On the Group $H^3(F(\psi,D)/F)$

OLEG T. IZHBOLDIN AND NIKITA A. KARPENKO

Received: August 14, 1997

Communicated by Ulf Rehmann

ABSTRACT. Let F be a field of characteristic different from 2, ψ a quadratic F-form of dimension ≥ 5 , and D a central simple F-algebra of exponent 2. We denote by $F(\psi, D)$ the function field of the product $X_{\psi} \times X_D$, where X_{ψ} is the projective quadric determined by ψ and X_D is the Severi-Brauer variety determined by D. We compute the relative Galois cohomology group $H^3(F(\psi, D)/F, \mathbb{Z}/2\mathbb{Z})$ under the assumption that the index of D goes down when extending the scalars to $F(\psi)$. Using this, we give a new, shorter proof of the theorem [23, Th. 1] originally proved by A. Laghribi, and a new, shorter, and more elementary proof of the assertion [2, Cor. 9.2] originally proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg.

1991 Mathematics Subject Classification: 19E15, 12G05, 11E81.

Let ψ be a quadratic form and D be an exponent 2 central simple algebra over a field F (always assumed to be of characteristic not 2). Let X_{ψ} be the projective quadric determined by ψ , X_D the Severi-Brauer variety determined by D, and $F(\psi, D)$ the function field of the product $X_{\psi} \times X_D$.

A computation of the relative Galois cohomology group

 $H^{3}(F(\psi, D)/F) \stackrel{\text{def}}{=} \ker \left(H^{3}(F, \mathbb{Z}/2\mathbb{Z}) \to H^{3}(F(\psi, D), \mathbb{Z}/2\mathbb{Z}) \right)$

plays a crucial role in obtaining the results of [8] and [10] concerning the problem of isotropy of quadratic forms over the function fields of quadrics.

The group $H^3(F(\psi, D)/F)$ is closely related to the Chow group $CH^2(X_{\psi} \times X_D)$ of 2-codimensional cycles on the product $X_{\psi} \times X_D$. The main result of this paper is the following theorem, where both groups are computed assuming dim $\psi \geq 5$ and the index of D goes down when extending the scalars to the function field of ψ :

THEOREM 0.1. Let D be a central simple F-algebra of exponent 2. Let ψ be a quadratic form of dimension ≥ 5 . Suppose that $\operatorname{ind} D_{F(\psi)} < \operatorname{ind} D$. Then $\operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_D) = 0$ and $H^3(F(\psi, D)/F) = [D] \cup H^1(F)$.

A proof is given in §8. The essential part of the proof is Theorem 6.9, dealing with the special case where D is a division algebra of degree 8. This theorem has two applications in the theory of quadratic forms. The first one is a new, shorter proof of the following assertion, originally proved by A. Laghribi ([23, Th. 1]):

COROLLARY 0.2. Let $\phi \in I^2(F)$ be an 8-dimensional quadratic form such that ind $C(\phi) = 8$. Let ψ be a quadratic form of dimension ≥ 5 such that $\phi_{F(\psi)}$ is isotropic. Then there exists a half-neighbor ϕ^* of ϕ such that $\psi \subset \phi^*$.

The other application we demonstrate is a new, shorter, and more elementary proof of the assertion, originally proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg ([2, Cor. 9.2]):

COROLLARY 0.3. Let $\phi \in I^2(F)$ be any quadratic form such that $\operatorname{ind} C(\phi) \geq 8$. Let A be a central simple F-algebra Brauer equivalent to $C(\phi)$ and let F(A) be the function field of the Severi-Brauer variety of A. Then $\phi_{F(A)} \notin I^4(F(A))$. In particular, $\phi_{F(A)}$ is not hyperbolic. Moreover, if $\dim \phi = 8$ then $\phi_{F(A)}$ is anisotropic.

Our proofs of Corollaries 0.2 and 0.3 are given in $\S7$.

An important part in the proof of Theorem 6.9 is played by the formula of Proposition 4.5, which is in fact applicable to a wide class of algebraic varieties.

A computation of the group $H^3(F(\psi, D)/F)$ in some cases not covered by Theorem 0.1 is given in [8] and [10].

1. TERMINOLOGY, NOTATION, AND BACKGROUNDS

1.1. QUADRATIC FORMS. Mainly, we use notation of [24] and [30]. However there is a slight difference: we denote by $\langle \langle a_1, \ldots, a_n \rangle \rangle$ the *n*-fold Pfister form

$$\langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$$
.

The set of all *n*-fold Pfister forms over F is denoted by $P_n(F)$; $GP_n(F)$ is the set of forms similar to a form from $P_n(F)$.

We recall that a quadratic form ψ is called a (*Pfister*) neighbor (of a Pfister form π), if it is similar to a subform in π and dim $\phi > \frac{1}{2} \dim \pi$. Two quadratic forms ϕ and ϕ^* are half-neighbors, if dim $\phi = \dim \phi^*$ and there exists $s \in F^*$ such that the sum $\phi \perp s \phi^*$ is similar to a Pfister form.

For a quadratic form ϕ of dimension ≥ 3 , we denote by X_{ϕ} the projective variety given by the equation $\phi = 0$ and we set $F(\phi) = F(X_{\phi})$.

1.2. GENERIC SPLITTING TOWER. Let γ be a non-hyperbolic quadratic form over F. Put $F_0 \stackrel{\text{def}}{=} F$ and $\gamma_0 \stackrel{\text{def}}{=} \gamma_{an}$. For $i \geq 1$ let $F_i \stackrel{\text{def}}{=} F_{i-1}(\gamma_{i-1})$ and $\gamma_i \stackrel{\text{def}}{=} ((\gamma_{i-1})_{F_i})_{an}$. The smallest h such that $\dim \gamma_h \leq 1$ is called the *height* of γ . The sequence F_0, F_1, \ldots, F_h is called the *generic splitting tower* of γ ([21]). We need some properties of the fields F_s :

LEMMA 1.3 ([22]). Let M/F be a field extension such that $\dim(\gamma_M)_{an} = \dim \gamma_s$. Then the field extension MF_s/M is purely transcendental.

The following proposition is a consequence of the index reduction formula [25].

PROPOSITION 1.4 (see [6, Th. 1.6] or [5, Prop. 2.1]). Let $\phi \in I^2(F)$ be a quadratic form with $\operatorname{ind}(C(\phi)) \geq 2^r > 1$. Then there is $s \ (0 \leq s \leq h(\phi))$ such that $\dim \phi_s = 2r + 2$ and $\operatorname{ind} C(\phi_s) = 2^r$.

COROLLARY 1.5. Let $\phi \in I^2(F)$ be a quadratic form with $\operatorname{ind}(C(\phi)) \geq 8$. Then there is $s \ (0 \leq s \leq h(\phi))$ such that $\dim \phi_s = 8$ and $\operatorname{ind} C(\phi_s) = 8$.

1.6. CENTRAL SIMPLE ALGEBRAS. We are working with finite-dimensional associative algebras over a field. Let D be a central simple F-algebra. We denote by X_D the Severi-Brauer variety of D and by F(D) the function field $F(X_D)$.

For another central simple $F\text{-algebra}\,D'$ and for a quadratic $F\text{-form}\,\psi$ of dimension ≥ 3 , we set $F(D', D) \stackrel{\text{def}}{=} F(X_{D'} \times X_D)$ and $F(\psi, D) \stackrel{\text{def}}{=} F(X_{\psi} \times X_D)$.

