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Abstract. We show that there exists a C

�

-algebra B such that M

2

(B) is

stable, but B is not stable. Hence stability of C

�

-algebras is not a stable

property. More generally, we �nd for each integer n � 2 a C

�

-algebra B

so that M

n

(B) is stable and M

k

(B) is not stable when 1 � k < n. The

C

�

-algebras we exhibit have the additional properties that they are simple,

nuclear and of stable rank one.

The construction is similar to Jesper Villadsen's construction in [7] of a

simple C

�

-algebra with perforation in its ordered K

0

-group.
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1 Introduction

A C

�

-algebra A is said to be stable if A

�

=

A 
 K, where K is the C

�

-algebra of

compact operators on a separable, in�nite dimensional Hilbert space. The problem

of deciding which C

�

-algebras are stable relates to structure problems of simple C

�

-

algebras. For example, as shown in [3, Proposition 5.2], if all non-unital hereditary

sub-C

�

-algebras of a given C

�

-algebra A are stable, and if A is simple and not of type

I, then A must be purely in�nite. It was also remarked in [3, Proposition 5.1] that an

AF-algebra is stable if and only if it admits no bounded (densely de�ned) traces, and

it was asked if a similar characterization might hold in general. In more detail, is a

C

�

-algebra A stable if and only if A admits no bounded (quasi-)trace and no quotient

of A is unital?

It is a consequence of the examples produced in this article that the answer to

this question is no. Indeed, let A be a C

�

-algebra such that M

2

(A) is stable and A is

not stable. Then M

2

(A) admits no bounded (quasi-)trace, and no quotient of M

2

(A)

is unital. This is easily seen to imply that A admits no bounded (quasi-)trace, and

that no quotient of A is unital.
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Jesper Villadsen gave in [7] the �rst examples of simple C

�

-algebras whose or-

dered K

0

-groups have perforation. As shown in Proposition 3.3, the examples con-

structed here must also have perforation in their K

0

-group (at least when they admit

an approximate unit consisting of projections). We shall in this article make extensive

use of the techniques developed by Villadsen.

2 A preliminary result

Let A be a C

�

-algebra and consider the set �(A) consisting of those integers n � 1

where M

n

(A) is stable. The result below shows that this set must be either empty,

N, or equal to fn; n+1; n+2; : : :g for some n � 2. Clearly, the empty set and N arise

as �(A) for appropriate C

�

-algebras A. The main result of this article (Theorem 5.3)

shows that the remaining sets are also realized.

Proposition 2.1 Let A be a �-unital C

�

-algebra, let n � 1 be an integer, and suppose

that M

n

(A) is stable. Then M

n+1

(A) is stable.

Proof: By [3, Theorem 2.1 and Proposition 2.2] it su�ces to show that one for all

positive elements a 2M

n+1

(A) and all " > 0 can �nd positive elements b; c 2M

n+1

(A)

with ka�bk � ", kbck � ", and b � c (i.e. b = x

�

x and c = xx

�

for some x 2M

n+1

(A)).

To obtain this it su�ces to �nd positive elements e; f 2M

n+1

(A)

+

with e � f , e ? f ,

and ea close to a. Indeed, if e = x

�

x and f = xx

�

, then set y = xa

1=2

, and note that

y

�

y is close to a and that (yy

�

)(y

�

y) is small.

Now,

a =

�

a

1

z

z

�

a

2

�

;

where a

1

2 M

n

(A)

+

, a

2

2 A

+

and z 2 M

n;1

(A). Let " > 0, and let '

"

: R

+

! [0; 1]

be a continuous function which is zero on [0; "=2] and equal to 1 on [";1). Set

e

0

=

�

'

"

(a

1

) 0

0 '

"

(a

2

)

�

:

Then e

0

a is close to to a if " > 0 is small.

Since M

n

(A) is stable, we can �nd positive elements e

1

; f

1

; f

2

2 M

n

(A) and

e

2

2 A such that e

1

� f

1

, e

2

� f

2

(in the sense that e

2

= x

�

x and f

2

= xx

�

for some

x 2M

n;1

(A)), e

1

; f

1

; f

2

are mutually orthogonal, e

1

is close to '

"

(a

1

), and e

2

is close

to '

"

(a

2

). Set

e =

�

e

1

0

0 e

2

�

; f =

�

f

1

+ f

2

0

0 0

�

:

Then ea is close to a, e � f , and e ? f as desired. �

3 Stability and the scale of K

0

We investigate in this section the connection between the scaled ordered group of a

C

�

-algebra and stability of matrix algebras over the C

�

-algebra. Recall that if A is a

C

�

-algebra, then

K

0

(A)

+

= f[p]

0

j p 2 P (A
 K)g � K

0

(A); �(A) = f[p]

0

j p 2 P (A)g � K

0

(A)

+

;
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where P (A
 K) and P (A) denote the set of projections in A
 K, respectively, A.

