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Abstract. Let a compact Lie group act ergodically on a unital C

�

-algebra A.

We consider several ways of using this structure to de�ne metrics on the state

space of A. These ways involve length functions, norms on the Lie algebra, and

Dirac operators. The main thrust is to verify that the corresponding metric

topologies on the state space agree with the weak-� topology.

1991 Mathematics Subject Classi�cation: Primary 46L87; Secondary 58B30,

60B10

Connes [C1, C2, C3] has shown us that Riemannian metrics on non-commutative

spaces (C

�

-algebras) can be speci�ed by generalized Dirac operators. Although in

this setting there is no underlying manifold on which one then obtains an ordinary

metric, Connes has shown that one does obtain in a simple way an ordinary metric

on the state space of the C

�

-algebra, generalizing the Monge-Kantorovich metric on

probability measures [Ra] (called the \Hutchinson metric" in the theory of fractals

[Ba]).

But an aspect of this matter which has not received much attention so far [P] is the

question of when the metric topology (that is, the topology from the metric coming

from a Dirac operator) agrees with the underlying weak-� topology on the state space.

Note that for locally compact spaces their topology agrees with the weak-� topology

coming from viewing points as linear functionals (by evaluation) on the algebra of

continuous functions vanishing at in�nity.

In this paper we will consider metrics arising from actions of compact groups on

C

�

-algebras. For simplicity of exposition we will only deal with \compact" non-

commutative spaces, that is, we will always assume that our C

�

-algebras have an

identity element. We will explain later what we mean by Dirac operators in this

setting (section 4). In terms of this, a brief version of our main theorem is:

1

The research reported here was supported in part by National Science Foundation Grant DMS{

96{13833.

Documenta Mathematica 3 (1998) 215{229



216 Marc A. Rieffel

Theorem 4.2. Let � be an ergodic action of a compact Lie group G on a unital

C

�

-algebra A, and let D be a corresponding Dirac operator. Then the metric topology

on the state space of A de�ned by the metric from D agrees with the weak-� topology.

An important case to which this theorem applies consists of the non-commutative

tori [Rf], since they carry ergodic actions of ordinary tori [OPT]. The metric geometry

of non-commutative tori has recently become of interest in connection with string

theory [CDS, RS, S].

We begin by showing in the �rst section of this paper that the mechanism for

de�ning a metric on states can be formulated in a very rudimentary Banach space

setting (with no algebras, groups, or Dirac operators). In this setting the discussion of

agreement between the metric topology and the weak-� topology takes a particularly

simple form.

Then in the second section we will see how length functions on a compact group

directly give (without Dirac operators) metrics on the state spaces of C

�

-algebras on

which the group acts ergodically. We then prove the analogue in this setting of the

main theorem stated above.

In the third section we consider compact Lie groups, and show how norms on the

Lie algebra directly give metrics on the state space. We again prove the corresponding

analogue of our main theorem.

Finally, in section 4 we use the results of the previous sections to prove our main

theorem, stated above, for the metrics which come from Dirac operators.

It is natural to ask about actions of non-compact groups. Examination of [Wv4]

suggests that there may be very interesting phenomena there. The considerations of

the present paper also make one wonder whether there is an appropriate analogue of

length functions for compact quantum groups which might determine a metric on the

state spaces of C

�

- algebras on which a quantum group acts ergodically [Bo, Wn].

This would be especially interesting since for non-commutative compact groups there

is only a sparse collection of known examples of ergodic actions [Ws], whereas in [Wn]

a rich collection of ergodic actions of compact quantum groups is constructed. Closely

related is the setting of ergodic coactions of discrete groups [N, Q]. But I have not

explored any of these possibilities.

I developed a substantial part of the material discussed in the present paper during

a visit of several weeks in the Spring of 1995 at the Fields Institute. I am appreciative

of the hospitality of the Fields Institute, and of George Elliott's leadership there. But

it took trying to present this material in a course which I was teaching this Spring, as

well as bene�t from [P, Wv1, Wv2, Wv3, Wv4], for me to �nd the simple development

given here.

