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Abstract. Let f�

p

g

p

be a compatible system of two dimansional p{adic Galois

representations attached to a cusp form of Neben type

�

D

�

(D > 0). We

shall give an exact criterion, in terms of the fundamental unit " of Q(

p

D),

determining primes p for which the image of �

p

mod p is dihedral. Then we

shall state a conjecture which gives an explicit description of the universal p{

ordinary deformation ring of such mod p dihedral representations.

0. Introduction.

For a given 2{dimensional compatible system f�

p

g

p

of p{adic representations of

Gal(Q=Q) associated to an elliptic Hecke eigenform, if the image of one member

�

p

at a prime p is full containing the maximal compact subgroup of SL(2), then the

image is full for almost all primes p (cf. [R1]). Thus it is interesting to know for which

primes the image shrinks to a proper subgroup of the maximal compact subgroup.

This turns out to be quite an Arithmetic question; for example, if the system is asso-

ciated to an elliptic Hecke eigenform of weight � and of level 1, the image is reducible

modulo p only for irregular primes dividing the numerator of the Bernoulli number B

�

([R]) if the prime p is large: p > �+ 1 (pjp). This work of Ribet opened a possibility

of a modular approach to the Iwasawa main conjecture, which was culminated by the

proof of the conjecture by Mazur and Wiles 8 years later.

In this short note, we would like to determine when the image modulo p is dihedral

for non-dihedral systems. If it is the case for pjp, � = (�

p

mod p) is isomorphic to

an induced representation Ind

Q

F

' of a Galois character ' of a quadratic extension

F over Q. We assume that F = Q(

p

D) is real (i.e. D > 0) to guarantee the

non-dihedralness of the modular compatible systems. In the early 70's, Shimura

discovered, under certain conditions, that the primes for which � is dihedral (for the

system associated to an elliptic cusp form of weight 2 and of \Neben" type � =

�

D

�

)

are given by prime factors of N

F=Q

(" � 1) for a positive fundamental unit " of F

([S] and [S1]). Using this fact, he was able to show that the abelian extension of

F associated to ' is generated by the coordinate of a certain torsion point of the
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Jacobian of a modular curve (solving Hilbert's twelfth problem in this special case).

The character ' as a Dirichlet character is just a 7! (a mod p) for algebraic integers

a 2 F , and hence " � 1 mod p. Later some other Japanese mathematicians studied

this phenomenon (cf. [O] and [K]), trying to eliminate some experimental nature of

the argument of Shimura, and the general expectation was that the criterion holds

for weight � �{Neben forms � in terms of prime factors of N ("

��1

� 1) in place of

N ("�1) (see below Theorem 1). Although we have written � for the Hecke eigenform

with the required property for p, it is not a theta series. However the dihedralness

modulo p of the p{adic Galois representation of � is equivalent to have a congruence

modulo p between � and a theta series of weight 1 of a norm form of the quadratic

�eld Q(

p

D).

Recently I found with Maeda ([HM] Section 3) that a Hecke eigenform f of level

N jD has a base-change to GL(2) over totally real �elds E if p > 2�� 1 and f has a

congruence f � � mod l for a prime ljD such that f is ordinary for l and the mod l

Galois representation of f is irreducible. The �eld E is any totally real �eld in which

all prime factors of pD are unrami�ed. Thus it becomes increasingly important for

us to know for what primes p the dihedral reduction � shows up. This is the reason

why we would like to record the exact criterion as stated below.

To make things precise, let us �x notation: Let F = Q(

p

D) � R be a real

quadratic �eld with discriminant D > 0 and Galois group � = Gal(F=Q). Let

� =

�

D

�

be the Legendre symbol; thus,

b

� = fid; �g for the Pontryagin dual

b

�

of �. Let  2

b

�, and consider the space of elliptic cusp forms S

�

(�

0

(C);  ) of

weight � and of level given by the conductor C = C( ) of  . Let A be a subring

of C . We write h

�

(C( );  ;A) for the A{subalgebra of the linear endomorphism

algebra of S

�

(�

0

(C);  ) generated over A by Hecke operators T (n) for all n. Let

� = �

�

: h

�

(C( );  ;Z)! C be an algebra homomorphism and A be a valuation ring

of Q(�) with residual characteristic p. Here Q(�) is the number �eld generated by

�(T (n)) for all n. Let O be the m

A

{adic completion for the maximal ideal m

A

of A.

