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Abstract. A quaternionic calculus for surface pairs in the conformal 4-

sphere is elaborated. It introduces a rich algebraic structure and allows

the use of global frames while, at the same time, incorporates the classical

\geometric" model of M�obius geometry providing geometric clarity. This

way, it provides the foundation for the development of new techniques in

M�obius di�erential geometry.

A �eld where the quaternionic calculus already proved particularly useful is

the geometry of transformations of isothermic surfaces: in the second half of

the paper, the relation of Darboux and Christo�el pairs of isothermic sur-

faces and curved 
ats in the symmetric space of point pairs is discussed and

some applications are sketched. In particular, a new viewpoint on relations

between surfaces of constant mean curvature in certain spaces of constant

curvature, and on Bryant's Weierstrass type representation for surfaces of

constant mean curvature 1 in hyperbolic 3-space is presented.
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336 Udo Hertrich-Jeromin

1. Introduction

It is well known that the orientation preserving M�obius transformations of the \con-

formal 2-sphere" S

2

�

=

=

C [ f1g can be described as fractional linear transformations

z 7!
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11

z+a

12

a

21

z+a

22

where a = (a

ij

) 2 Sl(2;

=

C). The reason for this fact is that the conformal

2-sphere S

2

�

=

=

CP

1

can be identi�ed with the complex projective line. Introducing

homogeneous coordinates p = v

p

=

C, v

p

2

=

C

2

, on

=

CP

1

the special linear group Sl(2;

=

C)

acts on

=

CP

1

by projective transformations | which are, for 1-dimensional projective

spaces, identical with M�obius transformations | via v

p

=

C 7! Av

p

=

C = v

q

=

C. Thus, in

a�ne coordinates one has
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�

:

This (algebraic) model of M�obius geometry in dimension 2 complements the (\geo-

metric") model commonly used in di�erential geometry: here, the conformal 2-sphere

(or, more general, the conformal n-sphere) is considered as a quadric in the real pro-

jective 3-space IRP

3

and the group of M�obius transformations is isomorphic to the

group of projective transformations of IRP

3

that map the \absolute quadric" S

2

onto

itself (cf.[3]). Equipping the space of homogeneous coordinates of IRP

3

with a Lorentz

scalar product that has the points of S

2

as isotropic (null) lines, the M�obius group

can be identi�ed with the pseudo orthogonal group of this Minkowski space IR

4

1

.

Several attempts have been made to generalize the described algebraic model

to higher dimensions | in particular to dimensions 3 and 4, by using quaternions

(cf.[14],[15]): analogous to the above model, the conformal 4-sphere is identi�ed with

the quaternionic projective line, S

4

�

=

IHP

1

, with Sl(2; IH) acting on it by M�obius

transformations. In order to use such an \algebraic model" in M�obius di�erential

geometry, it is not enough to describe the underlying space and the M�obius group

acting on it, though. One also needs a convenient description for (hyper-) spheres since

the geometry of surfaces in M�obius geometry is often closely related to the geometry

of an enveloped sphere congruence (cf.[3]). For example, Willmore surfaces in S

3

can

be related to minimal surfaces in the space of 2-spheres in S

3

, and the geometry of

isothermic surfaces is related to that of \sphere surfaces" with 
at normal bundle,

\Ribaucour sphere congruences".

One way is to identify a hypersphere s � IHP

1

with the inversion at this sphere.

The problem with this approach is, that only the orientation preserving M�obius trans-

formations are naturally described in the algebraic model | but, inversions are ori-

entation reversing M�obius transformations. Adjoining the (quaternionic) conjugation

as a basic orientation reversing M�obius transformation and working with the larger

group of all M�obius transformations, works relatively �ne for 2-dimensional M�obius

geometry, but turns into a nightmare

1)

in dimension 4 since the quaternions form a

non commutative �eld.

Another way is to identify a sphere s � S

4

�

=

IHP

1

with that quaternionic her-

mitian form on the space IH

2

of homogeneous coordinates that has this sphere s as a

1)

Identifying 2-spheres in S

3

� S

4

�

=

IHP

1

with inversions in S

4

provides a solution in the codimension

1 case, though: as the composition of two inversions at hyperspheres, the inversion at a 2-sphere in S

4

is

orientation preserving.
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null cone. After discussing some basics in quaternionic linear algebra we will follow

this approach | to obtain not only a description for the space of spheres but also to

establish the relation with the classical \geometric" model of M�obius geometry: the

space of quaternionic hermitian forms will canonically turn into a real six dimensional

Minkowski space, the classical model space.

This (second) way, we combine the advantages of both models for M�obius di�er-

ential geometry: on one side, we introduce a rich algebraic structure which provides

a signi�cant simpli�cation of calculations and, at the same time, we also obtain a cal-

culus that will be more suitable to discuss the global geometry of surfaces in M�obius

geometry, as well as the geometry of discrete nets. On the other side, we keep a close

connection to the classical model of M�obius geometry which will make it easier to

understand the results geometrically. In particular, our calculus will provide an ideal

setting for the study of surface pairs, maps into the (symmetric) space of point pairs

in IHP

1

| in M�obius di�erential geometry, surfaces often occur naturally in pairs,

as envelopes of certain distinguished sphere congruences: for example, Willmore sur-

faces come in dual pairs as envelopes of their common central sphere congruences,

and isothermic surfaces permit pairings via Darboux (and Christo�el) transforms.