1. Metrics on states

Let A be a unital C

�

-algebra. Connes has shown [C1, C2, C3] that an appropriate

way to specify a Riemannian metric in this non-commutative situation is by means of

a spectral triple. This consists of a representation of A on a Hilbert space H, together

with an unbounded self-adjoint operator D on H (the generalized Dirac operator),

satisfying certain conditions. The set L(A) of Lipschitz elements of A consists of

those a 2 A such that the commutator [D; a] is a bounded operator. It is required
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Metrics on States from Actions of Compact Groups 217

that L(A) be dense in A. The Lipschitz semi-norm, L, is de�ned on L(A) just by the

operator norm L(a) = k[D; a]k.

Given states � and � of A, Connes de�nes the distance between them, �(�; �), by

(1.1) �(�; �) = supfj�(a)� �(a)j : a 2 L(A); L(a) � 1g :

(In the absence of further hypotheses it can easily happen that �(�; �) = +1. For

one interesting situation where this sometimes happens see the end of the discussion

of the second example following axiom 4' of [C3].)

The semi-norm L is an example of a general Lipschitz semi-norm, that is [BC, Cu,

P, Wv1, Wv2], a semi-norm L on a dense subalgebra L of A satisfying the Leibniz

property:

(1.2) L(ab) � L(a)kbk+ kakL(b) :

Lipschitz norms carry some information about di�erentiable structure [BC, Cu], but

not nearly as much as do spectral triples. But it is clear that just in terms of a given

Lipschitz norm one can still de�ne a metric on states by formula (1.1).

However, for the purpose of understanding the relationship between the metric

topology and the weak-� topology, we do not need the Leibniz property (1.2), nor

even that A be an algebra. The natural setting for these considerations seems to be

the following very rudimentary one. The data is:

(1.3a) A normed space A, with norm k k, over either C or R.

(1.3b) A subspace L of A, not necessarily closed.

(1.3c) A semi-norm L on L.

(1.3d)

A continuous (for k k) linear functional, �; on K = fa 2 L : L(a) = 0g

with k�k = 1. (Thus, in particular, we require K 6= f0g :)

Let A

0

denote the Banach-space dual of A, and set

S = f� 2 A

0

: � = � on K; and k�k = 1g :

Thus S is a norm-closed, bounded, convex subset of A

0

, and so is weak-� compact.

In general S can be quite small; when A is a Hilbert space S will contain only one

element. But in the applications we have in mind A will be a unital C

�

-algebra, K

will be the one-dimensional subspace spanned by the identity element, and � will be

the functional on K taking value 1 on the identity element. Thus S will be the full

state-space of A. (That K will consist only of the scalar multiples of the identity

element in our examples will follow from our ergodicity hypothesis. We treat the case

of general K here because this clari�es slightly some issues, and it might possibly be

of eventual use, for example in non-ergodic situations.)
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We do not assume that L is dense in A. But to avoid trivialities we do make one

more assumption about our set-up, namely:

(1.3e) L separates the points of S:

This means that given �; � 2 S there is an a 2 L such that �(a) 6= �(a). (Note that

for � 2 S there exists a 2 L with �(a) 6= 0, since we can just take an a 2 K such that

�(a) 6= 0.)

With notation as above, let

~

L = L=K. Then L drops to an actual norm on

~

L,

which we denote by

~

L. But on

~

L we also have the quotient norm from k k on L,

which we denote by k k

�

. The image in

~

L of a 2 L will be denoted by ~a.

We remark that when L is a unital algebra (perhaps dense in a C

�

-algebra), and

when K is the span of the identity element, then the space of universal 1-forms 


1

over

L is commonly identi�ed [BC, Br, C2, Cu] with L


~

L, and the di�erential d : L ! 


1

is given by da = 1
 ~a. Thus in this setting our

~

L is a norm on the space of universal

1-coboundaries of L. The de�nition of L which we will use in the examples of section

3 is also closely related to this view.

On S we can still de�ne a metric, �, by formula (1.1), with L(A) replaced by L.

The symmetry of � is evident, and the triangle inequality is easily veri�ed. Since we

assume that L separates the points of S, so will �. But � can still take the value +1.

We will refer to the topology on S de�ned by � as the \�-topology", or the \metric

topology" when � is understood.

It will often be convenient to consider elements of A as (weak-� continuous) func-

tions on S. At times this will be done tacitly, but when it is useful to do this explicitly

we will write â for the corresponding function, so that â(�) = �(a) for � 2 S.

Without further hypotheses we have the following fact. It is closely related to

proposition 3.1a of [P], where metrics are de�ned in terms of linear operators from

an algebra into a Banach space.