We write � = �

�

: G = Gal(Q=Q)! GL

2

(O) for the Galois representation attached

to �. We put � = (�

�

mod m

O

) : G ! GL

2

(F) for F = O=m

O

. Let " > 0 be a

fundamental unit of F . Then it is easy to see that pjN ("

��1

�1) (for even positive �)

implies �(p) = 1 provided that p > 2 and N (") = �1. We would like to give a proof

of the following fact:

Theorem 1. Let p be a prime of Q(�) associated to A. Suppose p � 3. Then

(1) If �(T (p)) 2 A

�

and the restriction �

F

of � to H = Gal(Q=F ) is reducible

but � is absolutely irreducible, then  = �, �(p) = 1 and pjN ("

��1

� 1) for a

fundamental unit " of F which is positive at some real place of F ;

(2) If  = �, �(p) = 1 and pjN ("

��1

� 1) for even � and a prime p with � > 2

or p � 5, then there exist � = �

�

: h

�

(D; ;Z) ! C and p such that (i)

�(T (p)) 62 p, (ii) � is absolutely irreducible, but (iii) �j

H

is reducible.

Moreover if �(p) = 1, pjN ("

��1

� 1) and  = �, then � as in (2) is p{ordinary. Here

we call a Galois representation � p{ordinary if its restriction to each decomposition

group at p is isomorphic to

�

� �

0 �

�

for an unrami�ed character �.

This should be known to specialists and is a consequence of a theory developed by

the mathematicians quoted above ([S], [S1], [O] and [K]). However in these papers,
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some redundant assumptions are made, and it seems to me that the theorem is never

stated in the literature in the above form. Although there is nothing essentially new in

the proof, we shall give a proof based on my earlier works ([H86a,b]) and the theorems

of Fontaine, Deligne and Mazur ([E] 2.5-6, 2.8) on classi�cation of mod p modular

Galois representations. Then we shall give a conjecture predicting the structure of the

local component of the universal p{ordinary Hecke algebra through which �

�

in the

theorem factors (Conjecture 2.2). This conjecture is a �{adic version of the theorem

and directly relates " with the universal p{ordinary Hecke algebra (and hence with

the universal p{ordinary deformation ring of � by [W]; see also [HM] Section 4).

1. Divisibility of N ("

��1

� 1).

Let � be a quadratic character associated to a quadratic extension F=Q. Here �rst

we study general properties of a p{adic Galois representation satisfying � 
 �

�

=

�

(attached to an Hecke eigenform in S

�

(�

0

(C( ));  ) for  2 fid; �g), and after that,

we shall prove the �rst statement of Theorem 1. We suppose that �
�

�

=

� throughout

this section.

We assume p � 3. For a while, we do not assume that F is real. Let !

p

be

the Teichm�uller character of G (at p). If  = �, suppose �rst that � is reducible:

�

�

=

�

� �

0 "

�

; we have �" = �!

��1

p

and �� = ", because �� = � never happens if p

is odd. This shows that �

2

= !

��1

p

and hence � is odd if  = �, F is an imaginary

quadratic �eld, and � = !

(��1)=2

p

. If  = id and � is reducible, then � is even,

� = !

��1

�

�2

and hence F is again imaginary.

We now suppose that � is absolutely irreducible. Let f =

P

1

n=1

�(T (n))q

n

be the

Hecke eigenform with eigenvalues �. Then we look at the base change lift

b

f of f to

GL(2)

=F

(see [DN], [N] and [J]). Since

b

f is of level 1, �

F

is unrami�ed outside p (cf

[C] and [T]). Then we have a character ' : H ! F

�

such that �

�

=

Ind

Q

F

' (see Lemma

3.2 in [DHI]). Then by comparing the determinant, we get

' �'

�

= !

(��1)e

p

;

where e is the rami�cation index of p in F=Q, '

�

(g) = '(�g�

�1

) for � 2 G which

induces a non-trivial automorphism on F and !

p

is the Teichm�uller character of G

restricted to H. If F is real, this shows that �1 = det(�)(c) = !

(��1)e

p

(�1) for a

complex conjugation c. Thus e = 1 if F is real. Let c be the conductor of ', which

divides a high power of p. Since the conductor of !

p

is p, c \ c

�

= p. The absolute

irreducibility of � implies that ' 6= '

�

.

Suppose that p is rami�ed in F . Thus F has to be imaginary. Then automatically,

we have ' = '

�

on the inertia group I

p

at pjp because ' is a character modulo p

for a unique prime p of F over p. Thus � becomes reducible if the class number of F

is prime to jFj � 1, contradicting to the irreducibility assumption. This also implies

that '

2

= !

2(��1)

on I

p

. Thus ' = !

��1

on I

p

.