The latter will be examined in the remaining part of the paper, on one side

to see the calculus at work, on the other side to demonstrate some new results:

here, our quaternionic calculus provides very elegant characterizations for Darboux

and Christo�el pairs of isothermic surfaces that led to the discovery of the Riccati

type equation (cf.[11]) for the Darboux transformation of isothermic surfaces | an

equation that apparently cannot be derived in the classical calculus (cf.[2]). This is

one reason, why the presented calculus was necessary to develop the de�nition of the

discrete version of the Darboux transformation for discrete isothermic nets and the

(geometric) de�nition of discrete cmc nets (cf.[10]). The mentioned characterizations

rely on the relation between Darboux pairs of isothermic surfaces and curved 
ats in

the space of point pairs | since this space will turn out to be symmetric the notion

of curved 
ats makes sense. Although this relation was already established in [6] for

the codimension 1 case, it might be of interest to see that it also holds in the higher

codimension case

2)

of Darboux pairs in IHP

1

(cf.[13]). Even though our calculus

also provides a framework to discuss global aspects of isothermic surfaces (cf.[12]) we

will only focus on their local geometry: there is a variety of possible de�nitions of

\globally isothermic surfaces" whose degree of generality and whose consequences are

yet to be worked out. However, computer experiments seem to indicate that Darboux

(and Christo�el) transforms of isothermic surfaces only exist locally, in general. And,

worse, near certain types of umbilics even their local existence is not clear | resp.

depends on the chosen de�nition of a \globally isothermic surface" ...

In the last section, we study minimal and constant mean curvature surfaces in 3-

dimensional spaces of constant curvature. These are \special" isothermic surfaces, and

a suitable Christo�el transform in IR

3

can be determined algebraically (in the general

case, an integration has to be carried out). Examining the e�ect of the spectral

parameter that comes with a curved 
at, we obtain a new interpretation for the

relations between surfaces of constant curvature in certain space forms. In fact, these

2)

Most recently, these results were generalized to arbitrary codimension using an extension of the

presented calculus [5].
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338 Udo Hertrich-Jeromin

relations can be interpreted in terms of Bianchi's \T-transformation" for isothermic

surfaces [2]. For example, the well known relation between minimal surfaces in the

(metric) 3-sphere and surfaces of constant mean curvature in Euclidean space, as

well as the relation between minimal surfaces in Euclidean 3-space and surfaces of

constant mean curvature 1 in hyperbolic 3-space are discussed. In case of the constant

mean curvature 1 surfaces in hyperbolic 3-space, a new form of Bryant's Weierstrass

type representation [4] is given. In this context, the classical Enneper-Weierstrass

representation for minimal surfaces in Euclidean 3-space is described as a Goursat

type transform of the (multiply covered) plane | similar to the way certain surfaces

of constant Gauss curvature are described as a B�acklund transforms of a line. Finally,

the classical Goursat transformation for minimal surfaces is generalized for isothermic

surfaces in Euclidean space.

2. The Study determinant

Throughout this paper we will use various well known models [1] for the non commu-

tative �eld of quaternions:

IH

�

=

fa+ v j a 2 IR

�

=

ReIH; v 2 IR

3

�

=

ImIHg

�

=

fa

0

+ a

1

i+ a

2

j + a

3

k j a

0

; a

1

; a

2

; a

3

2 IRg

�

=

fx+ y j jx; y 2

=

Cg

�

=

fA 2M(2� 2;

=

C) j trA 2 IR;A+A

�

2 IRIg:

Herein, we can identify i; j; k with the standard basis vectors of IR

3

�

=

ImIH : if

v; w 2 ImIH are two \vectors" their product v w = �v �w+ v�w which is equivalent

to the familiar identities i

2

= j

2

= k

2

= �1, ij = k = �ji, jk = i = �kj and

ki = j = �ik. Obviously, the �rst model will turn out particularly useful when

focusing on the geometry of 3-space while the decomposition IH

�

=

=

C +

=

C j will prove

useful in the context of surfaces, 2-dimensional submanifolds, since their tangent

planes (and normal planes) carry a natural complex structure. We will switch between

these models as it appears convenient.

As the quaternions can be thought of as a Euclidean 4-space, IR

4

�

=

IH , the

(conformal) 4-sphere S

4

�

=

IR

4

[f1g can be identi�ed with the quaternionic projective

line: S

4

�

=

IHP

1

= flines through 0 in IH

2

g. Thus, a point p 2 S

4

of the conformal

4-sphere is described by its homogeneous coordinates v

p

2 IH

2

; and its stereographic

projection onto Euclidean 4-space IR

4

�

=

fv 2 IH

2

j v

2

= 1g is obtained by normalizing

the second component of v

p

.

Since the quaternions form a non commutative �eld, we have to agree whether

the scalar multiplication in a quaternionic vector space is from the right or left: in

this paper, IH

2

will be considered a right vector space over the quaternions. This

way, quaternionic linear transformations can be described by the multiplication (of

column vectors) with (quaternionic) matrices from the left : A(v�) = (Av)�. For a

quaternionic 2-by-2 matrix A 2 M(2� 2; IH) we introduce the Study determinant

3)

[1] (cf. Study's \Nablafunktion" [14])

D(A) := det(A

�

A)

= ja

11

j

2

ja

22

j

2

+ ja

12

j

2

ja

21

j

2

� (�a

11

a

12

�a

22

a

21

+ �a

21

a

22

�a

12

a

11

):

3)

Note, that the notion of determinant makes sense for self adjoint matrices A 2M(2� 2; IH).
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Curved Flats and Isothermic Surfaces 339

This is exactly the determinant of the complex 4-by-4 matrix corresponding to A

when using the complex matrix model for the quaternions. Thus, D clearly satis�es

the usual multiplication law, D(AB) = D(A)D(B), and vanishes exactly when A is

singular. The multiplication law implies that D is actually an invariant of the linear

transformation described by a matrix: D(U

�1

AU) = D(A) for any basis transforma-

tion U : IH

2

! IH

2

. Also note that 0 � D(A) 2 IR.

