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INTRODUCTION

In 1930 Ramsey published his paper On a problem in formal logic [12]. He established
a result, nowadays known as Ramsey’s Theorem:

Let k and r be positive integers. Then for every r-coloring of the k-element
subsets of w there exists an infinite subset S C w such that all k-element
subsets of S are colored the same.

Already in 1927 van der Waerden published his theorem on arithmetic progressions
[15]. He proved that for every coloring of the natural numbers with finitely many
colors there exists a monochromatic arithmetic progression of given length. Van der
Waerden’s result can be seen in the context of Schur’s investigations [14] on the
distribution of quadratic residues and nonresidues. Schur knew about the existence
of monochromatic solutions of x + y = z. He worked on such problems in order to
resolve Fermat’s conjecture, which was proved by Wiles in 1994.

The above mentioned work of Ramsey [12] and van der Waerden [15] gave rise to
the part of discrete mathematics, known as Ramsey Theory or Partition Theory. An
important contribution was made by Rado [10] in 1933. Working on his dissertation,
supervised by Schur, he was able to prove a common generalization of Schur’s and
van der Waerden’s results by introducing the concept of reqularity: A system of linear
equations A% = 0 is called regular over a ring R if it has monochromatic solutions
for every coloring of R with finitely many colors. In his Studien zur Kombinatorik
(1933) [10] Rado gave a complete characterization of all regular systems of linear
equations over the rational numbers. The property Rado used in order to describe
regular systems of linear equations is an syntactical property of the matrix. It is

LFor this work, the author has been awarded with the Richard-Rado-Preis 1998, which is granted
every two years for outstanding dissertations in discrete mathematics by the Fachgruppe Diskrete
Mathematik of the Deutsche Mathematiker-Vereinigung.
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characterized by certain linear dependences of the columns of the matrix A and is
called column property.

It is possible to generalize the concept of regularity to systems of linear inequalities.
We call a system of linear inequalities AZ < 0 partition regular if for every coloring of
the natural numbers with finitely many colors there exists a monochromatic solution
of AZ < 0. Rado considered systems of linear inequalities only incidentally. He stated
the following proposition which is easy to prove:

Let the system 2?21 a;jzj = 0, 1 < i < m be partition regular and
assume that the following system of inequalities has a solution in the
natural numbers:

n
=0 for 1<i<my,
(*) ,Zla”x]{ >0 for my <i<m.
J:
Then also (x) is partition regular.

Of course this observation is far away from being a characterization of partition regular
systems of inequalities but it can be taken as a starting point for our investigations.

The characterization of all partition regular systems of linear inequalities is a central
goal of this paper. In the first chapter we define a generalized column property called
cpi, which can be used to characterize partition regular systems of linear inequalities.
It is an interesting feature of Rado’s proof that the linear system AF = 0 is already
regular if there exists a monochromatic solution with respect to one (number theoretic)
type of coloring. Systems of inequalities let things tend to be more difficult.

Several years after finishing his Studien zur Kombinatorik, Rado [11] considered
systems of linear equations with coefficients in R and he also extended the set of
partitioned numbers to the field of real numbers. It turned out that it is possible
to carry over the previous results from the natural numbers to the reals. We will
show in chapter 1 that our arguments can also be used if we consider real systems of
inequalities partitioning the set of reals.

As well as for homogeneous systems the column property can be used to describe
partition regularity of inhomogeneous systems of inequalities. We will give a com-
plete characterization of those systems which are partition regular, over the natural
numbers, over the set of integers and over the rationals.

The column property for systems of inequalities as well as the column property in the
sense of Rado is a syntactical property of the matrix and does not explicitly refer to the
set, of solutions of the system. In 1973 Deuber [1] gave a semantical characterization
of partition regular systems of equations. The approach is by a description of the
arithmetic structure of the sets of solutions of regular linear systems AZ = 0. The
central notion is the one of (m,p, c)—sets. He proved the following theorem:

A system A# = 0 is partition regular if and only if there exist positive
integers m, p, ¢ such that every (m, p, ¢)—set contains a solution of AZ = 0.
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In chapter two we will show that (m,p,c)—sets can also be used to characterize
solution spaces of partition regular systems of linear inequalities.

Starting with results of Erdés and Rado [4] another part of partition theory was
developed, which is nowadays known as Canonical Ramsey Theory. In Canonical
Ramsey Theory one considers colorings with no restriction on the number of colors.
The first result is a canonical version of Ramsey’s theorem. Later Erdés and Graham
[3] proved a generalization of van der Waerden’s theorem:

For every coloring A of the natural numbers with arbitrary many colors
there exists an arithmetic progression, which is colored monochromatic or
injective with respect to A.

A canonical analogue of the Rado-Deuber-Theorem on regular systems of equations
and (m, p, ¢)-sets was proved by Lefman [7]. His result states:

Let A% = 0 be a partition regular system of linear equations. For every
coloring A of the natural numbers with arbitrary many colors there exists
a solution of the system AZ = 0 such that A restricted to this solution is
either monochromatic, injective or a block-coloring.

The third case is related to the partitioning of the columns of A into blocks, corre-
sponding to the column property and to the rows of the (m,p, c)-sets. In chapter 3.
we prove a canonical partition theorem for systems of inequalities.

ACKNOWLEDGMENT: I would like to thank Prof. Dr. Walter Deuber for his encour-
agement and guidance and Dr. Wolfgang Thumser for helpful discussions.

1. SYsTEMS OF HOMOGENEOUS, LINEAR INEQUALITIES

NotaTions By N = {1,2,3,...} we denote the set of positive integers; [n] =
{1,2,...,n} is the set of the natural numbers less or equal than n. A matrix A
with m rows and n columns is denoted by A = (ai;)1<i<m,1<j<n, Where a;; is the en-
try of A which belongs to the ith row and jth column. For i,j < n the jth column of
a matrix A is denoted by al/) the ith row by a(;. For a matrix A = (a;j)1<i<m,1<j<n
the system

n
Zaijilﬁjfo, 1§z§m
j=1

is abbreviated as A7 < 0. For a given matrix A = (aij)1<i<m,1<j<n, k <n and € >0

by A*(e) = (af;(€))1<i<m1<j<n We denote the following matrix:

a1 ... O@1g-1 Q1 —€ Q141 ... Qlp
m1 -+ Omk—1 Omk — € Qamk+1 -.- Omn

obtained from A by subtracting € in column .
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For k,l € [n], k <1 and € > 0 the matrix

a1 .- Glk—1 a1 —€  Aig+1 .- G111 aiy4+1 ... Qin

am1 -+ Omk—-1 Omk —€ Qmk+1 .- Oml—1 Ami+1 - Omn
obtained by deleting column [ in A (¢), is denoted by AF(e) and the matrix

a1 ... OG1k—1 a1 + a1 —€ A1k+1  --- A1y—1 Q141 ... Q1n

Aml  --- Omk—1 Qmk+ Gy —€ Omk4+1 -+ Ami—1 Gmi41 .-+ Omn

obtained from A*(e) by adding the kth and the Ith column, is denoted by A*)+(1)(¢),

Rado considered systems of linear equations over Q. In his paper, published in 1933
[10], Rado gives a characterization of all systems of linear homogeneous equations
which have for every coloring of the natural numbers with finitely many colors a
solution in one color class. Rado called those systems regular. The central definition
in this context is the following;:

DEFINITION 1.1. Let A = (aij)i<i<m,1<j<n be a matriz with m rows an n columns
and with entries a;; € Z. A has the column property if there exvists | € N and a
partition [n] = IpU I, U...I; of the column indices such that

1. for all 1 <i < m we have Zjefo a;; =0 and

2. for all k < 1,j € Us<pI, there exist ci,crj € N such that for all 1 < i < m we

have
Z CikGi; + Ck Z ajj = 0.

JEUs<k s JEI 41

Rado proved the following theorem:

THEOREM 1.1. (RADO 1933) A system of homogeneous linear equations AT = 0 is
reqular if and only if A has the column property.

In the following we will consider systems of linear inequalities rather than systems of
linear equations. First we define partition regularity for systems of inequalities.

DEFINITION 1.2. Let A = (aij)i<i<mi<j<n be a rational matriz and let b =
(b1,...,bm) € Q™. The system

n
(*) Zaija:j S bi, 1 S 7, S m
j=1
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is called partition reqular over N if for every ¢ € N and every c-coloring of the natural
numbers A : N = [c] there exists a solution T = (z1,...2,) € N* of (x) such that
A |{z1,...,mn} = const.

In the following section we will give a characterization of all systems of homogeneous
linear inequalities which are partition regular over N. It turns out that a natural
generalization of Rado’s column property can be used to describe these systems.

DEFINITION 1.3. Let A = (aij)1<i<m,1<j<n be a rational matriz. A has the column
property for systems of inequalities (abbreviated as cpi ) over N if there exists | € N
and a partition [n] = Io U I, ...UI; such that

1. for all 1 <i < m we have Zjefo a;; <0 and
2. for all k < 1,j € Us<pI, there exist ci,cj, € N such that for all 1 < i < m we

have
Z Crjaij + Ck Z a;; < 0.

JE€Us<n s JET41

If a matrix A has the column property (in the sense of Rado) [10] the system AZ < 0
obviously is partition regular. But there are many other systems of inequalities which
are partition regular without A having Rado’s column property. For example the

matrix
-1 0 0
-1 0 0
has ¢pi but not the column property.