1.4 Proposition. The �-topology on S is �ner than the weak-� topology.

Proof. Let f�

k

g be a sequence in S which converges to � 2 S for the metric �. Then

it is clear from the de�nition of � that f�

k

(a)g converges to �(a) for any a 2 L with

L(a) � 1, and hence for all a 2 L.

This says that â(�

k

) converges to â(�) for all a 2 L. But

^

L is a linear space of

weak-� continuous functions on S which separates the points of S by assumption (and

which contains the constant functions, since they come from any a 2 K on which �

is not 0). A simple compactness argument shows then that

^

L determines the weak-�

topology of S. Thus f�

k

g converges to � in the weak-� topology, as desired. �

There will be some situations in which we want to obtain information about (L; L)

from information about S. It is clear that to do this S must \see" all of L. The

convenient formulation of this for our purposes is as follows. Let k k

1

denote the

supremum norm on functions on S. Let it also denote the corresponding semi-norm

on L de�ned by kak

1

= kâk

1

. Clearly kâk

1

� kak for a 2 L.
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1.5 Condition. The semi-norm k k

1

on L is a norm, and it is equivalent to the

norm k k, so that there is a constant k with

kak � kkâk

1

for a 2 L:

This condition clearly holds when A is a C

�

-algebra, L is dense in A, and S

is the state space of A, so that we are dealing with the usual Kadison functional

representation [KR]. But we remark that even in this case the constant k above

cannot always be taken to be 1 (bottom of page 263 of [KR]). This suggests that in

using formula (1.1) one might want to restrict to using just the self-adjoint elements

of L, since there the function representation is isometric. But more experience with

examples is needed.

We return to the general case. If we are to have the �-topology on S agree with

the weak-� topology, then S must at least have �nite �-diameter, that is, � must be

bounded. The following proposition is closely related to theorem 6.2 of [P].

1.6 Proposition. Suppose there is a constant, r, such that

(1.7) k k

�

� r

~

L :

Then � is bounded (by 2r).

Conversely, suppose that Condition 1.5 holds. If � is bounded, (say by d), then

there is a constant r such that (1.7) holds (namely r = kd where k is as in 1.5).

Proof. Suppose that (1.7) holds. If a 2 L and L(a) � 1, then

~

L(~a) � 1 and so

k~ak

�

� r. This means that, given " > 0, there is a b 2 K such that ka� bk � r + ".

Then for any �; � 2 S, we have, because � and � agree on K,

j�(a)� �(a)j = j�(a� b)� �(a� b)j � k�� �k ka� bk � 2(r + ") :

Since " is arbitrarily small, it follows that j�(a)� �(a)j � 2r. Consequently �(�; �) �

2r.

Assume conversely that � is bounded by d. Fix � 2 S, and choose b 2 K such that

�(b) = 1. Then for any � 2 S and any a 2 L with L(a) � 1 we have

d � �(�; �) � j�(a)� �(a)j = j�(a� �(a)b)j :

Suppose now that Condition 1.5 holds. We apply it to a � �(a)b. Thus, since S is

compact, we can �nd � such that

ka� �(a)bk � kj�(a� �(a)b)j :

Consequently ka��(a)bk � kd, so that k~ak

�

� kd. All this was under the assumption

that L(a) � 1. It follows that for general a 2 L we have k~ak

�

� kd

~

L(~a), as desired.

�

We now turn to the question of when the �-topology and the weak-� topology on

S agree. The following theorem is closely related to theorem 6.3 of [P].
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1.8 Theorem. Let the data be as in (1.3a{e), and let L

1

= fa 2 L : L(a) � 1g. If

the image of L

1

in L

�

is totally bounded for k k

�

, then the �-topology on S agrees

with the weak-� topology.

Conversely, if Condition 1.5 holds and if the �-topology on S agrees with the weak-�

topology, then the image of L

1

in L

�

is totally bounded for k k

�

.

Proof. We begin with the converse, so that we see why the total-boundedness as-

sumption is natural. If the �-topology gives the weak-� t opology on S, then � must

be bounded since S is compact. Thus by Proposition 1.6 there is a constant, r

o

, such

that k k

�

� r

o

L

�

, since we assume here that Condition 1.5 holds. Choose r > r

o

.