1.7. GALOIS COHOMOLOGY. By $H^*(F)$ we denote the graded ring of Galois cohomology

$$H^*(F, \mathbb{Z}/2\mathbb{Z}) = H^*(\operatorname{Gal}(F_{\operatorname{sep}}/F), \mathbb{Z}/2\mathbb{Z}).$$

For any field extension L/F, we set $H^*(L/F) \stackrel{\text{def}}{=} \ker(H^*(F) \to H^*(L))$. We use the standard canonical isomorphisms $H^0(F) = \mathbb{Z}/2\mathbb{Z}, H^1(F) = F^*/F^{*2}$, and $H^{2}(F) = Br_{2}(F)$.

We also work with the cohomology groups $H^n(F, \mathbb{Q}/\mathbb{Z}(i)), i = 0, 1, 2$ (see e.g. [12] for the definition). For any field extension L/F, we set

$$H^*(L/F, \mathbb{Q}/\mathbb{Z}(i)) \stackrel{\text{def}}{=} \ker \left(H^*(F, \mathbb{Q}/\mathbb{Z}(i)) \to H^*(L, \mathbb{Q}/\mathbb{Z}(i)) \right)$$

For n = 1, 2, 3, the group $H^n(F)$ is naturally identified with

1 0

$$\operatorname{Tors}_{2} H^{n}(F, \mathbb{Q}/\mathbb{Z}(n-1))$$
.

1.8. K-THEORY AND CHOW GROUPS. We are mainly working with smooth algebraic varieties over a field, although the smoothness assumption is not always essential.

Let X be a smooth algebraic F-variety. The Grothendieck ring of X is denoted by K(X). This ring is supplied with the filtration "by codimension of support" (which respects multiplication); the adjoint graded ring is denoted by $G^*K(X)$. There is a canonical surjective homomorphism of the graded Chow ring $CH^*(X)$ onto $G^*K(X)$; its kernel consists only of torsion elements and is trivial in the 0-th, 1-st and 2-nd graded components $([32, \S 9])$. In particular we have the following

LEMMA 1.9. The homomorphism $CH^i(X) \to G^iK(X)$ is bijective if at least one of the following conditions holds:

- i = 0, 1, or 2,
- $CH^{i}(X)$ is torsion-free.

Let X be a variety over F and E/F be a field extension. We denote by $i_{E/F}$ the restriction homomorphism $K(X) \to K(X_E)$. We use the same notation for the restriction homomorphisms $\operatorname{CH}^*(X) \to \operatorname{CH}^*(X_E)$ and $G^*K(X) \to G^*K(X_E)$. Note that for any projective homogeneous variety X, the homomorphism $i_{E/F}: K(X) \to K$ $K(X_E)$ is injective by [27].

1.10. OTHER NOTATIONS. We denote by \overline{F} a separable closure of the field F. The order of a set S is denoted by |S| (if S is infinite, we set $|S| \stackrel{\text{def}}{=} \infty$).

2. The group $\operatorname{Tors} G^*K(X)$

LEMMA 2.1. Let X be a variety over F and E/F be a field extension such that the homomorphism $i_{E/F} : K(X) \to K(X_E)$ is injective and the factor group $K(X_E)/i_{E/F}(K(X))$ is finite. Then

$$|\ker(G^*K(X) \to G^*K(X_E))| = \frac{|G^*K(X_E)/i_{E/F}(G^*K(X))|}{|K(X_E)/i_{E/F}(K(X))|}$$

Proof. The proof is the same as the proof of [15, Prop. 2].

LEMMA 2.2. Let X be a variety, i be an integer, and E/F be a field extension such that the group $G^iK(X_E)$ is torsion-free. Then

$$\ker(G^i K(X) \to G^i K(X_E)) = \operatorname{Tors} G^i K(X)$$
.

Proof. Since $G^i K(X_E)$ is torsion-free, one has $\ker(G^i K(X) \to G^i K(X_E)) \supset$ Tors $G^i K(X)$.

To prove the inverse inclusion, let us take an intermediate field E_0 such that the extension E_0/F is purely transcendental while the extension E/E_0 is algebraic. The specialization argument shows that the homomorphism $G^iK(X) \to G^iK(X_{E_0})$ is injective; the transfer argument shows that $\ker(G^iK(X_{E_0}) \to G^iK(X_E)) \subset$ $\operatorname{Tors} G^iK(X_{E_0})$. Therefore $\ker(G^iK(X) \to G^iK(X_E)) \subset \operatorname{Tors} G^iK(X)$.

LEMMA 2.3. Let X be a smooth variety, i be an integer, and E/F be a field extension such that the group $CH^i(X_E)$ is torsion-free. Then

- $\operatorname{CH}^{i}(X_{E}) \simeq G^{i}K(X_{E})$ (and hence the group $G^{i}K(X_{E})$ is torsion-free),
- $\operatorname{CH}^{i}(X_{E})/i_{E/F}(\operatorname{CH}^{i}(X)) \simeq G^{i}K(X_{E})/i_{E/F}(G^{i}K(X)).$

Proof. The first assertion is contained in Lemma 1.9. The canonical homomorphism $CH^i(X_E) \to G^iK(X_E)$ induces a homomorphism

$$\operatorname{CH}^{i}(X_{E})/i_{E/F}(\operatorname{CH}^{i}(X)) \to G^{i}K(X_{E})/i_{E/F}(G^{i}K(X))$$

which is bijective since $\operatorname{CH}^{i}(X_{E}) \to G^{i}K(X_{E})$ is bijective and $\operatorname{CH}^{i}(X) \to G^{i}K(X)$ is surjective.

PROPOSITION 2.4. Suppose that a smooth F-variety X and a field extension E/F satisfy the following three conditions:

- the homomorphism $i_{E/F}: K(X) \to K(X_E)$ is injective,
- the factor group $K(X_E)/i_{E/F}(K(X))$ is finite,
- the group $CH^*(X_E)$ is torsion-free.

Then

$$|\operatorname{Tors} G^*K(X)| = \frac{|G^*K(X_E)/i_{E/F}(G^*K(X))|}{|K(X_E)/i_{E/F}(K(X))|} = \frac{|\operatorname{CH}^*(X_E)/i_{E/F}(\operatorname{CH}^*K(X))|}{|K(X_E)/i_{E/F}(K(X))|}$$

Proof. It is an obvious consequence of Lemmas 2.1, 2.2, and 2.3.

DOCUMENTA MATHEMATICA 2 (1997) 297-311

3. AUXILIARY LEMMAS

For an Abelian group A we use the notation $\operatorname{rk}(A) = \dim_{\mathbb{Q}}(A \otimes_{\mathbb{Z}} \mathbb{Q})$.

LEMMA 3.1. Let $A_0 \subset A$, $B_0 \subset B$ be free Abelian groups such that $\operatorname{rk} A_0 = \operatorname{rk} A = r_A$, $\operatorname{rk} B_0 = \operatorname{rk} B = r_B$. Then

$$\left|\frac{A \otimes_{\mathbb{Z}} B}{A_0 \otimes_{\mathbb{Z}} B_0}\right| = \left|\frac{A}{A_0}\right|^{r_B} \cdot \left|\frac{B}{B_0}\right|^{r_A}.$$

Proof. One has

$$(A \otimes B)/(A_0 \otimes B) \simeq (A/A_0) \otimes B \simeq (A/A_0) \otimes \mathbb{Z}^{r_B} \simeq (A/A_0)^{r_B},$$

$$(A_0 \otimes B)/(A_0 \otimes B_0) \simeq A_0 \otimes (B/B_0) \simeq \mathbb{Z}^{r_A} \otimes (B/B_0) \simeq (B/B_0)^{r_A}.$$

Therefore,

$$\left|\frac{A \otimes B}{A_0 \otimes B_0}\right| = \left|\frac{A \otimes B}{A_0 \otimes B}\right| \cdot \left|\frac{A_0 \otimes B}{A_0 \otimes B_0}\right| = \left|\frac{A}{A_0}\right|^{r_B} \cdot \left|\frac{B}{B_0}\right|^{r_A}.$$

The following lemma is well-known.