THEOREM 1.2. Let A = (aij)i<i<m,i<j<n be a rational matriz. The system of
inequalities (x) AT < 0 is partition reqular over N if and only if A has cpi over N.

Both implications stated in theorem 1.5. are not completely trivial to prove. We
start by showing that ¢pi implies partition regularity. This part of the proof proceeds
along the general lines of the corresponding proof for systems of equations [10]. The
following lemma combines arithmetic progressions and partition regular systems of
linear inequalities:

LEMMA 1.1. Let A = (aij)i<i<m,1<j<n be @ rational matriz, AT < 0a partition
reqular system of inequalities and let p € N. Then for every ¢ € N and every c-
coloring A : N — [c] there exists T = (x1,...,2,) € N" and d € N such that

1. A# <0 and

2. for alli,j <n, for all k,l < p we have A(x; + 1d) = A(z; + kd).
PROOF OF LEMMA 1.1.: AZ < 0 is partition regular. Thus by compactness [6] for
every ¢ € N there exists N* = N*(c¢) € N such that for every c-coloring A : [N*] = [¢]

there exists a monochromatic solution & = (z; ...x,) of A# < 0 such that for all
1<i<n we have z; < N*.

DOCUMENTA MATHEMATICA 3 (1998) 149-187



154 MEIKE SCHAFFLER

Let A : N — [c] be an arbitrary c-coloring. Define the following coloring
A*:N = [rV7] by

By van der Waerden’s theorem [15] there exists a “long” arithmetic progression which
is monochromatic with respect to A*, i. e. there exist a’,d’ € N such that for all
I <pN*""" we have A*(a’ + Id') =const.
Define A** : N — [¢] by

A**(z) = A(a'z).

By the choice of N* there exists a solution 2’ = (2, ...,2!,) € [N*]" of AZ < 0 which
is monochromatic for A*. For all i < n let z; = z}a’. By homogeneity & = (x1,...2y)
is a solution of AZ < 0 and because of the definition of A** for all i,j < n we have
A(z;a’) = Azja’).

Let d =d'z} ...z},. Then for i < n and [ < p we have:

11 N ! =) ! ! !
ria' +ld =xi(a" +1ld'zy ... 2j_ 2, ...2)).

Hence by the definition of a’,d" and A* for all I < p we have A(z}a’ + ld) =const.
Uiemma 1.6

PROOF OF THEOREM 1.2. (FIRST PART): First we show that if A has epi over N
then (%) is partition regular. We know by assumption that there is some I € N and a
partition [n] = Io U I; U...U I; such that

1. for all 1 < i < m we have Zjelg a;; <0 and

2. forall k < I, for all j € Ug<I, there exist cg;,cr, € N, such that foralll <i<m

we have
Z Crjaij + Cg Z a;; <0.

JE€Us<n s JETk41

To prove that (x) is partition regular we will use a double induction. We proceed
by main induction on the number of colors ¢ and by subsidiary induction on 1, the
number of column classes.

Let A = (aij)lgigm’jGUSSk[S be the submatrix of A which only consists of the
columns belonging to block 1 up to k. We will show by induction that for all k¥ <
Ay, is partition regular.

For k£ = 0 there is nothing to show because every singleton forms a solution of the
system AoZ < 0. Assume that A < 0 is partition regular for some k > 0 (which will
be kept fix by now), i. e. (by compactness) for every ¢ € N there exists R(c, Ay) € N
such that for every c-coloring A : [R(c, Ag)] — [c] there exists a monochromatic
solution (x;)jeu,,1,, such that A% < 0 and for all J € Us<ils we have z; <
R(c, Ay). We will show that Ay, is partition regular, i. e. for all ¢ € N there exists
R(c,Apy1) €N
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First we observe that z; = cj;, for j € Us<iIs and x; = ¢, for j € I4q form a solution
of the system Aj,1Z < 0. So we are done if only one color is used for the coloring, i.
e. there exists R(1, Ajy1). Now assume that R(c, Ag41) exists for some (fixed) ¢ > 1.
We will show that R(c+ 1, Ag41) exists.

Let A : N — [c + 1] be an arbitrary (c+1)-coloring. Use lemma 1.6. for the (by
assumption) partition regular system A;# < 0 with
p = R(c, Apt1) - (mazjeu, 1, {ck;}). Hence there exists (y;)jeu, <. 1., such that for
all 1 < i < m we have - R

> aiy; <0

JEUs<kIs
and there exists d € N such that for all j € Us<pI; and ¢ < p we have
A(y; + td) = const.

for all 1 <i < m and t € [R(c, Ax+1)] it follows

Z (yj+ckjtd)aij-|- Z crtdaj

JE€EUs<rTs J€Tk 41
= E Yiti; + td( E CrjQij + Ck E aij) <0.
JEUs<kls JEUs< s J€Tk41

Further for all j € Us<xI; and ¢ < p we have
A(y; + cgjtd) = const.
Say A(yj + ijtd) =c+1.

We distinguish the following cases:

1. There exist t € [R(c, Ag+1)] such that A(extd) = ¢+ 1. Then we are done.

2. For all t € [R(c, Ajy1)] the relation A(citd) € [c] holds. Then consider the
c-coloring: A’ : [R(e, Ag+1)] = [¢] which is defined by

A'(z) = A(egzd).

By definition of R(c, Ag4+1) there exists a solution (t;);ecu,, 1, of the system
A1 ® < 0 which is monochromatic for A’. Hence (detj)jeUSSkJrl[S forms a
solution of Ap 17 < 0 which is monochromatic with respect to A.

Uiheorem 1.2.(first part)

In order to demonstrate the structure of the proof of the second part of theorem 1.5.
we will give a short overview. For his characterization of regular systems of linear
equations Rado [10] had to prove that for each systems A% = 0, which is regular, A
has the column property. It is an interesting feature of Rado’s proof that a system
AZ =0is regular if there exists a monochromatic solution with respect to one type of
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coloring. For systems of linear inequalities AZ¥ < 0 with A having only two columns
there also exists a certain type of coloring such that A% < 0 is partition regular if it
has a monochromatic solution with respect to this type of coloring. In lemma 1.12.
we will show, that a system (x) a < 2L <b, where a,b € Q and 1 < a < b, is not

partition regular. It is easy to see that essentially each system AZ < § with A having
only two columns can be transformed into a system (*) for suitable a and b. If such
a system is partition regular this means that one of the following cases holds:

1.a<0Oand b>0or
2. a<landb>1.

It is not difficult to see that these conditions exactly lead to cpi. If we visualize a
partition regular system
a1171 + ajpxz <0
(x%) { a2171 + azewy <0
geometrically then obviously the solutions are bounded by two straight lines. Three
typical cases occur, i.e. one of the axes is a limiting line or the diagonal is contained
in the solution space:

X2 X2

N

X1

X1
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We will prove theorem 1.5. by induction on the number of columns of A. In order to
start the induction we described the situation for n = 2. Let us consider a rational
matrix A with n columns. Assume that the system

AF <O (x%%)

is partition regular. Under certain assumptions we can transform the system AZ <0
for each choice of k,1 with 1 < k <[ < n into the following system:

n n
_ Qs Gy T Tk a;
Qsk sk T| ~— Iy Qg

Gtk ]

J=1j#lk J=1j#lk

for all s with as, < 0 and for all ¢ with a;, > 0. Thus we have a similar situation
as in () except that the fraction Z* is not bounded by constant terms a and b but
by terms which depend on z; ...z _1,Zg_2,...2,. Thus we cannot directly apply
lemma 1.12. Consider this situation for fixed £ and . Assume that there are colorings
of the natural numbers with finitely many colors such that for each monochromatic
solution @1, ... 2, of the system (x * x) either

1. there exists € > 0 and r € N such that 1+ ¢ < 2—’; <ror
2. there exists es > 0 and e3 > 0 such that e; < fc—’; <1-—es.

Then again by lemma 1.12. (***) cannot be partition regular. To avoid such situations
the terms —2sL — 3% | . 2= 71 and _a_t;i - 1AL T2 24 have to fulfill certain
conditions for every colorlng This is what is shown in lemma 1.13. With this kind of
arguments it is possible to show that for every choice of k and [ with 1 <k <l <n
either for all € > 0 the system AF(e) is partition regular or for all € > 0 the system
Afc (¢) is partition regular, if the system AZ < 0 is partition regular. By induction we
can conclude that either for all € > 0 the matrix AF(e) has cpi or for all € > 0 the
matrix Al (€) has cpi. Therefore we define:

DEFINITION 1.4. Let A = (aij)1<i<m,1<j<n be a rational matriz. A has the e-property
if the following conditions are satisfied:

1. The system A% < 0 has a solution in the natural numbers and
2. Forall 1 <k <1l<mn one of the following conditions is satisfied:

(a) For all € > 0 the matriz A*(€) has cpi over N,
(b) for all € > 0 the matriz Al(e) has cpi over N,

i.e. for at most one r with 1 < r < n there is an €9 > 0 such that A" (&) has
not cpi.

Note that if the matrix A (ey) has cpi for some €y > 0 then for all € > ey A*(€) has
cpi.

REMARK 1.1. Let A = (aij)1<i<m,<j<n be a rational matriz, such that AT < 0 has
a solution in N. Let 1 < k <l <n.
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1. If the matriz Af(e) has cpi then A*(e) has cpi.

A{“ has cpi. Let Iy, ..., I, be the corresponding partition of the column indices.
Define I,11 = {l}. Then Iy,...,I.+1 is a partition of [n] which proves cpi for
Ak (e).

