4. For the proof of (3.9) and (3.11) we

de�ne an inner product on the polynomials modulo M

(�)

q�1

by

[f; g] := h@

s

N

f; @

s

N

gi

p��

; f; g 2 H

�;q

:

We claim that [�; �] is U

(�)

-invariant. Indeed, using (3.8) we see that for every ' 2

Aut(D) and polynomials f and g,

[U

(�)

(')f; U

(�)

(')g] = h@

s

N

(U

(�)

(')f); @

s

N

(U

(�)

(')g)i

p��

= hU

(p��)

(')(@

s

N

f); U

(p��)

(')(@

s

N

g)i

p��

= h@

s

N

f; @

s

N

gi

p��

= [f; g]:

Since polynomials are dense in H

�;q

, the fact that its inner product is the unique

U

(�)

-invariant inner product (see [AF], [A1]) implies that

hf; gi

�;q

= c

1

[f; g]; 8f; g 2 H

�;q

:

The value (3.10) of c

1

is found by taking f = g = N

s

, and using the facts that

hN

s

; N

s

i

F

= (

d

r

)

(s;s;:::;s)

, [N

s

; N

s

] = (@

s

N

N

s

)

2

= hN

s

; N

s

i

2

F

, and

hN

s

; N

s

i

�;q

= lim

�!�

(� � �)

q

hN

s

; N

s

i

F

(�)

(s;s:::;s)

=

hN

s

; N

s

i

F

Q

r

j=1

Q

0

s�1

u=0

(�+ u� �

j

)

:

Example: In the special case where � = 0 and s :=

d

r

2 N, H

0;q

is the generalized

Dirichlet space, and formula (3.11) is the generalized Dirichlet inner product

hf; gi

0;q

= c

1

c(p� �)

Z

D

(@

s

N

f)(z) (@

s

N

g)(z) dm(z); 8f; g 2 H

0;q

:

4 The expansion of the operators D

`

(�)

Yan's operators D

`

(�) = N

d

r

��

@

`

N

N

�+`�

d

r

and their derivatives play an important

role in the previous section. In this section we obtain an expansion of D

`

(�) in powers

of �. This expansion will exhibit D

`

(�) as a polynomial in z,

@

@z

, and �, showing that

D

`

(�) is a di�erential operator (with parameters � and `) in the ordinary sense. It

also facilitates the computation of the derivatives

D

�

`

(�) =

1

�!

(

@

@�

)

�

D

`

(�)

j�=�

;
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needed in formulas (3.3), (3.5) and (3.6) for the forms hf; gi

�;j

. Another conse-

quence will be that for any r distinct complex numbers �

1

; : : : ; �

r

the operators

D

1

(�

1

); : : : ; D

1

(�

r

) are algebraically independent generators of the ring of invariant

di�erential operators on the cone 
, a result obtained independently also by Kor�anyi

and Yan (see [FK2], Chapter XIV). We shall work in the framework of the cone 
,

but all the results will be valid for Z, because 
 is a set of uniqueness for analytic

functions on Z.

Example 4.1. Let D � C

d

, d � 3 be a Cartan domain of rank r = 2 (called the Lie

ball). The associated JB

�

-algebra Z = C

d

, called the complex spin factor, is de�ned

via

zw := (z

1

w

1

� z

0

� w

0

; z

1

w

0

+ w

1

z

0

); z

�

:= (z

1

;�z

0

);

where z = (z

1

; z

0

), z

0

= (z

2

; z

3

; : : : ; z

d

), and z � w :=

P

d

j=1

z

j

w

j

. The unit

of Z is e := (1; 0; 0; : : : ; 0), and the canonical frame is fe

1

; e

2

g, where e

1

:=

1

2

(1; i; 0; 0; : : : ; 0); e

2

:=

1

2

(1;�i; 0; 0; : : : ; 0). The norm polynomial and the asso-

ciated di�erential operator are given by

N(z) := z � z =

d

X

j=1

z

2

j

and @

N

= N(

@

@z

) =

1

4

d

X

j=1

@

2

@z

2

j

respectively, since (zjw) = 2z � w is the normalized inner product. Since r = 2 and

a = d� 2, the Wallach set is

W(D) =W

d

(D) [W

c

(D); W

d

(D) = f0;

d� 2

2

g; W

c

(D) = (

d� 2

2

;1):

One can show that D is given by

D = fz 2 Z;

0

@

(

d

X

j=1

jz

j

j

2

)

2

� jN(z)j

2

1

A

1

2

< 1�

n

X

j=1

jz

j

j

2

g: (4.1)

For every � 2 C

@

2

@z

2

k

N

�

=

@

@z

k

(2�N

��1

z

k

+N

�

@

@z

k

)

= 2�N

��1

+ 4�N

��1

z

k

@

@z

k

+ 4�(�� 1)N

��2

z

2

k

+N

�

@

2

@z

2

k

:

Since R =

P

d

j=1

z

j

@

@z

j

, we obtain

@

N

N

�

=

1

4

(

d

X

j=1

@

2

@z

2

j

)N

�

= �(� �

a

2

)N

��1

+ �N

��1

R+N

�

@

N

:

It follows that for every � 2 C and ` 2 N,

N

1��

@

N

N

�

= N@

N

+ �R + �(�+

d� 2

2

)I = N@

N

+ (�)

(1;0)

R+ (�)

(1;1)

I: (4.2)
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Since

D

`

(�) =

�

N

d

r

��

@

N

N

1+��

d

r

��

N

d

r

���1

@

N

N

2+��

d

r

�

� � �

�

N

d

r

+1�`��

@

N

N

`+��

d

r

�

;

we �nally obtain

D

`

(�) =

`

Y

j=1

(N@

N

+ (��

d

2

+ j)R+ (�� 1 + j)(� �

d

2

+ j)I): (4.3)

Note that the factors on the right hand sides of (4.2) and (4.3) commute, since they

are G(
)-invariant, and the entire ring of G(
)-invariant operators is commutative.

Also, the operators R and N@

N

are K-invariant. Hence the factors on the right hand

sides of (4.2) and (4.3) are multipliers of the Peter-Weyl decomposition of analytic

functions on D (see Corollary 2.1).

Consider a general Cartan domain of tube-type D � C

d

with rank r. Let 
 be

the associated symmetric cone in the Euclidean Jordan algebra X and �x a frame

fe

1

; : : : ; e

r

g of pairwise orthogonal primitive idempotents in X , whose sum is the unit

element e. For 1 � � � r, let �

�

:= �

1

�

be the spherical polynomial associated with

the signature 1

�

:= (1; 1; : : : ; 1; 0; 0; : : : ; 0), where there are � \1"'s and r � � \0"'s.

Put also �

0

(z) � 1. Let f�

�

g

r

�=0

be the di�erential operators on 
 de�ned via

(�

�

)f(a) := �

�

(

d

dx

)(f(P (a

1

2

)x))

jx=e

; (4.4)

where for b 2 X , P (b) is de�ned via (1.1). Recall that P (b) 2 G(
) for every b 2 
,

and that 
 = fP (b)e; b 2 
g since P (a

1

2

)e = a. Moreover, the L-invariance of the

�

�

's and the \polar decomposition" for 
 imply that

(�

�

)f(a) := �

�

(

d

dx

)(f( (x)))

jx=e

; a 2 
 (4.5)

for every  2 G(
) for which  (e) = a. This implies that the operators f�

�

g

r

�=0

are

G(
)-invariant, namely

�

�

(f �  ) = (�

�

f) �  ; 8 2 G(
); 8f 2 C

1

(
):

We remark that (4.4) and (4.5) are equivalent to

�

�

e

hx;yi

jx=a

= �

�

( 

�

(y)) e

ha;yi

= �

�

(P (a

1

2

)y) e

ha;yi

; a; y 2 
; (4.6)

where  2 G(
) � GL(X) satis�es  (e) = a,  

�

is the adjoint of  with respect to

the inner product h�; �i on X , and �

�

di�erentiates the coordinate x. Notice also that

the operators �

�

can be written as

�

�

= c

m

K

m

(x;

@

@x

);

where m = (1; 1; : : : ; 1; 0; : : : ; 0) (� \ones" and r� � zeros), and c

m

is an appropriate

constant.
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For � = 0; 1, r it is easy to compute �

�

. Clearly, �

0

= I . Since N is L-invariant,

�

r

= N . Using (4.6) and (1.3), we �nd that

�

r

= N @

N

:

Also, �

1

(x) =

1

r

tr(x) =

1

r

hx; ei. Indeed, using N

1

(x) = hx; e

1

i and the fact that L is

transitive on the frames, we get

�

1

(x) =

Z

L

h`x; e

1

i d` =

1

r

r

X

j=1

Z

L

h`x; e

j

i d`

=

1

r

Z

L

h`x; ei d` =

1

r

Z

L

hx; `ei d` =

1

r

hx; ei:

Using the fact that tr(P (a

1

2

)y) = hP (a

1

2

)y; ei = hy; P (a

1

2

)ei = hy; ai; 8a; y 2 
, we

�nd that

�

1

=

1

r

R;

where Rf(x) :=

@

@t

f(tx)

jt=1

is the radial derivative.