One can in some cases see from the triple (K

0

(A);K

0

(A)

+

;�(A)) if A is stable.

A C

�

-algebra A is said to have the cancellation property if p+ r � q+ r implies that

p � q for all projections p; q; r 2 A
K with p ? r and q ? r. If A has the cancellation

property, then [p]

0

= [q]

0

in K

0

(A) implies p � q for all projections p; q 2 A 
 K.

Recall also that A has the cancellation property if A is of stable rank one (see [1,

Proposition 6.5.1]).

Proposition 3.1 Let A be a C

�

-algebra with the cancellation property and with a

countable approximate unit consisting of projections. Then A is stable if and only if

�(A) = K

0

(A)

+

.

Proof: The \only if" part is trivial. To show the \if" part, assume that �(A) =

K

0

(A)

+

. By [3, Theorem 3.3] it su�ces to show that for each projection p 2 A there

exists a projection q 2 A with p � q and p ? q. Let a projection p 2 A be given.

By the assumptions that A has an approximate unit consisting of projections, and

�(A) = K

0

(A)

+

, there exist projections e; f 2 A such that [e]

0

= 2[p]

0

= [p � p]

0

,

e � f and p � f . Since A has the cancellation property, this implies that e � p� p,

which again implies that e = e

1

+ e

2

, where e

1

� e

2

� p. Now, [f � p]

0

= [f � e

1

]

0

,

and so p � e

2

� f � e

1

� f � p: Hence p is equivalent to a subprojection q of f � p

as desired. �

Definition 3.2 A triple (G;G

+

;�) will be called a scaled, ordered abelian group if

(G;G

+

) is an ordered abelian group, and � is an upper directed, hereditary, full subset

of G

+

, ie.,

(i) 8x

1

; x

2

2 � 9x 2 � : x

1

� x; x

2

� x,

(ii) 8x 2 G

+

8y 2 � : x � y =) x 2 �,

(iii) 8x 2 G

+

9y 2 � 9k 2 N : x � ky.

Let (G;G

+

) be an ordered abelian group, and let �

1

and �

2

be upper directed,

hereditary, full subsets of G

+

. De�ne �

1

^

+�

2

to be the set of all elements x 2 G

+

for

which there exist x

1

2 �

1

and x

2

2 �

2

with x � x

1

+ x

2

. Observe that �

1

^

+�

2

is an

upper directed, hereditary, full subset of G

+

. Denote the k-fold sum �

^

+�

^

+ � � �

^

+�

by k
^
��. Using that � is upper directed we see that y 2 k

^
�� if and only if 0 � y � kx

for some x 2 �.

If A is a stably �nite C

�

-algebra with the cancellation property and with an

approximate unit consisting of projections, then (K

0

(A);K

0

(A)

+

;�(A)) is a scaled,

ordered abelian group. If A has these properties, then

�

K

0

(M

k

(A));K

0

(M

k

(A))

+

;�(M

k

(A))

�

�

=

(K

0

(A);K

0

(A)

+

; k
^
��(A)): (1)

Suppose that n � 2 and that (G;G

+

;�) is a scaled, ordered Abelian group

such that (n � 1)
^
�� 6= G

+

and n
^
�� = G

+

, and suppose that A is a C

�

-

algebra of stable rank one and with an approximate unit of projections such that

(K

0

(A);K

0

(A)

+

;�(A))

�

=

(G;G

+

;�). Then it follows from Proposition 3.1 and (1)

that M

n

(A) is stable and M

k

(A) is not stable for 1 � k < n.

Recall that an ordered Abelian group (G;G

+

) is called weakly unperforated if

ng 2 G

+

n f0g for some n 2 N and some g 2 G implies g 2 G

+

.
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Proposition 3.3 Let (G;G

+

;�) be a weakly unperforated, scaled, ordered, Abelian

group, and suppose that n
^
�� = G

+

for some n 2 N. Then � = G

+

.

Proof: Let g be an element of G

+

, and choose a non-zero element u 2 G

+

. Since

n
^
�� = G

+

, there is an element x 2 � with nx � ng+u. Now, n(x� g) � u > 0, and

this entails that x � g � 0, by the assumption that (G;G

+

) is weakly unperforated.