2. If the matriz A®)*TD (¢) has cpi then the matrices A*(e) and Al(e) have cpi.
Let the blocks for A+ (e) be I}, . .. , I, and assume that the column

a1 +ay; —€

) a2 + a2 — €
a¥)(e) =

Amk + AQmp — €

belongs to the block I, Then A*(e) and A'(e) have cpi with the corresponding
blocks being I = I, for r # p and I, = I}, — {k'} U {k,}.

Up to now we did not succeed in proving that A has epi, but we know that if we
transform A only a little then the transformed matrix has ¢pi and it is possible to do
this transformations in nearly each column. What we will show in lemma 1.9. is that
the property cpi is continuous in a certain manner.

LEMMA 1.2. If A = (a;j)1<i<m,i<j<n 5 a rational matriz, which satisfies the e-
property, then A has cpi.

In order to prove lemma 1.9. we need the following lemma:

LEMMA 1.3. Let A = (aij)1<i<m,1<j<n be a rational matriz such that for all 1 <i <
m the entries of row i sum up to zero, i.e. 2?21 a;; =0. Let s1,...,8, € Q. For all
€ >0 let A'(e) = (ajj(€))1<i<m,1<j<nt1, be the matriz with entries aj;(e) = a;; for
1<i<m,1<j<n and ainy1 = s; — € for 1 <i < m. Further let A’ = A’(0).

If for all € > 0 the system A'(e)@ < 0 has a solution in N, then the system A'Z < (
has a solution in N.

PRrROOF OF LEMMA 1.3.: Let A, A'(¢e) and A’ be as in the assumptions of lemma
1.10. Assume that for all 1 <4 <m we have 37, a;; = 0. Thus the system AZ <0
can be transformed into the following system

n—1
(%) Zaij(xj—xn)go, 1<i<m,
j=1

which will be abbreviated in the following as A*y < 0, where A* =
(aij)1§i§m71§j§n_1, and Yj =Tj — Tnp for1<j<n-1.

The system AZ < 0 (resp. AZ < 0) has a solution in N if and only if (x) (resp.
A*§ < 0) has a solution in Z.

In the following we will consider A* instead of A. (The entries of A* will be denoted
without *.) Assume that the set of rows of A* is linear independent over Q. Then
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there exists 7 = (y1,...9n_1) € Q" ' such that A*§ < 0. Multiplication with the least
common multiple of the denominators of y; yields a solution § = (y} ...y,_,) € Z"~'

of the system A*§ < 0. Thus the system A# <  has a solution in N and therefore
A'Z <0 has a solution in N. Hence we are done in this case.

Next we consider the case where the set of rows of A* is not linear independent.
Assume that A* conmsists of the rows a(y),...a),bk41)s---,04m) for some k > 0,
where a(y), ..., a) are linear independent and for all k¥ + 1 <4 < m we have b;) =

¥, clags) for suitable ¢ € Q.

We will prove the lemma by induction on k. If & = 0 then A* is the zero-matrix.
Hence A is the zero-matrix and therefore the system A’(¢)Z < (0 has a solution in N
if and only if for all 1 < i < m we have s; — e < 0. This is true for all ¢ > 0 by
assumption and therefore for all 1 < i < m we have s; <0.
If k=1 for all 2 < i < m we have b;) = cia(; for suitable ¢} € Q. We distinguish
the following cases:

1. for all 2 < i < m we have ¢} > 0.

If a(yy < 0 holds then for all 2 < i < m we have b(; ¥ < 0. Because a(q) is not

the zero-vector there exists a solution § € Z™ such that A*§ < 0 and hence we
are done in this case.

2. There exists i such that ¢i = 0.

In this case we have by = 0 and the system A’(¢)# < 0 has a solution only
if s; —e < 0. Because this is true for every ¢ > 0, we have s; < 0. Hence
(beiys:)T < 0 is true for every choice of & where 11 > 0. Therefore the matrix
keeps its properties if we omit the row b;).

3. There exists i such that ¢i < 0.

Let i be arbitrary with ¢i < 0. By assumption we know that for every ¢ > 0
the system A’(e)Z < 0 has a solution. Let #(e) = (x1(€),...,2n(€)), z(€) be one
specific solution of the system A'(e)Z <0, i. e.

a)Z(€) + (s1 — €)z(e) <0,

which is equivalent to
n
Y azie) < —(s1 — )z (e)
Jj=1

and correspondingly we have
biiyZ(€) + (s — €)z(e) <0,

which is equivalent to

n

(Y arjmi(e)) < —(si — e)ae)

=1
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Dividing by ¢i > 0 we obtain

S; — €

n
> ayzi(e) > — ——(e).
j=1 1

Hence a solution xq (€),. .., x,(€) exists if and only if
S; — €
- i S 51— 6,
€1

which means
s; < —cisi+ (¢f — 1e.

This is true for all € > 0 and hence
5; < —cisy
holds.
Thus the statement is true for & = 1.
Assume that our statement is true for some (fixed) k¥ > 1. Let A* consist of the rows

A(1)s -5 A(kt1)> O(ks2)» - - - » D(m), Where a;) are linear independent and for k+1 <i <

m let
k+1

by = ) ciag)
s=1
for suitable ¢! € Q. Further assume that for every e > 0 the system A’(¢)# < 0 has a

solution in N. We distinguish the following cases:

1. There exists 1 < s < k + 1 such that for all k£ 4+ 2 < i < m we have ¢! > 0.

Let ¢ = maxk+1<i<m,1§l§k,l¢s|cf|. agy,---,a(p+1) are linearly independent by
assumption. Hence there exists § = (y1,...,yn) such that for all 1 <1i < k we
have a(; < 0 and

mingi1<i<mlci(agd)| > ¢+ (mazi<i<pizslagy i) (k — 1).

Then y,...yn_1 form a solution for the whole system A*j < 0 and hence
A'Z <0 has a solution.

2. There exists s such that for all k+ 1 <i < m we have ¢{ > 0 and ¢! = 0 for at

least one i.

Without loss of generality let s = 1 and ¢} > 0 for k+1 < i < [ and
¢t = 0 forl < i < m. Then the matrix which consists of the rows
A(1)s - -5 A(kt1), D(kt2), - - -, by 18 dealt within case 1. But the rows b,y up
to b,y,) only depend on the k — 1 generators a() up to a(;1). Hence by induc-
tion we obtain a solution yi, ..., y, for the rows a(z), ..., a(k41), b(k+2)s - - - O(m)
which are independent of a(;). Thus we also obtain a solution for the whole
system.
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3. For a <i < k+ 1 we define

i_
¢ =

1 for j=i
0 for j#i.

Then it remains to consider the case where there exist 1 < iq,i5 < m and there
exists 1 < s <k + 1 such that ¢! > 0 and ¢ < 0.

Without loss of generality let s = 1. Further we can divide the entries of each
row i by |ci|, if |¢t| # 0, such that we may assume that |¢}| = 1 for each i,
where |¢}] # 0.

For every € > 0 the system A*(e)’Z < 0 has a solution. Let §* =
(y$,...,y5_ 1),z be such a solution, i. e.
k+1

Zci(a(s)gf) +(si—e)xc<0 fork+2<i<m
s=1

and
apy < —(si—e)xt for1<i<k+1.

Thus we have
k+1

> cilaw i) + (si — €)2° < —cla) i

s=2

Dividing by —c} leads to

k+1 k41
> cila@ i) + (sr — )x° <amyi < =Y dilaw i) — (s; — e)af
s=2 s=2
for all r with ¢ = —1 and j with c{ = 1. Further we know that a()y <
—(s1 — €)z¢. Hence we additionally obtain:
k41
Y chlag i) < —(s1 - e)af
5=2
for all i satisfying ¢i = —1 and
k+1

> ci(aw i) < —(si — €)af
s=2

for all i satisfying c¢i = 0. Transforming these inequalities we get the following
system of inequalities:

(a7 + (s; —€)z <0 2<i<k+1
( I:;l cias 7)) + (si —e)ac <0 for all ¢ with
ci =0
(xx%) ¢ ( ’::21 cias7F)) + (si +s1 —2€)z <0 for all i with
ci =-1
(Zf;l (¢t + cg)(a(s)g’f)) +(si+s;j—2€)zc <0 foralli,j with
\ cd=-1,cd=1
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By assumption we know that for all € > 0 the system A*(e)'% < 0 has a solution.
Hence the system (x % %) has a solution for every e > 0. In system (x % %) only
k row vectors are linear independent, namely a(s), . .., a(;41). Thus we can use
induction to show that the system (x x %) has a solution for ¢ = 0. Thus the
system A'Z < 0 has a solution in N.

|:Ilemma 1.2.

CramM 1.1. Let A = (a;j)1<i<m,i<j<n be a rational matriz which has cpi with the
first block being I = {1,...k} and 2521 a;; =0. Let

bar bax ... Doy
B =
biu b2 ... bin
A

such that for all 1 < i <1 the relation Z?Zl bi; < 0 holds. Then B has cpi.

PROOF OF cLAIM 1.1.: Obviously IZ = {1,...,k} satisfies the first condition of
epi. Let Ig',...,I2 be the partition of columns of A and for 1 < r < v,j €
Us<rls let c;f‘.,cf € N be the corresponding coefficients . Let the parameters

b(r),8,B(r),c(r) 1<r <wbe “big enough”, in particular we define:

b(r) = mari<i<if Z bij, }

jEIf+1
k

1) = maxlgig{ZbU} (< 0),
i=1

B(r) = mazi<ic{ Y, |byl},
JEUw< I

c(r) = maa:jEUwSrIu/}{c,’f‘j,cf}.

and let a(r) € N be minimal such that

a(r)d < —(c(r)B(r) + cpb(r)).