Our main result in this section is the expansion of D

1

(�) = N

d

r

��

@

N

N

1+��

d

r

.

This result was obtained independently by A. Kor�anyi, see [FK2], Proposition

XIV.1.5.

Theorem 4.1 For every � 2 C,

D

1

(�) =

r

X

�=0

�

r

�

�

r

Y

j=�+1

(� � �

j

) �

�

: (4.7)

Proof: For x 2 
, the function �! N(x)

�

is entire in �. Hence both sides of (4.7)

are entire in �, and it is therefore enough to prove (4.7) for � with <� < 0. Let

� = �

r

� �. Since <� > �

r

, we get for every x 2 


N(x)

��

=

1

�




(�)

Z




e

�hx;ti

N(t)

�

d�




(t);

where d�




(t) := N(t)

�

d

r

dt is the G(
)-invariant measure on 
. Fix a; y 2 
 and put

f

y

(x) := e

hx;yi

. Then

(N

�+1

@

N

N

��

f

y

)(a)

=

N(a)

�+1

�




(�)

N(

d

dx

)

Z




e

hx;y�ti

N(t)

�

d�




(t)

jx=a

=

N(a)

�+1

�




(�)

Z




e

ha;y�ti

N(y � t)N(t)

�

d�




(t)

=

f

y

(a)

�




(�)

Z




e

�he;P (a

1

2

)ti

N(P (a

1

2

)(y � t))N(P (a

1

2

)t)

�

d�




(t):
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Letting b = P (a

1

2

)y, the substitution t := P (a

�

1

2

)P (b

1

2

)� gives

(N

�+1

@

N

N

��

f

y

)(a) =

f

y

(a)

�




(�)

N(y)

1+�

N(a)

1+�

Z




e

�hb;�i

N(e� �)N(�)

�

d�




(�):

Now, the well-known \binomial formula"

N(e+ x) =

r

X

�=0

�

r

�

�

�

�

(x); x 2 X (4.8)

(which follows from Theorem 1.2 and the knowledge of the norms of the �

�

's) and

the fact that for every s 2 C

r

and b 2 


1

�




(s)

Z




e

�hb;�i

�

s

(�) d�




(�) = �

s

(b

�1

) (4.9)

(which follows from the analogous formula for the conical functions), imply

Z




e

�hb;�i

N(e� �)N(�)

�

d�(�) =

r

X

�=0

�

r

�

�

Z




e

�hb;�i

�

1

�

+�

(�) d�




(�)

=

r

X

�=0

�

r

�

�

�




(1

�

+ �) �

1

�

+�

(b

�1

) = N(b)

��

r

X

�=0

�

r

�

�

�




(1

�

+ �) �

�

(b

�1

):

We claim that for every b 2 
 and 1 � � � r,

�

�

(b

�1

) = �

r��

(b)N(b)

�1

: (4.10)

Indeed, using (4.8) we have N(e+ tb

�1

) =

P

r

�=0

�

r

�

�

�

�

(b

�1

) t

�

, as well as

N(e+ tb

�1

) = N(P (b

�

1

2

)(b+ te)) = N(b)

�1

t

r

N(e+ t

�1

b)

= N(b)

�1

t

r

r

X

k=0

�

r

k

�

�

k

(b) t

�k

:

Comparing the coe�cients of t

�

in the two expansions, we obtain (4.10). It follows

that

(N

�+1

@

N

N

��

f

y

)(a)

=

f

y

(a) N(y)

1+�

N(a)

1+�

�




(�) N(b)

1+�

r

X

�=0

(�1)

�

�

r

�

�

�




(1

�

+ �) �

r��

(b)

= f

y

(a)

r

X

�=0

(�1)

�

�

r

�

�

�




(1

�

+ �)

�




(�)

�

r��

(b)

= f

y

(a)

r

X

�=0

�

r

�

�

�

Y

j=1

(�

j

� �) �

r��

(P (a

1

2

)y):
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Comparing this with (4.6), we conclude that

N

�+1

@

N

N

��

=

r

X

�=0

�

r

�

�

�

Y

j=1

(�

j

� �) �

r��

=

r

X

k=0

�

r

k

�

r�k

Y

j=1

(�

j

� �) �

k

:

Using the relations � = �

r

� � and

d

r

= 1 + �

r

, we obtain (4.7).

Remark: The \binomial formula" (4.8) yields that for every � = 1; 2; : : : ; r and every

x 2 X ,

�

�

(x) =

X

1�i

1

<i

2

<:::<i

�

�r

�

i

1

�

i

2

� � � �

i

�

=

�

r

�

�

= S

r;�

(�)=

�

r

�

�

;

where � = (�

1

; �

2

; : : : ; �

r

) is the sequence of eigenvalues of x, and S

r;�

is the elemen-

tary symmetric polynomial of degree � in r variables.

Combining the de�nition D

`

(�) =

Q

`�1

k=0

D

1

(�+ k) with Theorem 4.1, we obtain

Corollary 4.1 For every � 2 C and ` 2 N,

D

`

(�) =

`�1

Y

k=0

r

X

�=0

�

r

�

�

r

Y

j=�+1

(�+ k � �

j

) �

�

: (4.11)

For any signature m � 0 let �

m

be the di�erential operator associated with the

spherical polynomial �

m

via

(�

m

f)(a) := �

m

(

d

dx

) f(P (a

1

2

))

jx=e

; a 2 
: (4.12)

Equivalently,

�

m

e

hx;yi

jx=a

= �

m

(P (a

1

2

)y) e

ha;yi

; a 2 
: (4.13)

Again, one can replace in (4.12) and (4.13) P (a

1

2

) by any  2 G(
) satisfying  (e) =

a. Hence the operators �

m

are G(
)-invariant, namely

�

m

(f �  ) = (�

m

f) �  ; 8 2 G(
):

Theorem 4.2 For every � 2 C and ` 2 N,

D

`

(�) =

X

m�0

(`)

�




(

d

r

+ `) �




(

d

r

� ��m

�

)

�




(

d

r

+ `�m

�

) �




(

d

r

� `� �)

d

m

(

d

r

)

m

�

m

(4.14)

= (

d

r

� �� `)

(`;:::;`)

X

m�0

(`)

(�`)

m

(�)

m

d

m

(

d

r

)

m

�

m

:

Here m

�

:= (m

r

;m

r�1

; : : : ;m

1

), d

m

= dim(P

m

), and the summation

P

m�0

(`)

extends over all m = (m

1

;m

2

; : : : ;m

r

) 2 N

r

with ` � m

1

� m

2

� : : : � m

r

� 0.
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Proof: The general binomial formula (1.15) and the relations

K

m

(x; e) =

�

m

k�

m

k

2

F

; k�

m

k

2

F

=

(

d

r

)

m

d

m

(see [FK2], Chapter XI) imply for ` 2 N and x 2 X

N(e+ x)

`

= c

X

m�0

(`)

d

m

(

d

r

)

`�m

�

(

d

r

)

m

�

m

(x); (4.15)

where c := (

d

r

)

(`;`;:::;`)

, and m

�

and

P

m�0

(`)

are as in Theorem 4.2. Indeed, by

(1.15),

N(e+ x)

`

=

X

m�0

(�`)

m

(�1)

jmj

d

m

(

d

r

)

m

�

m

(x):

From this (4.15) follows by the fact that (�`)

m

= 0 if m

1

> `, whereas in casem

1

� `,

(�`)

m

(�1)

jmj

=

(

d

r

)

(`;`;:::;`)

(

d

r

)

`�m

�

:

As in the proof of Theorem 4.1, it is enough to prove that for every � 2 C with

<� > �

r

and every ` 2 N,

N

�+`

@

`

N

N

��

= c

X

m�0

(`)

(�)

`�m

�

d

m

(

d

r

)

`�m

�

(

d

r

)

m

�

m

: (4.16)

From this one obtains (4.14) by the substitution � =

d

r

� `� �. To prove (4.16), �x

a; y 2 
 and let f

y

(x) := e

hx;yi

. Then

(N

�+`

@

`

N

N

��

f

y

)(a) =

N(a)

�+`

f

y

(a)

�




(�)

Z




e

�ha;ti

N(y � t)

`

N(t)

�

d�




(t)

=

N(b)

�+`

f

y

(a)

�




(�)

Z




e

�hb;ui

N(e� u)

`

N(u)

�

d�




(u);

by the substitutions b = P (a

1

2

)y and u = P (b

�

1

2

)P (a

1

2

)t. Using (4.15), (4.9), and

�

m

(x

�1

) = �

`�m

�

(x) N(x)

�`

(4.17)

(a consequence of [FK2], Proposition VII.1.5), we obtain

(N

�+`

@

`

N

N

��

f

y

)(a) = c

f

y

(a)

�




(�)

X

m�0

(`)

�




(m+ �) d

m

(

d

r

)

`�m

�

(

d

r

)

m

�

`�m

�

(P (a

1

2

)y):

With the change of variables n := `�m

�

, the fact that d

m

= d

n

(use (4.17) or the

general formula for d

m

in [U1]), the de�nition (4.12), and

(N

�+`

@

`

N

N

��

f

y

)(a) = c f

y

(a)

X

n�0

(`)

(�)

`�n

�

d

n

(

d

r

)

`�n

�

(

d

r

)

n

�

n

�

(P (a

1

2

)y);

we obtain (4.16).
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Corollary 4.2 The operators f�

k

g

r

k=1

are algebraically independent generators of

the ring Di�(
)

G(
)

of G(
)-invariant di�erential operators on 
.