By the hereditary property of � we get that g 2 �. Thus � = G

+

. �

We give below an explicit example of a scaled, ordered Abelian group (G;G

+

;�)

with �

^

+� = G

+

and � 6= G

+

. Note that this ordered group necessarily must be

perforated (by Proposition 3.3 above).

It is not known if every (countable) scaled ordered Abelian group is the scaled

ordered Abelian group of a C

�

-algebra | the problem here lies in realizing the given

order structure, not in realizing the given scale. We can therefore not immediately

conclude from the example below that there exists a non-stable C

�

-algebra B where

M

2

(B) is stable. Actually, it is not known (to the author) if the ordered Abelian

group constructed below is the ordered K

0

-group of any C

�

-algebra.

Example 3.4 Let Z

2

denote the group Z=2Z, and let Z

(1)

2

denote the group of all

sequences t = (t

j

)

1

j=1

, with t

j

2 Z

2

and where t

j

6= 0 only for �nitely many j. For

each t 2Z

(1)

2

, let d(t) be the number of elements in fj 2 N j t

j

6= 0g: Set

G

2

=Z�Z

(1)

2

; G

+

2

= f(k; t) j d(t) � kg; �

2

= f(k; t) j d(t) = kg:

Then (G

2

; G

+

2

;�

2

) is a scaled, ordered Abelian group with �

2

6= G

+

2

and �

2

^

+�

2

=

G

+

2

. To see this, let e

j

2Z

(1)

2

be the element which is a generator of Z

2

at the jth

coordinate and zero elsewhere, set g

j

= (1; e

j

) 2 G

+

, and set h

j

= g

1

+ g

2

+ � � �+ g

j

.

Then

�

2

=

1

[

j=1

fx 2 G

+

j x � h

j

g: (2)

The claims made about (G

2

; G

+

2

;�

2

) are now easy to verify.

Notice that �

2

+ �

2

6= �

2

^

+�

2

, since for example (3; e

1

+ e

2

) =2 �

2

+ �

2

. This

was pointed out to me by Jacob Hjelmborg, and it shows that the sum of two scales

is not a scale in general. �

Example 3.5 Let n � 2 be an integer. LetZ

(1)

n

be the Abelian group of all sequences

(t

j

)

1

j=1

with t

j

2Z

n

(=Z=nZ), and t

j

6= 0 only for �nitely many j. Let e

j

2Z

(1)

n

be

a generator of the jth copy of Z

n

. Then each t 2Z

(1)

n

is a sum t =

P

1

j=1

r

j

e

j

with

0 � r

j

< n and where r

j

= 0 for all but �nitely many j. Set d(t) =

P

1

j=1

r

j

, and set

G

n

=Z�Z

(1)

n

; G

+

n

= f(k; t) j d(t) � kg; �

n

=

1

[

j=1

fx 2 G

+

j x � h

j

g;

where g

j

= (1; e

j

) and h

j

= g

1

+g

2

+ � � �+g

j

. Then (G

n

; G

+

n

;�

n

) is a scaled, ordered,

Abelian group, (n� 1)
^
��

n

6= G

+

n

and n
^
��

n

= G

+

n

. �
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Adopt the following (standard) notation. If e 2 M

n

(A) and f 2 M

m

(A) are projec-

tions, then let e�f denote the projection diag(e; f) 2M

n+m

(A). Write e � f if there

is an element v 2M

m;n

(A) with e = v

�

v and f = vv

�

, and write e - f if e � f

0

for

some subprojection f

0

of f . Denote the k-fold direct sum e� e� � � � � e by e
 1

k

. If

A has the cancellation property (see the introduction to this section), and if e; f 2 A

are projections, then [e]

0

� [f ]

0

if and only if e - f .

Proposition 3.6 Let A be a C

�

-algebra, let n � 2 be an integer, and suppose that

A contains projections e; p

1

; p

2

; p

3

; : : : that satisfy

(i) e 
 1

n

� p

j


 1

n

for all j,

(ii) e is not equivalent to a subprojection of (p

1

� p

2

� � � � � p

j

)
 1

n�1

for any j.

Set q

j

= p

1

�p

2

�� � ��p

j

, and embed all matrix algebras over A coherently into A
K

so that q

j

belongs to A 
K for all j. Set

B =

1

[

j=1

q

j

(A
 K)q

j

: (3)

Then M

k

(B) is not stable for 1 � k < n, but M

n

(B) is stable.