Such an a=a(r) exists because 4 is negative. Let ¢ = ¢, + a if j <k and & = ¢,
otherwise. For 1 <r < v let ¢ = ¢ and I” = IX. Then for all 1 < i < we have:

(a + er)bij + Z erbij +cr Z bij

k
=1 JEUw< I >k JeI,,

J

k k
= az bij + Zcrjbij + Z crjbij + cr Z bij
=1 =1

JEUw< I8 ,i>k Jjerd,
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< ad + c(r)B(r) + ¢.b(r) <0.
Further for all 1 <4 <[ we have:

k k k
(a+ciai; = erja) +a(d ay)
= j=1 j=1
= Z CrjQij-
i=1
Hence B has cpi. Oetaim  1.1.

PROOF OF LEMMA 1.2.: Let A = (a;j)1<i<m,1<j<n be a rational matrix which has
the e-property, i. e. for all 1 < k < [ < n either A*(¢) or Al(e) has cpi for every
€ > 0. We will prove that A has cpi. If the matrix A*(e) has cpi for some k < n, let
I§, ..., If be apartition of columns of A*(e), which certifies cpi. We can assume that
the partition of [n] into blocks does not depend on e because there are only finitely
many possibilities of partitioning [n] into blocks. By the pigeonhole principle at least
one partition has to occur for arbitrary small ¢ > 0. But if a matrix A*(e) has cpi
with blocks I (€o), ... If (€o) then for all € > € the matrix A¥(e) has cpi with the
same blocks.

We will prove lemma 1.3. by a downward induction on the size of the block I} which
is maximal for & < n, for which the matrix A*(¢) has cpi for all € > 0. To illustrate
the main idea of the proof we first show the theorem for matrices with one and two
columns.

n=1:

am1

The system AZ < 0 has a solution z € N. Therefore we have a;; < 0 and thus A4 has
cpi with Iy = {1}.

n=2:
11 a12
@21 a22
A=
Am1 Am2

There are only three (finitely many) possibilities to arrange the columns of A into
blocks. Hence we can assume that there is an €y > 0 such that for all € < ¢y the
partition of the columns of A*(e) into blocks is the same.
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1. I3 = {1} or I3 = {2} resp.

For all 1 <i <m and all ¢ > 0 we have a;; —e < 0. Hence for all 1 <1i < m the
relation a;; < 0 holds. So the first condition of epi is satisfied with Iy = {1}.

Further by the definition of the e-property the system AZ < 0 has a solution
in N, Let z7, 23 be such a solution. Then the second condition is fulfilled with
c11 =27 and ¢; = 23, 1. e. for all 1 <i < m we have ¢11ai1 + c1a:2 < 0. Hence
A has cpi.

2. I ={1,2}

In this case for all 1 < ¢ < m and for all € > 0 we have a;; + a;» — € < 0. Hence
for all 1 <7 < m we have a;; + a2 < 0. Therefore A has cpi with Iy = {1,2}.

Now we will prove the lemma for matrices of arbitrary size.

ai @12 A1n

a1 @22 a2n
A= .

am1 am2 N Amn

Let 1 < k <1 <n. We know by assumption that for all € > 0 either A*(¢) or Al(e)
has cpi. As mentioned above we can assume that the partition of [n] into blocks does
not depend on €. In order to start the induction we consider the case where we can
find some 1 < k < n such that A*(e) has cpi for every € > 0 and |I¥|=n, i. e. the
sum over all columns of A*(e) is less of equal to zero. In this case for all 1 <i < m
and every € > 0 we have

a1 +ap+ ...+ a;m; —e<0.
Hence for all 1 < i < m we have
aj1 + a2+ ...+ ai;p <0

and therefore A has epi with Iy = [n].
Next we consider the case where we can find some k, 1 < k < n such that A*(e) has
cpi for every € > 0 and |I¥| = n — 1. First assume that k € I}. Then for all 1 <i <m

and all € > 0 we have:
(Z aij) — € S 0.
jerk
In this case for all 1 < ¢ < m we obtain
Z [£2%] S 0.
jerk
If k ¢ I} for all 1 <i < m we also have

Z Ajj SO

jerk
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Thus in both cases the first condition of cpi is satisfied choosing Iy = If.

Let Iy = [n] — Iy. Note that |I;| = 1 and assume p € I;. We know that the system
A7 < 0 has a solution in N. Let xy,...z) be such a solution. Then for all 1 <i <m
we have

E C15Q45 + C1Qip S 0,
Jj€lo
if we choose ¢;; = ac; for j € Iy and ¢; = ).

Assume inductively that the following is true for some (fixed) k < n — 1: Let A be a
rational matrix with m rows and n columns which has the e- property. If there exists
a column s, such that for all € > 0 A®(¢) has cpi and |I§| > k, then A has cpi.

In the following we will show that if A is a rational matrix which has the e-property
and there exists a column s, such that for all € > 0 A°(¢) has epi and |I§| =k — 1,
then A has cpi. Without loss of generality we can assume that I§ = {1,...k — 1}
for some (fixed) s. For k —1 < n — 2, we have |[n] — I§]| > 2. A has the e- property,
therefore either A*(e) or A¥+1(e) has cpi for all € > 0. Without loss of generality we
can assume that A*(e) has cpi. We will consider several cases:

1. Ik ¢ IS

In this case for all € > 0 and all 1 < i < m we have

k-1
(Z aij) — € S 0
Jj=1
and therefore
k—1
Z [£2%] S 0.
j=1
Further for all 1 < i < m we have
Z Qi S 0.
JelL§
We distinguish the following cases:

(@) IEnIs=0

Then we have

Z Qij S 0.

Jjerkurs

Let Iy = I} U I§ and I; = I} — I§. Because of the definition of I} for all € > 0
and for all j € U</ I} there exists cf;(e) and ¢f (¢) such that for all 1 <i <m

we have
> dile)alie) +cf(e) Y ali(e) <0

jeUSSllf jEIlk+1
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and therefore

Yo di@ai9+ Y a9+ Y (1+cf(e)afi(o+

JEUs<i IE JEUI§—TIF, 1) jergnik,,

JEIf L, —1§)

Hence we conclude that we can choose Iy = I¥ U I§ to prove cpi and |Ip| >
|I§] = k — 1. So we are done by induction.

(b) TENT; #0

Without loss of generality we can assume that I¥ N I3 = {1,...,l}. Consider
the matrix
2a11 2(112 N 2(11[ a1j+1 N QA1n
B = : : S : S = (bij)i<i<mi<j<n-
204m1 2Gm2 ... 2Gmi Qmit1l --- Gmn

We claim that B has the e-property. This is true because

(i) the system A'Z < 0 has a solution in N for if zy,...,z, is a solution of
AZ <0, then x1,...,2,2%141, ..., 2z, forms a solution of B¥ < 0.

(ii) Let 1 < p < n such that AP(e) has cpi for every e > 0 with blocks IJ, 17 . . ..
Let I,;? = I¥ U I§. Then for all 1 < i < m the following is true:

0> Z afj(e) + Z afj(e) = Z bfj(e)
JeIk JeIg§ JEIY

Let I'P = I? | — (IF UI5). AP(e) has cpi for every e > 0. Hence there exist

1y =cr y(e),¢,_y = c,_y(e) such that for all 1 <4 <m we have

g Cr—15G zg +Cr 1 E ,J

JEUg<r—1 1§ JEIR

Hence we have

SN+ > 2+ > cr—1;2b%;(€) +

j=1 JEIP —{1,..,I} JEUg<rn_1 IZN(IFUIS)

E Cr_lebfj(E)-F E Cp— 12b E Cp— 12b
JE€Ug<r—117)~(IFUIE) JEIRN(IFUIE) JELF
<0.

Hence BP(e) has cpi if AP(e) has epi. Therefore B has the e-property and
|I;7| > k. Hence B has cpi by induction.

We claim that if B has ¢pi then A has ¢pi.
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Let the partition into blocks for B be IZ IB ... IB. Let Iy = {1,...,k —1}.

v
We know that
k—1
Z [£2%] S 0.
j=1

Let [1 = ([écU[g)—{l,,k'—l}, let Cor = ... =Col = 27COZ+1 = ... =Cok—-1 = 1
and ¢y = 1. Then for all 1 <7 < m we have

Z Cjoli; + Co Z a;; < 0.

Jj€lo JjEN

Let I, = I7 5 — (If U I§). We know that there exist ¢ ,;,¢f , such that we
have

Yo labitel, Y by <0

JEUw<r_3IlB jery.,

and thus

l
Z 2a;5 + Z aij + Z cf_Qjaij-l-
j=1

JEIFUIE) —{1,....1} J€(Uuen—alB)—(IFUIS)

B B B
E Cro2jQij + Cp_s E aij + g E Qij
FE(Uw<r—sLZ)N(IFUIS) JETZ ,N(IGUIS) JET,
<0.

Hence A has cpi.

LI ={aM,. . .ak=DY
(If I C I¥, we would have |I¥| > k and we were done by induction.)

Without loss of generality we can assume that I} = I§, because otherwise it is
possible to choose I¥ as the first block for the matrix A4%(e). We distinguish the
following cases:

(a) k¢ It
In this case there exist ¢;; € N, ¢; € N such that for all 1 <i < m we have

E C1jai5 + €1 E a;; < 0.
jerg jerf

Consider the following matrix B = (bij)i<i<m,i<j<n, Where for all
1 < i < m by is defined by

C1j Q45 for 1 S] < k-1
bij = C1Q;; for j € [{c
aij otherwise.