Proof: Comparing the two expansions (4.11) and (4.14) of D

`

(�), we see that

�

m

2 C[�

1

;�

2

; : : : ;�

r

]

for every signature m � 0. Since f�

m

g

m�0

is a basis for the space of spherical

polynomials, the one-to-one correspondence between spherical polynomials and the

elements of Di�(
)

G(
)

(see [FK2], Chapter XIV) implies that f�

m

g

m�0

is a basis

of Di�(
)

G(
)

. Thus Di�(
)

G(
)

= C[�

1

;�

2

; : : : ;�

r

]. Since the minimal number of

algebraic generators of Di�(
)

G(
)

is r = rank(
) [He], it follows that �

1

;�

2

; : : : ;�

r

are algebraically independent.

The divided di�erences of a C

1

-function f on R are de�ned by

f

[1]

(t

0

; t

1

) :=

f(t

0

)� f(t

1

)

t

0

� t

1

for t

0

6= t

1

, and f

[1]

(t

0

; t

0

) := f

0

(t

0

). The higher order divided di�erences of a smooth

enough function f are de�ned inductively by

f

[n]

(t

0

; t

1

; : : : ; t

n

) := g

[1]

(t

n�1

; t

n

);

where g(x) := f

[n�1]

(t

0

; t

1

; : : : ; t

n�2

; x). Then f

[n]

(t

0

; t

1

; : : : ; t

n

) is symmetric in

t

0

; t

1

; : : : ; t

n

, and

f

[n]

(t; t; : : : ; t) =

1

n!

d

n

dt

n

f(t):

Moreover, if f is analytic in a domain D � C, then

f

[n]

(t

0

; t

1

; : : : ; t

n

) =

1

2�i

Z

�

f(�)

Q

n

j=0

(� � t

j

)

d�

for all t

0

; t

1

; : : : ; t

n

2 D and every Jordan curve � in D whose interior contains

t

0

; t

1

; : : : ; t

n

and is contained in D. The divided di�erences of vector-valued maps

are de�ned in the same way and have analogous properties. For convenience we put

also f

[0]

(t) := f(t).

Theorem 4.3 Let �

1

; �

2

; : : : ; �

r

2 C be distinct. Then fD

1

(�

j

)g

r

j=1

are algebraically

independent generators of Di�(
)

G(
)

. Moreover, for ` = 1; 2; : : : ; r,

�

`

= D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

)=

�

r

�

�

; (4.18)

where D

[r�`]

1

(�

`

; : : : ; �

r

) are the divided di�erences of order r� ` of D

1

(�), evaluated

at (�

`

; �

`+1

; : : : ; �

r

).
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Proof: Let h

k

(x) :=

�

r

`

�

Q

r

j=k+1

(x � �

j

), 0 � k � r. Then h

[m]

k

(x

0

; x

1

; : : : ; x

m

) � 0

whenever m > r � k, and h

[r�k]

k

(x

0

; x

1

; : : : ; x

r�k

) �

�

r

`

�

for all choices of

x

0

; x

1

; : : : ; x

r�k

. By Theorem 4.2, D

1

(�) =

P

r

k=0

h

k

(�)�

k

. Hence, for 1 � ` � r,

D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

) =

`

X

k=0

h

[r�`]

k

(�

`

; �

`+1

; : : : ; �

r

) �

k

:

Solving this system of equations for the �

k

's, we see that Di�(
)

G(
)

=

C[�

1

;�

2

; : : : ;�

r

] coincides with the ring generated by the operators

fD

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

)g

r

`=1

. If the f�

j

g

r

j=1

are distinct, then

D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

) 2 C[D

1

(�

1

); D

1

(�

2

); : : : ; D

1

(�

r

)]:

Hence,

Di�(
)

G(
)

= C[�

1

;�

2

; : : : ;�

r

] = C[D

1

(�

1

); D

1

(�

2

); : : : ; D

1

(�

r

)]:

The operators fD

1

(�

j

g

r

j=1

are algebraically independent, since Di�(
)

G(
)

cannot be

algebraically generated by less than r elements. If �

j

= �

j

for j = 1; 2; : : : ; r, then

h

[r�`]

k

(�

`

; : : : ; �

r

) = 0 for k < `. Thus, for ` = 1; 2; : : : ; r,

D

[r�`]

1

(�

`

; �

`+1

; : : : ; �

r

) = h

[r�`]

`

(�

`

; �

`+1

; : : : ; �

r

) �

`

=

�

r

`

�

�

`

:

Remark: The �rst statement in Theorem 4.3 was proved independently also by A.

Kor�anyi [FK2] and Z. Yan [Y1]. Our result is slightly stronger, giving the exact

formula (4.18).

Combining Theorems 3.2 and 4.2 (or, 4.1) we obtain integral formulas for the

invariant hermitian forms h�; �i

�;j

, � 2 P(D), 0 � j � q(�).

Corollary 4.3 Let � 2 P(D), ` 2 N and assume that � + ` �

d

r

= �

r

+ 1. Let

q = q(�), 0 � j � q, and � = q� j. Consider the G(
)-invariant di�erential operator

T

�;j

:= 


X

m�0

(`)

c

m

(�; `)

d

m

(

d

r

)

m

�

m

; (4.19)

where 
 is given by (3.4), and for every m � 0 with m

1

� `

c

m

(�; `) :=

1

�!

(

@

@�

)

`

 

�




(

d

r

+ `) �




(

d

r

� � �m

�

)

�




(

d

r

+ `�m

�

) �




(

d

r

� `� �)

!

j�=�

: (4.20)

Then T

�;j

is de�ned on all analytic functions on D, and for all f; g 2 H

�;j

hf; gi

�;j

= hT

�;j

f; gi

�+`

: (4.21)

In particular, if �+ ` > p� 1 or �+ ` =

d

r

then we have

hf; gi

�;j

=

Z

D

(T

�;j

f)(z) g(z) d�

�+`

(z) and hf; gi

�;j

=

Z

S

(T

�;j

f)(�) g(�) d�(�)

(4.22)

respectively.
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The case � = �

r

is particularly simple, since then

d

r

� �

r

= 1, and we can use

(4.7) rather than (4.14).

Corollary 4.4 Let D be a Cartan domain of tube type and rank r � 2 in C

d

, d � 3.

Then

hf; gi

�

r

;0

= h�

r�1

X

�=0

�

r

�

�

r��

Y

i=2

�

i

�

�

f; gi

H

2

(S)

; where � :=

r

Y

i=2

�i: (4.23)

Proof: In this case q = q(�

r

) = 1, j = 0, and � = q � j = 1. We choose ` = 1, so

�

r

+ ` =

d

r

. In order to apply Theorem 3.2 we use Theorem 4.1, and compute

D

1

1

(�

r

) =

@

@�

D

1

(�)

j�=�

=

@

@�

 

r

X

�=0

�

r

�

�

r

Y

i=�+1

(� � �

i

) �

�

!

j�=�

r

=

r�1

X

�=0

�

r

�

�

r�1

Y

i=�+1

(�

r

� �

i

) �

�

=

r�1

X

�=0

�

r

�

�

r��

Y

i=2

�

i

�

�

:

Using this, (4.23) follows from

� :=

@

@�

 

r

Y

i=1

(� � �

i

)

!

�=�

=

r�1

Y

i=1

(�

r

� �

i

) =

r

Y

i=2

�

i

:

Example 4.2. Let D be the Cartan domain of rank r = 2 in C

d

(the Lie ball), d � 3.

Then

hf; gi

d�2

2

;0

= h(

2

d� 2

R+ I)f; gi

H

2

(S)

: (4.24)

Namely, in this case � = �

2

=

d�2

2

, q = q(�) = 1, j = 0, and � = q � j = 1. With

` = 1, �+ ` =

d

2

= �

2

+ 1 =

d

r

we get by using Theorem 3.2 and Corollary 3.2,

hf; gi

d�2

2

;0

= 
hD

1

1

(

d� 2

2

)f; gi

d

2

= 
 h(R +

d� 2

2

I)f; gi

H

2

(S)

= h(

2

d� 2

R+ I)f; gi

H

2

(S)

:

Since the Shilov boundary S of D is given by

S = fe

i�

(x

1

; ix

2

; ix

3

; : : : ; ix

d

); � 2 R;

d

X

j=1

x

2

j

= 1g � S

1

� S

d�1

;

the unique K-invariant probability measure on S is d�(e

i�

(x

1

; ix

0

)) =

d�

2�

d�

d�1

(x);

where �

d�1

is the unique O(d � 1)-invariant probability measure on S

d�1

. Thus

(4.24) provides a very concrete formula for the inner product h�; �i

d�2

2

;0

.
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5 Integration over boundary orbits of Aut(D)

In this section we obtain formulas for the invariant inner products in terms of inte-

gration over an orbit of Aut(D) on the boundary @D. We focus on the inner products

h�; �i

�

2

;0

= h�; �i

a

2

, and conjecture that our method can be generalized for the deriva-

tion of similar formulas for the inner products h�; �i

�

j

;0

= h�; �i

�

j

, �

j

= (j � 1)

a

2

,

j = 3; 4; : : : ; r, in terms of integration on an appropriate boundary orbit. (Notice

that the case j = 1 is trivial, since �

1

= 0 and H

0;0

= H

0

= C1).