Let H be the subgroup of K

0

(B) generated by the K

0

-classes of the projections

e; p

1

; p

2

; p

3

; : : : . Assume that B has the cancellation property. Then

(H;H \K

0

(B)

+

;H \ �(B))

�

=

(G

n

; G

+

n

;�

n

); (4)

where the triple on the right hand-side is the scaled, ordered, Abelian group de�ned in

Example 3.5.

Proof: Observe that

M

k

(B) =

1

[

j=1

(q

j


 1

k

)(A
 K)(q

j


 1

k

);

for each k, and that fq

j


 1

k

g

1

j=1

is an approximate unit for M

k

(B).

To show that M

k

(B) is not stable for 1 � k < n it su�ces by Proposition 2.1 to

show that M

n�1

(B) is not stable.

If M

n�1

(B) were stable, then there would exist a projection q 2M

n�1

(B) such

that q � p

1


 1

n�1

and q ? p

1


 1

n�1

. (This is rather easy to see directly, and one

can also obtain this from [3, Theorem 3.3].) Since fq

j


 1

n�1

� p

1


 1

n�1

g

1

j=1

is an

approximate unit for (1�p

1


1

n�1

)M

n�1

(B)(1�p

1


1

n�1

), there is a j, so that q is

equivalent to a subprojection of q

j


 1

n�1

� p

1


 1

n�1

(= (p

2

� p

3

� � � �� p

j

)
 1

n�1

).

By assumption (i),

e - e 
 1

n

� p

1


 1

n

- (p

1


 1

n�1

)� (p

1


 1

n�1

) - (p

1


 1

n�1

)� q

- (p

1

� p

2

� � � � � p

j

) 
 1

n�1

;

in contradiction with assumption (ii).
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We proceed to show that M

n

(B) is stable. By (i), q

j


 1

n

is equivalent to the

direct sum of e 
 1

n

with itself j times. It follows quite easily from this that M

n

(B)

is stable. We can also use [3, Theorem 3.3] to obtain this conclusion by showing that

there for each projection p in M

n

(B) exists a projection q in M

n

(B) with p � q and

p ? q. One can here reduce to the case where p is a subprojection of q

j


 1

n

for some

j, and the result then follows from the fact that q

2j


 1

n

� q

j


 1

n

� q

j


 1

n

.

Assume now that B has the cancellation property. To establish the isomorphism

(4), note �rst that n([p

j

]

0

� [e]

0

) = 0 by (i). Retaining the notation from Example

3.5, we de�ne a group homomorphism ' : G

n

! H by '(1; 0) = [e]

0

and '(0; e

j

) =

[p

j

]

0

�[e]

0

. ' is clearly surjective. For any (k; t) 2 G

n

with t =

P

N

j=1

r

j

e

j

, 0 � r

j

< n,

'(k; t) = k[e]

0

+

N

X

j=1

r

j

�

[p

j

]

0

� [e]

0

�

=

�

k � d(t)

�

[e]

0

+

N

X

j=1

r

j

[p

j

]

0

:

It follows that '(k; t) � 0 if (k; t) � 0. Conversely, if (k; t) is not positive, then

k � d(t) � �1, and so

'(k; t) =

�

k � d(t)

�

[e]

0

+

N

X

j=1

r

j

[p

j

]

0

� (n� 1)

�

[p

1

]

0

+ [p

2

]

0

+ � � �+ [p

N

]

0

�

� [e]

0

:

By (ii) and the assumption that B has the cancellation property, the element on

the right-hand side of this inequality is not positive. All in all we have shown that

'(k; t) � 0 if and only if (k; t) � 0. This entails that ' is injective and that '(G

+

n

) =

H \K

0

(B)

+

.

Since fq

j

g

1

j=1

is an approximate unit for B, an element g 2 K

0

(B) lies in �(B) if

and only if 0 � g � [q

j

]

0

for some j. Notice that '(h

j

) = [q

j

]

0

. Hence '(k; t) 2 �(B)

if and only if 0 � (k; t) � h

j

for some j, and this shows that '(�

n

) = H \ �(B). �

Remark 3.7 Corollary 4.2 and Proposition 5.2 contain for each prime number n

examples of C

�

-algebras with projections e; p

1

; p

2

; p

3

; : : : satisfying (i) and (ii) of

Proposition 3.6. The C

�

-algebras in Proposition 5.2 have the cancellation property

(being of stable rank one).

Remark 3.8 One can replace condition (i) in Proposition 3.6 by a weaker condition

such as for example e - p

j


 1

n

for all j, and still obtain that the C

�

-algebra B

de�ned in (3) has the property that M

k

(B) is not stable for 1 � k < n and M

n

(B) is

stable. However, with this weaker condition one would not have a description of the

scaled ordered group as in (4).