Then kak

�

< r if a 2 L

1

. Consequently, if we let

B

r

= fa 2 L : L(a) � 1 and kak � rg ;

then the image of B

r

in L

�

is the same as the image of L

1

. Thus it su�ces to show

that B

r

is totally bounded.

Let a 2 B

r

and let �; � 2 S. Then

jâ(�)� â(�)j = j�(a)� �(a)j � �(�; �) :

Thus (B

r

) ^ can be viewed as a bounded family of functions on S which is equi-

continuous for the weak-� topology, since � gives the weak-� topology of S. It follows

from Ascoli's theorem [Ru] that (B

r

)^is totally bounded for k k

1

. By Condition 1.5

this means that B

r

is totally bounded for k k as a subset of A, as desired.

For the other direction we do not need Condition 1.5. We suppose now that the

image of L

1

in

~

L is totally bounded for k k

�

. Let � 2 S and " > 0 be given, and

let B(�; ") be the �-ball of radius " about � in S. In view of Proposition 1.4 it

su�ces to show that B(�; ") contains a weak-� neighborhood of �. Now by the total

boundedness of the image of L

1

we can �nd a

1

; : : : ; a

n

2 L

1

such that the k k

�

-balls

of radius "=3 about the â

j

's cover the image of L

1

. We now show that the weak-�

neighborhood

O = O(�; fa

j

g; "=3) = f� 2 S : j(�� �)(a

j

)j < "=3; 1 � j � ng

is contained in B(�; "). Consider any a 2 L

1

. There is a j and a b 2 K, depending

on a, such that

ka� a

j

� bk < "=3 :

Hence for any � 2 O we have

j�(a)� �(a)j � j�(a)� �(a

j

+ b)j+ j�(a

j

+ b)� �(a

j

+ b)j+ j�(a

j

+ b)� �(a)j

< "=3 + j�(a

j

)� �(a

j

)j+ "=3 < " :

Thus �(�; �) < ". Consequently O � B(�; ") as desired. �

Examination of the proof of the above theorem suggests a reformulation which

provides a convenient subdivision of the problem of showing for speci�c examples

that the �-topology agrees with the weak-� topology. We will use this reformulation

in the next sections.
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1.9 Theorem. Let the data be as in (1.3a{e). Then the �-topology on S will agree

with the weak-� topology if the following three hypotheses are satis�ed:

i) Condition 1.5 holds.

ii) � is bounded.

iii) The set B

1

= fa 2 L : L(a) � 1 and kak � 1g is totally bounded in A for k k.

Conversely, if Condition 1.5 holds and if the �-topology agrees with the weak-� topol-

ogy, then the above three conditions are satis�ed.

Proof. If conditions i) and ii) are satis�ed, then, just as in the �rst part of the proof

of Theorem 1.8, there is a constant r such that the image of B

r

in

~

L contains the

image of L

1

. But B

r

� rB

1

. Thus if B

1

is totally bounded then so is B

r

, as is then

the image of L

1

. Then we can apply Theorem 1.8 to conclude that the �-topology

agrees with the weak-� topology.

Conversely, if the �-topology and the weak-� topology agree, then condition ii)

holds by Proposition 1.6. But by the �rst part of the proof of Theorem 1.8 there

is then a constant r such that B

r

is totally bounded. By scaling we see that B

1

is

also. �

We remark that if we take any 1-dimensional subspace K of an in�nite-dimensional

normed space A, set L = A, and let L be the pull-back to A of k k~on A=K, we obtain

an example where � is bounded but the image of L

1

in L

�

is not totally bounded,

nor is B

1

totally bounded in A.

In the next sections we will �nd very useful the following:

1.10 Comparison Lemma. Let the data be as in (1.3a{e). Suppose we have a

subspace M of L which contains K and separates the points of S, and a semi-norm

M on M which takes value 0 exactly on K. Let �

L

and �

M

denote the corresponding

metrics on S (possibly taking value +1). Assume that

M � L on M;

in the sense that M(a) � L(a) for all a 2 M. Then

�

M

� �

L

;

in the sense that �

M

(�; �) � �

L

(�; �) for all �; � 2 S. Thus

i) If �

L

is �nite then so is �

M

.

ii) If �

L

is bounded then so is �

M

.

iii) If the �

L

-topology on S agrees with the weak-� topology then so does the �

M

-

topology.