In order to describe the facial structure of a Cartan domain of tube-type D � C

d

[Lo], [A1], let S

`

be the compact, real analytic manifold of tripotents in Z of rank

` = 1; 2; : : : ; r. The group K acts transitively and irreducibly on S

`

. Let �

`

be the

unique K-invariant probability measure on S

`

given by

Z

S

`

f d�

`

=

Z

K

f(k(v

`

)) dk; (5.1)

where v

`

is any �xed element of S

`

. For any tripotent v let Z = Z

1

(v)+Z

1

2

(v)+Z

0

(v)

be the corresponding Peirce decomposition. Then D

v

:= D\Z

0

(v) is a Cartan domain

of tube-type, which is the open unit ball of the JB

�

-algebra Z

0

(v). If v 2 S

`

then the

rank of D

v

is r

v

:= r � `, its characteristic multiplicity is a

v

:= a if ` � r � 2 and

a

v

= 0 if ` = r � 1, and the genus is p

v

= p � ` a. The set v +D

v

is a face of the

closure D of D. For any function f on D let f

v

be the function on D

v

de�ned by

f

v

(z) := f(v + z); z 2 D

v

: (5.2)

The fundamental polynomial \h" of Z

0

(v) is de�ned by

h

v

(z; w) := h(z; w); z; w 2 Z

0

(v): (5.3)

For ` = 1; 2; : : : ; r, @

`

D := [

v2S

`

(v +D

v

) is an orbit of G: @

`

D = G(v

`

). If v 2 S

r

is a maximal tripotent, then D

v

= Z

0

(v) = f0g. Hence @

r

D = S

r

= S is the Shilov

boundary. In particular, S is a G-orbit. The only tripotent of rank 0 is 0 2 Z, and

D = D

0

is also a G-orbit. Thus the decomposition of D into G-orbits is

D = D [

r

[

`=1

@

`

D:

For every tripotent v 2 Z and � > p

v

� 1 consider the probability measure �

v;�

on

D

v

, de�ned via

Z

D

v

f d�

v;�

:= c

v;�

Z

D

v

f(z) h

v

(z; z)

��p

v

dm

v

(z); (5.4)

where m

v

is the Lebesgue measure on D

v

and c

v;�

is the normalization factor. Simi-

larly, one de�nes a probability measure �

v

on the Shilov boundary S

v

of D

v

, via

Z

S

v

f d�

v

:=

Z

K

v

f(k(v

0

)) dk;
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where v

0

is any tripotent orthogonal to v and K

v

:= fk 2 K; k(Z

�

(v)) = Z

�

(v)g; � =

0; 1=2; 1, so that K

v

(v

0

) = S

v

. The combination of �

v;�

and �

`

yields K-invariant

probability measures �

`;�

on @

`

D, 1 � ` � r � 1, � > p� ` a� 1, via

Z

@

`

D

fd�

`;�

:=

Z

S

`

�

Z

D

v

f

v

(z) d�

v;�

(z)

�

d�

`

(v):

Next, consider the \sphere bundle" B

`

, 1 � ` � r, whose base is S

`

and the �ber

at each v 2 S

`

is v + S

v

(where S

v

:= @

r�`

D

v

is the Shilov boundary of D

v

). The

group K acts on B

`

naturally, and this action is transitive. The combination of the

measures �

v

, v 2 S

`

and �

`

yields K-invariant probability measures �

`

on B

`

via

Z

B

`

f d�

`

:=

Z

S

`

�

Z

S

v

f(v + �) d�

v

(�)

�

d�

`

(v):

For v 2 S

`

, consider the symmetric cone 


v

in Z

0

(v), and let �

(v)

1

;�

(v)

2

; : : : ;�

(v)

r�`

be

the canonical generators of the ring Di�(


v

)

G(


v

)

as in section 4. We also denote

�

(v)

0

= I; �

(v)

:= (�

(v)

1

;�

(v)

2

; : : : ;�

(v)

r�`

); and �

j

= (j � 1)

a

2

; 0 � j � r:

Conjecture: For every 2 � j � r and every � > �

j�1

there exists a positive function

p

j;�

2 C

1

([0;1)

j�1

), so that the inner product h�; �i

�

j

= h�; �i

�

j

;0

is given by

hf; gi

�

j

=

Z

S

r�j+1

hp

j;�

(�

(v)

)f

v

; g

v

i

H

�

(D

v

)

d�

r�j+1

(v): (5.5)

Moreover, if � = �

j�1

+ 1 = dim(D

v

)=rank(D

v

), then p

j

:= p

j;�

is a polynomial with

positive coe�cients.

If � is chosen appropriately then (5.5) becomes an integral formula for hf; gi

�

j

.

For instance, if � = �

j�1

+ 1 in (5.5), then we have H

�

(D

v

) = H

2

(S

v

), and (5.5)

becomes

hf; gi

�

j

=

Z

S

r�j+1

�

Z

S

v

(p

j;�

(�

(v)

)f

v

)(�) g

v

(�)d�

v

(�)

�

d�

r�j+1

(v): (5.6)

Also, if � > (j � 2)a+ 1 in (5.5) then H

�

(D

v

) = L

2

a

(D

v

; �

v;�

), and (5.5) becomes

hf; gi

�

j

=

Z

S

r�j+1

�

Z

D

v

(p

j

(�

(v)

)f

v

)(z) g

v

(z) d�

v;�

(z)

�

d�

r�j+1

(v): (5.7)

Note that the integral in (5.7) can be expressed as an integral on @

r�j+1

D with respect

to d�

r�j+1;�

. Similarly, (5.6) is an integral on B

r�j+1

with respect to �

r�j+1

.
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Integral formulas for hf; gi

a=2

via integration on @

r�1

D

In what follows we shall establish (5.5) for j = 2 (i.e. �

2

=

a

2

) in two important

special cases, namely for Cartan domains of type I and IV. Our method suggests an

approach for the general case. For j = 2 (5.5) becomes

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)f

v

; g

v

i

H

�

(D)

; (5.8)

where p

�

(x) = p

2;�

(x) 2 C

1

([0;1)) is a positive function, �

(v)

1

= R

(v)

, where R

(v)

is the localized radial derivative (i.e. the radial derivative in Z

0

(v)), and D

v

� D =

fz 2 C; jzj < 1g. We will show that in our two cases

p

�

(x) =

�(x+ �)

�(�)�(x + 1)

q(x);

where q(x) is a polynomial with positive rational coe�cients. In particular, for � =

1; 2; : : :, p

�

(x) itself is a polynomial with positive rational coe�cients. If � is chosen

appropriately, then (5.8) becomes an integral formula analogous to (5.6) or (5.7). For

� = 1, (5.8) becomes

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

1

(R

(v)

)f

v

; g

v

i

H

2

(T)

; (5.9)

and for � > 1, (5.8) becomes

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)f

v

; g

v

i

L

2

(D;�

�

)

: (5.10)

Lemma 5.1 The right hand side of (5.5) is K-invariant. Consequently, the right

hand sides of (5.6), (5.7), (5.8), (5.9), and (5.10) are K-invariant.

Proof: Let ` = r � j + 1, and note that for each �xed smooth function f the maps

S

`

3 v 7! �

(v)

i

(f

v

), 1 � i � j � 1, are K-invariant, in the sense that

�

(k(v))

i

(f

k(v)

) � k = �

(v)

i

((f � k)

v

); 8k 2 K; 8v 2 S

`

:

From this it follows that if v

`

2 S

`

is any �xed element, then

Z

S

`

hp

j;�

(�

(v)

)f

v

; g

v

i

H

�

(D

v

)

d�

`

(v)

=

Z

K

hp

j;�

(�

(v

`

)

)(f � k)

v

`

; (g � k)

v

`

i

H

�

(D

v

`

)

dk:

The K-invariance of the right hand side of (5.5) follows from the invariance of the

Haar measure dk.

Since M

(

a

2

)

0

=

P

1

m=0

P

(m;0;0;:::)

and

hf; gi

a

2

=

X

m=(m;0;:::;0);0�m<1

hf

m

; g

m

i

F

(

a

2

)

m

;
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in order to establish (5.8) it is enough, by the K-invariance of both sides, to �nd

positive functions p

�

(x) 2 C

1

([0;1)) so that (5.8) holds for the functions f(z) =

g(z) = N

m

1

(z), m � 0. This is equivalent to

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)(N

m

1

)

v

; (N

m

1

)

v

i

H

�

(D)

=

m!