We hereafter assume that p - D. Let A be a valuation ring of Q(�) with residual

characteristic p. Suppose that �(T (p)) = a(p; f) 6� 0 mod m

A

. We �x an embedding
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i

p

: Q ,! Q

p

associated to a prime P of Q, and assume that Pjm

A

. Then by [H86b]

Corollary 3.2 (see also [H88] when p = 3), we can �nd an algebra homomorphism

�

0

: h

�

0

(C( );  ;Z)! Q

p

of weight 2 � �

0

� p + 1 so that �

�

�

=

�

�

0

, � � �

0

mod P

and � � �

0

mod p�1. Then by Deligne's theorem ([E] 2.5), p = pp

�

in F with p 6= p

�

,

'(x) = x

��1

mod p, and C = p. Write r for the integer ring of F . Regard ' as a

Dirichlet character of (r=p)

�

with values in F

�

. Thus supposing that F is real (and

hence that � is even), "

��1

+

mod p = '("

+

) = 1 for the totally positive fundamental

unit "

+

of F . Thus pj"

��1

+

� 1. If " 6= "

+

, we may assume "

+

= "

2

and ""

�

= �1

for the generator � of �. Since "

��1

+

� 1 = "

2(��1)

� 1 = ("

��1

� 1)("

��1

+ 1) =

(�"

��1

)N ("

��1

� 1), pjN ("

��1

� 1) () pjN ("

��1

+

� 1). The determinant of Ind

Q

F

'

is given by '

Z

�, where regarding ' as a Dirichlet character modulo p, '

Z

is the Galois

character associated to the restriction of the Dirichlet character ' to Z. This shows

that  !

��1

= det(�) = det(Ind

Q

F

') = �!

��1

, and hence  = �. Thus we get

Proposition 1.1. Suppose p � 3 and that F = Q(

p

D) is a real quadratic �eld

of discriminant D > 0. Let � =

�

D

�

be the Legendre symbol. If �

�

=

� 
 � for

� : h

�

(C( );  ;Z)! A with  2

b

� and �(T (p)) 2 A

�

, then  = �, �(p) = 1 and

pjN ("

��1

� 1) for a fundamental unit " of F which is positive at some real place of

F . Moreover � is p{ordinary and p - D.

We remark that, by [DHI] Lemma 3.2, the following conditions are equivalent under

the absolute irreducibility of �:

(1) � 
 �

�

=

�;

(2) �

F

is reducible;

(3) �

�

=

Ind

Q

F

' for ' with '

�

6= '.

The �rst statement of Theorem 1 follows from this remark and the above proposition.

Since we have only dealt with the case where �(T (p)) 6� 0 mod m

A

, we here add

two remarks on what happens if �(T (p)) � 0 mod m

A

. Suppose that �(T (p)) � 0 mod

m

A

and 2 � � � p+ 1. Then by Fontaine's theorem ([E] 2.6), the restriction of � to

the decomposition group at p is irreducible, p has to be inert in F , and '(x) = x

��1

mod p for x 2 r

�

p

. If F is real, we take complex conjugation c 2 Gal(Q=F ). Then

we have det(�)(c) = (�1)

2��2

= �1. This shows that F has to be imaginary to have

�(T (p)) = a(p; f) � 0 mod m

A

and 2 � � � p + 1.

As is well known (cf. [E]), we can �nd an algebra homomorphism

�

0

: h

�

0

(C( );  ;Z)! Q

p

of weight 2 � �

0

� p+ 1 such that �

�


 !

a

�

=

�

�

0

for a suitable a. If the restriction of

� to the decomposition group at p is irreducible (that is, super-singular), twisting by

!

a

p

does not change super-singularity. If the restriction to the decomposition group

is reducible, (�

�

0

mod p) has to be p{ordinary by Fontaine's theorem and Deligne's

theorem combined.
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2. �{adic version.

Let p � 3 be a prime and F be a �nite �eld of characteristic p. We start from a

character

' : H ! F

�

with '(c)'(�c�

�1

) = �1:

Thus � = Ind

Q

F

' : G ! GL

2

(F) is absolutely irreducible. Note that � is p{ordinary if

and only if p = pp

�

for primes p 6= p

�

of r. In this case, we have that C(') = p. We

take O to be the ring of Witt vectors of the �nite �eld F which is generated over F

p

by the values of '. Let K be the �eld of fractions of O. We use the same symbol '

for the Teichm�uller lift of ' to O

�

. On the inertia at pjp, ' = !

��1

p

for some positive

even integer �, where !

p

is the Teichm�uller character modulo p. This implies that

pj"

��1

+

�1. Conversely, if pj"

��1

�1 for an even positive integer � and �(p) = 1, !