Proof. If a 2 M and M(a) � 1 then L(a) � 1. Thus the supremum de�ning �

M

is

taken over a smaller set than that for �

L

, and so �

M

� �

L

. Conclusions i) and ii) are

then obvious. Conclusion iii) follows from the fact that a continuous bijection from a

compact space to a Hausdor� space is a homeomorphism. �

For later use we record the following easily veri�ed fact.

1.11 Proposition. Let data be as above. Let t be a strictly positive real number. Set

M = tL on L. Then �

M

= t

�1

�

L

. Thus properties for �

L

of �niteness, boundedness,

and agreement of the �

L

-topology with the weak-� topology carry over to �

M

.
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2. Metrics from actions and length functions

Let G be a compact group (with identity element denoted by e). We normalize

Haar measure to give G mass 1. We recall that a length function on a group G is a

continuous non-negative real-valued function, `, on G such that

(2.1a) `(xy) � `(x) + `(y) for x; y 2 G;

(2.1b) `(x

�1

) = `(x);

(2.1c) `(x) = 0 exactly if x = e:

Length functions arise in a number of ways. For example, if � is a faithful unitary

representation of G on a �nite-dimensional Hilbert space, then we can set `(x) =

k�

x

� �

e

k. We will see another way in the next section. We will assume for the rest

of this section that a length function has been chosen for G.

Let A be a unital C

�

-algebra, and let � be an action (strongly continuous) of G by

automorphisms of A. We let L denote the set of Lipschitz elements of A for � (and

`), with corresponding Lipschitz semi-norm L. That is [Ro1, Ro2], for a 2 A we set

L(a) = supfk�

x

(a)� ak=`(x) : x 6= eg ;

which may have value +1, and we set

L = fa 2 A : L(a) <1g :

It is easily veri�ed that L is a �-subalgebra of A, and that L satis�es the Leibniz

property 1.2. (More generally, for 0 < r < 1 we could de�ne L

r

by

L

r

(a) = supfk�

x

(a)� ak=(`(x))

r

: x 6= eg

along the lines considered in [Ro1, Ro2]. For actions on the non-commutative torus

this has been studied in [Wv2], but we will not pursue this here.)

It is not so clear whether L is carried into itself by �, but we do not need this fact

here. (For Lie groups see theorem 4.1 of [Ro1] or the comments after theorem 6.1 of

[Ro2].) Let us consider, however, the �-invariance of L. We �nd that

L(�

z

(a)) = supfk�

z

(�

z

�1

xz

(a)� a)k=`(x) : x 6= eg

= supfk�

x

(a)� ak=`(zxz

�1

) : x 6= eg:

Thus if `(zxz

�1

) = `(x) for all x; z 2 G, then L is �-invariant, and L is carried into

itself by �. The metric � on S de�ned by L will then be �-invariant for the evident

action on S. But we will not discuss this matter further here.
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2.2 Proposition. The �-algebra L is dense in A.

Proof. For f 2 L

1

(G) we de�ne �

f

as usual by �

f

(a) =

R

f(x)�

x

(a) dx. It is standard

[BR] that as f runs through an \approximate delta-function", �

f

(a) converges to a.

Thus the set of elements of form �

f

(a) is dense in A. Let � denote the action of

G by left translation of functions on G. A quick standard calculation shows that

�

x

(�

f

(a)) = �

�

x

(f)

(a). Thus

k�

x

(�

f

(a))� �

f

(a)k = k�

(�

x

f�f)

(a)k � k�

x

f � fk

1

kak;

where k k

1

denotes the usual L

1

-norm. Thus we see that �

f

(a) 2 L if f 2 Lip

1

�

, the

space of Lipschitz functions in L

1

(G) for � (and `).

Consequently it su�ces to show that Lip

1

�

is dense in L

1

(G). We �rst note that it

contains a non-trivial element, namely ` itself. For if x; y 2 G, then

j(�

x

`)(y)� `(y)j = j`(x

�1

y)� `(y)j � `(x);

where the inequality follows from 2.1a and 2.1b above. We momentarily switch at-

tention to C(G) with k k

1

, and the action � of G on it. Of course ` 2 C(G). The

above inequality then says that ` 2 Lip

1

�

, the space of Lipschitz functions in C(G)

for �. But as mentioned earlier, Lip

1

�

is easily seen to be a �-subalgebra of C(G) for

the pointwise product, and it contains the constant functions. Furthermore, a simple

calculation shows that Lip

1

�

is carried into itself by right translation. Since Lip

1

�

contains `, which separates e from any other point, it follows that Lip

1

�

separates

the points of G. Thus Lip

1

�

is dense in C(G) by the Stone-Weierstrass theorem.