(

a

2

)

m

: (5.11)

Fix a frame e

1

; e

2

; : : : ; e

r

in Z. Then N

1

(z) = (z; e

1

), where (�; �) is the unique K-

invariant inner product on Z for which (v; v) = 1 for every minimal tripotent v. Let

e

0

:= e

2

+ e

3

+ : : :+ e

r

. Then for z = k(�e

1

+ e

0

) with k 2 K and � 2 T, we have

N

m

1

(z) = (�k(e

1

) + k(e

0

); e

1

)

m

=

m

X

`=0

�

m

`

�

(k(e

1

); e

1

)

`

(k(e

0

); e

1

)

m�`

�

`

:

Thus, for v = k(e

0

), m � 0 and any continuous function f we have

(f(R

(v)

)N

m

1

)(z) =

m

X

`=0

�

m

`

�

(k(e

1

); e

1

)

`

(k(e

0

); e

1

)

m�`

f(`) �

`

:

Let us de�ne

J

m;`

:=

Z

K

j(k(e

1

); e

1

)j

2`

j(k(e

0

); e

1

)j

2(m�`)

dk; 0 � ` � m <1: (5.12)

It follows that the function p

�

should satisfy

Z

S

r�1

d�

r�1

(v) hp

�

(R

(v)

)(N

m

1

)

v

; (N

m

1

)

v

i

H

�

(D)

=

m

X

`=0

J

m;`

�

m

`

�

2

`!

(�)

`

p

�

(`):

Thus (5.11) becomes

m

X

`=0

J

m;`

�

m

`

�

2

q

`

=

m!

(

a

2

)

m

; m = 0; 1; 2; : : : ; (5.13)

where the numbers

q

`

:=

`!

(�)

`

p

�

(`); ` = 0; 1; 2; : : : (5.14)

do not depend on �. The in�nite system of linear equations (5.13) in the unknowns

fq

`

g

1

`=0

corresponds to the lower triangular matrix A = (a

m;`

)

1

m;`=0

, where a

m;`

=

J

m;`

�

m

`

�

2

for m � `, and a

m;`

= 0 for m < `. Since a

m;m

> 0 for m = 0; 1; 2; : : :,

there exists a unique solution fq

`

g

1

`=0

to (5.13). There are many smooth functions

which interpolate the values fq

`

g

1

`=0

. We will show that q

`

> 0 for every ` � 0, and

prove that fq

`

g

1

`=0

can be interpolated by a polynomial of degree r � 1 with positive

coe�cients. For Cartan domains of type I and IV, we will solve the system (5.13) by

calculating explicitly the numbers J

m;`

and applying powers of the di�erence operator

�(f)(t) := f(t)� f(t� 1); t 2 R:
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If f is de�ned only on [0;1) then we de�ne �(f) := �(F ), where F (t) := f(t) for

0 � t and F (t) = 0 for 0 > t. Similarly, � can be de�ned on two-sided sequences (i.e.

on functions on Z) or on sequences (i.e. functions on N). The powers of � are de�ned

inductively by �

n+1

:= � � �

n

.

Case 1: Cartan domains of type I. Let D = D(I

r;r

) := fz 2M

r;r

(C); kzk < 1g.

The rank of D is r, the dimension is d = r

2

, the genus is p = 2r, and the characteristic

multiplicity is a = 2. To every k 2 K there correspond u;w 2 U(r) (the unitary group)

so that det(u) = det(w), and

k(z) = uzw

�

; z 2 D: (5.15)

Thus

R

K

f(k(z)) dk =

R

U(r)

R

U(r)

f(uzw

�

) du dw, where dk is the Haar measure of

K. Choose the canonical frame of matrix units e

j

:= e

j;j

; j = 1; 2; : : : ; r, and denote

e =

P

r

j=1

e

j

and e

0

:= e� e

1

=

P

r

j=2

e

j

.

Proposition 5.1 Let D = D(I

r;r

). Then for every integers m; ` with 0 � ` � m <

1, we have

J

m;`

=

(r � 1) (` !)

2

(m� `)! (m� `+ r � 2)!

(r)

m

(m+ r � 1)!

: (5.16)

Proof: Let k 2 K be given by (5.15). Then (k(e

1

); e

1

) = u

1;1

w

1;1

and (k(e

0

); e

1

) =

P

r

j=2

u

1;j

w

1;j

. Thus, for 0 � ` � m <1,

J

m;`

=

Z

U(r)

Z

U(r)

ju

1;1

j

2`

jw

1;1

j

2`

j

r

X

j=2

u

1;j

w

1;j

j

2(m�`)

du dw:

This integral can be written as an integral on the product of the unit spheres @B

r

�

C

r

with respect to the U(r)-invariant probability measure �:

J

m;`

=

Z

@B

r

Z

@B

r

j�

`

1

j

2

j�

`

1

j

2

j(�

0

; �

0

)j

2(m�`)

d�(�) d�(�);

where �

0

:= (�

2

; : : : ; �

r

) and �

0

:= (�

2

; : : : ; �

r

). Now, by the U(r)-invariance,

Z

@B

r

j�

`

1

j

2

j(�

0

; �

0

)j

2(m�`)

d�(�)

= k�

0

k

2(m�`)

Z

@B

r

j�

`

1

j

2

j�

m�`

2

j

2

d�(�)

= k�

0

k

2(m�`)

k�

`

1

�

m�`

2

k

2

H

r

(D)

= k�

0

k

2(m�`)

`!(m� `)!

(r)

m

:

It follows by using [Ru], 1.4.5, that

J

m;`

=

`!(m� `)!

(r)

m

Z

@B

r

j�

`

1

j

2

(1� j�

1

j

2

)

m�`

d�(�)

=

`!(m� `)!

(r)

m

(r � 1)

Z

1

0

t

`

(1� t)

m�`+r�2

dt
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=

`!(m� `)!

(r)

m

(r � 1)B(`+ 1;m� `+ r � 1)

=

(r � 1)(`!)

2

(m� `)!(m� `+ r � 2)!

(r)

m

(m+ r � 1)!

:

Corollary 5.1 For D = D(I

r;r

) the system of equations (5.13) is equivalent to the

system

m

X

`=0

(m� `+ r � 2)!

(m� `)!

q

`

= (r � 2)!

�

m+ r � 1

r � 1

�

2

; m = 0; 1; 2; : : : : (5.17)

Proposition 5.2 For every r � 2 there exists a polynomial q(x) = q

r

(x) of degree

r � 1 with positive rational coe�cients, so that q(`) = q

`

for ` = 0; 1; 2; : : : , where

fq

`

g

1

`=0

is the unique solution of (5.17).

For small values of r it is easy to solve (5.17) explicitly by applying powers of �. Thus,

q

2

(x) = 2x+ 1; q

3

(x) = 3x

2

+ 3x+ 1; and q

4

(x) =

1

3

(10x

3

+ 15x

2

+ 11x+ 3):

The proof in the general case requires more preparation. De�ne

f

n

(x) := (x+ 1)

n

=

n

Y

j=1

(x + j); n � 1; and g

n

(x) :=

n

Y

j=0

(x+ j)

2

; n � 0: (5.18)

Then g

n

(x+ 1) = f

n+1

(x)

2

, and

(�

k

f

n

)(x) = n(n� 1) � � � (n� k + 1) f

n�k

(x); k � 0; (5.19)

where � is de�ned by �(f)(x) := f(x) � f(x � 1). Indeed, (5.19) is trivial for k = 0.

For k = 1 and all n we have

�(f

n

)(x) =

n

Y

j=1

(x+ j)�

n

Y

j=1

(x + j � 1) =

n�1

Y

j=1

(x+ j) (x+ n� x) = n f

n�1

(x):

Assuming (5.19) for k, let n > k and compute �

k+1

(f

n

)(x) = n(n � 1) � � � (n � k +

1) �(f

n�k

)(x) = n(n� 1) � � � (n� k + 1)(n� k)f

n�k�1

(x): This establishes (5.19).

Next, de�ne an operator �, analogous to �, via

(�f)(x) := f(x) + f(x� 1); x 2 R:

Clearly, �� = ��, and both � and � commute with all the translation operators

(�

c

f)(x) := f(x+ c):

Denote by P

+

the set of polynomials in one variable with non-negative coe�cients.
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Lemma 5.2 Let f(x) be a polynomial and let n;m 2 N. If �

n

f 2 P

+

, then

�

n+j

�

m=2

f 2 P

+

for every integer 0 � j � m.

Proof: Since � commutes with translations, we may assume that n = 0 and m = 1.

It is therefore enough to check that ��

1=2

x

k

2 P

+

for every k 2 N. This follows from

the binomial expansion:

��

1=2

x

k

= (x+

1

2

)

k

� (x �

1

2

)

k

=

[

k�1

2

]

X

j=0

�

k

2j + 1

�

2

�2j

x

k�2j�1

:

Lemma 5.3 Let f(x) be a polynomial and let n 2 N. Assume that �

j

�

n�j

f 2

P

+

for every 0 � j � n. Then �

j

�

n�j

�

(x+ c)

k

f(x)

�

2 P

+

for every k 2 N,

c �

n

2

and 0 � j � n.