Definition. The general and special linear groups of IH

2

will be denoted by

Gl(2; IH) := fA 2M(2� 2; IH) j D(A) 6= 0g

Sl(2; IH) := fA 2M(2� 2; IH) j D(A) = 1g:

With the help of Study's determinant, the inverse of a quaternionic 2-by-2 matrix

A 2 Gl(2; IH) can be expressed directly as

A

�1

=

1

D(A)

�

ja

22

j

2

�a

11

� �a

21

a

22

�a

12

ja

12

j

2

�a

21

� �a

11

a

12

�a

22

ja

21

j

2

�a

12

� �a

22

a

21

�a

11

ja

11

j

2

�a

22

� �a

12

a

11

�a

21

�

:

Note also, that Sl(2; IH) is a 15-dimensional Lie group | it will turn out to be a

double cover of the identity component of the M�obius group of S

4

.

Considering D : IH

2

� IH

2

! IR as a function of two (column) vectors we see

that D(v; v + w) = D(v; w) and D(v; w�) = j�j

2

D(v; w) | similar formulas holding

for the �rst entry since D is symmetric: D(v; w) = D(w; v). Reformulating our

previous statement, we also obtain that D(v; w) = 0 if and only if v and w are

linearly dependent

4)

. Particularly, if v and w are points in an a�ne quaternionic line,

say the Euclidean 4-space fv 2 IH

2

j v

2

= 1g, then D(v; w) = jv

1

�w

1

j

2

measures the

distance between v and w with respect to a Euclidean metric. This fact can be used

to express the cross ratio of four points in Euclidean 4-space (cf.[10]) in terms of the

Study determinant

5)

:

jDV (h

1

; h

2

; h

3

; h

4

)j

2

=

D

�

h

1

h

2

1 1

�

D

�

h

3

h

4

1 1

�

D

�

h

2

h

3

1 1

�

D

�

h

4

h

1

1 1

�

:

The expression on the right hand is obviously invariant under individual rescalings of

the vectors which shows that the cross ratio is, in fact, an invariant of four points in

the quaternionic projective line IHP

1

.

3. Quaternionic hermitian forms

will be a key tool in our calculus for M�obius geometry: any quaternionic hermitian

form s : IH

2

� IH

2

! IH ,

s(v; w

1

�+ w

2

�) = s(v; w

1

)�+ s(v; w

2

)�

s(v

1

�+ v

2

�;w) =

�

�s(v

1

; w) + ��s(v

2

; w)

s(w; v) = s(v; w);

4)

All these properties are also easily checked directly, without using the complex matrix representation

of the quaternions.

5)

For a more complete discussion of the complex cross ratio of four points in space consult [10].
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is determined by its values on a basis (e

1

; e

2

) of IH

2

, s

ij

= s(e

i

; e

j

). Since s is

hermitian, s

11

; s

22

2 IR and s

21

= �s

12

2 IH , the quaternionic hermitian forms on IH

2

form a 6-dimensional (real) vector space. Clearly, Gl(2; IH) operates on this vector

space via (A; s) 7! As := [(v; w) 7! s(Av;Aw)], or, in the matrix representation of s,

via (A; s) 7! A

�

sA. A straightforward calculation shows that det(As) = D(A)det(s).

This enables us to introduce a Lorentz scalar product

hs; si := �det(s) = js

12

j

2

� s

11

s

22

on the space IR

6

1

of quaternionic hermitian forms, which is well de�ned up to a scale

6)

(or, the choice of a basis in IH

2

). Fixing a scaling of this Lorentz product, the special

linear transformations act as isometries on IR

6

1

| Sl(2; IH) is a double cover of the

identity component

7)

of SO

1

(6), which itself is isomorphic to the group of orientation

preserving M�obius transformations of S

4

. Thus, restricting our attention to Euclidean

4-space fe

1

h+e

2

jh 2 IHg, the orientation preserving M�obius transformations appear

as fractional linear transformations (cf.[14],[15])

�

h

1

�

7!

�

a

11

a

12

a

21

a

22

��

h

1

�

'

�

(a

11

h+ a

12

)(a

21

h+ a

22

)

�1

1

�

:

If s 6= 0 lies in the light cone of IR

6

1

, hs; si = 0, then the corresponding quadratic

form v 7! s(v; v) annihilates exactly one direction vIH � IH

2

: 0 = s(v; v) vanishes i�

0 = js

11

v

1

+s

12

v

2

j

2

or 0 = js

21

v

1

+s

22

v

2

j

2

since at least one, s

11

or s

22

does not vanish.

Hence, we can identify a point p = vIH 2 IHP

1

of the quaternionic projective line |

the 4-sphere | with the null line of quaternionic hermitian forms in the Minkowski

IR

6

1

that annihilate this point. In homogeneous coordinates, this identi�cation can be

given by

8)

v =

�

v

1

v

2

�

$

�

jv

2

j

2

�v

1

�v

2

�v

2

�v

1

jv

1

j

2

�

= s

v

: (1)

Note, that with this identi�cation, hs

v

; si = �s(v; v) for any quaternionic hermitian

form s 2 IR

6

1

. If s = s

w

is an isotropic form too, then hs

v

; s

w

i = �D(v; w).

If, on the other hand, hs; si = 1 we obtain | depending on whether s

11

= 0 or

s

11

6= 0 in the chosen basis (e

1

; e

2

) of IH

2

|

s =

�

0 �n

��n 2d

�

or s =

1

r

�

1 �m

� �m jmj

2

� r

2

�

with suitable n resp. m 2 IH and d resp. r 2 IR: the null cone of s is a plane with unit

normal n and distance d from the origin or a sphere with center m and radius r in

Euclidean 4-space fe

1

h + e

2

jh 2 IHg. Consequently, we identify the Lorentz sphere

S

5

1

� IR

6

1

with the space of spheres and planes in Euclidean 4-space, or with the space

of spheres in S

4

| as the readers familiar with the classical model (cf.[3]) of M�obius

geometry might already have suspected. The incidence of a point p 2 S

4

�

=

IHP

1

and

a sphere s � S

4

, i.e. s 2 S

5

1

, is equivalent to s(p; p) = 0 in our quaternionic model.