��1

p

gives rise to a class character modulo p1 for an in�nite place 1 of F and hence to a

character ' of H with the above property by class �eld theory. We �x an embedding

i

p

: Q ,!Q

p

and regard O as a subring of Q

p

. Thus we can think of ' having values

in Q� C . Then we have a theta series �(') =

P

n�r

'(n)q

N(n)

2 S

1

(�

0

(Dp); �!

��1

)

such that the associated `{adic representation �

�(')

is isomorphic to Ind

Q

F

' for all `

[He].

We write � for the Iwasawa algebra O[[�]] for � = 1+pZ

p

. Let h

ord

(Dp

1

; �;O) be

the universal p{ordinary Hecke algebra of tame character � = �!

�

p

with coe�cients

in O as de�ned in [H86a]. Although it is assumed that p > 3 in [H86a], the result

quoted above remains valid for p = 3 (see [H88] or [H93] Section 7.3). Let Z[!

a

p

] be

the subalgebra of C generated by the values of i

�1

p

!

a

p

, and put

h

�

(Dp; �!

a

p

;B) = h

�

(Dp; �!

a

p

;Z[!

a

p

])


Z[!

a

p

]

B for B = O or K.

The algebra h

ord

(Dp

1

; �!

�

p

;O) is a 
at �{algebra. Let h

ord

�

(Dp; �!

a

p

;O) be the

maximal algebra direct factor on which the image of T (p) is invertible. We then

put h

ord

�

(Dp; �!

a

p

;K) = h

ord

�

(Dp; �!

a

p

;O) 


O

K. The algebra homomorphism �

k

:

� ! O induced by the character: � 3 
 7! 


k

gives rise to a surjective O{algebra

homomorphism

�

k

: h

ord

(Dp

1

; �!

�

p

;O)


�;�

k

K ! h

ord

k

(Dp; �!

��k

p

;K)

sending T (n) to T (n) for all n and all k � 1, and �

k

is an isomorphism for all k � 2.

In particular, for k = �, we have

h

ord

(Dp

1

; �!

�

p

;O)


�;�

�

K

�

=

h

ord

�

(Dp; �;K)

�

=

h

ord

�

(D;�;K);

where the last isomorphism is only valid for � > 2. If p > 3 the above isomorphisms

are valid even for O in place of K. For k = 1, we have an algebra homomorphism

�

1

: h

1

(Dp; �!

��1

p

;O) ! O given by �(')jT (n) = �

1

(T (n))�('). Take a minimal

prime ideal P of h

ord

(Dp

1

; �!

�

p

;O) such that P � Ker(�

1

). Thus writing I for

h

ord

(Dp

1

; �!

�

p

;O)=P, we have a �{algebra homomorphism

�

I

: h

ord

(Dp

1

; �!

�

p

;O)! I

Documenta Mathematica 3 (1998) 273{284



278 Haruzo Hida

lifting �

1

. For each prime divisor P 2 Spec(I) with P � Ker(�

k

), we have �

P

:

h

k

(Dp; �!

��k

p

;O) ! Q

p

induced by �

I

mod P . If k = � > 2, �

P

is induced by a

unique �

�

: h

�

(D;�;O) ! Q

p

. Anyway we have a p{adic family of ordinary forms

specializing to �(') at weight 1.

Let P be the prime associated to the embedding i

p

: Q ,! Q

p

. Since a(q; f) =

�(q)a(q; f) (q - D) for the weight � specialization f (associated to �

�

as above), f

has the property that

P �

n

a(q; f) � a(q; f)

�

�

q - D

o

;

where z 7! z indicates complex conjugation. Thus writing Q(�

�

) for the �eld gener-

ated by �

�

(T (n)) for all n and Q(�

�

)

+

for its sub�eld �xed by the complex conjuga-

tion, we see that [Q(�

�

) : Q(�

�

)

+

] = 2, and P should divide the relative di�erent of

Q(�

�

)=Q(�

�

)

+

.

Let h be the local ring of the Hecke algebra h

ord

(Dp

1

; �!

�

p

;O) through which �

I

factors. We have a bijection ([H86a] Section 1) for k � 2:

Hom

O�alg

(h


�;�

k

K;Q

p

)

�

=

�

f 2 S

k

(�

0

(Dp); �!

��k

p

)jf is a normalized eigenform with f � �(') mod P

	

:

In particular, if k = � > 2, h 


�;�

�

K is isomorphic to an algebra direct fac-

tor of h

�

(D;�;K) (cf. [H86a] Proposition 4.7), and hence �

�

has to belong to

Hom

O�alg

(h


�;�

k

K;Q

p

).