4 The commutative case

We realize for each positive prime number n projections e; p

1

; p

2

; p

3

; : : : satisfying

conditions (i) and (ii) of Proposition 3.6, with respect to that n, inside a C

�

-algebra

which is stably isomorphic to a commutative C

�

-algebra. At the same time, Lemma

4.1 below, is a key ingredient in Section 5.

If � : X

1

! X

2

is a continuous function, then �

�

will denote the map from the

cohomology groups of X

2

to the cohomology groups of X

1

, and the same symbol will
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be used to denote the map from vector bundles over X

2

to vector bundles over X

1

.

By naturality of the Euler class, e(�

�

(�)) = �

�

(e(�)) for all complex vector bundles �

over Y .

The proof of Lemma 4.1 below is almost identical to the proof of [6, Theorem 3.4].

The statements of Lemma 4.1 and of [6, Theorem 3.4] are, however, quite di�erent.

Therefore, and for the convenience of the reader, we include a proof of Lemma 4.1.

Let D denote the unit disk in the complex plane. Consider for each integer n � 2

the equivalence relation � on D given by: z � w if z = w or if jzj = jwj = 1 and

z

n

= w

n

. Put Y

n

= D=�.

Lemma 4.1 Let n be a positive prime number, and put X = Y

n�1

n

. There exists

a complex line bundle ! over X with the following properties. Let m be a positive

integer, let �

1

; �

2

; : : : ; �

m

: X

m

! X be the coordinate maps, and set

�

(m)

k

= �

�

1

(!) � �

�

2

(!) � � � � � �

�

k

(!); 1 � k � m;

which is a complex vector bundle over X

m

of dimension k. Let �

d

denote the trivial

complex vector bundle (over X or X

m

) of (complex) dimension d. Then

(i) n!

�

=

�

n

,

(ii) if (n� 1)�

(m)

k

� �

d

1

�

=

� � �

d

2

for some complex vector bundle � over X

m

, and

some positive integers d

1

and d

2

, then d

1

� d

2

, and

(iii) ! � �

�

=

�

n

for some (n� 1)-dimensional complex vector bundle � over X.

Proof: Recall that H

2

(Y

n

;Z)

�

=

Z=nZ. There is a complex line bundle � over Y

n

with

non-trivial Euler class e(�) 2 H

2

(Y

n

;Z), and with n�

�

=

�

n

. Let �

1

; �

2

; : : : ; �

n�1

: X =

Y

n�1

n

! Y

n

be the coordinate projections, and set

! = �

�

1

(�) 
 �

�

2

(�)
 � � � 
 �

�

n�1

(�):

Then ! is a complex line bundle over X, and successive applications of the isomor-

phism n�

�

=

�

n

= n�

1

, yield n!

�

=

�

n

. Hence (i) holds, and (iii) is a trivial consequence

of (i).

To prove claim (ii) we �rst show that the Euler class, e((n� 1)�

(m)

k

), is non-zero.

The Euler class of ! is given by

e(!) =

n�1

X

j=1

�

�

j

(e(�)); (5)

cf. [4, Proposition V.3.10]. By the product formula for the Euler class, cf. [4, Propo-

sition V.3.10],

e((n � 1)�

(m)

k

) =

k

Y

j=1

�

�

j

(e(!)

n�1

): (6)

Since e(�)

2

2 H

4

(Y

n

;Z) and H

4

(Y

n

;Z) = 0, it follows from (5) and (6) that

e(!)

n�1

= (n� 1)!

n�1

Y

i=1

�

�

i

(e(�)):
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Let �

1

; �

2

; : : : ; �

k

: X

k

! X and � : X

m

! X

k

be the projections maps. Then �

j

=

�

j

� �, and �

�

: H

2k

(X

k

;Z)! H

2k

(X

m

;Z) is an injection. The map

� : H

2

(Y

n

;Z)
H

2

(Y

n

;Z)
 � � � 
H

2

(Y

n

;Z)! H

2k(n�1)

(X

k

;Z)

given by

�(x

1;1


 x

1;2


 � � � 
 x

k;n�1

) =

k

Y

j=1

n�1

Y

i=1

(�

�

j

� �

�

i

)(x

i;j

);

is injective by the K�unneth formula. Now,

e((n � 1)�

(m)

k

) =

k

Y

j=1

�

�

j

(e(!)

n�1

)

=

k

Y

j=1

�

�

j

�

(n� 1)!

n�1

Y

i=1

�

�

i

(e(�))

�

= (n � 1)!

k

�

�

�

k

Y

j=1

n�1

Y

i=1

(�

�

j

� �

�

i

)(e(�)

�

= (�

�

� �)

�

(n � 1)!

k

e(�) 
 e(�) 
 � � � 
 e(�)

�

:

The element e(�) 
 e(�) 
 � � � 
 e(�) has order n in H

2

(Y

n

;Z)
 H

2

(Y

n

;Z)
 � � � 


H

2

(Y

n

;Z). Because n is assumed to be prime, and because �

�

�� is injective, we get

that e((n � 1)�

(m)

k

) 6= 0.