We claim that B has the e-property.
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(i) The system BZ < 0 has a solution, for if zy,...z, is a solution of
the system AZ¥ < 0, then define a solution of the system By < 0, § =

(y1,---,yn) by
ﬁjmj if 1<j<k-1

Yj = él‘j if je€ I{c
Zj otherwise.
If we multiply ¢ by the least common multiple of ¢, ¢1 we obtain a solution
of the system B# < 0 in N.

(ii) Let 1 < p < n be given such that for every € > 0 AP(¢) has cpi and
let If, ..., I} be the blocks and ¢} ;(e), ck(€) the corresponding coefficients,
such that for all 1 < i <m we have

Z aj;(e) <0
jerr

and
Y dieali(e) +ke) Y ali(e) <0.

JEUw<r Tl JEIT,,

Now we will show that BP(e) has epi for all € > 0. Let I} = I} UTF and
I'" =17 | —IP. Then for all 1 <i < m we have

> by <0
JEIP

and

JEUw< 118 JEIT

It follows that

ACES > _j(eaki(e)+ > cPe)al(e)+

jery FE(Uwer—1 IB)NIF) JETR_ NIF
Z cy_y;(€)aj;(e) + Z cf(e)ai;(e) < 0.
JEUwno1IL)—IF jEL?

Hence B has the e-property. Thus B has c¢pi by induction. Let the cor-
responding partition of blocks be I, ..., IF and let ¢, cP be the corre-
sponding coefficients. We claim that A has epi.

Let In = IF, I, = I, I, = IB , — (I¥ U IF). Obviously for all 1 <i < m we

have
Z Qij S 0.
j€lo

For 2 <r <l-—1,foralll <i<m we have

S ePabi el (D] by) <0

JEUw<r_2IB Jerr
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Thus for all 1 < i < m the following is true

Y oaii+ Y ai+ > Cra;bij

jerk jerk JE(Uw<r_oIBN(IFUIL))
B B B
+ > Cr_obij + > cfoibij + el (Y bij)
JETZ  N(IFUIY) FE€UwnoalB—(IFUIF) j€L41

<0.
Hence A has cpi.
kelf.
Without loss of generality we can assume that If = {k,...,r}. For all

1 < i <m we know that Zf;ll a;; < 0. It is no restriction to assume that
k )
Za” =0 for 1<i<m
_1” <0 for my<i<m
=

for some m; < m. In claim 1.11. we have shown that it is enough to
consider the first m; rows of A. Let

B = (a(l), e a(k_l))
be the matrix which consists of the first £ — 1 columns of A. Let
ain ... apr (Xjoparj—€)
B'(e) = : : :
Amqel  --- Amyk—1 (z;:k Amyj — 6)

Obviously adding up the columns of B we get the zero vector. Further for
all € > 0 the system B’(¢)# < 0 has a solution. Hence we can apply lemma
1.10. to show that the system B'(0)Z < 0 has a solution in N. Assume
that ¢11,...,¢18-1,¢1 is such a solution, hence for all 1 <47 < m we have

k—1 r
E a;jC1j + C1 E Qij <0.
j=1 k

Then we consider the matrix B = (bij)i1<i<m,1<j<n

C1j Q45 for 1 S] < k-1
bij = C104; for kE<j<r
ajj otherwise.

As in case a) it is now possible to show that B has the e-property. Then
by induction B has cpi which again implies as in case a) that A has cpi.

|:Ilemma 1.3.

LEMMA 1.4. Let a,b € Q and let the following system of inequalities be given:

Let

T
< — <.
(%) a_x2_b
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1. 1<a<bor
2.0<a<b<l.

Then (x) is not partition reqular over N.

PROOF OF LEMMA 1.4.:

1. Assume that 1 < a < b.

Let n € N be minimal such that ™ > b. Consider the following coloring:
A% : N — [n + 1] which is defined by

(x%)  A%*(z) = (|loga(x)|mod(n + 1)) + 1.

In the following we will show that (%) has no monochromatic solution for A%,

Assume on the contrary that zy,zs form a solution of (%) which is monochro-
matic with respect to A%?. Let log,(21) = pz, and log,(z2) = fiz,. Then we
have

fzy = pe,mod(n + 1).
Say piz, = kg, (n+1) 47 and py, = kyy(n+1) +7 for some 0 < r < n. Because
x1,x2 forms a solution of (x) we have

xr
a< =<
T2

and thus o
Mo
a < ﬂ < L — a(kw1_sz)(n+1)+1_
- Ty aﬂ'mg
Therefore we have

(kgy — ko) +1) +1> 1

and hence
ky, — kzy > 0.

On the other hand we have:

fa
a" > b> > L ke —hay)(n1) -1
Tz aM=ot1 ’

which implies
(kI1 - kzz)(n + 1) —-1<n
and hence
ky, — kzy < 1.
which is in contradiction to (xx).
2. Assume that 0 < a < b < 1. Consider the following system of inequalities which
is equivalent to (x):

xr
>2>
T

ISEE
S| =

Then we have 1 < 3 < 1 and we can follow the arguments of case 1.

Ijlemma 1.4.
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LEMMA 1.5. Let z € N be given. Let n > 2 and let fi(zs,...,2,) : R 1 —= R,
gi(za, ..., zp) : R = R for 1 < i < z be given. Consider the following system of
inequalities:

T
fl(w277mn)§x_2§gl(m27amn) (*)

Let (%) satisfy the following conditions:

1. Fiy,1 <y < 2,3€1,0 < €1 < 1,3¢; € N and IA : N — [c1] such that (x) has
no solution x1,..., T, which is monochromatic with respect to A' and

fil(:ng,...,a:n) S €1.

2. Fiz, 1 <ip < z,3e€2,€3,0 < €2,€3 < 1,3ez € N and A% : N = [cy] such that (%)
has no solution x1,...,x, which is monochromatic with respect to A% and

fis(®2, .. ) <14 e

or there is no solution x1,...,T, which is monochromatic with respect to A>
and
Gin(T1, ..., Tpn) > €3.

8. Ak € N,3cz3 € N and IA? : N — [e3] such that (x) has no solution xy,...,T,
which is monochromatic with respect to A3 and

Then there exists ¢* € N and a coloring A* : N — [¢*], such that (x) has no solution
which is monochromatic for A*.

PROOF OF LEMMA 1.5.: Let €1, €, €3, k,c1,ca,cs and A, A2, A3 be defined as in the
assumptions of lemma, 1.13. Consider colorings of the form A®? which are defined as
in the proof of lemma 1.11. (%) with appropriate a and b, namely:

4 _ ATTE
A" =AT=% 1N = [aa],

where ¢4 € N is minimal such that 1_1—63(64_1) > & and

AP = Atk N S (o),

where ¢5 € N is minimal such that (14 €)= > k.
Then define A* as follows:

5
A" N = []les1.
j=1

A*(z) = (Al (2), A%(z), A% (2), A% (2), A° (2)).
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We claim that (x) has no solution which is monochromatic for A*.
Assume on the contrary that zi,...,z, is a solution of (%) which is monochromatic
with respect to A*. Because 1, ..., Z, is monochromatic for A* it is monochromatic
for A'. Hence we have

fi1 (:EQ,. .. ,:Un) Z €1,
which implies

T
— > €. 1
7 2 (1)

Besides z1, ..., 2, is monochromatic for A2. Hence we have
fiz(x%---axn) >1+e

or
Gin (T2, ..oy 2n) < 1 —e3,
which implies
Dstlte (2

T2
or .
1
— <1— €. 3
o = 3 (3)
Finally z1, ..., z, is monochromatic for Az and therefore we have:
Ty
— <k. 4
Lok @

If we put together (1) and (3) and (2) and (4) respectively, we obtain:

a<L<i—eg (5

T2
or .
l+e<—<k  (6)
T2
By lemma 1.12. (5) has no monochromatic solution for A* and
(6) has no monochromatic solution for A®. Hence =z1,...,z, is not
monochromatic for A*. That is in contradiction to our assumption.

Ijlemma 1.13.

Now we are able to prove the second part of theorem 1.5.,i.e. A has ¢pi if the system
A# < 0 is partition regular.

PROOF OF THEOREM 1.3. (SECOND PART): We will prove the theorem by induction
on the number of columns of A. Note that a system, which is partition regular,

necessarily has a solution.
n=1:

am1
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The system (anz1 < 0)i<i<m is partition regular. Hence it has a solution in N,
therefore for all 1 < i < m we have a;; < 0 and thus A has cpi with Iy = {1}.

In order to demonstrate the idea of the proof we additionally consider the case
n=2:

a11 a12

@21 a22
A=

am1  Am2

We distinguish the following cases:

1. For each row I 1 <i < m the first entry is less or equal zero, i.e. a;; < 0.

Let I = {1} and I} = {2}. Assume that y1,y2 € N form a solution of the
system AZ < 0. Then for all 1 <i < m we have

E 1055 + €1 E aij = C110451 + C1a; < 0
j€Iy je€h
if we choose ¢;1 = y; and ¢; = ys.

2. For each row i 1 < i < m the first entry is greater or equal zero, i.e. a;; > 0.
In this case for all 1 <4 < 0 we have a;x <0
Then A has cpi with blocks Iy = {2} and I, = {1}.