LEMMA 3.2. Let A be an Abelian group with a finite filtration $A = \mathcal{F}^0 A \supset \mathcal{F}^1 A \supset \cdots \supset \mathcal{F}^k A = 0$. Let B be a subgroup of A with the filtration $\mathcal{F}^p B = B \cap \mathcal{F}^p A$. Let $G^* A = \bigoplus_{p>0} \mathcal{F}^p A / \mathcal{F}^{p+1} A$ and $G^* B = \bigoplus_{p>0} \mathcal{F}^p B / \mathcal{F}^{p+1} B$. Then

- $|A/B| = |G^*A/G^*B|,$
- if A is a finitely generated group then $\operatorname{rk} G^* A = \operatorname{rk} A$.

In the following lemma the term "ring" means a *commutative ring with unit*.

LEMMA 3.3. Let A and B be rings whose additive groups are finitely generated Abelian groups. Let I be a nilpotent ideal of A such that $A/I \simeq \mathbb{Z}$. Let R be a subring of $A \otimes_{\mathbb{Z}} B$ and A_R be a subring of A such that $A_R \otimes_1 \subset R$. Then the following inequality holds

$$\left|\frac{A \otimes_{\mathbb{Z}} B}{R}\right| \le \left|\frac{A}{A_R}\right|^{r_B} \cdot \left|\frac{A \otimes_{\mathbb{Z}} B}{R + (I \otimes_{\mathbb{Z}} B)}\right|^{r_A}$$

where $r_A = \operatorname{rk} A$ and $r_B = \operatorname{rk} B$.

Proof. Let us denote by B_R the image of R under the following composition $A \otimes B \to (A/I) \otimes B \simeq \mathbb{Z} \otimes B \simeq B$. Obviously,

$$\left|\frac{A \otimes_{\mathbb{Z}} B}{R + (I \otimes_{\mathbb{Z}} B)}\right| = \left|\frac{B}{B_R}\right|.$$

For any $p \geq 0$ we set $\mathcal{F}^p A = \{a \in A \mid \exists m \in \mathbb{N} \text{ such that } ma \in I^p\}$. Clearly, $\operatorname{Tors}(A/\mathcal{F}^p A) = 0$, and so A/\mathcal{F}^p is a free Abelian group. Therefore all factor groups $\mathcal{F}^p A/\mathcal{F}^{p+1}A \ (p = 0, 1, ...)$ are free Abelian. Since $A/I \simeq \mathbb{Z}$, it follows that $\mathcal{F}^1 A = I$. Thus $A/\mathcal{F}^1 A \simeq \mathbb{Z}$. Since I is a nilpotent ideal of A, there exists k such that $I^k = 0$. Then $\mathcal{F}^k A = 0$. Thus the filtration $A = \mathcal{F}^0 A \supset \mathcal{F}^1 A \supset \mathcal{F}^2 A \supset \ldots$ is finite and results of Lemma 3.2 can be applied.

Let $\mathcal{F}^p A_R \stackrel{\text{def}}{=} R \cap \mathcal{F}^p A$, $\mathcal{F}^p (A \otimes B) \stackrel{\text{def}}{=} \operatorname{im}(\mathcal{F}^p A \otimes B \to A \otimes B)$, and $\mathcal{F}^p R \stackrel{\text{def}}{=} R \cap \mathcal{F}^p (A \otimes B)$. If K is one of the rings A, A_R , $A \otimes B$, or R, we set $G^p K \stackrel{\text{def}}{=} \mathcal{F}^p K / \mathcal{F}^{p+1} K$ and $G^* K \stackrel{\text{def}}{=} \bigoplus_{p>0} \mathcal{F}^p K / \mathcal{F}^{p+1} K$. Obviously, $\mathcal{F}^p K \cdot \mathcal{F}^q K \subset \mathcal{F}^{p+q} K$ for all p and q.

DOCUMENTA MATHEMATICA 2 (1997) 297-311

Therefore, $K = \mathcal{F}^0 K \supset \mathcal{F}^1 K \supset \cdots \supset \mathcal{F}^p K \supset \cdots$ is a ring filtration. Hence, the adjoint graded group G^*K has a graded ring structure. Since the additive group of B is free, we have a natural ring isomorphism $G^*A \otimes B \simeq G^*(A \otimes B)$.

Since $A_R \otimes 1 \subset R$, we have $G^*A_R \otimes 1 \subset G^*R$. Clearly $G^0(A \otimes B) = (A/I) \otimes B$, and G^0R coincides with the image of the composition $R \to A \otimes B \to (A/I) \otimes B$. By definition of B_R , one has $G^0R = 1_{G^*A} \otimes B_R$ (here 1_{G^*A} denotes the unit of the ring G^*A). Therefore $1_{G^*A} \otimes B_R \subset G^*R$. Since $G^*A_R \otimes 1 \subset G^*R$, $1_{G^*A} \otimes B_R \subset$ G^*R , and G^*R is a subring of $G^*A \otimes B$, we have $G^*A_R \otimes B_R \subset G^*R$. Therefore $|G^*(A \otimes B)/G^*R| \leq |(G^*A \otimes B)/(G^*A_R \otimes B_R)|$. Applying Lemmas 3.1 and 3.2, we have

$$\left|\frac{A \otimes B}{R}\right| = \left|\frac{G^*(A \otimes B)}{G^*R}\right| \le \left|\frac{G^*A \otimes B}{G^*A_R \otimes B_R}\right| = \left|\frac{G^*A}{G^*A_R}\right|^{r_B} \cdot \left|\frac{B}{B_R}\right|^{r_A} = \left|\frac{A}{A_R}\right|^{r_B} \cdot \left|\frac{B}{B_R}\right|^{r_A} = \left|\frac{A}{A_R}\right|^{r_B} \cdot \left|\frac{A \otimes_{\mathbb{Z}} B}{R + (I \otimes_{\mathbb{Z}} B)}\right|^{r_A}.$$

Let X be a smooth variety. We denote by $\mathcal{F}^p CH^*(X)$ the group

$$\bigoplus_{i>p} \operatorname{CH}^i(X)$$

4. On the group $\operatorname{CH}^*(X \times Y)$

Let Y be another smooth variety. For a subgroup A of $CH^*(X)$ and a subgroup B of $CH^*(Y)$, we denote by $A \boxtimes B$ the image of the composition $A \otimes B \to CH^*(X) \otimes$ $CH^*(Y) \to CH^*(X \times Y)$.

The following assertion is evident (see also $[20, \S 3]$ or [11]).

PROPOSITION 4.1. Let X and Y be smooth varieties over F. Then

- the natural homomorphism $\operatorname{CH}^*(X \times Y) \to \operatorname{CH}^*(Y_{F(X)})$ is surjective,
- the kernel of the homomorphism $\operatorname{CH}^*(X \times Y) \to \operatorname{CH}^*(Y_{F(X)})$ contains the group $\mathcal{F}^1 \operatorname{CH}^*(X) \boxtimes \operatorname{CH}^*(Y)$.