We claim that if k = � = 2 and p � 5, then for some hight 1 prime P containing

Ker(�

k

), �

P

is still induced by �

2

: h

2

(D;�;O) ! Q

p

. To prove the claim, we

introduce a notion of 
atness of �. Let L be a number �eld, and write O

l

for the

l{adic completion of the integer ring of L. A mod p representation � : Gal(Q=L) !

GL

n

(F) is called 
at over L if its restriction to the decomposition group of each Pjp

is isomorphic to a representation realized on the special �ber of a �nite 
at group

scheme (with a structure of F{vector space) de�ned over O

P

. Since !

p

is 
at over

F , � = Ind

Q

F

' is 
at over Q. Then by a theorem of Mazur, see [E] 2.8, we can �nd

�

2

as above. The theorem tells us that the q{expansion f =

P

n

�

P

(T (n))q

n

mod p

is the q{expansion of a mod p{modular form g on X

1

(D)

=F

p

. Since the statement

of [E] 2.8 only concerns mod p modular forms, the condition p � 5 is not explicitely

stated. Here we mean by a mod p modular form of weight k a global section of !


k

over X

1

(D)

=F

p

(as in [E] 2.1). But for the given mod p modular form f = g as above

to be lifted to a classical modular form f 2 H

0

(X

1

(D)

=Z

p

; !


2

), one needs to have a

characteristic 0 lift of the Hasse invariant A. Such a lift exists under the assumption

p � 5. This shows the assertion (2) of Theorem 1, and we �nish the proof of Theorem

1.

Here we record what we have actually shown in the above proof of Theorem 1:

Proposition 2.1. Suppose pjN ("

��1

� 1) for an odd prime p with �(p) = 1 and an

even positive integer �. Then

(1) There exists a �nite order character ' : H ! Q

�

of conductor p such that (i)

' coincides with !

��1

p

on the inertia group at p for the Teichm�uller character

!

p

and (ii) '(c)'(�c�

�1

) = �1 for complex conjugation c;
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(2) Let � = �

�

: h

�

(Dp; �;Z)! Q be a specialization at weight � of the �

I

. Then

�

�

�

=

Ind

Q

F

'.

We now study the structure of the local ring h de�ned above. We write CNL

O

for the category of complete noetherian local O{algebras with residue �eld F. Let

F

(p)

=F be the maximal extension inside Q unrami�ed outside fp;1g for the in�nite

place 1 of Q. By a theorem of Wiles [W] Theorem 3.3, if p 6= 2� � 1, the ring h

along with Galois representation �

h

: G

(p)

= Gal(F

(p)

=F )! GL

2

(h) of h represents

the deformation functor F

ord

Q

: CNL

O

! SETS given by

F

ord

Q

(B) =

n

� : G

(p)

! GL

2

(B)

�

�

� � � mod m

B

and � is p{ordinary

o

= �;

where � = (Ind

Q

F

' mod m

O

) and \�" is the strict equivalence (cf. [M]). The associ-

ation: � 7! � 
 � gives a natural transformation of F

ord

Q

onto itself, inducing a ring

automorphism � : h! h. To see this, we consider the involution W on S

�

(�

0

(p); �)

induced by

�

0 �1

D 0

�

. Since WT (n)W = �(n)T (n) for n prime to D, conjugation

by W coincides with � . Note that WT (n)W is the adjoint operator T

�

(n) of T (n)

under the Petersson inner product, and T

�

(n) is an element in h

�

(D;�;Z). Since

this is true for all k with k � � mod p � 1, we have an involution � on h such that

WTW = � (T ) on h 


�;�

k

O for all such k. We write h

+

the subalgebra of h �xed

by � . The automorphism � induces the complex conjugation on Q(�

�

), which is the

automorphism of Q(�

�

) �xing Q(�

�

)

+

.

We take p � 3 as in Theorem 1 such that pj"

��1

�1 and �(p) = 1. We now identify

Z

p

with r

p

via inclusion: Z,! r, and assume P \ r = p. In this way, we have � =

1+ pZ

p

,! r

�

p

. We �x a generator u of � and identify �

�

=

O[[T ]] via u 7! 1 + T . Let

\log" be the p{adic logarithm function. Then we write h"i for (u

�1

(1+T ))

log(")= log(u)

,

which is the unique element in � such that �

k

(h"i) = "

k�1

!

p

(")

1�k

. In particular,

�

�

(") = "

��1

.