3. There exist s,t € [m] such that as; < 0 and ay > 0.

Then the system AZ < § can be transformed as follows:

for all ¢ with a;1 < 0 and for all s with ag; > 0 and
appxe < 0 for all ¢t with az; = 0.
By lemma 1.12. we know that one of the following cases holds:

(a) =22 < 0 for all ¢+ with a;; < 0 and — ‘“f > 0 for all s with az; > 0 and
(obv10usly) agz < 0 for all ¢t with a;; = 0. In this case for all 1 < i < m we

obtain
apz < 0.

Thus A has epi with blocks Iy = {2} and I; = {1}.

(b) =22 <1 for all £ with a;; < 0 and —222 > 1 for all s with a5 > 0 and
hence for all 1 <t < m with a; #0 we have

ag + ap <0
and obviously for all 1 <t < m with a;; =0 we have

a2 <0
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and hence
a1 + Q2 S 0.

Thus A has epi with Iy = {1,2} in this case.
Hence we are done in the case n = 2.

Let us assume that the theorem is true for all matrices A with less than n columns
for some (fixed) n > 2. Let

air a2 Q1n

a1 a2 Q2p
A=

an1 an2 - Anm

To prove the theorem we distinguish the following cases:

1. There exists 1 < j* < n such that for all 1 < i < m the j*th entry satisfies
jj+ < 0.
In this case let Iy = {j*} and I} = [n] — {j*} and choose

Eipanltely ¢ =1,

cij > mazi<icm{ ==

2. There exists 1 < j* < n such that for all 1 < ¢ < m the j*th entry satisfies
Qg S 0.

Without loss of generality assume j* = 1 and a;; < 0 for 1 < i < my and
a;1 = 0 for m; < i <m for some m; < m. Then we have:

ai; <0
: *
N A1m, < 0
4= 0
: A’
0

Hence A is partition regular if and only if A’ is partition regular. By induction
A" has cpi. Let the corresponding blocks be I, ... I for a suitable r € N and
for 1 <k <r and for j € Us<i s let the coefficients be ¢} ;,cj. Then A has cpi
with blocks Iy = {1},I; = I._, for 1 < s < r and coefficients

! !
maw1§igm1{ZjEU5SkI; Chj@ij + ZJ'ETLH ai;j}

Cp1 = n
MiN1<i<m, a1

for 2 <k <rand
MaT1<i<my D jer; Gij

C11 = .
MiN1<i<m, |a15

cpo=land cpj =cj_y; forall j#1andall 1<k <r
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3. There exists j* such that for all 1 <4 < m we have a;;- > 0.

In this case obviously A’ = A — {aU")}, the matrix which we obtain from A by
omitting the column j*, is partition regular and has ¢pi by induction. Let the
blocks of A’ be Ij),... I and define for all 1 < s < r I, = I and I, = {j*}.
Further let y1,...,yn € N be a solution of the system A# < 0. Then A has cpi
with coeflicients ¢,; = y; for j # j*, and ¢, = y;-.

4. Each column has both positive and negative entries.

Let 1 <k <1 < n be given. Then the system AZ < 0 can be transformed as
follows:

n n

_Gsk Z %ﬁgﬂg_%_ Z Qsj Tj
a Gy T x a Qg T
o gmggeny TR TR T () B

()< for all s,t with ag < 0 and ayg > 0,

n 2 <0

Zj:l,j;éz AijTj =

for all ¢ with a;; = 0.

By lemma 1.13. we know that one of the following cases holds:

(a)

For all € > 0 the following system of inequalities is partition regular:

n

a Agi Tj
_dsk Z —212J < e forall s with ag <0
Al . - Qs] Tk
j=1,j¢{k,l}
a n at; T
_ Gtk E: B2 >0 forall t with ay > 0
Qi = gl Tk
j=1,j¢{k,l}
and
n
Z aj;r; <0 for all i with ay =0.
J=Lj#l

That means that for every € > 0 the system
A0 <0

is partition regular and has cpi by induction. Hence by remark 1.8. A*(¢)
has ¢pi for all € > 0.

For all » > 0 and each coloring of the natural numbers with finitely many
colors the system (x) has a monochromatic solution z1, ..., z, such that

which is equivalent to
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We transform the system A# < 0 as in (%) exchanging k and 1. Then we

obtain:
n n
_Gst Z Asj Lj Tk At _ Gtj Zj
Agf j=1.7¢{k,0} gk T| T Atf j=1.7¢ (k1) Al Ty

for all s,t with ag;, < 0 and az, > 0 and

n
Z Qi T4 S 0

i=1,i#k

for all ¢ with a;, = 0. Therefore the following system is partition regular
for each r > 0:
B n asj T; 1
T T Xj=gght) an s S 7
for all 1 < s < m with ag, <0
a n asj Tj
T T 2=tk a a2 0
for all 1 <t < m with a;, > 0 and
D ie jots 0ijTj <0
for all 1 <i < m with a;; = 0.

Hence the system Aﬁc(%) is partition regular for every r > 0 and has cpi

by induction. Therefore by remark 1.8. the system Al(%) has epi for every
r > 0.

(¢) For all € > 0 the following system is partition regular:

n

( a asj T;
_Zsk Z ) Rk RS R,
Qg . ) Qg] Tk
Jj=1.j¢{k,1}
forall 1 <s <m with ag <0
n
a a; T
_ Gtk Z L R T
O T e B

forall 1 <t <m with ay >0

n
Z Qi T4 S 0
J=1,j#l
\ forall 1 <i<m with a; =0.

Then for every e > 0 the system A®)+(0 7 < § is partition regular and has
cpi by induction, therefore by remark 1.8. Al(e) and A*(e) have cpi.

The system AF < 0 has a solution in N because otherwise it could not be
partition regular and hence A has the e-property. Therefore by lemma 1.9. A
has cpi.

Utheorem 1.5
In the following we will generalize the set of partitioned numbers. We will first state

results over Z and Q and finally we will consider real matrices and generalize the set
of partitioned numbers to the reals.
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DEFINITION 1.5. Let K C R — {0} be a set. Let A = (aij)i<i<m,1<j<n be a matric
with entries in R. A has the column property for systems of inequalities (cpi) over
K if there exists | € N and a partition [n] = Iy U I, U...UI; of the column indices
such that

1. There exists c € K such that for all 1 <i <m we have CZjEIO a;; <0 and

2. for all k <1,j € Us<i 1, there exist cy,crj € K such that for all 1 <i <m we

have
Z CjQij + Ck Z a;; <0.

JEUs<k s JEI 41

And correspondingly we define:

DEFINITION 1.6. Let K C R — {0} be a set. Let A = (aij)i<i<m,1<j<n be a real
matriz. Let b = (b1,...,bn) € R". The system AT < b is called partition reqular over
K, if for every c € N and every c-coloring of K A : K — [c] there exists a solution
x1,...2n € K of AZ < b such that A |{m1._.xn} = const.

LEMMA 1.6. Let K C R — {0} and K = Ky U Ky such that K; N Ky = (). Let
A = (aij)1<i<m,1<j<n be a real matriz. Then the following statements are equivalent:

1. The system AZ < 0 is partition reqular over K.

2. The system AZ < 0 is partition regular over Ky or the system is partition reqular
over Ks.

PROOF OF LEMMA 1.6.: If the system AZ < ( is partition regular over K; or over
K, then it is clearly partition regular over K. For the opposite direction assume
that the system AZ < 0 is neither partition regular over K; nor over K», i. e. there
exists ¢; € N and a coloring A; : K; — [c¢1] and there exists ¢ € N and a coloring
Ay : Ko = [eo], such that A% < 0 has no monochromatic solution in K; for A; and

no monochromatic solution in Ky with respect to A,. Define the following coloring:
A K = [maz{ci,c2}] x [2] by

(Al(m),l) if xr € Kl
A(‘””):{ (Ao(2).2) i z€ K>

Obviously the system AZ < 0 has no monochromatic solution with re-
spect to the coloring A which is a contradiction to the partition regularity.

|:Ilemma 1.6.

If we use lemma 1.16. together with theorem 1.5. we obtain the following theorem:

THEOREM 1.4. Let A = (aij)1<i<m,1<j<n e a rational matriz. The system AZ < 0
is partition reqular over Z — {0} if and only if A has cpi either over ZT — {0} or over

Z~ — {0}.
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PROOF OF THEOREM 1.4.: By lemma 1.16. we know that the system AZ < 0 is
partition regular over Z — {0} iff it is either partition regular over Z* — {0} or over
Z~ — {0}. The first case is equivalent to A having cpi over N by theorem 1.5. In
the second case consider (x) —A# < 0 where —A = (—aij)i<icmi<j<n. AZ <0
is partition regular over Z~ — {0} iff —A# < ( is partition regular over N. This is
equivalent to — A having cpi over N, which is equivalent to A having cpi over Z~ —{0}.

Utheorem 1.4.

THEOREM 1.5. Let A = (aij)i1<i<m,i<j<n be a rational matriz. Then the following
statements are equivalent:

1. The system A% < 0 is partition reqular over Q — {0}.
2. A has cpi over Q7 — {0} or over Q7 — {0}.

3. A has cpi over ZT — {0} or over Z~ — {0}.

PROOF OF THEOREM 1.5.

1. implies 2.:

It is enough to show that if AZ < 0 is partition regular over Q* — {0} then it has cpi
over QT — {0}. This can be shown following the arguments of the second part, of the
proof of theorem 1.5. using @ — {0} instead of N.