COROLLARY 4.2. If the natural homomorphism $\operatorname{CH}^*(X) \otimes \operatorname{CH}^*(Y) \to \operatorname{CH}^*(X \times Y)$ is bijective and $\operatorname{CH}^*(Y)$ is torsion-free, then the homomorphism $\operatorname{CH}^*(X \times Y) \to \operatorname{CH}^*(Y_{F(X)})$ induces an isomorphism

$$\frac{\mathrm{CH}^*(X \times Y)}{\mathcal{F}^1\mathrm{CH}^*(X) \boxtimes \mathrm{CH}^*(Y)} \to \mathrm{CH}^*(Y_{F(X)}).$$

Proof. Since $\operatorname{CH}^*(X) \otimes \operatorname{CH}^*(Y) \simeq \operatorname{CH}^*(X \times Y)$ and $\operatorname{CH}^*(X) / \mathcal{F}^1 \operatorname{CH}^*(X) \simeq \operatorname{CH}^0(X)$, the factor group $\operatorname{CH}^*(X \times Y) / (\mathcal{F}^1 \operatorname{CH}^*(X) \boxtimes \operatorname{CH}^*(Y))$ is isomorphic to $\operatorname{CH}^0(X) \otimes_{\mathbb{Z}}$ $\operatorname{CH}^*(Y) \simeq \mathbb{Z} \otimes_{\mathbb{Z}} \operatorname{CH}^*(Y) \simeq \operatorname{CH}^*(Y)$. Thus, it is sufficient to prove that the homomorphism $\operatorname{CH}^*(Y) \to \operatorname{CH}^*(Y_{F(X)})$ is injective. This is obvious since $\operatorname{CH}^*(Y)$ is torsion-free.

COROLLARY 4.3. Let X and Y be smooth varieties and E/F be a field extension such that the natural homomorphism $CH^*(X_E) \otimes CH^*(Y_E) \rightarrow CH^*(X_E \times Y_E)$ is bijective and $CH^*(Y_E)$ is torsion-free. Then there exists an isomorphism

$$\frac{\operatorname{CH}^*(X_E \times Y_E)}{i_{E/F}(\operatorname{CH}^*(X \times Y)) + \mathcal{F}^1\operatorname{CH}^*(X_E) \boxtimes \operatorname{CH}^*(Y_E)} \simeq \frac{\operatorname{CH}^*(Y_{E(X)})}{i_{E(X)/F(X)}(\operatorname{CH}^*(Y_{F(X)}))}$$

Proof. Obvious in view of Corollary 4.2.

REMARK 4.4. It was noticed by the referee that the conditions of Corollary 4.3 (which appear also in Proposition 4.5) hold, if the variety Y_E possess a cellular decomposition (see e.g. [13, Def. 3.2] for the definition of cellular decomposition). In the case of complete varieties X and Y, this statement follows e.g. from [19, Th. 6.5]. In the present paper, we shall apply Corollary 4.3 only to the case where Y_E is isomorphic to a projective space.

PROPOSITION 4.5. Let X and Y be smooth varieties over F and E/F be a field extension such that the following conditions hold

- $CH^*(X_E)$ is a free Abelian group of rank r_X ,
- $CH^*(Y_E)$ is a free Abelian group of rank r_Y ,
- the canonical homomorphism CH^{*}(X_E) ⊗_ℤ CH^{*}(Y_E) → CH^{*}(X_E × Y_E) is an isomorphism.

Then

$$\left|\frac{\operatorname{CH}^*(X_E \times Y_E)}{i_{E/F}(\operatorname{CH}^*(X \times Y))}\right| \le \left|\frac{\operatorname{CH}^*(X_E)}{i_{E/F}(\operatorname{CH}^*(X))}\right|^{r_Y} \cdot \left|\frac{\operatorname{CH}^*(Y_{E(X)})}{i_{E(X)/F(X)}(\operatorname{CH}^*(Y_{F(X)}))}\right|^{r_X}.$$

Proof. Let $A = \operatorname{CH}^*(X_E)$, $A_R = i_{E/F}(\operatorname{CH}^*(X))$ and $I = \bigoplus_{p>0} \operatorname{CH}^p(X_E) = \mathcal{F}^1\operatorname{CH}^*(X_E)$. Let $B = \operatorname{CH}^*(Y_E)$. By our assumption, we have $\operatorname{CH}^*(X_E \times Y_E) \simeq A \otimes_{\mathbb{Z}} B$. We denote by R the image of the composition $\operatorname{CH}^*(X \times Y) \to \operatorname{CH}^*(X_E \otimes Y_E) \simeq A \otimes_{\mathbb{Z}} B$. Clearly, all conditions of Lemma 3.3 hold. Moreover,

$$\left|\frac{\operatorname{CH}^*(X_E \times Y_E)}{i_{E/F}(\operatorname{CH}^*(X \times Y))}\right| = \left|\frac{A \otimes_{\mathbb{Z}} B}{R}\right| \quad \text{and} \quad \left|\frac{\operatorname{CH}^*(X_E)}{i_{E/F}(\operatorname{CH}^*(X))}\right| = \left|\frac{A}{A_R}\right|.$$

By Corollary 4.3 we have

$$\left| \frac{A \otimes_{\mathbb{Z}} B}{R + (I \otimes_{\mathbb{Z}} B)} \right| = \left| \frac{\operatorname{CH}^*(Y_{E(X)})}{i_{E(X)/F(X)}(\operatorname{CH}^*(Y_{F(X)}))} \right|$$

To complete the prove it suffices to apply Lemma 3.3.

5. The group $\operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_D)$

The aim of this section is Corollary 5.6.

PROPOSITION 5.1 (see [14, §2.1]). Let ψ be a (2n + 1)-dimensional quadratic form over a separably closed field. Set $X \stackrel{\text{def}}{=} X_{\psi}$ and $d \stackrel{\text{def}}{=} \dim X = 2n - 1$. Then for all $0 \leq p \leq d$ the group $\operatorname{CH}^p(X)$ is canonically isomorphic to \mathbb{Z} (for other p the group $\operatorname{CH}^p(X)$ is trivial). Moreover,

if 0 ≤ p < n, then CH^p(X) = Z · h^p, where h ∈ CH¹(X) denotes the class of a hyperplane section of X;

DOCUMENTA MATHEMATICA 2 (1997) 297-311

if n ≤ p ≤ d, then CH^p(X) = Z · l_{d-p}, where l_{d-p} denotes the class of a linear subspace in X of dimension d − p, besides 2l_{d-p} = h^p.

COROLLARY 5.2. Let ψ be a (2n + 1)-dimensional quadratic form over F and let $X = X_{\psi}$. Then

- $CH^*(X_{\overline{F}})$ is a free Abelian group of rank 2n,
- if $0 \le p < n$ then $|CH^p(X_{\bar{F}})/i_{\bar{F}/F}(CH^p(X))| = 1$,
- if $n \leq p \leq 2n-1$ then $|\operatorname{CH}^p(X_{\bar{F}})/i_{\bar{F}/F}(\operatorname{CH}^p(X))| \leq 2$,
- $|CH^*(X_{\bar{F}})/i_{\bar{F}/F}(CH^*(X))| \le 2^n$.

PROPOSITION 5.3. Let D be a central simple F-algebra of exponent 2 and of degree 8. Let E/L/F be field extensions such that $\operatorname{ind} D_L = 4$ and $\operatorname{ind} D_E = 1$. Let $Y = \operatorname{SB}(D)$. For any $0 \leq p \leq \dim Y = 7$, the group $\operatorname{CH}^p(Y_E)$ is canonically isomorphic to \mathbb{Z} . Moreover, the image of the homomorphism $i_{E/L} : \operatorname{CH}^p(Y_L) \to \operatorname{CH}^p(Y_E) \simeq \mathbb{Z}$ contains 1 if p = 0, 4; 2 if p = 1, 2, 5, 6; 4 if p = 3, 7.