We write h

ord

(p

1

; �;O)

=F

for the universal ordinary Hecke algebra for GL(2)

=F

de�ned in [H88] for Hilbert modular forms (analogously to h

ord

(Dp

1

; �;O) for elliptic

modular forms), which is again a �{algebra. This algebra is reduced, because it

specializes to level 1 Hecke algebras (which is reduced) modulo Ker(�

k

) for all k > 2

with k � � mod p� 1. Let

b

h be the local ring of h

ord

(p

1

; !

�

p

;O)

=F

through which

b

�

�

factors. We have a canonical Galois representation �

b

h

: H ! GL

2

(Frac(

b

h)) such

that Tr(�

b

h

(Frob

l

)) is given by the projection of T (l) to

b

h for all primes l prime to

p. Here Frac(

b

h) is the total quotient ring of

b

h. Then as in [DHI] Section 3.4, we can

de�ne the base change map � :

b

h! h so that �(Tr(�

b

h

)) = Tr(�

h

)j

H

.

Conjecture 2.2. Suppose that p � 3. Let h

+

be the subalgebra of h �xed by � . Then

if O is su�ciently large, under the above assumption and the notation, we have

(1) h

�

=

h

+

[

p

h"i � 1],

(2) h(� � 1)h = h

p

h"i � 1,

(3) Im(�) = h

+

.
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Here h

+

[

p

�] = h

+

[X]=(X

2

� �) for � 2 h

+

.

The reason why we need to assume O to be large is as follows: What we actually

expect is that the ideal h(��1)h is generated by an element � such that �

2

= x(h"i�1)

with x 2 h

�

. If h

+

is a Gorenstein ring, the relative di�erent h(� � 1)h has to be

principal (because, the Gorenstein-ness of h is known by Taylor-Wiles [W]). Since

Hecke algebras tend to be Gorenstein (actually even a local complete intersection),

expecting h

+

would be Gorenstein may not be so outrageous. The unit x may not be

a square in h. Since p is odd, replacing O by its quadratic extension if necessary, we

may assume that x is a square in h and get the conclusion of the conjecture over O.

Related to the above reason, let us add one more remark. We have possibly 4

choices of ": "; "

�1

;�";�"

�1

. This yields two choices of h"i: h"i and h"i

�1

. Note

that h"i

�1

� 1 = h"i

�1

(1 � h"i). Since h"i

�1

is a square in �, if we add

p

�1 to O if

necessary, the statement of the conjecture does not depend on the choice of ".

Out of this conjecture, we can prove Conjecture 3.8 of [DHI], and some other

supporting evidences for this conjecture and the above are discussed in [DHI].

3. Examples.

We compute the odd primes p appearing in N ("

��1

� 1) for even positive � in some

special cases. We take a real quadratic �eld F = Q(

p

d) for a square-free d. We

assume that ""

�

= �1, which is equivalent to jN ("

��1

� 1)j = jTr

F=Q

("

��1

)j. Then

for each given odd prime p of F , " generates a subgroup h"i

p

of (r=p)

�

. Let e = jh"i

p

j.

Then pj"

e

� 1. If p does not split, then pj("

�

)

e

� 1. If e is odd, ("

�

)

e

(")

e

= �1. Thus

pj("

�

)

e

� 1 = ("

�

)

e

(1 + "

e

). This shows pj2 = 1� "

e

+ 1+ "

e

. This contradicts to the

fact that p is odd. Thus p must split in F . We consider the set S of all odd primes p

dividing "

e

�1 for some odd integer e. For each p 2 S, we write e(p) for the minimum

positive e such that pj"

e

� 1. We choose " so that j"j < 1 and j"

�

j > 1. Thus

jN

F=Q

("

e

� 1)j = jTr

F=Q

("

e

)j �! 1 as e!1:

Since e(p) is the order of " in (r=p)

�

, the set of e such that "

e

� 1 mod p is an ideal

ofZgenerated by e(p). Let S

e

= fpje(p) = eg. Then

S =

G

e:odd

S

e

and S

e

is a �nite set.

Proposition 3.1. The set S is an in�nite set of split primes. The set S

1

is empty if

and only if the integer d is the square-free part of 2

2n

+1 for a positive integer n (this

implies that d � 1 mod 8 or d = 5). Let q be an odd prime. If q is outside

S

tje

S

t

,

then S

eq

j 6= ; for all j � 1 unless F

2

["] = F

4

and q = 3 and 3 - e. Any element in S

e

is prime to e.