Since k k

1

dominates k k

1

for compact G, it follows that Lip

1

�

is dense in L

1

(G) as

needed. �

For simplicity of exposition we will deal only with the case in which we obtain

metrics on the entire state space of the C

�

-algebra A. For this purpose we want the

subspace where L takes the value 0 to be one-dimensional. It is evident that L takes

value 0 on exactly those elements of A which are �-invariant, and in particular on the

scalar multiples of the identity element of A. Thus we need to assume that the action

� is ergodic, in the sense that the only �-invariant elements are the scalar multiples

of the identity.

The main theorem of this section is:

2.3 Theorem. Let � be an ergodic action of a compact group G on a unital C

�

-

algebra A. Let ` be a length function on G, and de�ne L and L as above. Let � be

the corresponding metric on the state space S of A. Then the �-topology on S agrees

with the weak-� topology.

Proof. Because L is dense by Proposition 2.2, it separates the points of S. Conse-

quently the conditions 1.3a{e are ful�lled (for the evident �). Thus L indeed de�nes

a metric, �, on S (perhaps taking value +1).

Since G is compact, we can average � over G to obtain a conditional expectation

from A onto its �xed-point subalgebra. Because we assume that � is ergodic, this

conditional expectation can be viewed as a state on A. By abuse of notation we will

denote it again by �, since it extends the evident state � on the �xed-point algebra.

Thus

�(a) =

Z

G

�

x

(a) dx
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for a 2 A, interpreted as a complex number when convenient.

We will follow the approach suggested by Theorem 1.9. Now hypothesis (i) of

that theorem is satis�ed in the present setting, as discussed right after Condition 1.5

above. We now check hypothesis (ii), that is:

2.4 Lemma. � is bounded.

Proof. Let � 2 S. Then for any a 2 L we have

j�(a)� �(a)j = j

Z

�(a)dx��(

Z

�

x

(a)dx)j = j

Z

�(a��

x

(a))dxj � L(a)

Z

G

`(x)dx :

It follows that �(�; �) �

R

`(x)dx. Thus for any �; � 2 S we have

�(�; �) � 2

Z

G

`(x)dx ;

which is �nite since ` is bounded. �

We now begin the veri�cation of hypothesis (iii) of Theorem 1.9. For this we

need the unobvious fact [HLS, Bo] that because G is compact and � is ergodic, each

irreducible representation of G occurs with at most �nite multiplicity in A. (In [HLS]

it is also shown that � is a trace, but we do not need this fact here.) The following

lemma is undoubtedly well-known, but I do not know a reference for it.

2.5 Lemma. Let � be a (strongly continuous) action of a compact group G on a

Banach space A. Suppose that each irreducible representation of G occurs in A with

at most �nite multiplicity. Then for any f 2 L

1

(G) the operator �

f

de�ned by

�

f

(a) =

Z

G

f(x)�

x

(a)dx

is compact.

Proof. If f is a coordinate function for an irreducible representation � of G, then it is

not hard to see (ch. IX of [FD]) that �

f

will have range in the �-isotypic component

of A, which we are assuming is �nite-dimensional. Thus �

f

is of �nite rank in this

case. But by the Peter-Weyl theorem [FD] the linear span of the coordinate functions

for all irreducible representations is dense in L

1

(G). So any �

f

can be approximated

by �nite rank operators. �

Proof of Theorem 2.3. We show now that B

1

, as in (iii) of Theorem 1.9, is totally

bounded. Let " > 0 be given. Since `(e) = 0 and ` is continuous at e, we can �nd

f 2 L

1

(G) such that f � 0,

R

G

f(x)dx = 1, and

R

G

f(x)`(x)dx < "=2. By the

previous lemma �

f

is compact. Since B

1

is bounded, it follows that �

f

(B

1

) is totally

bounded. Thus it can be covered by a �nite number of balls of radius "=2. But for

any a 2 B

1

we have

ka� �

f

(a)k = ka

Z

f(x)dx �

Z

f(x)�

x

(a)dxk �

Z

f(x)ka� �

x

(a)kdx

� L(a)