A key concept in

6)

At this point, we notice that the geometrically signi�cant space is the projective 5-space IRP

5

with

absolute quadric Q = fIRx j hx; xi = 0g, not its space of homogeneous coordinates, IR

6

1

.

7)

Using a basis of quaternionic hermitian forms, it is an unpleasant but straightforward calculation to

establish a Lie algebra isomorphism sl(2; IH)$ o

1

(6).

8)

Note the analogy with the Veronese embedding.
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4. M

�

obius differential geometry

is that of (hyper-) sphere congruences and envelopes of sphere congruences:

Definition. An immersion f : M ! S

4

is called an envelope of a hypersphere

congruence s : M ! S

5

1

if, at each point p 2 M , f touches the corresponding sphere

s(p): f(p) 2 s(p) and d

p

f(T

p

M) � T

f(p)

s(p).

According to our previous discussion, the �rst condition | the incidence of f(p) and

the corresponding sphere s(p) | is equivalent to s(f; f) = 0 in our quaternionic model.

Calculating, for a moment, in a Euclidean setting | i.e. s =

1

r

�

1 �m

� �m jmj

2

� r

2

�

| we

�nd s(f; df) + s(df; f) =

2

r

(f �m) � df . Thus

9)

,

Lemma. An immersion f :M ! IHP

1

envelopes a sphere congruence s :M ! S

5

1

if

and only if s(f; f) = 0 and s(f; df) + s(df; f) = 0.

Before going on, we introduce the symmetric space of point pairs: given two (distinct)

points of the quaternionic projective line IHP

1

, we may identify these points with a

quaternionic linear transformation P which maps a (�xed) basis (e

1

; e

2

) of IH

2

to their

homogeneous coordinates | or, in coordinates, with a matrix having for columns the

homogeneous coordinates of the two points. This linear transformation P is obviously

not uniquely determined by the two points in IHP

1

: any gauge transform P � H of

P with H in the isotropy subgroup K := fH 2 Gl(2; IH) jHe

1

= e

1

�;He

2

= e

2

�g

determines the same point pair. Thus, the space P of point pairs in the conformal 4-

sphere IHP

1

is a homogeneous space, P = Gl(2; IH)=K. Moreover, the decomposition

gl(2; IH) = k� p with

k = fX 2 gl(2; IH) jXe

1

= e

1

�;Xe

2

= e

2

�g

p = fX 2 gl(2; IH) jXe

1

= e

2

�;Xe

2

= e

1

�g

(2)

is a Cartan decomposition since [k; k] � k [k; p] � p and [p; p] � k so that P is, in fact,

a symmetric space.

Now, if F = (f;

^

f) : M ! Gl(2; IH) is a framing (lift) of a point pair map

M ! P , a simple calculation using (1) shows that

Ff =

�

0 0

0 1

�

and F

^

f =

�

1 0

0 0

�

if the relative scaling of f and

^

f is chosen such that F takes values in the special linear

group Sl(2; IH). Since Sl(2; IH) acts by isometries on the space IR

6

1

of quaternionic

hermitian forms, for any sphere congruence s : M ! S

5

1

containing the points of f

and

^

f , we have

Fs =

�

0 s

0

�s

0

0

�

9)

Note, that with the identi�cation (1) of points in IHP

1

with isotropic quaternionic hermitian forms,

s(f; df) + s(df; f) = �hs; dfi which gives the link with the classical model of M�obius geometry.
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with a suitable function s

0

: M ! S

3

� IH taking values in the unit quaternions.

Passing to another set of homogeneous coordinates by means of a gauge transfor-

mation (f;

^

f) 7! (f�;

^

f

^

�) results in s

0

7!

�

�s

0

^

�. Thus, depending on a given sphere

congruence s, we may �x the homogeneous coordinates of f and

^

f such that s

0

� 1 |

leaving us with a scaling freedom (f;

^

f) 7! (f�;

^

f

�

�

�1

) with � 2 IH . A second sphere

congruence ~s (orthogonal to the �rst one) can be used to further �x the scalings via

~s

0

� i up to � 2

=

C. Giving a complete set of four accompanying orthogonal sphere

congruences and �xing a third one, ŝ, to satisfy ŝ

0

� j leaves us with the familiar

real scaling freedom, � 2 IR (cf.[3]). These choices of accompanying spheres, and

accordingly these choices of homogeneous coordinates for a point pair map (f;

^

f) are

the only aspect of the presented calculus that will generally not work globally.

Writing down the derivatives df = f' +

^

f and d

^

f = f

^

 +

^

f'̂ of f and

^

f , we

obtain the connection form

� := F

�1

dF =

�

'

^

 

 '̂

�

: TM ! gl(2; IH)

of a framing F : M ! Gl(2; IH). A gauge transformation (f;

^

f) 7! (f�;

^

f

^

�) of the

frame will result in a change

�

'

^

 

 '̂

�

7!

�

�

�1

'� �

�1

^

 

^

�

^

�

�1

 �

^

�

�1

'̂

^

�

�

+

�

�

�1

d� 0

0

^

�

�1

d

^

�

�

(3)

of the connection form �. The integrability conditions 0 = d

2

f = d

2

^

f yield the

Maurer-Cartan equation 0 = d� + � ^ � for the connection form: the Gauss-Ricci

equations for f resp.

^

f ,

0 = d'+ ' ^ '+

^

 ^  

0 = d'̂+ '̂ ^ '̂+  ^

^

 ;

(4)

and the Codazzi equations,

0 = d +  ^ '+ '̂ ^  

0 = d

^

 +

^

 ^ '̂+ ' ^

^

 :

(5)

Note, that since the quaternions are not commutative, generally '^' 6= 0. Moreover,

d(�') = d�^'+�d', d('�) = d'��'^d� and ' ^  = �

�

 ^ �' for any quaternion

valued 1-forms ' and  and function � :M ! IH .