Proof: Again, since � and � commute with translations, it is enough to assume that

k = 1. We shall prove the assertion by induction on n. The case n = 0 is trivial since

P

+

is closed under sums and products. Assume that n > 0 and that the assertion

holds for n� 1. A computation yields

�

�

(x +

n

2

)f(x)

�

= (x +

n� 1

2

)(�f)(x) +

1

2

(�f)(x) (5.20)

and

�

�

(x+

n

2

)f(x)

�

= (x+

n� 1

2

)(�f)(x) +

1

2

(�f)(x): (5.21)

If 0 < j � n then using (5.20) we get

�

j

�

n�j

�

(x +

n

2

)f(x)

�

= �

j�1

�

(n�1)�(j�1)

�

(x+

n� 1

2

)(�f)(x) +

1

2

(�f)(x)

�

:

By assumption,

�

j�1

�

(n�1)�(j�1)

�f = �

j�1

�

n�(j�1)

f 2 P

+

; for 0 < j � n:

Similarly,

�

j�1

�

(n�1)�(j�1)

�f = �

j

�

n�j

f 2 P

+

for 0 < j � n:

Thus, by the induction hypothesis on n� 1,

�

j�1

�

(n�1)�(j�1)

�

(x+

n� 1

2

)�f(x)

�

2 P

+

; for 0 < j � n:

Next, using (5.21) we get

�

n

�

(x+

n

2

)f(x)

�

= �

n�1

�

(x+

n� 1

2

)�f(x) +

1

2

�f(x)

�

:

By assumption, �

n�1

�f(x) 2 P

+

and �

`

�

n�1�`

�f(x) 2 P

+

for 0 � ` � n� 1. Thus,

by the induction hypothesis, �

`

�

n�1�`

�

(x+

n�1

2

)�f(x)

�

2 P

+

for 0 � ` � n� 1, and

in particular �

n�1

�

(x+

n�1

2

)�f(x)

�

2 P

+

. It follows that �

n

�

(x +

n

2

)f(x)

�

2 P

+

.

This completes the induction step.
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Lemma 5.4 Let g

n

(x) be the polynomial de�ned by (5.18). Then �

i

�

j

g

n

2 P

+

when-

ever i+ j � n.

Proof: We proceed by induction on n. The case n = 0 is trivial, since g

0

(x) =

x

2

2 P

+

. Assume that n > 0 and that �

i

�

j

g

n�1

2 P

+

whenever i + j � n � 1. A

computation yields

�g

n

(x) = 2(n+ 1)(x+

n� 1

2

) g

n�1

(x) (5.22)

and

�g

n

(x) = 2

�

(x+

n� 1

2

)

2

+ (

n+ 1

2

)

2

�

g

n�1

(x): (5.23)

Now assume i+ j � n. If i > 0, (5.22) yields

�

i

�

j

g

n

(x) = �

i�1

�

j

(�g

n

(x)) = 2(n+ 1)�

i�1

�

j

�

(x +

n� 1

2

)g

n�1

(x)

�

;

and by induction hypothesis and Lemma 5.3

�

i�1

�

j

�

(x +

n� 1

2

)g

n�1

(x)

�

2 P

+

;

so that �

i

�

j

g

n

2 P

+

. If i = 0 and 0 � j � n, then (5.23) implies

�

j

g

n

(x) = �

j�1

(�g

n

(x)) = 2�

j�1

��

(x+

n� 1

2

)

2

+ (

n+ 1

2

)

2

�

g

n�1

(x)

�

:

The polynomial �

j�1

g

n�1

belongs to P

+

by the induction hypothesis. Also, the

induction hypothesis (�

i

�

j�1

g

n�1

2 P

+

whenever i + j � n) and Lemma 5.3 imply

that

�

i

�

j�1

�

(x +

n� 1

2

)g

n�1

(x)

�

2 P

+

whenever i+ j � n:

In particular, �

j�1

�

(x+

n�1

2

)g

n�1

(x)

�

2 P

+

. Hence �

j

g

n

2 P

+

8 0 � j � n.

Corollary 5.2 (i) �

j

g

n

2 P

+

for all j; n 2 N satisfying 0 � j � n.

(ii) �

j

�

(x+

m

2

)g

n

(x)

�

2 P

+

for all j; n;m 2 N satisfying 0 � j � n+m.

(iii) �

j

f

n

(x)

2

2 P

+

for all j; n 2 N satisfying 0 � j � n+ 1.

Proof: (i) is a special case of Lemma 5.4, and (ii) follows by (i) and Lemma 5.2.

Since f

n

(x)

2

= g

n�1

(x+ 1), (iii) follows from Lemma 5.2 with m = 2.

Remark The result in part (iii) of Corollary 5.2 is best possible in the sense that

�

n+2

(f

2

n

)

2

) need not be in P

+

. Indeed, �

6

(f

2

4

)

2

) is not in P

+

.
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Proof of Proposition 5.2: In terms of the polynomials (5.18), the system of

equations (5.17) with unknowns q

`

has the form

m

X

`=0

f

r�2

(m� `) q

`

=

f

r�1

(m)

2

(r � 1) (r � 1)!

; m � 0: (5.24)

Applying powers of the operator � with respect to the variable m and using (5.19),

we get by induction on k that

�

k

 

m

X

`=0

f

r�2

(m� `) q

`

!

= (r � 2)(r � 3) � � � (r � k � 1)

m

X

`=0

f

r�2�k

(m� `) q

`

for 0 � k � r � 2 (here f

0

(x) � 1). From this it follows that

�

r�1

 

m

X

`=0

f

r�2

(m� `) q

`

!

= (r � 2)! q

m

; m � 0:

Applying �

r�1

to both sides of (5.24), Corollary 5.2 (iii) implies that there exists

a polynomial q(x) of degree r � 1 with positive rational coe�cients so that q

m

=

q(m); 8m � 0.

Theorem 5.1 Let D = D(I

r;r

). Then for every f; g 2 H

a

2

(D) and � > 0 we have

hf; gi

a

2

=

Z

S

r�1

d�

r�1

(v)hp

�

(R

(v)

)f

v

; g

v

i

H

�

(D)

;

where p

�

(x) := �(x+�) �(�)

�1

�(x+1)

�1

q(x), and q(x) is the polynomial of degree

r � 1 with positive rational coe�cients as in Proposition 5.2.

Case 2: Cartan domains of type IV. Let D � C

d

, d � 3, be the Cartan domain

of rank r = 2 (see Examples 4.1 and 4.2), and �x a frame fe

1

; e

2

g. Since a = d � 2,

(5.13) becomes

m

X

`=0

�

m

`

�

2

J

m;`

q

`

=

m!

(

a

2

� 1)

m

; m � 0; (5.25)

where for 0 � ` � m

J

m;`

=

Z

K

j(k(e

1

); e

1

)j

2`

j(k(e

2

); e

1

)j

2(m�`)

dk:

Without computing the numbers J

m;`

explicitly we show that

J

m;`

= J

m;m�`

; 0 � ` � m: (5.26)

Indeed, let k

0

2 K satisfy k

0

(e

1

) = e

2

and k

0

(e

2

) = e

1

. Then, by invariance of the

Haar measure dk,

J

m;`

=

Z

K

j(k(k

0

(e

1

)); e

1

)j

2`

j(k(k

0

(e

2

)); e

1

)j

2(m�`)

dk

=

Z

K

j(k(e

2

); e

1

)j

2`

j(k(e

1

); e

1

)j

2(m�`)

dk = J

m;m�`

:
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Theorem 5.2 The polynomial

q(x) =

4

a

x+ 1 =

4

d� 2

x+ 1

satis�es q(`) = q

`

for every ` � 0, where fq

`

g

1

`=0

is the unique solution of (5.25).

Therefore, for every � > 0 and every f; g 2 H

a

2

(D),

hf; gi

a

2

=

Z

S

1

hp

�

(R

(v)

)f

v

; g

v

i

H

�

(D

v

)

d�

1

(v);

where the functions p

�

, 0 < � <1, are given by

p

�

(x) =

�(x+ �)

�(�) �(x + 1)

(

4

a

x+ 1): (5.27)

In particular, for � = 1; 2; : : : p

�

is a polynomial of degree � with positive rational

coe�cients.

Proof: We claim �rst that

m

X

`=0

�

m

`

�

2

J

m;`

=

m!

(

d

2

)

m

; m � 0: (5.28)

Indeed, it is clear that

m

X

`=0

�

m

`

�

2

J

m;`

=

Z

K

�

Z

T

j(k(e

it

e

1

+ e

2

); e

1

)

m

j

2

dt

2�

�

dk:

Interchanging the order of integration and using the transitivity of K on the frames,

we get

m

X

`=0

�

m

`

�

2

J

m;`

=

Z

K

j(k(e); e

1

)

m

j

2

dk = kN

m

1

k

2

H

2

(D)

=

m!

(

d

2

)

m

; m � 0;

by using the well-known fact that k(�; z)

m

k

2

F

= m!(z; z)

m

for every z 2 Z and m � 0.

Using (5.26) and (5.28) we see that

m

X

`=0

`

�

m

`

�

2

J

m;`

=

m

X

`=0

(m� `)

�

m

m� `

�

2

J

m;m�`

=

m

X

`=0

(m� `)

�

m

`

�

2

J

m;`

=

m �m!