Proof. Since deg D = 8 and ind $D_E = 1$, Y_E is isomorphic to \mathbb{P}_E^7 . Hence, the group $\operatorname{CH}^p(Y_E) \cong \operatorname{CH}^p(\mathbb{P}_E^7)$ (where $p = 0, \ldots, 7$) is generated by the class h^p of a linear subspace ([4]).

The rest part of the proposition is contained in [16, Th.]. For the reader's convenience, we also give a direct construction of the elements required. The class of Y_L itself gives $1 \in i_{E/L}(\operatorname{CH}^0(Y_L))$. Let ξ be the tautological line bundle on the projective space $\mathbb{P}_E^7 \simeq Y_E$. Since $\exp D = 2$, the bundle $\xi^{\otimes 2}$ is defined over F and, in particular, over L. Its first Chern class gives $2 \in i_{E/L}(\operatorname{CH}^1(Y_L))$. Since $\operatorname{ind} D_L = 4$, the bundle $\xi^{\oplus 4}$ is defined over L. Its second Chern class gives $6 \in i_{E/L}(\operatorname{CH}^2(Y_L))$. Thus $2 \in i_{E/L}(\operatorname{CH}^2(Y_L))$. The third Chern class of $\xi^{\oplus 4}$ gives $4 \in i_{E/L}(\operatorname{CH}^3(Y_L))$. The fourth Chern class of $\xi^{\oplus 4}$ gives $1 \in i_{E/L}(\operatorname{CH}^4(Y_L))$. Finally, taking the product of the cycles constructed in codimensions 1, 2, and 3 with the cycle of codimension 4, one gets the cycles of codimensions 5, 6, and 7 required.

COROLLARY 5.4. Under the condition of Proposition 5.3, we have

$$|CH^{*}(Y_{E})/i_{E/L}(CH^{*}(Y_{L}))| \leq 256.$$

Proof.
$$\prod_{p=0}^{7} |CH^{p}(Y_{E})/i_{E/L}(CH^{p}(Y_{L}))| \leq 1 \cdot 2 \cdot 2 \cdot 4 \cdot 1 \cdot 2 \cdot 2 \cdot 4 = 256.$$

PROPOSITION 5.5. Let D be a central division F-algebra of degree 8 and exponent 2. Let ψ be a 5-dimensional quadratic F-form. Suppose that $D_{F(\psi)}$ is not a skewfield. Then Tors $G^*K(X_{\psi} \times X_D) = 0$.

Proof. Let $X = X_{\psi}$ and $Y = X_D$. Corollary 5.2 shows that $CH^*(X_{\bar{F}})$ is a free abelian group of rank $r_X = 4$ and $|CH^*(X_{\bar{F}})/i_{\bar{F}/F}(CH^*(X))| \le 2^2 = 4$.

Since D is a division algebra of degree 8 and $D_{F(\psi)}$ is not division algebra, it follows that ind $D_{F(X)} = 4$. Applying Corollary 5.4 to the case L = F(X), $E = \overline{F}(X)$, we have $|CH^*(Y_{\overline{F}(X)})/i_{\overline{F}(X)}/F(X)(CH^*(Y_{F(X)}))| \leq 256$.

¹In fact, it is enough only to know that the *Grothendieck classes* of the bundles $\xi^{\otimes 2}$ and $\xi^{\oplus 4}$ are in $K(Y_L)$ what can be also seen from the computation of the K-theory.

Since $Y_{\bar{F}} = \operatorname{SB}(D_{\bar{F}}) \simeq \mathbb{P}^7_{\bar{F}}$, the group $\operatorname{CH}^*(Y_{\bar{F}})$ is a free Abelian of rank $r_Y = 8$ and $\operatorname{CH}^*(X_{\bar{F}}) \otimes \operatorname{CH}^*(Y_{\bar{F}}) \simeq \operatorname{CH}^*(X_{\bar{F}} \times Y_{\bar{F}})$ (see [3, Prop. 14.6.5]). Thus all conditions of Proposition 4.5 hold for $X, Y, E = \bar{F}$ and we have

$$\left| \frac{\operatorname{CH}^*(X_{\bar{F}} \times Y_{\bar{F}})}{i_{\bar{F}/F}(\operatorname{CH}^*(X \times Y))} \right| \le 4^8 \cdot 256^4 = 2^{48}.$$

Using [29, Th. 4.1 of \S 8] and [33, Th. 9.1], we get a natural (with respect to extensions of F) isomorphism

$$K(X \times Y) \simeq K((F^{\times 3} \times C) \otimes_F (F^{\times 4} \times D^{\times 4})) \simeq$$
$$\simeq K(F^{\times 12} \times C^{\times 4} \times D^{\times 12} \times (C \otimes_F D)^{\times 4})$$

where $C \stackrel{\text{def}}{=} C_0(\psi)$ is the even Clifford algebra of ψ . Note that C is a central simple F-algebra of the degree 2^2 . Since $D_{F(\psi)}$ is not a skew field, [25, Th. 1] states that $D \simeq C \otimes_F B$ with some central division F-algebra B. Therefore, ind $C = \deg C = 2^2$ and ind $C \otimes D = \operatorname{ind} B = \deg B = 2$. Hence

$$\left| \frac{K(X_{\bar{F}} \times Y_{\bar{F}})}{i_{\bar{F}/F}(K(X \times Y))} \right| = (\operatorname{ind} C)^4 \cdot (\operatorname{ind} D)^{12} \cdot (\operatorname{ind} C \otimes D)^4 = 2^{2 \cdot 4 + 3 \cdot 12 + 1 \cdot 4} = 2^{48} .$$

Applying Proposition 2.4 to the variety $X \times Y$ and $E = \overline{F}$, we have

$$|\operatorname{Tors} G^* K(X \times Y)| = \frac{|\operatorname{CH}^*(X_{\bar{F}} \times Y_{\bar{F}})/i_{\bar{F}/F}(\operatorname{CH}^*(X \times Y))|}{|K(X_{\bar{F}} \times Y_{\bar{F}})/i_{\bar{F}/F}(K(X \times Y))|} \le \frac{2^{48}}{2^{48}} = 1.$$

Therefore, $\operatorname{Tors} G^* K(X \times Y) = 0.$

1

Applying Lemma 1.9 we get the following

COROLLARY 5.6. Under the condition of Proposition 5.5, the group $CH^2(X_{\psi} \times X_D)$ is torsion-free.

6. A special case of Theorem 0.1

In this section we prove Theorem 0.1 in the special case where D is a division algebra of degree 8.

PROPOSITION 6.1 ([1, Satz 5.6]). Let ψ be a quadratic F-form of dimension ≥ 5 . The group $H^3(F(\psi)/F)$ is non-trivial iff ψ is a neighbor of an anisotropic 3-Pfister form.

PROPOSITION 6.2 (see [28, Prop. 4.1 and Rem. 4.1]). Let D be a central division Falgebra of exponent 2. Suppose that D is decomposable (in the tensor product of two proper subalgebras). Then $H^3(F(D)/F) = [D] \cup H^1(F)$.

PROPOSITION 6.3. If D and D' are Brauer equivalent central simple F-algebras, then the function fields F(D) and F(D') are stably equivalent.²

²Two field extensions E/F and E'/F are called *stably equivalent*, if some finitely generated purely transcendental extension of E is isomorphic (over F) to some finitely generated purely transcendental extension of E'.

Proof. Since the algebras $D_{F(D')}$ and $D'_{F(D)}$ are split, the field extensions

$$F(D, D')/F(D')$$
 and $F(D, D')/F(D)$

are purely transcendental. Therefore each of the field extensions F(D)/F and F(D')/F is stably equivalent to the extension F(D, D')/F.