If s : M ! IR

6

1

is a map into the vector space of quaternionic hermitian forms,

then its derivative, ds : TM ! IR

6

1

is a 1-form with values in the quaternionic

hermitian forms. If Fs � const, this derivative can be expressed in terms of the

connection form � of F : since d(Fs) = 0,

F ds = �F [s(:;�) + s(�; :)] ' �[Fs � �+�

�

� Fs] (6)

when using the matrix representation for quaternionic hermitian forms.
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5. Curved flats and Isothermic surfaces

The concept of curved 
ats in symmetric spaces was �rst introduced by D. Ferus

and F. Pedit [9] as a natural generalization of developable surfaces: a curved 
at

is an envelope of a congruence of 
ats in a symmetric space or, more technical, a

submanifold of a symmetric space (with semisimple isometry group) whose tangent

spaces are maximal abelian subalgebras in the tangent spaces of that symmetric space.

In [6] it was then applied to the geometry of isothermic surfaces in 3-space. To

demonstrate our quaternionic calculus at work, we are going to discuss curved 
ats

in the symmetric space P of point pairs in IHP

1

. As in the codimension 1 case, these

will turn out to be Darboux pairs of isothermic surfaces in 4-space: given a point pair

map (f;

^

f) :M ! P , we choose a framing F :M ! Sl(2; IH) and write its connection

form � = �

k

+�

p

: TM ! sl(2; IH) = k� p. Then

10)

,

Definition. A map (f;

^

f) :M ! P into the symmetric space of point pairs is called

a curved 
at if �

p

^ �

p

= 0.

Note, that the de�ning equation is invariant under gauge transformations (3) of F ,

i.e. does not depend on a choice of homogeneous coordinates. Thus, the notion of a

curved 
at is a well de�ned notion for a point pair map (f;

^

f) :M ! P .

In order to understand the geometry of a curved 
at (f;

^

f) : M

2

! P in the

symmetric space of point pairs we will �rst express its connection form in a simpler

form, and then interpret it geometrically in a second step

11)

. We start with an

Sl(2; IH)-framing F :M

2

! Sl(2; IH) and write its connection form

� =

�

'

1

+ '

2

j

^

 

1

+

^

 j

 

1

+  j '̂

1

+ '̂

2

j

�

in terms of complex valued 1-forms. Using a rescaling (f;

^

f) 7! (f�;

^

f

^

�) we can

achieve  

1

= 0; then, the curved 
at equations read (we assume  6= 0)

^

 

1

= 0

and

^

 ^

�

 = 0. A rescaling (f;

^

f) 7! (f

�

�;

^

f�

�1

) with a complex valued function

� results in ( ;

^

 ) 7! (�

2

 ;

�

�

�2

^

 ); as any 1-form on M

2

has an integrating factor,

we may assume d = 0, i.e.  = dw. Since

^

 ^

�

 = 0,

^

 = �a

4

d �w with a suitable

function a : M !

=

C. From the Codazzi equations, da ^ dw = 0 | thus, by a

holomorphic change z

w

= a

2

of coordinates,  = a

�2

dz and

^

 = �a

2

d�z, or, after

rescaling again with � = a,  = dz and

^

 = d�z. Now, the Codazzi equations

also yield '̂

2

^ dz = �'

2

^ d�z and '̂

2

^ d�z = �'

2

^ dz. Thus, '

2

= q

1

dz � �q

2

d�z and

'̂

2

= ��q

1

dz+q

2

d�z with suitable functions q

1

; q

2

:M !

=

C. This way, '

2

^ �'

2

= '̂

2

^

�

'̂

2

such that d'

1

= d'̂

1

from the Gauss-Ricci equations. With the ansatz '̂

1

�'

1

= 2a,

we �nd that a rescaling (f;

^

f) 7! (f�;

^

f�

�1

) with � = e

a

yields '

1

= '̂

1

. At the same

time, ( ;

^

 ) 7! (e

u

 ; e

�u

^

 ) with u = a+ �a. So, we end up with a connection form

� =

�

i� + (q

1

dz � �q

2

d�z)j e

�u

d�z j

e

u

dz j i� + (��q

1

dz + q

2

d�z)j

�

(7)

10)

For simplicity of notation, we reduce the de�nition to the case under investigation.

11)

Note that, from this point on, we will restrict to local geometry: as Darboux pairs of isothermic

surfaces generally only exist locally so do curved 
ats in the space of point pairs. Also, some of the

presented arguments require the dondegeneracy of the curvature line net of the surfaces.
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where u : M ! IR, q

1

; q

2

: M !

=

C and � : TM ! IR is a real valued 1-form |

remember that we have chosen an Sl(2; IH)-framing from the beginning.

In order to interpret this connection form geometrically, we �rst note that all

sphere congruences

s

c

:= F

�1

�

0 c

�c 0

�

:M ! S

5

1

with c = e

i#

are enveloped by the two maps f and

^

f :

Fds

c

= �

�

0 2[�Re(�cq

1

)dz +Re(cq

2

)d�z]j

2[Re(�cq

1

)dz �Re(cq

2

)d�z]j 0

�

Thus, in the IR

6

1

-model of M�obius geometry, the s

c

can be viewed as common normal

�elds of f and

^

f . Using the identi�cation (1) of points in IHP

1

and isotropic lines in

IR

6

1

, we obtain

df = F

�1

�

0 e

u

dz j

�e

u

dz j 0

�

and d

^

f = F

�1

�

0 �e

�u

d�z j

e

�u

d�z j 0

�

as the derivatives (6) of f and

^

f . Calculating the induced metrics

hdf; dfi = e

2u

jdzj

2

and hd

^

f; d

^

fi = e

�2u

jdzj

2

of f and

^

f , and their second fundamental forms with respect to s

c

,

�hdf; ds

c

i = e

u

[�2Re(�cq

1

)jdzj

2

+Re(cq

2

)(dz

2

+ d�z

2

)];

�hd

^

f; ds

c

i = e

�u

[�2Re(cq

2

)jdzj

2

+Re(�cq

1

)(dz

2

+ d�z

2

)];

we see that f and

^

f have well de�ned principal curvature directions (independent

of the normal direction s

c

) which do correspond on both surfaces (fs

c

j c 2 S

1

g is a

\Ribaucour sphere pencil"), and that f and

^

f induce conformally equivalent metrics

on M . Moreover, z : M !