(

d

2

)

m

�

m

X

`=0

`

�

m

`

�

2

J

m;`

:

Thus

m

X

`=0

`

�

m

`

�

2

J

m;`

=

m �m!

2(

d

2

)

m

; m � 0: (5.29)

Combining (5.28) and (5.29), and using the fact that (

d

2

)

m

= (

a

2

)

m

(

a

2

+m)

a

2

, we get

for m � 0

m

X

`=0

�

m

`

�

2

J

m;`

(

4

a

`+ 1) =

4

a

m �m!

2(

d

2

)

m

+

m!

(

d

2

)

m

=

m!

(

a

2

)

m

:
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In view of (5.14), this completes the proof.

|large The computation of hf; gi

p�1

by integration on @

1

D

We conclude this section with the derivation of a formula for hf; gi

p�1

via inte-

gration on @

1

D.

Proposition 5.3 Let F 2 C(D). Then

lim

�#p�1

Z

D

F (z) d�

�

(z) =

Z

S

1

�

Z

D

v

F

v

(w) d�

v;p�1

(w)

�

d�

1

(v); (5.30)

where the measures �

v;p�1

are de�ned by (5.4).

Proof: Using (1.13) and (1.14) as well as (1.22), (1.23), and (1.9), we can write

Z

D

F (z) d�

�

(z) = c

0

c(�)

Z

R

r

+

F

#

(t)w(t)

a

r

Y

j=1

(1� t

j

)

a

dt

= c

0

c(�)

Z

1

0

 (t

1

) (1� t

1

)

��p

dt

1

;

where

 (t

1

) :=

Z

[0;t

1

)

r�1

+

F

#

(t

1

; t

0

)

Y

1�i<j�r

(t

i

� t

j

)

a

r

Y

j=2

(1� t

j

)

��p

dt

0

;

and c(�) = c

D

(�) is given by (1.22). Here t

0

:= (t

2

; t

3

; : : : ; t

r

), dt

0

:= dt

2

dt

3

: : : dt

r

,

and [0; t

1

)

r�1

+

:= ft

0

2 R

r�1

; t

2

> t

3

> : : : > t

r

> 0g. Since  2 C([0; 1]), we have

lim

�#0

�

�

R

1

0

 (t)(1� t)

��1

dt

�

=  (1). Since lim

�#p�1

�(� � p + 1) (� � p + 1) = 1

and c(p� 1) = 0, we get

lim

�#p�1

Z

D

F (z) d�

�

(z) = b  (1)

= b

Z

[0;1)

r�1

+

F

#

(1; t

0

)

Y

2�i<j�r

(t

i

� t

j

)

a

r

Y

j=2

(1� t

j

)

a�1

dt

0

;

where b := c

0

c

0

(p� 1). Using the de�nitions (5.1), (5.3) and the fact that for v 2 S

1

the genus of D

v

is p� a, we have (with the obvious meaning of the constants)

Z

S

1

�

Z

D

v

F

v

(w) d�

v;p�1

(w)

�

d�

1

(v)

= c

D

e

1

(p� 1)

Z

K

 

Z

D

e

1

F

k(e

1

)

(k(�)) h(k(�); k(�))

a�1

dm(k(�))

!

dk
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= c

D

e

1

(p� 1) c

0

(D

e

1

)

�

Z

K

0

@

Z

[0;1)

r�1

+

0

@

Z

K

e

1

F (k(e

1

+ k

0

(

r

X

j=2

t

1

2

j

e

j

dk

0

))

1

A

w(t

0

)

a

r

Y

j=2

(1� t

j

)

a�1

dt

0

1

A

dk;

where K

e

1

:= fk 2 K; k(e

1

) = e

1

g and w(t

0

) :=

Q

2�i<j�r

(t

i

� t

j

)

a

. Interchanging

the order of integration, and using the fact that k

0

(e

1

) = e

1

and the invariance of the

Haar measure dk, we see that the last expression is equal to

c

D

e

1

(p� 1) c

0

(D

e

1

)

Z

[0;1)

r�1

+

F

#

(1; t

0

) w(t

0

)

a

r

Y

j=2

(1� t

j

)

a�1

dt

0

:

Comparing the computations for the left and right hand sides of (5.30), we see they

are proportional. Taking F (z) � 1, the proportionality constant is 1.

Corollary 5.3 The constant c

0

= c

0

(D) in the formula (1.12) is

c

0

(D) =

�

d

�(

a

2

)

r�2

(

Q

r�1

`=1

`

a

2

) �(r

a

2

)

Q

r�1

`=2

�(`

a

2

)

2

:

Proof: De�ne v

r

= 0, v

`

:= e

1

+ : : : + e

r�`

, ` = 1; 2; : : : ; r � 1, and 


`

:= c

0

(D

v

`

).

Then the above proof (with r replaced by `) yields




`




`�1

=

c

D

v

`+1

((`� 1)a+ 1)

c

0

D

v

`

((`� 1)a+ 1)

=

�

(`�1)a+1

�(

a

2

)

�((`� 1)

a

2

+ 1)�(

ra

2

)

for ` = 2; 3; : : : ; r. Therefore, using the easily proved fact that 


1

= �, we get

c

0

(D) = 


r

=




r




r�1




r�1




r�2

� � �




2




1




1

= �

r

Y

`=2

�

(`�1)a+1

�(

a

2

)

�((`� 1)

a

2

+ 1)�(

ra

2

)

=

�

d

�(

a

2

)

r�2

(

Q

r�1

`=1

`

a

2

) �(r

a

2

)

Q

r�1

`=2

�(`

a

2

)

2

:

Proposition 5.3 allows the computation of the inner products hf; gi

p�1

by inte-

grating over the boundary orbit @

1

(D) = G(e

1

) of G.

Theorem 5.3 Let f; g 2 H

p�1

. Then

hf; gi

p�1

=

Z

S

1

�

Z

D

v

f

v

(w) g

v

(w) d�

v;p�1

(w)

�

d�

1

(v); (5.31)

Proof: It is enough to establish (5.31) for polynomials f and g, and this case follows

from Proposition 5.3 with F (z) = f(z) g(z).
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6 Integral formulas in the context of the associated Siegel domain

In what follows we shall use the fact [FK2] that D is holomorphically equivalent to

the tube domain

T (
) := X + i


via the Cayley transform c : D ! T (
), de�ned by c(z) := i(e + z)(e � z)

�1

. For

� 2 W (D) the operator V

(�)

f := (f �c

�1

)(Jc

�1

)

�=p

maps the space H

�

= H

�

(D) iso-

metrically onto a Hilbert space of analytic functions on T (
), denoted by H

�

(T (
)).

We will denote hf; gi

H

�

(T (
))

simply by hf; gi

�

. It is known that the reproducing

kernel of H

�

(T (
)) is

K

�

(z; w) =

�

N(

z � w

�

i

)

�

��

; z; w 2 T (
): (6.1)

Recall that for � > p � 1 we have H

�

(D) = L

2

a

(D;�

�

), where �

�

is the measure on

D de�ned via (1.23). Using the facts that h(c

�1

(w); c

�1

(w)) = 4

r

jN(w + ie)j

�2

N(v)

and J(c

�1

)(w) = (2i)

d

N(w + ie)

�p

; 8w 2 T (
); we get by a change of variables

that

H

�

(T (
)) = L

2

a

(T (
); �

�

) = L

2

(T (
); �

�

) \ fanalytic functionsg;

where

d�

�

(z) := c(�)dx N(2y)

��p

dy; z = x+ iy; x 2 X; y 2 
; (6.2)

and c(�) is de�ned by (1.22). In this case V

(�)

extends to an isometry of L

2

(D;�

�

)

onto L

2

(T (
); �

�

).

In this section we obtain integral formulas for the invariant inner products in

the spaces H

�

(T (
)). Using the isometry V

(�)

: H

�

(D) ! H

�

(T (
)) one obtains

integral formulas for the inner products in the spaces H

�

(D). Our results are essen-

tially implicitly contained in [VR], where the authors determine the Wallach set for

Siegel domains of type II, using Lie and Fourier theoretical methods. The Jordan-

theoretical formalism allows us to formulate our results in a simpler way, avoiding

the Lie-theoretical details. Since the Fourier-theoretical arguments in our proofs are

contained in[VR], we omit all proofs.

For � > (r � 1)

a

2

consider the measure �

�

on 
 de�ned by d�

�

(v) :=

�

�

N(v)

d

r

��

dv where �

�

:= (2�)

�2d

�




(�).

Proposition 6.1 Let � > (r � 1)

a

2

and let f be a holomorphic function on T (
).

Then the following conditions are equivalent:

(i) f 2 H

�

(T (
));

(ii) The boundary values f(x) := lim


3y!0

f(x+ iy) exist almost everywhere on X,

and the Fourier transform

^

f of f(x) is supported in 
 and belongs to L

2

(
; �

�

).

Moreover, the map f 7!

^

f is an isometry of H

�

(T (
)) onto L

2

a

(
; �

�

).