Assume (ii) were false. Then (n � 1)�

(m)

k

� �

d

1

�

=

� � �

d

2

for some � and

some positive integers d

1

< d

2

. Hence (n � 1)�

(m)

k

would be stably isomorphic to

� � �

d

2

�d

1

. The Euler class is invariant under stable isomorphism, and the Euler

class of a trivial bundle (of dimension � 1) is zero, and so by the product formula we

get e((n� 1)�

(m)

k

) = 0, a contradiction. �

George Elliott pointed out to me that one obtains the following corollary from Lemma

4.1:

Corollary 4.2 Let n be a positive prime number, let Z be the in�nite Cartesian

product of Y

n

with itself. Then there exist projections e; p

1

; p

2

; p

3

; : : : in M

n

(C(Z))

satisfying

(i) e 
 1

n

� p

j


 1

n

for all j,

(ii) e is not equivalent to a subprojection of (p

1

�p

2

�� � ��p

j

)
1

n�1

for any j � 1.

Proof: Let ! be the complex line bundle over X = Y

n�1

n

from Lemma 4.1 and use

Lemma 4.1 (iii) to �nd a projection p 2 C(X;M

n

(C )) = M

n

(C(X)) that corresponds

to !. Identify Z with

Q

1

j=1

X, and let �

j

: Z ! X, j 2 N, be the coordinate maps.

Put p

j

= p � �

j

2 C(Z;M

n

(C )) = M

n

(C(Z)), and let e 2 M

n

(C(Z)) be a one-

dimensional constant projection. It follows from Lemma 4.1 (i) that p

j


 1

n

� e
 1

n

for all j. To see (ii), view M

n

(C(Z)) as the inductive limit,

M

n

(C(X))!M

n

(C(X

2

))!M

n

(C(X

3

))! � � � !M

n

(C(Z));
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so that e; p

1

; p

2

; : : : ; p

j

2 M

n

(C(X

j

)). Then, by Lemma 4.1 (ii), for each k and for

each m � k, e is not equivalent to a subprojection of (p

1

� p

2

� � � � � p

k

) 
 1

n�1

in

(a matrix algebra over) M

n

(C(X

m

)). This implies that (ii) holds. �

Combining Corollary 4.2 with Proposition 3.6 we get for each prime number n a

hereditary sub-C

�

-algebra B of C(Z)
K such thatM

k

(B) is not stable for 1 � k < n,

and M

n

(B) is stable. Proceeding as in the proof of Theorem 5.3 one can �nd such

examples B for all integers n � 2.

5 The simple case

We use an inductive limit construction, like the one Villadsen used in [7], to obtain

projections as in Proposition 3.6 inside a simple C

�

-algebra.

Fix a positive prime number n. Let fk

j

g

1

j=1

be a sequence of positive integers

chosen large enough so that

1

X

j=1

�

1�

1

Y

i=j

k

i

1 + k

i

�

<

1

n � 1

: (7)

De�ne inductively another sequence of integers fm

j

g

1

j=1

by m

1

= 1 and m

j+1

=

m

j

(k

j

+ 1).

Let Y

n

= D=� be as de�ned in Section 4, and put X = Y

n�1

n

. De�ne inductively

a sequence of spaces fX

j

g

1

j=1

by setting X

1

= X and X

j+1

= X

k

j

j

�X

m

j+1

. Set

A

j

=M

2

n�1

m

j

(C(X

j

)) = C(X

j

;M

2

n�1

m

j

(C )):

Choose x

j

2 X

j

appropriately (in a way which will be made precise later), and de�ne

�

-homomorphisms '

j

: A

j

! A

j+1

by

'

j

(f)(x) = diag((f ��

j

1

)(x); (f ��

j

2

)(x); : : : ; (f ��

j

k

j

)(x); f(x

j

)); x 2 X

j+1

; f 2 A

j

;

where �

j

1

; �

j

2

; : : : ; �

j

k

j

: X

j+1

= X

k

j

j

�X

m

j+1

! X

j

are the projections from the �rst

factor of X

j+1

.