=

C are conformal curvature line coordinates on both sur-

faces, i.e. both surfaces are isothermic. Consequently, (f;

^

f) :M ! P is a \Darboux

pair" of isothermic surfaces in 4-space

12)

:

Definition. Two surfaces are said to form a Darboux pair if they envelope a (non-

trivial) congruence of 2-spheres (two orthogonal congruences of 3-spheres in 4-space)

such that the curvature lines on both surfaces correspond and the induced metrics in

corresponding points are conformally equivalent.

Conversely, if (f;

^

f) : M ! P envelope two congruences of orthogonal spheres, say

s

1

; s

i

:M ! S

5

1

, then the connection form

� =

�

'

1

+ '

2

j

^

 j

 j '̂

1

+ '̂

2

j

�

12)

This geometric description of Darboux pairs of isothermic surfaces can obviously be used to de�ne

isothermic surfaces and Darboux pairs of any codimension | as the one below for Christo�el pairs can

(cf.[13]). Note, that the 
atness of the normal bundle of a surface | which is necessary to make sense of

the notion of curvature lines | is a conformal notion, i.e. it is invariant under conformal changes of the

ambient space's metric.
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with complex 1-forms  ;

^

 : TM !

=

C. Assuming the curvature lines of f and

^

f to

correspond, and their induced metrics to be conformally equivalent, we can introduce

common curvature line coordinates:  = e

u

! and

^

 = e

�u

!, or

^

 = e

�u

�!. In both

cases, from the Gauss-Ricci equations Re[d('

1

� '̂

1

)] = 0, so that after a suitable real

rescaling of f and

^

f , Re('

1

� '̂

1

) = 0. Then, in the �rst case, the Codazzi equations

imply u � const: the sphere congruences enveloped by f and

^

f lie in a �xed linear

complex, consequently f and

^

f are congruent in some space of constant curvature

(cf.[3], [6]) | and are not considered to form a Darboux pair. In the other case, the

Codazzi equations yield d! = 0 | we have conformal curvature line parameters, i.e.

f and

^

f are isothermic; we could also have concluded this from the fact that f and

^

f

obviously form a curved 
at:

Theorem. A surface pair (f;

^

f) : M

2

! P is a curved 
at if and only if f and

^

f

form a Darboux pair. Two surfaces forming a Darboux pair are isothermic.

The k-part | see (2) | of the Maurer-Cartan equation of a Gl(2; IH)-framing reads

0 = d�

k

+ �

k

^ �

k

+ �

p

^ �

p

. Thus, for a curved 
at, �

k

= H

�1

dH with a suitable

H :M ! K: if � and

^

� are given by

�

�1

d� = i� + (q

1

dz � �q

2

d�z)j and

^

�

�1

d

^

� = i� + (��q

1

dz + q

2

d�z)j

then a gauge transformation (f;

^

f) 7! (f�

�1

;

^

f

^

�

�1

) of our previous framing with

connection form (7) leaves us with

� =

�

0 �(e

�u

d�z j)

^

�

�1

^

�(e

u

dz j)�

�1

0

�

=:

�

0 !̂

! 0

�

:

The Codazzi equations for this new framing simply read d! = d!̂ = 0 showing that

�! = df

0

and !̂ = d

^

f

0

with suitable maps f

0

;

^

f

0

: M ! IH . Here, we identify the two

copies of the quaternions sitting in p = IH � IH as the eigenspaces of ad

C

: p ! p,

C =

�

1 0

0 �1

�

, by means of the real endomorphism X 7! X

�

of p. Note, that since

the 1-forms �

�1

d�;

^

�

�1

d

^

� : TM ! ImIH take values in the imaginary quaternions,

j�j = j

^

�j � 1. Consequently, the induced metrics of f

0

: M ! IH and

^

f

0

: M ! IH ,

IH

�

=

IR

4

considered as a Euclidean space, are

df

0

� df

0

= e

2u

jdzj

2

and d

^

f

0

� d

^

f

0

= e

�2u

jdzj

2

:

Moreover, with the common unit normal �elds n

c

= ��c

^

�

�1

of f

0

and

^

f

0

, where

c = e

i#

, their second fundamental forms become

�df

0

� dn

c

= e

u

[�2Re(cq

1

)jdzj

2

+Re(�cq

2

)(dz

2

+ d�z

2

)];

�d

^

f

0

� dn̂

c

= e

�u

[�2Re(�cq

2

)jdzj

2

+Re(cq

1

)(dz

2

+ d�z

2

)]:

(8)

Thus, f

0

and

^

f

0

are two isothermic surfaces that carry common curvature line coor-

dinates | and,

^

f

0

and

�

f

0

have parallel tangent planes. Hence, we de�ne

13)

:

13)

If f

0

;

^

f

0

: M

2

! ImIH, this de�nition yields the classical notion of a Christo�el pair (cf.[6]).
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Definition. Two (non homothetic) surfaces f

0

;

^

f

0

: M

2

! IH with parallel tangent

planes in corresponding points are said to form a Christo�el pair if the curvature lines

on both surfaces correspond and the induced metrics are conformally equivalent.