COROLLARY 6.4. Fix a quadratic F-form ψ and integers $i, j \in \mathbb{Z}$. For any central simple F-algebra D, the groups $H^i(F(D)/F)$, $H^i(F(D)/F, \mathbb{Q}/\mathbb{Z}(j))$, $H^i(F(\psi, D)/F)$, $H^i(F(\psi, D)/F, \mathbb{Q}/\mathbb{Z}(j))$ only depend on the Brauer class of D.

PROPOSITION 6.5. Let D be a central simple F-algebra of exponent 2 and let ψ be a quadratic F-form. The group $H^3(F(\psi, D)/F, \mathbb{Q}/\mathbb{Z}(2))$ is annihilated by 2.

Proof. Let ψ_0 be a 3-dimensional subform of ψ . Clearly,

$$H^3(F(\psi, D)/F, \mathbb{Q}/\mathbb{Z}(2)) \subset H^3(F(\psi_0, D)/F, \mathbb{Q}/\mathbb{Z}(2))$$
.

Therefore, it suffices to show that the latter cohomology group is annihilated by 2. Replacing ψ_0 by the quaternion algebra $C_0(\psi_0)$, we come to a statement covered by [7, Lemma A.8].

COROLLARY 6.6. In the conditions of Proposition 6.5, one has

$$H^{3}(F(\psi, D)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^{3}(F(\psi, D)/F).$$

PROPOSITION 6.7. Let D be a central simple F-algebra of exponent 2 and let ψ be a quadratic F-form of dimension ≥ 3 . Suppose that ind $D_{F(\psi)} < \text{ind } D$. Then ψ is not a 3-Pfister neighbor and there is an isomorphism

$$\frac{H^3(F(\psi,D)/F)}{H^3(F(\psi)/F) + [D] \cup H^1(F)} \simeq \operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_D) .$$

Proof. By [9, Prop. 2.2], there is an isomorphism

$$\frac{H^{3}(F(\psi, D)/F, \mathbb{Q}/\mathbb{Z}(2))}{H^{3}(F(\psi)/F, \mathbb{Q}/\mathbb{Z}(2)) + H^{3}(F(D)/F, \mathbb{Q}/\mathbb{Z}(2))} \simeq \\ \simeq \frac{\operatorname{Tors} \operatorname{CH}^{2}(X_{\psi} \times X_{D})}{pr_{\psi}^{*} \operatorname{Tors} \operatorname{CH}^{2}(X_{\psi}) + pr_{D}^{*} \operatorname{Tors} \operatorname{CH}^{2}(X_{D})} \cdot$$

By Corollary 6.6, we have $H^{3}(F(\psi, D)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^{3}(F(\psi, D)/F)$; by [9, Lemma 2.8], we have $H^{3}(F(\psi)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^{3}(F(\psi)/F)$; and by [7, Lemma A.8], we have $H^{3}(F(D)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^{3}(F(D)/F)$.

Let D' be a division algebra Brauer equivalent to D. By Corollary 6.4, we have $H^3(F(D)/F) = H^3(F(D')/F)$; by [18, Prop. 1.1], we have $\operatorname{Tors} \operatorname{CH}^2(X_D) \simeq \operatorname{Tors} \operatorname{CH}^2(X_{D'})$. Since $D'_{F(\psi)}$ is no more a skew field, there is a homomorphism of F-algebras $C_0(\psi) \to D'$ ([34, Th. 1], see also [26, Th. 2]). Although the algebra $C_0(\psi)$ is not always central simple, it always contains a non-trivial subalgebra central simple over F. Therefore, D' is decomposable, what implies $H^3(F(D')/F) = [D] \cup H^1(F)$ (Proposition 6.2) and $\operatorname{Tors} \operatorname{CH}^2(X_{D'}) = 0$ ([17, Prop. 5.3]). Finally, the existence of a homomorphism $C_0(\psi) \to D'$ implies that ψ is not a 3-Pfister neighbor; therefore $\operatorname{Tors} \operatorname{CH}^2(X_{\psi}) = 0$ ([14, Th. 6.1]).

COROLLARY 6.8. Let D be a central division F-algebra of degree 8 and exponent 2. Let ψ be a 5-dimensional quadratic F-form. Suppose that $D_{F(\psi)}$ is not a skew field. Then $H^{3}(F(\psi, D)/F) = [D] \cup H^{1}(F)$.

Proof. It is a direct consequence of Proposition 6.7, Corollary 5.6, and Proposition 6.1.

THEOREM 6.9. Theorem 0.1 is true if D is a division algebra of degree 8.

Proof. Let ψ_0 be a 5-dimensional subform of ψ . Applying Corollary 6.8, we have $[D] \cup H^1(F) \subset H^3(F(\psi, D)/F) \subset H^3(F(\psi_0, D)/F) = [D] \cup H^1(F).$ Hence $H^{3}(F(\psi, D)/F) = [D] \cup H^{1}(F).$

The assertion on Tors $\operatorname{CH}^2(X_{\psi} \times X_D)$ is Corollary 5.6.

COROLLARY 6.10. Let $\phi \in I^2(F)$ be a 8-dimensional quadratic form such that ind $C(\phi) = 8$. Let D be a degree 8 central simple algebra such that $c(\phi) = [D]$. Let ψ be a quadratic form of dimension ≥ 5 such that $\phi_{F(\psi)}$ is isotropic. Then

- 1) D is a division algebra;
- 2) $D_{F(\psi)}$ is not a division algebra;

3) $H^3(F(\psi, D)/F) = [D] \cup H^1(F).$

7. Proof of Corollaries 0.2 and 0.3

We need several lemmas.

LEMMA 7.1. Let $\phi \in I^2(F)$ be a 8-dimensional quadratic form and let D be an algebra such that $c(\phi) = [D]$. Then $\phi_{F(D)} \in GP_3(F(D))$.

Proof. We have $c(\phi_{F(D)}) = c(\phi)_{F(D)} = [D_{F(D)}] = 0$. Hence $\phi_{F(D)} \in I^3(F(D))$. Since $\dim \phi = 8$, we are done by the Arason-Pfister Hauptsatz.

LEMMA 7.2. Let $\phi, \phi^* \in I^2(F)$ be 8-dimensional quadratic forms such that $c(\phi) =$ $c(\phi^*) = [D]$, where D is a triquaternion division algebra.³ Suppose that there is a quadratic form ψ of dimension ≥ 5 such that the forms $\phi_{F(\psi,D)}$ and $\phi^*_{F(\psi,D)}$ are isotropic. Then ϕ and ϕ^* are half-neighbors.

Proof. Lemma 7.1 implies that $\phi_{F(\psi,D)}, \phi^*_{F(\psi,D)} \in GP_3(F(\psi,D))$. By the assumption of the lemma, $\phi_{F(\psi,D)}$ and $\phi^*_{F(\psi,D)}$ are isotropic. Hence $\phi_{F(\psi,D)}$ and $\phi^*_{F(\psi,D)}$ are hyperbolic. Thus $\phi, \phi^* \in W(F(\psi, D)/F)$.