2. implies 3.:

Assume that A has cpi over QT — {0}, i. e. there exists a partition of the columns of
A into blocks [n] = Ip U ... U I; such that

1. There exists ¢ € Q" — {0} such that for all 1 <i < m we have a>jer, @ij <0,
i. e. ZjEIo Qi S 0.

2. For k <1,j € Ug<p 1, there exist cxj,cr € Q' — {0} such that for all 1 <i < m

we have
Z Crjaij + Ck Z a;; < 0.

JEUs<k s JEI 41

By multiplying the above inequality with the common divisor of ¢, ¢, we obtain
positive integer coefficients.

3. implies 1.:

If A has cpi over Z* — {0} or over Z~ — {0} then by theorem 1.17. the system

AZ < 0 is partition regular over Z — {0}. Hence it is partition regular over Q — {0}.
Dtheorem 1.5.

THEOREM 1.6. Let A = (aij)i<i<m,1<j<n be a real matriz. Then the following
statements are equivalent:

1. The system AZ < 0 is partition reqular over R — {0}.

2. A has cpi over R — {0} or over R™ — {0}.
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PROOF OF THEOREM 1.6.

1. implies 2.:

It is enough to show that if the system AZ < 0 is partition regular over Rt — {0} then
A has cpi over RT — {0}. This can be shown following the arguments of the second
part of the proof of theorem 1.5. using R* — {0} instead of N.

2. implies 1. :

Again it is enough to show that if A has cpi over RT — {0} then the system AZ < 0 is
partition regular over RT — {0}. To prove this we employ a generalized environment
lemma using the multidimensional version of van der Waerden’s Theorem which is
due independently to Gallai (see [10]) and Witt [16] instead of van der Waerden’s
Theorem [15]:

LEMMA 1.7. Let A = (aij)1<i<m,1<j<n be a real matriz such that the system AZ < 0
is partition reqular over R™ — {0}. Lett € N and W C R, W = {wy,...w} be
given. Let ¢ € N. Then for every c-coloring A : Rt — {0} — [c] there exists & =
(z0,---,2n) € (RT — {0})" and there exists r € Rt — {0} such that

1. AZ<0 and

2. For all j,k with1 <j<n,1<k<t wehave A(z; + rwy) = const.

PROOF OF LEMMA 1.7.: Assume that A is partition regular. Hence by compactness
[6] there exists a finite set V = V(4,¢) C RT — {0} such that for every c-coloring
of V there exists a monochromatic solution of the system AZ < 0 in V. Let V =

{Ula e 'avt}'
Let A : RT—{0} — [¢] be an arbitrary coloring. Define a coloring A* : RT —{0} — [¢!]
by

A*(z) = (A(Cﬁvi))lgigt-
Define a finite set W = {w|w = [[,_, vj,,Js € [t]}. By Gallai-Witt’s Theorem there
exists a homothetic copy of the set W which is monochromatic with respect to A*, say
W'=a +r'W = {a' + r'w|w € W}. Consider another coloring A** :V— [¢] which is
defined by A**(z) = A(a’z). By definition of V' there exists a monochromatic solution
of the system AZ < 0 in V with respect to A**, say xy,...,2. Then (zjad',... 2" ad")
is a solution and for all 1 < j < n we have A(z’a’) = const.
Let r = 7'z ...2,. Then we have:

zia' +rv; = zi(a +rlvEl - ooxp_gxl L a)
and by the definition of W

') eW.

! ! !
(Vja] T Ty T,

Hence for all 1 <i <n,1 < j <t we finally have
A(z}a') = A(zha’ + rvj).
Ijlemma 1.7.

Now we are able to prove the second part of theorem 1.19.:
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Let A be a real matrix which has cpi over Rt — {0}. Let [n] = Ip U...U I, be the
corresponding partition. We prove theorem 1.19. by main induction over the number
of colors and by subsidiary induction over the number of blocks. In both cases the
start of the induction is easy to obtain: The system AZ < 0 has a solution (just take
the coefficients cj;—1,¢). If only one color is used every solution is monochromatic.
If [ = 0 every singleton provides a solution.

Let Ay = (aV)]j € Uj<k 1)) be the submatrix of A which only consists of the columns
belonging to the first k blocks. Assume that Ay is partition regular over R™ — {0}
for some k£ > 0 and assume that for every coloring with ¢ — 1 colors the system (x)
A1 7 < 0 has a monochromatic solution, i. e. by compactness there exists a finite
set V._1 C RT — {0} such that for every (¢ — 1)-coloring (%) has a monochromatic
solution in V._y.

Let A : Rt — {0} = [¢] be an arbitrary coloring. We define W, a finite subset of R,
by W = {w =wvulv € V,u € {¢jp,cx|]l <j<n,1<k<li}}. We apply lemma 1.20.
to A and W. Thus there exists a solution (yi)iEUSSkIS of the system A,y < 0 and

r € RT — {0} such that for all i € Us<; s and all w € W we have A(y; +rw) = const.
Combining ¢pi and the fact that the y; form a solution for every v € V' we obtain:

Y aijly;Ferro) + Y agerrv <0,

JEUs<r s JEI 41

Without loss of generality we may assume that A(y; + reg;v) = ¢ for all i € Ug<y I
andv e V.

If now one of the numbers ¢;rv is also colored in ¢ we have found a monochromatic
solution of the system Ay < 0. Otherwise the coloring

A"V = [c—1]
defined by

A*(z) = A(zreg)
is  well defined. Therefore by induction on the number of col-
ors and the definition of V  there exists a monochromatic solu-
tion of Ag1 ¥ < 0 with respect to A*, say (l'f)ieusgkﬂls- Then

(zirck)icu,<pyr1. forms a solution which is monochromatic with respect to A.

Utheorem 1.6
In his dissertation [10] Rado also considered systems of inhomogeneous equations.
As well as for homogeneous systems the columns property plays an important role
for the characterization of partition regular systems of inhomogeneous inequalities.
We are able to give a complete characterization of those systems which are par-
tition regular over the natural numbers, over the set of integers and over the rationals.

THEOREM 1.7. Let A = (aij)1<i<m,1<j<n be arational matrix, let b= (b1y...,bm) €

Q™. The system of inequalities A% C 0 is partition regular over N if and only if one
of the following conditions is satisfied:
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1. There exists a € N such that A | : < v

a

2. A has cpi and there exists @ = (z1,...,7,) € N” and there exists I C [m],

w <0 for el
such that J; AT { S 0 for ic [m] _I

n
and there exists @ € Z such that for all i € [m] — I we have ) a;ja <b;

j=1

The proof of theorem 1.21 is a little bit tricky and in its main parts very technical.
The interested reader can find the complete proof in [17].

THEOREM 1.8. Set A = (a;)1<i<m,1<j<n be arational matrix and b= (b1y...,bm) €
Q™. The system AT < b is partition regular over Q — {0} if and only if AZ € b is
partition regular over N or the system — Az < b with —A = (—aij)i<i<m,i<j<n 18
partition regular over N.

If we partition the set Q — {0} the situation is different:

THEOREM 1.9. Let A = (a;j)1<i<m,1<j<n be a rational matrix, let b= (b1,...,bn) €

Q". The system (z)AZ < b is partition regular over Q if and only if one of the
following cases is valid:

n
1. There exists a* € Q such that for all 1 <i <m we have ) a;;a* <b;

j=1

2. There exists I C [m] such that b; > 0 for i € I,b; > 0 for i € [m]J — I and the
matrix Ar = (aij)ier,1<j<n has cpi over Qt - {0}.

3. A has cpi over Q" — {0} and there exists I C [m] and there exists
#(x1 — x,) € (QT — {0}" such that
<0 for el
for ie[m]-1I.

and there exists a® € Q* —{0} such that for all i € [m]—1I we have 3" a;ja* < b;.
j=1

4. —A = (—aij)1<i<m,1<j<n fulfills condition 1, 2, or 3.

2. (m,p,c)-SETS

In 1973 Deuber [1] gave a semantical characterization of partition regular system
of linear equations. The nature of this characterization is somewhat different form
Rado’s approach. Deuber described the arithmetic structure of the sets of solutions
of partition regular linear systems AZ = 0. The central definition is that of (m,p,c,)-
sets, which are m-fold arithmetic progressions together with c-fold differences:
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DEFINITION 2.1. Let m,p,c € N. A set D C N is an (m,p,c)-set if there exist
do,...,dm € N such that D = Dy, (dy ...dy,) consists of all numbers of the following
list:

cdo + hLidy + ldy + +  lmdm,
cdi + ldy + ... 4+ Ilpdpy,

Cdg + + lmdm,

cdp,

where l; € [—p,pl, i. e.

DiD’C(doa - '7dm) = {Cdl + Z leJ|7’ < malj € [_pap]}'
j=i+1

In particular a (1, k, ¢)-set is a (2k + 1)-term arithmetic progressions together with its
differences. Deuber proved the following theorem [1]:

THEOREM 2.1. (DEUBER 1973) A linear system AF = 0 is partition regular if and
only if there exist positive integers m, p,c such that every (m,p,c)—set D contains a
solution of AZ = 0.

(m, p, ¢)-sets not only describe the arithmetic structure of sets of solutions of partition
regular systems of linear equations but they can also be used to characterize sets of
solutions of systems of linear inequalities.

THEOREM 2.2. Let A = (a;5)1<i<ii<j<n be a rational matriz. Let AZ < 0 be a
partition regular system of linear inequalities. Then there exist m,p,c € N such that
every (m, p,c)-set contains a solution of the system AZ < 0.