Z

f(x)`(x)dx � "=2 :

Thus B

1

itself can be covered by a �nite number of balls of radius ". �
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3. Metrics from actions of Lie groups

We suppose now that G is a connected Lie group (compact). We let g denote the Lie

algebra of G. Fix a norm k k on g. For any action � of G on a Banach space A we

let A

1

denote the space of �-di�erentiable elements of A. Thus [BR] if a 2 A

1

then

for each X 2 g there is a d

X

a 2 A such that

lim

t!0

(�

exp(tX)

(a)� a)=t = d

X

a ;

and X 7! d

X

a is a linear map from g into A, which we denote by da. Since g and A

both have norms, the operator norm, kdak, of da is de�ned (and �nite). A standard

smoothing argument [BR] shows that A

1

is dense in A.

Suppose now that A is a C

�

-algebra and that � is an action by automorphisms of

A. We can set L = A

1

and L(a) = kdak. It is easily veri�ed that L is a �-subalgebra

of A and that L satis�es the Leibniz property 1.2, though we do not need these facts

here. Because G is connected, L(a) = 0 exactly if a is �-invariant.

3.1 Theorem. Let G be a compact connected Lie group, and �x a norm on g. Let

� be an ergodic action of G on a unital C

�

-algebra A. Let L = A

1

and L(a) = kdak,

and let � denote the corresponding metric on the state space S. Then the �-topology

on S agrees with the weak-� topology.

Proof. Choose an inner-product on g. Its corresponding norm is equivalent to the

given norm, and so by the Comparison Lemma 1.10 it su�ces to deal with the norm

from the inner-p roduct. We can left-translate this inner-product over G to obtain

a left-invariant Riemannian metric on G, and then a corresponding left-invariant

ordinary metric on G. We let `(x) denote the corresponding distance from x to e.

Then ` is a continuous length function on G satisfying conditions 2.1 [G, Ro2].

Then the elements of L = A

1

are Lipschitz for `. This essentially just involves the

following standard argument [G, Ro2], which we include for the reader's convenience.

Let a 2 A

1

and let c be a smooth path in G from e to a point x 2 G. Then �, de�ned

by �(t) = �

c(t)

(a), is di�erentiable, and so we have

k�

x

(a)� ak = k

Z

�

0

(t)dtk �

Z

k�

c(t)

(d

c

0

(t)

a)kdt � kdak

Z

kc

0

(t)kdt :

But the last integral is just the length of c. Thus from the de�nition of the ordinary

metric on G, with its length function `, we obtain

k�

x

(a)� ak � kdak`(x) :

(Actually, the above argument works for any norm on g.) Then if we let L

0

and L

0

be

de�ned just in terms of ` as in the previous section, we see that L � L

0

and L

0

� L.

Thus we are exactly in position to apply the Comparison Lemma 1.10 to obtain the

desired conclusion. �

We remark that Weaver (theorem 24 of [Wv1]) in e�ect proved for this setting the

total boundedness of B

1

for the particular case of non-commutative 2-tori, by di�erent

methods.
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4. Metrics from Dirac operators

Suppose again that G is a compact connected Lie group, and that � is an ergodic

action of G on a unital C

�

-algebra A. Let g denote the Lie algebra of G, and let g

0

denote its vector-space dual. Fix any inner-product on g

0

. We will denote it by g, or

by h ; i

g

, to distinguish it from the Hilbert space inner-products which will arise.

With this data we can de�ne a spectral triple [C1, C2, C3] for A. For simplicity of

exposition we will not include gradings and real structure, and we will oversimplify

our treatment of spinors, since the details are not essential for our purposes. But

with more care they can be included. (See, e.g. [V, VB].) We proceed as follows. Let

C = Clif(g

0

;�g) be the complex Cli�ord C

�

-algebra over g

0

for �g. Thus each ! 2 g

0

determines a skew-adjoint element of C such that

!

2

= �h!; !i

g

1

C

:

Depending on whether g is even or odd dimensional, C will be a full matrix algebra,

or the direct sum of two such. We let S be the Hilbert space of a �nite-dimensional

faithful representation of C (the \spinors").