Let $\tau = \phi \perp \phi^*$. Clearly $\tau \in W(F(\psi, D)/F)$. Since $c(\tau) = c(\phi) + c(\phi^*) =$ [D] + [D] = 0, we have $\tau \in I^3(F)$. Thus $e^3(\tau) \in H^3(F(\psi, D)/F)$. It follows from Corollary 6.10 that $e^{3}(\tau) \in [D] \cup H^{1}(F)$. Hence there exists $s \in F^{*}$ such that $e^{3}(\tau) = [D] \cup (s)$. We have $e^{3}(\tau) = [D] \cup (s) = c(\phi) \cup (s) = e^{3}(\phi \langle \! \langle s \rangle \! \rangle)$. Since $\ker(e^3: I^3(F) \to H^3(F)) = I^4(F)$, we have $\tau \equiv \phi \langle\!\langle s \rangle\!\rangle \pmod{I^4(F)}$. Therefore $\phi + \phi^* = \tau \equiv \phi \langle \langle s \rangle \rangle = \phi - s\phi \pmod{I^4(F)}$. Hence $\phi^* + s\phi \in I^4(F)$. Hence ϕ and ϕ^* are half-neighbors.

The following statement was pointed out by Laghribi ([23]) as an easy consequence of the index reduction formula [25].

³An F-algebra is called *triquaternion*, if it is isomorphic to a tensor product of three quaternion F-algebras.

LEMMA 7.3. Let ψ be a quadratic form of dimension ≥ 5 and D be a division triquaternion algebra. Suppose that $D_{F(\psi)}$ is not a division algebra. Then there exists an 8-dimensional quadratic form $\phi^* \in I^2(F)$ such that $\psi \subset \phi^*$ and $c(\phi^*) = [D]$. \Box

Proof of Corollary 0.2. Let D be triquaternion algebra such that $c(\phi) = [D]$. Since ind $C(\phi) = 8$, it follows that D is a division algebra. Since $\phi_{F(\psi)}$ is isotropic, $D_{F(\psi)}$ is not a division algebra. It follows from Lemma 7.3 that there exists an 8-dimensional quadratic form $\phi^* \in I^2(F)$ such that $\psi \subset \phi^*$ and $c(\phi^*) = [D]$. Obviously, all conditions of Lemma 7.2 hold. Hence ϕ and ϕ^* are half-neighbors.

LEMMA 7.4. Let D be a division triquaternion algebra over F. Then there exist a field extension E/F and an 8-dimensional quadratic form $\phi^* \in I^2(E)$ with the following properties:

(i) D_E is a division algebra,

(ii) $c(\phi^*) = [D_E],$

(iii) $\phi_{E(D)}^*$ is anisotropic.

Proof. Let $\phi \in I^2(F)$ be an arbitrary *F*-form such that $c(\phi) = [D]$. Let K = F(X, Y, Z) and $\gamma = \phi_K \perp \langle \langle X, Y, Z \rangle \rangle$ be a *K*-form. Let $K = K_0, K_1, \ldots, K_h$; $\gamma_0, \gamma_1, \ldots, \gamma_h$ be a generic splitting tower of γ .

Since $\gamma \equiv \phi_K \pmod{I^3(K)}$, we have $c(\gamma) = c(\phi_K) = [D_K]$. Since K/F is purely transcendental, ind $D_K = \operatorname{ind} D = 8$. Hence ind $C(\gamma) = 8$. It follows from Corollary 1.5 that there exists s such that $\dim \gamma_s = 8$ and $\operatorname{ind} C(\gamma_s) = 8$. We set $E = E_s$, $\phi^* = \gamma_s$.

We claim that the condition (i)–(iii) of the lemma hold. Since $c(\phi^*) = c(\gamma_E) = c(\phi_E) = [D_E]$, condition (ii) holds. Since $[D_E] = c(\phi^*) = c(\gamma_s)$, we have ind $D_E =$ ind $C(\gamma_s) = 8$ and thus condition (i) holds.

Now we only need to verify that (iii) holds. Let M_0/F be an arbitrary field extension such that ϕ_{M_0} is hyperbolic. Let $M = M_0(X, Y, Z)$. We have $\gamma_M = \phi_M \perp \langle \langle X, Y, Z \rangle \rangle_M$. Clearly $\langle \langle X, Y, Z \rangle \rangle_M$ is anisotropic over M. Since ϕ_M is hyperbolic, we have $(\gamma_M)_{an} = \langle \langle X, Y, Z \rangle \rangle_M$ and hence $\dim(\gamma_M)_{an} = 8$. Therefore $\dim(\gamma_M)_{an} = \dim \gamma_s$. By Lemma 1.3, we see that the field extension $ME/M = MK_s/M$ is purely transcendental. Hence $\dim(\gamma_{ME})_{an} = \dim(\gamma_M)_{an} = 8$. Since $(\phi_{ME}^*)_{an} = (\gamma_{ME})_{an}$, we see that ϕ_{ME}^* is anisotropic. Since ϕ_M is hyperbolic, it follows that $[D_M] = c(\phi_M) = 0$. Hence $[D_{ME}] = 0$ and therefore the field extension ME(D)/ME is purely transcendental. Hence $\phi_{ME(D)}^*$ is anisotropic. Therefore $\phi_{E(D)}^*$ is anisotropic. \Box

LEMMA 7.5. Let $\phi, \phi^* \in I^2(F)$ be 8-dimensional quadratic forms such that $c(\phi) = c(\phi^*) = [D]$, where D is a triquaternion division algebra. Suppose that $\phi^*_{F(D)}$ is anisotropic. Then $\phi_{F(D)}$ is anisotropic.

Proof. Suppose at the moment that $\phi_{F(D)}$ is isotropic. Then letting $\psi \stackrel{\text{def}}{=} \phi^*$, we see that all conditions of Lemma 7.2 hold. Hence ϕ and ϕ^* are half-neighbors, i.e., there exists $s \in F^*$ such that $\phi^* + s\phi \in I^4(F)$. Therefore $\phi^*_{F(D)} + s\phi_{F(D)} \in I^4(F(D))$. Since $\phi_{F(D)}$ is isotropic, it is hyperbolic and we see that $\phi^*_{F(D)} \in I^4(F(D))$. By the Arason-Pfister Hauptsatz, we see that $\phi^*_{F(D)}$ is hyperbolic. So we get a contradiction to the assumption of the lemma.

PROPOSITION 7.6. Let $\phi \in I^2(F)$ be an 8-dimensional quadratic form such that ind $C(\phi) = 8$. Let A be an algebra such that $c(\phi) = [A]$. Then $\phi_{F(A)}$ is anisotropic.

Proof. Let D be a triquaternion algebra such that $c(\phi) = [D]$. Since $\operatorname{ind} C(\phi) = 8$, D is a division algebra. Let E/F and ϕ^* be such that in Lemma 7.4. All conditions of Lemma 7.5 hold for E, ϕ_E , ϕ^* , and D_E . Therefore $\phi_{E(D)}$ is anisotropic. Hence $\phi_{F(D)}$ is anisotropic. Since $[A] = c(\phi) = [D]$, the field extension F(A)/F is stably isomorphic to F(D)/F (Proposition 6.3). Therefore $\phi_{F(A)}$ is anisotropic.

Proof of Corollary 0.3. Suppose at the moment that $\phi_{F(A)} \in I^4(F(A))$. Since ind $C(\phi) \geq 8$, it follows that $\dim \phi \geq 8$. By Corollary 1.5 there exists a field extension E/F such that $\dim(\phi_E)_{an} = 8$, ind $C(\phi_E) = 8$. Since $\dim(\phi_E)_{an} = 8$ and $\phi_{E(A)} \in I^4(E(A))$, the Arason-Pfister Hauptsatz shows that $((\phi_E)_{an})_{E(A)}$ is hyperbolic. We get a contradiction to Proposition 7.6.

8. Proof of Theorem 0.1

By Proposition 6.7, there is a surjection

$$\frac{H^3(F(\psi, D)/F)}{[D] \cup H^1(F)} \twoheadrightarrow \operatorname{Tors} \operatorname{CH}^2(X_{\psi} \times X_D) .$$

Thus, it suffices to prove the second formula of Theorem 0.1.