Proof. Let �

e

=

"

e

�1

"�1

. Then jN

F=Q

(�

e

)j ! 1 as e!1. Suppose that S is a �nite

set. We write S = fp

1

; : : : ; p

r

g in which S

1

= fp

t+1

; : : : ; p

r

g. We choose an even

number e

0

so that (i) e

0

is prime to e

1

=

Q

r

i=1

e(p

i

), (ii) e = e

0

+ e

1

is prime to all

elements in S

1

and (iii) jN

F=Q

(�

e

)j > 1. Since �

e

� e mod p for every p 2 S

1

, any

p 2 S

1

does not divide �

e

. Let Q be a factor of 2. If " � 1 mod Q, �

e

� e mod
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Q; thus, �

e

is prime to Q. If " � � mod Q for a cubic root � 2 F

4

, then we take

e so that 3 - e. Then �

e

is prime to Q. By (iii), there is a prime p dividing �

e

. As

we have already seen, p is a split prime. Since e(p) is a factor of e, it is prime to

e(p

i

) for 1 � i � r. We have already seen that any element in S

1

does not divide

�

e

. Thus p is not in S, which is a contradiction. We may assume j"j < 1 and " < 0.

Thus jN

F=Q

("

e

� 1)j = jTr

F=Q

("

e

)j = f("

e

) for f(x) = x �

1

x

. We see for x 2 [�1; 0)

that f(x) = 1 () x =

1�

p

5

2

and that f(x) = 2

n

() x = 2

n�1

�

p

2

2n�2

+ 1.

Thus d 6= 5 is the unique square-free factor of 2

2n�2

+ 1 if and only if S

1

= ;. Since

f(x) is increasing on [�1; 0), if "

e

<

1�

p

5

2

, then 0 < f("

e

) < 1, which is impossible

since f("

e

) is a positive integer. If d 6= 5, then

1�

p

5

2

< "

e

< 0 and f("

e

) > 1 for

any positive e. We now consider g

n

(x) =

f(x

n

)

f(x)

=

P

n�1

m=0

x

n�1�2m

. Since f(x) is

increasing, g

n

(x) = 1 () n = 1, and g

n

(x) > 1 if n > 1. Let q be an odd prime.

Then for each p 2 S

qn

, N

F=Q

p � 1 mod q. Thus p 2 S

qn

is prime to q. In particular,

any element of S

e

is prime to e. On the other hand, g

q

("

em

) � q mod p for all

p 2 S

t

with tje. Suppose that q is outside

S

tje

S

t

. If pjg

q

("

eq

n

) and p 2 S

eq

j
with

j > 0, then q � g

q

("

eq

n

) � 0 mod p, which contradicts to the fact that p 2 S

eq

j is

prime to eq

j

. This shows that any prime factor of g

q

("

eq

n

) outside

S

tje

S

t

is outside

S

n

j=0

S

eq

j
. Therefore every odd factor of g

q

("

eq

n

) outside

S

tje

S

t

gives an element of

S

eq

n+1 . Thus to prove S

eq

n+1 6= ;, we need to show that g

q

("

eq

n

) is odd. Let Q be a

factor of 2. If " � 1 mod Q, g

n

("

e

) � n mod Q. If " � � mod Q for a cubic root of

unity in F

4

, g

n

("

3e

) � n mod Q and g

n

("

e

) 6� 0 mod Q if 3 - en. Thus if F

2

["] = F

2

,

then S

eq

j 6= ; for all j � 1 and all odd prime q outside

S

tje

S

t

. If F

2

["] = F

4

, then

for q outside

S

tje

S

t

, S

eq

j 6= ; for all j � 1 and all odd prime q provided that either

3je or q 6= 3.

The following result is supplied by Y. Maeda, to whom the author is grateful.

Proposition 3.2 (Y. Maeda). Let " > 1 be a quadratic unit in R satisfying "

2

�

2

n

" � 1 = 0 for a non-negative integer n. If n 6= 2, then " is a fundamental unit in

K = Q["]. Thus, we have

(1) If n 62 f0; 2g(() K 6= Q(

p

5)), for odd e > 2,

S

tje

S

t

6= ; for K;

(2) If K = Q[

p

5], then

S

tje

S

t

6= ; () e � 5 for odd e.

Proof. Let K = Q["] be a real quadratic �eld for a unit " as above. For an odd

integer `, we have Tr("

`

) = �N ("

`

� 1), and hence

(�) Tr("

`

)

�

�

Tr("

k

) if `

�

�

k and `k is odd.