Proposition 6.1 yields the following result.
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Theorem 6.1 Let � > (r � 1)

a

2

and let f; g 2 H

�

(T (
)). Then

hf; gi

H

�

(T (
))

= h

^

f; ĝi

L

2

(
;�

�

)

=

�




(�)

(2�)

2d

Z




^

f(t)ĝ(t) N(t)

d

r

��

dt:

The group GL(
) := f' 2 GL(X);'(
) = 
g acts transitively on 
 . It acts

also on the boundary @
, but this action is not transitive. The orbits of GL(
) on

@
 are exactly the r disjoint sets

@

k


 := GL(
)(e

k

) = fx 2 
; rank(x) = kg; k = 0; 1; : : : ; r � 1;

where fc

1

; : : : ; c

r

g is a frame of pairwise orthogonal primitive idempotents, e

0

:= 0,

and e

k

:=

P

k

j=1

c

j

; k = 1; 2; : : : ; r � 1. Consider the Peirce decomposition X

�

=

X

�

(e

k

) = fx 2 X ; e

k

x = �xg, � = 0;

1

2

; 1. Let 
(k) be the symmetric cone of

X

1

(e

k

), and let �


(k)

be the associated Gamma function. Let GL(
) = LN




A be

the Iwasawa decomposition. Then N




A(e

k

) = fx 2 @

k


;N

k

(x) > 0g is an open

dense subset of @

k


, and every x 2 N




A(e

k

) has a Peirce decomposition of the form

x = x

1

+ x

1

2

+ 2(e� e

k

)(x

1

2

(x

1

2

x

�1

1

)) [La2]. Let us de�ne a measure �

k

on @

k


 with

support N




A(e

k

) by

d�

k

(x) := N

k

(x

1

)

k

a

2

�

d

r

dx

1

dx

1

2

: (6.3)

It has the following fundamental properties (see[VR] and [La2]).

Theorem 6.2 Let 1 � k � r � 1. Then the measure �

k

satis�es

Z

N




A(e

k

)

e

�hy;xi

d�

k

(x) = 


k

N(y)

�k

a

2

; 8y 2 
; (6.4)

where 


k

:= (2�)

k(r�k)

a

2

�


(k)

(k

a

2

), and

d�

k

('(x)) = Det(')

(k

a

2

)=

d

r

d�

k

(x); 8' 2 GL(
): (6.5)

Since 
 is a set of uniqueness for analytic functions on T (
), (6.4) implies by analytic

continuation

Z

N




A(e

k

)

e

�h

z�w

�

i

;xi

d�

k

(x) = 


k

2

�k

a

2

�

N(

z � w

�

i

)

�

�k

a

2

; 8z; w 2 T (
):

Thus

�

N(

z�w

�

i

)

�

�k

a

2

is positive de�nite, and so k

a

2

is in the Wallach set W (D) =

W (T (
)).

By complexi�cation, GL(
) is realized as a subgroup of Aut(T (
)) which nor-

malizes the translations �

x

(z) := z + x, i.e.

' �

x

'

�1

= �

'(x)

; 8x 2 X; 8' 2 GL(
):

Let G � Aut(T (
)) be the semi-direct product of X and GL(
). It acts transitively

on T (
). Let N � G be the semi-direct product of X and N




. Then the Iwasawa

decomposition of Aut(T (
))

0

is KAN . For

�

k

=

d

r

+ k

a

2

; k = 0; 1; 2; : : : ; r � 1

Documenta Mathematica 2 (1997) 213{261



Invariant Inner Products 259

let H

�

k

= H

�

k

(T (
)) be the Hilbert space of analytic functions on T (
) whose

reproducing kernel is K

�

k

(z; w) :=

�

N(

z�w

�

i

)

�

��

k

. Note that �

r�1

= p� 1 and for

k = 0 we have �

0

=

d

r

and �

0

= �

0

, the Dirac measure at 0.

Theorem 6.3 For k = 0; 1; : : : ; r� 1 H

�

k

(T (
)) consists of all analytic functions f

on T (
) for which

kfk

2

H

�

k

(T (
))

:= �

k

sup

t2


Z

N




A(e

k

)

�

Z

X

jf(x+ i(y + t))j

2

dx

�

d�

k

(y) (6.6)

is �nite, where

�

k

=

�




(�

k

)2

rk

a

2

�


(k)

(k

a

2

)

(2�)

�(d+k(r�k)

a

2

)

:

Moreover, for every f; g 2 H

�

k

(T (
)),

hf; gi

�

k

= �

k

lim


3t!0

Z

N




A(e

k

)

�

Z

X

f(x+ i(y + t)) g(x+ i(y + t)) dx

�

d�

k

(y):

References

[A1] J. Arazy, A survey of invariant Hilbert spaces of analytic functions on

bounded symmetric domains, Contemp. Math. 185 (1995), 7-65.

[A2] J. Arazy, Realization of the invariant inner products on the highest quotients

of the composition series, Arkiv Mat. 30 (1992), 1-24.

[A3] J. Arazy, Integral formulas for the invariant inner products in spaces of an-

alytic functions in the unit ball, in Function Spaces, Lecture Notes in Pure

and Applied Mathematics Vol.136, Marcel Dekker (1992), 9-23.

[A4] J. Arazy, Boundedness and compactness of generalized Hankel operators on

bounded symmetric domains, J. Funct. Anal. 137 (1996), 97-151.

[AF] J. Arazy and S.D. Fisher, Invariant Hilbert spaces of analytic functions on

bounded symmetric domains, In: Topics in Operator Theory, E.D. Hellinger

Memorial Volume (Editors: L. de-Branges, I. Gohberg and J. Rovnyak),

Operator Theory, Advances and Applications, 48 (1990), 67-91.

[Be] F. Berezin, Quantization in complex symmetric spaces, Math. USSR-Izv. 9

(1975), 341-379.

[FK1] J. Faraut and A. Kor�anyi, Function spaces and reproducing kernels on

bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89.

[FK2] J. Faraut and A. Kor�anyi, Analysis on Symmetric Cones, Clarendon Press,

Oxford (1994).

Documenta Mathematica 2 (1997) 213{261



260 Arazy and Upmeier

[Gi] S. Gindikin, Analysis on homogeneous domains, Russ. Math. Surv. 19 (1964),

1-89.

[Go] L. Garding, The solution of Cauchy's problem for two totally hyperbolic linear

di�erential equations by means of Riesz integrals, Ann. Math. 48 (1947), 785-

826.

[He] S. Helgason, Di�erential Geometry, Lie Groups, and Symmetric spaces, Aca-

demic Press (1978).

[Hu] L.K. Hua, Harmonic Analysis of Functions of Several Complex Variables in

the Classical Domains, Translations of Mathematical Monographs, Amer.

Math. Soc. (1963).

[La1] M. Lassalle, Noyau de Szeg�o, K-types et alg�ebres de Jordan, C. R. Acad. Sci.

Paris 303 (1986), 1-4.

[La2] M. Lassalle, Alg�ebres de Jordan et ensemble de Wallach, Invent. Math. 89

(1087), 375-393.

[Lo] O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of Cal-

ifornia at Irvine (1977).

[O] B. Orsted, Composition series for analytic continuations of holomorphic dis-

crete series representations of SU(n; n), Trans. Amer. Math. Soc. 260 (1980),

563-573.

[Pel] M. Peloso,M�obius invariant spaces on the unit ball, Mich. Math. J. 39 (1992),

509-536.

[Ri] M. Riesz, L'int�egrale de Riemann-Liouville et le probl�eme de Cauchy, Acta

Math. 81 (1949), 1-223.

[Ru] W. Rudin, Function theory in the unit ball of C

n

, Springer-Verlag, New York

(1980).

[Sc] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch sym-

metrischen R�aumen, Invent. Math. 8 (1969), 61-80.

[T] A. Terras, Harmonic analysis on symmetric spaces and applications II,

Springer-Verlag (1988).

[U1] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces,

Amer. J. Math. 108 (1986), 1-25.

[U2] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum me-

chanics, CBMS Series in Math. 67, Amer. Math. Soc., (1987).

[VR] M. Vergne and H. Rossi, Analytic continuation of the holomorphic discrete

series of a semi-simple Lie group, Acta Mathematica 136 (1976), 1-59.

[Y1] Z. Yan, Invariant Di�erential Operators on Symmetric Cones, preprint

(1991).

Documenta Mathematica 2 (1997) 213{261



Invariant Inner Products 261

[Y2] Z. Yan, Invariant Di�erential Operators and Holomorphic Function Spaces,

preprint (1991).

[Y3] Z. Yan, Duality and Di�erential Operators on the Bergman Space of Bounded

Symmetric Domains, J. Funct. Anal. 105 (1992), 171 - 186.

[Y4] Z. Yan, Di�erential operators and function spaces, Contemp. Math. 142

(1993), 121-142.

Jonathan Arazy

Department of Mathematics

University of Haifa

Haifa 31905, Israel

jarazy@mathcs2.haifa.ac.il

Harald Upmeier

Fachbereich Mathematik

Universit�at Marburg

35032 Marburg, Germany

upmeier@mathematik.uni-marburg.de

Documenta Mathematica 2 (1997) 213{261



262

Documenta Mathematica 2 (1997)