Proving the second formula, we may assume that dim $\psi = 5$ (compare to the proof of Theorem 6.9) and D is a division algebra (Corollary 6.4). Under these assumptions, we can write down D as the tensor product $C_0(\psi) \otimes_F B$ (using [25, Th. 1]). In particular, we see that $C_0(\psi)$ is a division algebra, i.e. ind $C_0(\psi) = \deg C_0(\psi) = 4$.

If deg D < 8, then $D \simeq C_0(\psi)$. In this case, $\psi_{F(D)}$ is a 5-dimensional quadratic form with trivial Clifford algebra; therefore $\psi_{F(D)}$ is isotropic; by this reason, the field extension $F(\psi, D)/F(D)$ is purely transcendental and consequently $H^3(F(\psi, D)/F(D)) = 0$. It follows that

$$H^{3}(F(\psi, D)/F) = H^{3}(F(D)/F) = [D] \cup H^{1}(F)$$
,

where the last equality holds by Proposition 6.2.

If deg D > 8, then ind $B \ge 4$. Applying the index reduction formula [31, Th. 1.3], we get

$$\operatorname{ind} C_0(\psi)_{F(D)} = \min\{\operatorname{ind} C_0(\psi), \operatorname{ind} B\} = 4$$
.

Therefore $\psi_{F(D)}$ is not a 3-Pfister neighbor and by Proposition 6.1 the group $H^3(F(\psi, D)/F(D))$ is trivial. Thus once again

$$H^{3}(F(\psi, D)/F) = H^{3}(F(D)/F) = [D] \cup H^{1}(F)$$

Finally, if $\deg D = 8$, then we are done by Theorem 6.9 and Proposition 6.7.

References

- Arason, J. Kr. Cohomologische Invarianten quadratischer Formen. J. Algebra 36 (1975), 448–491.
- [2] Esnault, H., Kahn, B., Levine, M., and Viehweg, E. The Arason invariant and mod 2 algebraic cycles. J. Amer. Math. Soc., to appear.
- [3] Fulton, W. Intersection Theory. Springer-Verlag, 1984.
- [4] Hartshorne, R. Algebraic Geometry. Springer-Verlag, 1977.

- [5] Hoffmann, D. W. Splitting patterns and invariants of quadratic forms. Math. Nachr., to appear.
- [6] Hurrelbrink, J., Rehmann, U. Splitting patterns of quadratic forms. Math. Nachr. 176 (1995), 111–127.
- [7] Izhboldin, O. T. On the nonexcellence of the function fields of Severi-Brauer varieties. Max-Planck-Institut f
 ür Mathematik in Bonn, Preprint MPI 96-159 (1996), 1-28.
- [8] Izhboldin, O. T., Karpenko, N. A. Isotropy of virtual Albert forms over function fields of quadrics. Prépublications de l'Équipe de Mathématique de Besançon 97/07 (1997), 1-11.
- [9] Izhboldin, O. T., Karpenko, N. A. Isotropy of 6-dimensional quadratic forms over function fields of quadrics. Prépublications de l'Équipe de Mathématique de Besançon 97/12 (1997), 1-25.
- [10] Izhboldin, O. T., Karpenko, N. A. Isotropy of 8-dimensional quadratic forms over function fields of quadrics. K-Theory Preprint Archives (http://www.math.uiuc.edu/K-theory/), Preprint N°219, 1997.
- [11] Izhboldin, O. T., Karpenko, N. A. Some new examples in the theory of quadratic forms. K-Theory Preprint Archives (http://www.math.uiuc.edu/Ktheory/), Preprint N°234, 1997.
- [12] Kahn, B. Descente galoisienne et K_2 des corps de nombres. K-Theory 7 (1993), no. 1, 55–100.
- [13] Kahn, B. Motivic cohomology of smooth geometrically cellular varieties. K-Theory Preprint Archives (http://www.math.uiuc.edu/K-theory/), Preprint N°218, 1997.
- [14] Karpenko, N. A. Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2 (1991), no. 1, 141–162 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 1, 119–138.
- [15] Karpenko, N. A. On topological filtration for Severi-Brauer varieties. Proc. Symp. Pure Math. 58.2 (1995), 275-277.
- [16] Karpenko, N. A. On topological filtration for Severi-Brauer varieties II. Transl. Amer. Math. Soc. 174 (1996), no. 2, 45–48.
- [17] Karpenko, N. A. Codimension 2 cycles on Severi-Brauer varieties. Prépublications de l'Équipe de Mathémathiques de Besançon 96/40 (1996), 1-26. To appear in K-Theory.
- [18] Karpenko, N. A. Cycles de codimension 2 en produits de variétés de Severi-Brauer. Publications Mathématiques de la Faculté des Sciences de Besançon — Théorie des Nombres, Années 1994/95–1995/96, 1–15.
- [19] Karpenko, N. A. Cohomology of relative cellular spaces and isotropic flag varieties. Preprint, 1997 (see http://www.uni-muenster.de/math/u/scharlau/publ).
- [20] Karpenko, N. A., Merkurjev, A. S. Chow groups of projective quadrics. Algebra i Analiz 2 (1990), no. 3, 218–235 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 3, 655–671.
- [21] Knebusch, M. Generic splitting of quadratic forms I. Proc. London Math. Soc. 33 (1976), 65–93.
- [22] Knebusch, M. Generic splitting of quadratic forms II. Proc. London Math. Soc. 34 (1977), 1–31.

- [23] Laghribi, A. Formes quadratiques en 8 variables dont l'algèbre de Clifford est d'indice 8. K-Theory, to appear.
- [24] Lam, T. Y. The Algebraic Theory of Quadratic Forms. Massachusetts: Benjamin 1973 (revised printing: 1980).
- [25] Merkurjev, A. S. Simple algebras and quadratic forms. Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 218–224 (in Russian). English transl.: Math. USSR Izv. 38 (1992), no. 1, 215–221.
- [26] Merkurjev, A. S. K-theory of simple algebras. Proc. Symp. Pure Math. 58.1 (1995), 65-83.
- [27] Panin, I. A. On the algebraic K-theory of twisted flag varieties. K-Theory 8 (1994), no. 6, 541-585.
- [28] Peyre, E. Products of Severi-Brauer varieties and Galois cohomology. Proc. Symp. Pure Math. 58.2 (1995), 369-401.
- [29] Quillen, D. Higher algebraic K-theory I. Lect. Notes Math. 341 (1973), 85–147.
- [30] Scharlau, W. Quadratic and Hermitian Forms. Springer, Berlin, Heidelberg, New York, Tokyo (1985).
- [31] Schofield, A., van den Bergh, M. The index of a Brauer class on a Brauer-Severi variety. Transactions Amer. Math. Soc. 333 (1992), no. 2, 729–739.
- [32] Suslin, A. A. Algebraic K-theory and the norm residue homomorphism. J. Soviet Math. 30 (1985), 2556-2611.
- [33] Swan, R. K-theory of quadric hypersurfaces. Ann. Math. 122 (1985), no. 1, 113– 154.
- [34] Tignol, J.-P. Réduction de l'indice d'une algèbre simple centrale sur le corps des fonctions d'une quadrique. Bull. Soc. Math. Belgique 42 (1990), 725-745.

Oleg Izhboldin Department of Mathematics and Mechanics St.-Petersburg State University Petrodvorets, 198904 Russia oleg@izh.usr.pu.ru

Nikita Karpenko Westfälische Wilhelms-Universität Mathematisches Institut Einsteinstraße 62 D-48149 Münster Germany karpenk@math.uni-muenster.de

Documenta Mathematica 2 (1997)