Let "

0

be a fundamental unit of K so that " = "

`

0

for " as in the proposition. Then

"

0

> 1. Since N (") = �1, ` is odd, and N ("

0

) = �1. By (�), we �nd Tr("

0

) = 2

k

with

0 � k � n, and hence "

0

=

2

k

+

p

2

2k

+4

2

. We divide our argument into the following

three cases:

(i) k � 2, (ii) k = 1 and (iii) k = 0.

(i) We �rst suppose k � 2 and write ` = 2s + 1. We have "

0

= 2

�

+

p

D for
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� = k � 1 and D = 2

2�

+ 1. From the binomial theorem, we get

2

n

= Tr("

`

0

) = 2

k

s

X

r=0

�

`

2r

�

2

�(`�2r�1)

D

r

:

From this, we conclude

(��) 2

n�k

=

P

s

r=0

�

`

2r

�

2

�(`�2r�1)

D

r

.

Since D � 1 mod 2 (k � 2), we get from (��)

2

n�k

�

�

`

2s

�

D

s

� 1 mod 2:

This shows n = k, and the assertion follows.

(ii) Suppose k = 1 (() � = 0). Then D = 2, and the formula (��) is still valid.

Therefore,

2

n�k

=

s

X

r=0

�

`

2r

�

2

r

� 1 mod 2;

and the conclusion again holds.

(iii) Suppose k = 0. Then "

0

=

1+

p

5

2

. Since we have Tr("

3

0

) = 2

2

= Tr(2 +

p

5),

we need to show

Tr("

`

0

) = 2

n

() ` = 1 or 3:

We are going to show that

` � 5) Tr("

`

0

) is not a 2{power.

By (�), we may assume that ` is either a prime or equal to 9. By computation, Tr("

9

0

)

is not a 2{power. So we may assume that ` � 5 is a prime. Then by Proposition 3.1,

S

`

6= ; because S

1

= ;. This shows the result.

There are in�nitely many d such that S

1

= ;. We list some of them:

d = 5; 17; 41; 257; 4097 = 17 � 241; 16385 = 5 � 29 � 113; 65537;

where 41 � 5

2

= 2

10

+ 1. We give a way of computing S

e

. Since

f("

e

) = j("

e

� 1)(�"

�e

� 1)j = jTr

F=Q

("

e

)j;

writing a

e

= Tr

F=Q

("

e

) and "

2

� a"� 1 = 0 for the equation of ", a

e

satis�es a

0

= 2,

a

1

= a and a

n

= aa

n�1

+ a

n�2

. Thus fa

n

g is a Fibonacci type sequence. Using the

above recurrence relation, it is easy to compute. We list here some:

Case d = 5: S

1

= S

3

= ;; S

5

= f11g; S

7

= f29g; S

9

= f19g; S

11

= f199g;

S

13

= f521g;S

15

= f31g; S

17

= f3571g; S

19

= f9349g;

S

21

= f211g; S

23

= f139; 461g;

Case d = 13: S

1

= f3g; S

3

= ;; S

5

= f131g; S

7

= f1429g; S

9

= f433g;

S

11

= f23; 7393g;

Case d = 17: S

1

= ;; S

3

= f67g; S

5

= f4421g; S

7

= f127; 2297g;

Case d = 29: S

1

= f5g; S

3

= f7g; S

5

= f151g; S

7

= f20357g;

Case d = 37: S

1

= f3g; S

3

= f7g; S

5

= f11; 1951g;

Case d = 41: S

1

= ;; S

3

= f4099g;

Case d = 61: S

1

= f3; 13g; S

3

= f127g;

Case d = 257: S

1

= ;; S

3

= f13; 79g:
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All the above primes show up in the relative discriminantD

+

= D(Z(�

�

)=Z(�

�

)

+

) by

Theorem 1, and we refer to the table in [DHI] Section 2.2 for examples of the numerical

value of D

+

. Here Z[�

�

] is the order of Q(�

�

) generated over Zby �

�

(T (n)) for all

n, and Z[�

�

]

+

= Q(�

�

)

+

\Z[�

�

].

In the above computation, we may change " by �". Thus we may assume that

a = Tr

F=Q

(") > 0. Then if d 6= 5, we see that a > 1 and a

n

= aa

n�1

+ a

n�2

. Since

a

0

= 2 and a

1

= a, a

n

> 0 for all n, and thus a

n

> aa

n�1

. Thus by induction on n,

we see that a

n

> a

n

for n > 1. On the other hand, choosing " > 1, we see that if n is

odd,

a

n

� a

n

= "

n

� "

�n

< "

n

<

�

a+

p

a

2

+ 4

2

�

n

< a

n

�

1 +

p

1 + (2=a)

2

2

�

n

:
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