Let (A, �

j

: A

j

! A) be the inductive limit of the sequence

A

1

'

1

//

A

2

'

2

//

A

3

'

3

//
� � �

:

It will be convenient to have an expression for the composed connecting maps

'

i;j

: A

j

! A

i

for i > j. For this purpose set

k

i;j

=

i�1

Y

n=j

k

n

; l

i;j

=

i�1

Y

n=j

(k

n

+ 1)�

i�1

Y

n=j

k

n

; m

i;j

=

i

X

n=j+1

m

n

k

i;n

; (8)

(with the convention that k

i;i

= 1). Then X

i

= X

k

i;j

j

� X

m

i;j

; and the composed

connecting maps are up to unitary equivalence given by

'

i;j

(f)(x)

= diag

�

(f � �

i;j

1

)(x); (f � �

i;j

2

)(x); : : : ; (f � �

i;j

k

i;j

)(x); f(x

i;j

1

); f(x

i;j

2

); : : : ; f(x

i;j

l

i;j

)

�

:
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The maps �

i;j

1

; �

i;j

2

; : : : ; �

i;j

k

i;j

: X

i

= X

k

i;j

j

�X

m

i;j

! X

j

are here the projections onto

the �rst k

i;j

coordinates of X

i

, the set

X

i

j

:= fx

i;j

1

; x

i;j

2

; : : : ; x

i;j

l

i;j

g � X

j

is for i � j + 2 equal to X

i�1

j

[ f�

i;j

1

(x

i

); �

i;j

2

(x

i

); : : : ; �

i;j

k

i;j

(x

i

)g, where each element

of the �rst set is repeated k

i

+ 1 times, and X

j+1

j

= fx

j

g.

Choose the points x

j

2 X

j

such that

S

1

r=j+1

X

r

j

is dense in X

j

for each j 2 N.

Since each X

i

j

is �nite and since noX

j

has isolated points this will entail that

S

1

r=i

X

r

j

is dense in X

j

for each j 2 N and for every i > j.

By [2, Proposition 1] and [7, Proposition 10] we get:

Proposition 5.1 The C

�

-algebra A is simple and has stable rank one.

With the C

�

-algebra A and the prime number n as above, we have:

Proposition 5.2 There exist projections e; p

1

; p

2

; p

3

; : : : in A so that

(i) p

j


 1

n

� e
 1

n

for all j � 1, and

(ii) e is not equivalent to a subprojection of (p

1

�p

2

�� � ��p

j

)
1

n�1

for any j � 1.

Proof: By Lemma 4.1 (iii) there exists a projection q 2 A

1

= M

2

n�1(C(X)) which

corresponds to the complex line bundle !. Let �

1

; �

2

; : : : ; �

m

j

: X

j

= X

k

j�1

j�1

�X

m

j

!

X be coordinate projections corresponding to the last factor of X

j

. Set q

1

= q, set

q

j

= diag(q � �

1

; q � �

2

; : : : ; q � �

m

j

) 2 A

j

;

for j � 2, and set p

j

= �

j

(q

j

) 2 A. Let e

1

2 A

1

be a constant projection of dimension

1, so that e

1

corresponds to the trivial complex line bundle �

1

, and set e = �

1

(e

1

) 2 A.

It follows from Lemma 4.1 (i) that q 
 1

n

� e

1


 1

n

. This implies that q

j


 1

n

is equivalent to a constant projection. Since '

j;1

(e

1

)
 1

n

is a constant projection (in

M

n

(A

j

)) of the same dimension as q

j


 1

n

, we �nd that q

j


 1

n

� '

j;1

(e

1

) 
 1

n

in

M

n

(A

j

). Hence

p

j


 1

n

= �

j

(q

j


 1

n

) � �

j

('

j;1

(e

1

)
 1

n

) = e 
 1

n

in M

n

(A).

For i � j, put

f

i;j

= '

i;1

(q

1

)� '

i;2

(q

2

)� � � � � '

i;j

(q

j

):