Let A

1

denote the space of smooth elements of A. (We could just as well use the

A

1

of the previous section. We use A

1

here for variety. It is still a dense �-subalgebra

[BR].) Let W = A

1


 S, viewed as a free right A

1

-module. From the Hilbert-space

inner-product on S we obtain an A

1

-valued inner-product on W . Let � be as in the

previous section, viewed as a faithful state on A. Combined with the A-valued inner

product on W , it gives an ordinary inner-product on W . We will denote the Hilbert

space completion by L

2

(W; �).

Now A

1

and C have evident commuting left actions on W . These are easily

seen to give �-representations of A and C on L

2

(W; �), which we denote by � and c

respectively.

We de�ne the Dirac operator, D, on L

2

(W; �) in the usual way. Its domain will be

W , and it is de�ned as the composition of operators

W

d

�! g

0


W

i

�! C 
W

c

�!W :

Here d is the operator which takes b 2 A

1

to db 2 g

0


A

1

, de�ned by db(X) = d

X

(b),

which we then extend to W so that it takes b
 s to db
 s. The operator i just comes

from the canonical inclusion of g

0

into C. The operator c just comes from applying

the representation of C on S, and so on W .

It is easily seen that D is a symmetric operator on L

2

(W; �). It will not be impor-

tant for us to verify that D is essentially self-adjoint, and that its closure has compact

resolvant.

Let fe

j

g denote an orthonormal basis for g

0

, and let fE

j

g denote the dual basis

for g. Then in terms of these bases we have

D(b
 s) =

X

�

E

j

(b)
 c(e

j

)s :

When we use this to compute [D;�

a

] for a 2 A

1

, a straightforward calculation shows

that we obtain

[D;�

a

](b
 s) =

X

(�

E

j

(a)
 c(e

j

)))(b
 s) :
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That is,

(4.1) [D;�

a

] =

X

�

E

j

(a)
 e

j

;

acting on L

2

(W; �) through the representations � and c. It is clear from (4.1) that

[D;�

a

] is bounded for the operator norm from L

2

(W; �).

We can now set L = A

1

, and

L(a) = k[D;�

a

]k :

It is clear that L(1

A

) = 0. To proceed further we compare L with the semi-norm of

the last section. If we view g

0

as contained in the C

�

-algebra C, we have e

2

j

= �1 and

e

�

j

= �e

j

for each j. In particular, ke

j

k = 1. From (4.1) it is then easy to see that

there is a constant, K, such that

L(a) � Kkdak

for all a 2 L, where kdak is as in the previous section, for the inner-product dual to

that on g

0

. However, what we need is an inequality in the reverse direction so that

we will be able to apply the Comparison Lemma 1.10.

For this purpose, consider any element t =

P

b

j


 e

j

in A 
 C, with the e

j

as

above. Let f

j

= ie

j

, so that f

�

j

= f

j

, f

2

j

= 1, and f

j

f

k

= �f

k

f

j

for j 6= k. Let

p

j

= (1 + f

j

)=2 and q

j

= 1 � p

j

= (1 � f

j

)=2, both being self-adjoint projections.

Then p

j

f

k

= f

k

q

j

for j 6= k. Consequently p

j

f

k

p

j

= 0 = q

j

f

k

q

j

for j 6= k. Thus

(1
 p

j

)t(1
 p

j

) = b

j


 p

j

e

j

p

j

= b

j


 ip

j

and

(1
 q

j

)t(1
 q

j

) = �b

j


 iq

j

:

Since at least one of p

j

and q

j

must be non-zero, it becomes clear that ktk � kb

j

k for

each j. When we apply this to (4.1) we see that

L(a) � k�

E

j

(a)k

for each j. Consequently, for a suitable constant k we have

L(a) � kkdak ;

where again kdak is as in the previous section. On applying Proposition 1.11, Theorem

3.1, and the Comparison Lemma 1.10, we obtain the proof of:

4.2 Theorem. Let � be an ergodic action of the compact connected Lie group G

with Lie algebra g on the unital C

�

-algebra A. Pick any inner-product on the dual, g

0

,

of g. Let D denote the corresponding Dirac operator, as de�ned above. Let L = A

1

,

and let L be de�ned by

L(a) = k[D; a]k

for a 2 A. Let � be the corresponding metric on S. Then the �-topology on S agrees

with the weak-� topology.
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