Conversely, if two surfaces f

0

;

^

f

0

: M

2

! IH carry conformally equivalent metrics

and have parallel tangent planes in corresponding points f

0

(p) and

^

f

0

(p) then

14)

,

df

0

= �e

u

 j

^

�

�1

and d

^

f

0

= ��e

�u

 j

^

�

�1

, or d

^

f

0

= �e

�u

�

 j

^

�

�1

with a real valued

function u, a complex 1-form  : TM !

=

C and suitable quaternionic functions

�;

^

� :M ! IH | where j�j = j

^

�j � 1 without loss of generality. In the �rst case, the

integrability conditions yield 0 = du^ showing that u � const. Consequently,

^

f

0

is

homothetic to f

0

| and f

0

and

^

f

0

are not considered to form a Christo�el pair. In

the second case, d

�

f

0

^ d

^

f

0

= d

^

f

0

^ d

�

f

0

= 0. Hence, the surface pair f

0

;

^

f

0

: M ! IH

gives rise to a curved 
at by integrating � :=

�

0 d

^

f

0

d

�

f

0

0

�

| we obtain the following

Theorem. Two surfaces f

0

;

^

f

0

: M

2

! IH form a Christo�el pair if and only if

d

�

f

0

^ d

^

f

0

= d

^

f

0

^ d

�

f

0

= 0. Two surfaces forming a Christo�el pair are isothermic.

Curved 
ats | or, Darboux pairs of isothermic surfaces | naturally arise in 1-

parameter families [9]: if � = �

k

+�

p

denotes one of the connection forms associated

to a curved 
at (f;

^

f) :M

2

! P , then, with a real parameter % 2 IR, all the connection

forms

�

%

:= �

k

+ %

2

�

p

: TM

2

! sl(2; IH) = k� p (9)

are integrable and give rise to curved 
ats (f

%

;

^

f

%

) :M

2

! P ; in fact, if the connection

forms (9) are integrable for more than one value of %

2

, then the associated point pair

maps are necessarily curved 
ats. From (3), we learn that this 1-parameter family

of curved 
ats does not depend on the framing chosen to describe the curved 
at

(f;

^

f). Moreover, sending the parameter %! 0, and rescaling (f

%

;

^

f

%

) 7! (%

�1

f

%

; %

^

f

%

)

or (f

%

;

^

f

%

) 7! (%f

%

; %

�1

^

f

%

) at the same time, provides us with

(f

%=0

;

^

f

%=0

) =

�

1 0

�

f

0

1

�

or (f

%=0

;

^

f

%=0

) =

�

1

^

f

0

0 1

�

:

Hence, we may think of the Christo�el pair (f

0

;

^

f

0

) | that is, as before, associated

to a 1-parameter family of curved 
ats by integrating

�

%

=

�

0 %

2

d

^

f

0

%

2

d

�

f

0

0

�

| as a limiting case for the Darboux pairs (f

%

;

^

f

%

). Comparison with (3) shows that

the spectral parameter % corresponds to the scaling ambiguity of the members of a

Christo�el pair: one of the surfaces of a Christo�el pair is determined by the other

only up to a homothety (and translation).

We will use those facts to discuss perturbation methods (cf.[16]) for the construc-

tion of constant mean curvature surfaces and, in particular, for Bryant's Weierstrass

type representation [4] for

14)

If p is not an umbilic for either surface, it follows that the principal curvature directions of both

surfaces correspond. In case one of the surfaces is totally umbilic we need also to assume that the curvature

lines on both surfaces coincide | otherwise we might �nd two associated minimal surfaces.
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6. Constant mean curvature surfaces

in hyperbolic space forms. We restrict our attention to codimension 1 by assuming

that our surfaces lie in a �xed conformal 3-sphere, say s

1

. Thus the connection form

(7) of a Darboux pair (f;

^

f) :M

2

! IHP

1

takes the form

� =

�

i[� +

1

2

(e

u

Hdz � e

�u

^

Hd�z)j] e

�u

d�z j

e

u

dz j i[� +

1

2

(e

u

Hdz � e

�u

^

Hd�z)j]

�

(10)

where the (real) functions H;

^

H can be interpreted as the mean curvature functions of

the members f

0

and

^

f

0

of the limiting Christo�el pair: from (10) we see that a rescaling

(f;

^

f) 7! (f�;

^

f�) will provide us with �

k

= 0, such that df

0

; d

^

f

0

: TM ! ImIH . The

second fundamental forms (8) with respect to the remaining common normal �eld

n

i

= ��i�

�1

= �n̂

i

become

�df

0

� dn

i

= He

2u

jdzj

2

�

1

2

^

H(dz

2

+ d�z

2

)];

�d

^

f

0

� dn̂

i

=

^

He

�2u

jdzj

2

�

1

2

H(dz

2

+ d�z

2

)]:

The Codazzi equations (5) yield � =

i

2

(�u

z

dz + u

�z

d�z) and from (4) we recover the

classical Gauss equation 0 = u

z�z

+

1

4

(H

2

e

2u

�

^

H

2

e

�2u

) holding for both surfaces

f

0

and

^

f

0

, and the classical Codazzi equations dH ^ e

u

dz = d

^

H ^ e

�u

d�z: Hence,

H � const if and only if

^

H � const, re
ecting the fact that a pair of parallel constant

mean curvature surfaces, or a minimal surface and its Gauss map form Christo�el

pairs (cf.[11]).