Then p

1

� p

2

� � � � � p

j

= �

i

(f

i;j

), and f

i;j

= '

i;j

(f

j;j

). Observe that X

j

= X

d

j

,

where d

1

= 1 and d

j+1

= n

j

k

j

+m

j+1

. By inspection of the formula for the composed

connecting maps '

j;l

, we �nd that the projection f

j;j

corresponds to the vector bundle

�

(d

j

)

d

j

� �

c

j

, where c

j

=

P

j

r=1

m

r

l

j;r

, cf. (8). From this we get that the projection

f

i;j

corresponds to the vector bundle �

(d

i

)

a

i;j

� �

b

i;j

over X

i

, where a

i;j

= k

i;j

d

j

and

b

i;j

=

P

j

r=1

m

r

l

i;r

, possibly after a permutation of the coordinates of X

i

.
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The trivial projection '

i;1

(e

1

) has dimension m

i

and corresponds therefore to

the trivial vector bundle �

m

i

. Now,

1

m

i

b

i;j

=

1

m

i

j

X

r=1

m

r

l

i;r

=

1

m

i

j

X

r=1

r�1

Y

s=1

(1 + k

s

)

�

i�1

Y

s=r

(1 + k

s

)�

i�1

Y

s=r

k

s

�

=

j

X

r=1

�

1�

i�1

Y

s=r

k

s

1 + k

s

�

�

1

X

r=1

�

1�

1

Y

s=r

k

s

1 + k

s

�

<

1

n� 1

;

where the last inequality follows from (5). This shows that (n � 1)b

i;j

< m

i

. By

Lemma 4.1 (ii), there exists no vector bundle � over X

i

such that

� � �

m

i

�

=

(n� 1)�

(d

i

)

a

i;j

� �

(n�1)b

i;j

(= (n � 1)(�

(d

i

)

a

i;j

� �

b

i;j

));

or, equivalently, '

i;1

(e

1

) is not equivalent to a subprojection of f

i;j


1

n�1

. Since this

holds for all i > j, e is not equivalent to a subprojection of (p

1

�p

2

�� � ��p

j

)
1

n�1

,

and this completes the proof. �

Theorem 5.3 For each integer n � 2 there exists a C

�

-algebra B such that M

n

(B)

is stable, and M

k

(B) is not stable for 1 � k < n. Moreover, B can be chosen to

be simple, nuclear, with stable rank one and with an approximate unit consisting of

projections.

Proof: Consider �rst the case where n is prime. Let B be the C

�

-algebra de�ned in

display (3) in Proposition 3.6 corresponding to the C

�

-algebraA and to the projections

e; p

1

; p

2

; p

3

; : : : found in Proposition 5.2. Then B is a hereditary subalgebra of A
K,

and since A is simple, nuclear and has stable rank one, it follows that B also has

these properties (see [5, Theorem 3.3] for the last claim). The sequence fq

j

g

1

j=1

is an

approximate unit for B. By Proposition 3.6, M

k

(B) is not stable for 1 � k < n and

M

n

(B) is stable.

Suppose now that n � 2 is an arbitrary integer. Observe that all integers �

(n � 1)

2

belong to the set

1

[

m=1

((n� 1)m;nm]:

Choose a prime number p � (n � 1)

2

. Then there exists an integer m � 1 so that

(n � 1)m < p � nm. By the �rst part of the proof there exists a C

�

-algebra D

with M

p

(D) stable and M

k

(D) not stable for 1 � k < p. Set B = M

m

(D). Then

B is simple, nuclear, and has stable rank one and an approximate unit consisting of

projections because D has these properties. Moreover, M

k

(B) = M

km

(D), and so,

by Proposition 2.1, M

k

(B) is stable if and only if km � p, which, by the choice of p

and m, happens if and only if k � n. �

Documenta Mathematica 2 (1997) 375{386



386 Mikael R�rdam

References

[1] B. Blackadar, K-theory for operator algebras, M. S. R. I. Monographs, vol. 5,

Springer Verlag, Berlin and New York, 1986.

[2] M. D�ad�arlat, G. Nagy, A. N�emethi, and C. Pasnicu, Reduction of topological stable

rank in inductive limits of C

�

-algebras, Paci�c J. Math. 153 (1992), 267{276.

[3] J. Hjelmborg and M. R�rdam, On stability of C

�

-algebras, J. Funct. Anal., to

appear.

[4] M. Karoubi, K-theory, Grundlehren der mathematisches Wissenschaften, no. 226,

Springer Verlag, 1978.

[5] M.A. Rie�el, Dimension and stable rank in the K-theory of C

�

-algebras, Proc.

London Math. Soc. 46 (1983), no. (3), 301{333.

[6] M. R�rdam and J. Villadsen, On the ordered K

0

-group of universal free product

C

�

-algebras, preprint.

[7] J. Villadsen, Simple C

�

-algebras with perforation, J. Funct. Anal., to appear.

Mikael R�rdam

Department of Mathematics

University of Copenhagen

Universitetsparken 5

2100 Copenhagen �, Denmark

rordam@math.ku.dk

Documenta Mathematica 2 (1997) 375{386