PROOF OF THEOREM 2.2.: By theorem 1.5. we know that A has cpi, i. e. there
exists m € N and a partition Ip U...U I,;, = [n] such that
L forall 1 <i <[ wehave } ;. ; a; <0 and

2. for k <m and j € Us< I, there exist cgj, cp € N such that for every k¥ < m and
for all 1 < i <[ we have

Z Crjaij + Cg Z a;; <0.

JEUs<k s JEI 41

Let ¢ be the least common multiple of {¢x|1 < k < m}. Multiply each inequality by
i such that for all 1 <4 <[ we have

Z c}cjaij +c Z a;; <0.

JEUs<k s JEI 41
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Further let p = maxlgigl,1§k<m|c§6j|. We claim that these m, p, c have the desired
properties. Let Ar = (@ij)1<i<m,jeu,<,1, be the submatrix of A which only consists
of the columns of A belonging to the blocks one up to k. We will prove the claim by
induction on m.

Let m = 0. Hence A = Ao, i. e. forall 1 <i <1 we have 3.7, a;; < 0. Thus

every singleton forms a solution of the system AZ < 0 and D,.(dy) = {cdy} #
(. Assume that the statement is true for some k > 0. Consider a (k + 1,p,¢)-set
D =D, (dy,...,dr+1). By induction we know that the (k,p,c)-set Dy .(do,...,dx)
contains a solution of the system A,Z < 0. Let (y;)icu,-, 1, be such a solution, i. e.
Yi € Dy o(do,...,dg) and for all 1 <4 <[ we have N

> iy <0,
JEUs<rIs
which implies

Z aijyj+dk+1( Z CkjQij + € Z aij) <0.

JEUs<kls JEUs<kIs JE€Ik41
N

J ~ J/

~~ ~~

<0 <0

Hence for all 1 <4 <[ we have

Z a;j(y; + diti1crj) + Z cdpy1a;; < 0.

JEUs<k s JEI 41
For y; € Dp.c(do,...,di) and |cg;| < p we have
Y + Ck]'dk_;,_l S Dp7c(d0, ceey dk-l,-l) and

cdis1 € Dy o(do, ... dis1).

Hence we found a solution of the system Ay, Z < 0 in the arbitrary chosen (k+1,p,c)-
set Dp,c(do, ey dk+1). DTheorem 2.2.

THEOREM 2.3. Let A = (aij)1<i<m,1<j<n be a rational matriz. If there exist m,p,c €

N such that every (m,p,c)—set contains a solution of the system AT < 0 then the
system AZ < 0 is partition regular.

PrROOF OF THEOREM 2.3.: Let m,p,c € N be given such that every (m,p,c)—set
contains a solution of the system A# < (0. By Deuber’s theorem [1] we
know that for every coloring A of the natural numbers with finitely many col-
ors there exist dop...d, such that the (m,p,c)-set D = D,.(do,...,dm) is
monochromatic with respect to A. For every (m,p,c)-set contains a solution
of the system AZ < 0, so does D and hence A# < 0 is partition regular.

Dtheorem 3.4.

Deuber [1] also proved a partition theorem for (m,p, c)—sets in order to resolve the
following conjecture Rado stated 1933 [10].
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Call a subset S C N partition reqular if every partition regular system of linear
equations can be solved in S. Rado conjectured that coloring a partition regular set
S there is one color class which is again partition regular.

THEOREM 2.4. (DEUBER 1973) Let m,p,c and r be positive integers. Then there
exist positive integers n,q,d such that for every (n,q,d)-set D C N and every r-
coloring A — [r] there exists a monochromatic (m,p,c)—set D' C D.

We can enlarge the definition of a partition regular set [1] to systems of linear in-
equalities:

DEFINITION 2.2. Call a subset S C N partition reqular for systems of inequalities
(pri) if every partition regular system of inequalities AZ < 0 can be solved in S.

Note that for matrices A and B having ¢pi over N also the direct sum
A 0
0 B

THEOREM 2.5. For every coloring of a pri set with finitely many colors at least one
of the color classes again is partition reqular for inequalities.

has epi over N.

PROOF OF THEOREM 2.5.: Assume that the statement is false, i. e. there exists a
set S C N which is pri and there exists r € N and a coloring A : S — [r] such that no
color class of A is pri. Thus for each color class ¢ there exists a matrix A; such that
the system A;# < 0 is partition regular but has no solution in A~'(i). Consider the
system

A0 0 ... 0
0 A, 0 ... 0
(%) #<0
0 ... 0
0 ... 0 A,

(x) is partition regular therefore there exist m,p, ¢ € N such that every (m,p, c)—set
contains a solution of (¥). By Deuber’s theorem [1] there exist n,q,d € N such
that each coloring of an arbitrary (n,q,d)—set with finitely many colors contains a
monochromatic (m,p,c)—set. For S is pri, it contains a (n,q,d)—set. Hence there
is some (m,p,c)—set in S which is monochromatic with respect to A and thus there
exists a monochromatic solution of (%) in S which contradicts the definition of (k).

Uiheorem  2.5.

3. CANONICAL RESULTS

In this chapter we want to extend our considerations to colorings with an unlimited
number of colors. Call a coloring A of a set S canonical if A is either
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1. monochromatic, i. e. for all s,¢ € S it holds A(s) = A(t) or
2. distinct, i.e. for all s,¢ € S with s # ¢ it holds A(s) # A(t).

In 1950 Erdds and Rado [4] proved a canonical version of Ramsey’s theorem:

THEOREM 3.1. (ERDOS, RADO 1950) If an infinite set S is colored then some infinite
subset T is canonically colored. For all k € N if |S| > (k—1)?>+1 and S colored there
exists a subset T C S, |T'| = k which is canonically colored.

Later Erdos and Graham [3] proved a canonical version of van der Waerden’s theorem,
i. e. for every k € N and every coloring of the positive integers there exists a
canonically colored k-term arithmetic progression. In 1986 Lefmann [7] extended the
Erdos-Graham canonical theorem for arithmetic progressions to a canonical partition
theorem for (m,p, c)—sets and partition regular systems of linear equations.

Let D = Dy(do,-..,dm) = {cd; + 3721 ljdjli < m,l; € [—p,p]}. Say that the
elements of the form ed; +1;11d;+1+. . .4+l Tm belong to the ith row of the (m, p, c)—set
D, c(dp,..,dm). Let us further say that A : D, .(dp,...,dm) — w is a row-coloring
provided that any two numbers a,b € D, .(do, .. .,dy) are colored the same if and
only if they belong to the same row of Dy, .(do, ..., dn).

Lefmann proved the following theorem [7]:

THEOREM 3.2. (LEFMANN 1986) Let m,p,c € N. Then there exists a least positive
integer L(m, p, c) with the following property: For every coloring A : [L(m,p,c)] = w
there exists a (m,p,c)-set Dy (do,...,dn) C [L(m,p,c)] such that A |Dp,c(do,...,dm)
either is a canonical coloring or a row-coloring.

As a corollary Lefmann [7] proved a canonical version of Rado’s theorem:

COROLLARY 3.1. (LEFMANN) Let A = (aij)1<i<i,1<j<n be an integer valued matriz
having the column property, i. e. the system of linear equations A¥ = 0 is partition
regular. Let Iy U ...U I, = [n] be the corresponding partition of the columns of A
into blocks. Then there exists a positive integer N € N such that for every coloring
A : [N] = w there exists a solution T = (x1...z,) such that one of the following
cases holds:

1. A |{x17___7mn} s a canonical coloring.

2. Each two elements xz;,x; of {x1,...,x,} are colored the same if and only if
{i,j} C I} for some k < m.

In the following we will prove a canonical theorem for systems of linear inequalities,
which is similar to the above canonical version of Rado’s theorem.

THEOREM 3.3. Let A = (aij)i<i<ii<j<n be a rational matriz and let the system
AZ < 0 be partition reqular, i. e. A has cpi. Let IyU. . .UI,, = [n] be the corresponding
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partition of the columns of A into blocks. Then for every coloring A : N — w of the
natural numbers there exists a solution T = (x1...,2,) € N such that one of the
following cases is valid:

1. A |{x17___7mn} s a canonical coloring

2. A(x;) = A(z;j) for some i,j € [n] if and only if there exists some k < m such
that i,j € Ij.

PROOF OF THEOREM 3.3.: The system A# < ( is partition regular. Thus by the-
orem 3.3. there exist positive integers m,p, ¢ such that every (m,p,c)—set contains
a solution of the system AZ < 0. In the proof of lemma 3.3. in chapter 3 we saw
that a solution of AZ < 0 in an arbitrary (m,p,c)—set D can be constructed in such
a way that for i € I} x; comes from the Ith row of D. Let A : N — w be given.
Theorem 4.2. gives us a (m,p,c)—set Dy (do,...,dy) such that A |Dp,c(do7...,dm) ei-
ther is a canonical or a row-coloring. Let § = (y1 ...yn) be a solution of the system
A# < 0 such that for all 1 < i < n we have Yi € Dpc(do,...,dy) and for i € I y;
belongs to the kth row of D, .(do,...,dn). If Dy .(do, ... ,dy) is canonically colored
then A |{y17...,yn} is a canonical coloring and if A |Dp,c(do,...7dm) is a row coloring then
A(y;) = A(yy) if and only if y; and y; belong to the same row of D, .(do,...,dn),

i. e. if and only if ¢ and j belong to the same block I for some k < m.
Utheorem 3.3
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