Calculating the derivative of the sphere congruence s

i

enveloped by the two

surfaces f and

^

f | which form the Darboux pair associated with the Christo�el pair

(f

0

;

^

f

0

) | we �nd

Fds

i

=

�

0 (He

u

dz �

^

He

�u

d�z)j

(�He

u

dz +

^

He

�u

d�z)j 0

�

= H � F df +

^

H � F d

^

f:

Hence, the vectorN := s

i

�Hf�

^

H

^

f is constant as soon as one of the mean curvatures,

H or

^

H, is. In order to interpret this fact geometrically, we have to distinguish two

cases:

If H

^

H 6= 0, i.e. (f

0

;

^

f

0

) is equivalent to a pair of parallel constant mean curvature

surfaces, then hN;

2

^

H

fi � 1 and hN;

2

H

^

fi � 1 | and consequently (cf.[3]), the two

surfaces

1

^

H

f;

1

H

^

f :M

2

! s

1

' S

3

� IHP

1

can be interpreted as surfaces in the space

M

3

N

:= fy 2 IR

6

1

j hN; yi = 1; hs

1

; yi = 0; hy; yi = 0g of constant sectional curvature

� = �hN;Ni = �(1�H

^

H). Their induced metrics are

hd(

2

^

H

f); d(

2

^

H

f)i =

4

^

H

2

e

2u

jdzj

2

and hd(

2

H

^

f
); d(

2

H

^

f
)i =

4

H

2

e

�2u

jdzj

2

while, with the unit normal �elds t = s

i

�

2

^

H

f and

^

t = s

i

�

2

H

^

f in that space M

3

N

,

their second fundamental forms become

�hd(

2

^

H

f); dti =

4

^

H

2

e

2u

(1�

1

2

H

^

H) jdzj

2

+ (dz

2

+ d�z

2

)

�hd(

2

H

^

f); d

^

ti =

4

H

2

e

�2u

(1�

1

2

H

^

H) jdzj

2

+ (dz

2

+ d�z

2

)
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| showing that both surfaces have the same constant mean curvature 1�

1

2

H

^

H. As

a special case, H = 1 and

^

H = 2, this provides the well known relation between

constant mean curvature surfaces in Euclidean space IR

3

and minimal surfaces in the

3-sphere S

3

.

If H

^

H = 0, one of the surfaces f

0

or

^

f

0

is a minimal surface, say

^

H = 0, while the

other is homothetic to its Gauss map, say n = H f

0

. Now, the surface

2

H

^

f :M

2

!M

3

N

lies in hyperbolic space, � = �1, while f is the hyperbolic Gauss map (cf.[4]) of

2

H

^

f

since hN; fi � 0, i.e. f takes values in the in�nity boundary N 2 S

5

1

of M

3

N

. As

before, the mean curvature of

2

H

^

f : M

2

! M

3

N

is easily calculated to be constant

= 1. This is how Bryant's Weierstrass type representation [4] for surfaces of constant

mean curvature 1 in hyperbolic 3-space H

3

can be obtained in this context: we write

the di�erential d

^

f

0

=

1

2

(i + gj)�!j(i + gj) of a minimal immersion

^

f

0

: M

2

! IR

3

(and its Christo�el transform, its Gauss map f

0

= (i+ gj)i(i+ gj)

�1

:M

2

! S

2

) in

terms of a holomorphic 1-form ! : TM

2

!

=

C and the (meromorphic) stereographic

projection g : M !

=

C of its Gauss map. Then, the constant mean curvature surface

^

f : M

2

! H

3

(and its hyperbolic Gauss map f : M

2

! N ' S

2

) are obtained by

integrating the connection form

15)

� =

�

0

1

2

(i+ gj)�!j(i+ gj)

�2(i+ gj)

�1

dg j(i+ gj)

�1

0

�

; (11)

to the framing (f;

^

f) ' F : M

2

! Gl(2; IH) where dF = F� | thus (locally)

characterizing Bryant's Weierstrass type representation of surfaces of constant mean

curvature 1 in hyperbolic space as Bianchi's T-transform [2] of minimal surfaces in

Euclidean space. In fact, introducing the spectral parameter (9), surfaces of constant

mean curvature c in hyperbolic space forms of curvature � = �c

2

arise by \perturba-

tion" of minimal surfaces in Euclidean 3-space (cf.[16]).

Parametrizing a minimal surface patch

^

f

0

in terms of curvature line parameters,

z = x+ iy, the above representation of

^

f

0

becomes the classical Enneper-Weierstrass

representation, i.e. ! =

dz

g

0

. Performing a M�obius transformation on the Gauss map

g (resp. f

0

| its Christo�el transform) and integrating the Enneper-Weierstrass rep-

resentation again (i.e. taking the Christo�el transform of the M�obius transformed

Gauss map) yields the classical Goursat transformation of the minimal surface patch.

But, a closer look at the connection form (11) suggests that the Enneper-Weierstrass

representation itself can be interpreted as a Goursat type transformation of a pla-

nar patch: considering gj;

R

�!j : M

2

!

=

Cj as a (highly degenerate) Christo�el pair,

the corresponding minimal surface

^

f

0

is obtained as a Christo�el transformation of

f

0

=

1

1+jgj

2

[(1 � jgj

2

)i + 2gj], the stereographic projection of gj (\the" Christo�el

transform of

R

�!j) into S

2

. This Goursat type transformation can (obviously) be

generalized to arbitrary Christo�el pairs of isothermic surfaces: if f

0

;

^

f

0

: M

2

! IH

form a Christo�el pair, then, for any (constant) a 2 IH , the quaternionic 1-forms

15)

With the ansatz F =

�

2(x

21

g + x

22

)(i+ gj)

�1

j(x

21

i� x

22

j)

2j(x

11

g + x

12

)(i+ gj)

�1

�(x

11

i� x

12

j)

�

, the common form of Bryant's

representation is obtained as xx

�

: M

2

! H

3

� fy 2 Gl(2;

=

C) j y = y

�

g

�

=

IR

4

1

where the scalar product on

H

3

is induced by the Lorentz scalar product jyj

2

= �det(y) on IR

4

1

.
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(a+

�

f

0

)

�1

d

�

f

0

(a+

�

f

0

)

�1

and (a+

�

f

0

)d

^

f

0

(a+

�

f

0

) are closed | and consequently give

rise to a new Christo�el pair.
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