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ABSTRACT. Let X4 and X, be projective quadrics corresponding to qua-
dratic forms ¢ and ® over a field F. If X, is isomorphic to X in the
category of Chow motives, we say that ¢ and ¢ are motivic isomorphic and
write ¢ ~ ¢». We show that in the case of odd-dimensional forms the condi-
tion ¢ ~ 1) is equivalent to the similarity of ¢ and . After this, we discuss
the case of even-dimensional forms. In particular, we construct examples of
generalized Albert forms ¢; and ¢ such that ¢; ~ g2 and ¢, # ¢o.
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Let F be a field of characteristic # 2 and ¢ be a quadratic form of dimension
> 3 over F. By X4 we denote the projective variety given by the equation ¢ = 0. It
is well known that the variety X, determines the form ¢ uniquely up to similarity.
More precisely, the condition X4 ~ X, holds if and only if ¢ ~ ki for a suitable
element k € F*. Now, let M : Vg — C be an arbitrary functor from the category Vg
of smooth projective F-varieties to a category C. Is it possible to say anything specific
about ¢ and ¢ if we know that M(Xy4) ~ M(Xy)? Clearly, the answer depends on
the category C and the functor M. In the present paper, we mainly consider the
example of the category C = MVp of Chow motives. In this particular case, we
set M(X) = M(X), where M (X) denotes the motive of X in the category of Chow
motives. If M (Xy) ~ M(Xy), we say that ¢ is motivic equivalent to ¢ (and we write
¢~ ).

Recently, Alexander Vishik has proved that ¢ ~ ¢ iff dim¢ = dime and
iw(¢r) = iw(¢r) for all extensions L/F (see [27]). His proof uses deep results
concerning the Voevodsky motivic category. In [10], Nikita Karpenko found a new,
more elementary, proof that, in contrast to Vishik’s proof, deals only with Chow
motives. In §2, we give an elementary proof of Vishik’s theorem in the case of odd-
dimensional forms. In fact, we prove a more precise result. Namely, we show that, in
the case of odd-dimensional forms, the condition ¢ ~ ¢ is equivalent to the similarity
of the forms ¢ and ¢ (here we do not use any results of the paper of Vishik). In other
words, we prove that the condition M (Xy) ~ M(Xy) is equivalent to the condition
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342 OLEG T. IZHBOLDIN

X4 ~ Xy for the odd-dimensional quadrics X4 and Xy. In the proof we use some
results of §1 concerning low dimensional forms belonging to W (F(¢)/F).

In §3, we show that the condition ¢ ~ 1 is equivalent to the condition ¢ ~ v for
all forms of dimension < 7. Besides, we discuss the case of even-dimensional forms
of dimension > 8. This case is much more complicated. For instance, for all n > 3,
there exists an example of anisotropic 2"-dimensional forms ¢ and ¢ such that ¢ ~ 1
but ¢ £ 1. In §4, for any n and m such that 0 < m < n — 3, we construct generalized
Albert forms ¢; and ¢o such that dim(q1)an = dim(ge)an = 2(2™ — 2™), ¢ < g but
q1 #* q2. This example gives a negative answer to a question stated by T. Y. Lam
[18].

Some words about terminology and notation. Mainly we use the same termi-
nology and notation as in the book of T. Y. Lam [17], W. Scharlau [23], and the
fundamental papers of M. Knebusch [11, 12]. However, there exist several differences.
We use the notation (a1, ...,a,)) for the Pfister form (1,—a;) ® --- ® (1, —a,) (in
[17] and [23], (a1,...,an) = (1,a1)® - ®(1,a,)). We write ¢ ~ 1 if there exists an
element k € F such that k¢ ~ ¢ (i.e., if ¢ is similar to ). We say that ¢ and ¢ are
half-neighbors if dim ¢ = dim ¢ and there exist s,r € F such that 7 = s¢ L r¢ is a

Pfister form (see, e.g., [6]). In this case, we will write ¢ w ) and we say that ¢ and 1
are half-neighbors of 7. Our definition differs from the original definition of Knebusch
[12]. However, we prefer to use the new definition since we want to regard any pair ¢,
) of 2"-dimensional similar forms as half-neighbors. We denote by P, (F) the set of
all n-fold Pfister forms. The set of all forms similar to n-fold Pfister forms is denoted
by GP,(F). We also use the notation P, (F) = U, P,(F) and GP.(F) = U,GP,(F).
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FMRX CT-97-0107. Also, the author would like to thank the Universitdit Bielefeld,
and the Université de Franche-Comté for their hospitality and support. The author
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1. LOW DIMENSIONAL FORMS IN W (F(¢)/F)

In this section, we give slight generalizations of some results of M. Knebusch.
In fact, we modify some proofs of [12] by using Hoffmann’s theorem [5] 2. We recall
that Hoffmann’s theorem asserts that for a pair of anisotropic quadratic forms ¢ and
¥ satisfying the condition dim ¢ < 2™ < dim ¢, the form ¢ remains anisotropic over

F(y).

PROPOSITION 1.1. Let ¢ and v be anisotropic quadratic forms over F such that

dim ¢ > dim ). Suppose that the form w Def ¢ L o belongs to the group W(F(¢)/F).

Then

(1) if w is isotropic, then m is hyperbolic,
(2) if m is anisotropic, then w is similar to a Pfister form.

Proof. (1) Assume that 7 is isotropic but not hyperbolic. This means that 0 <
dim 74, < dim 7. In the Witt ring W (F'), we have m — ¢ = 1. Therefore,

dim(7apn L —@)an = dim ¢ < dim ¢ < dim 7,4, + dim ¢ = dim(74, L —9).

2see also [6, Prop. 2.4] and [3, Th. 1.6]
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MoTivic EQUIVALENCE OF QUADRATIC FORMS 343

Consequently, the form w,, L —¢ is isotropic. Hence the set Dp(m.,) N Dp(¢) is
nonempty.

Since mp(g) is hyperbolic, it follows that ((7)an)F(e) is also hyperbolic. Since the
set D (man) N Dp(¢) is nonempty, the Cassels—Pfister subform theorem implies that
¢ C man- Therefore,

dim(mapn L —@)an = dim mgy, — dim ¢ < dim 7 — dim ¢ = dim ).
This contradicts to the relation dim(7,, L —¢@)a., = dim ¢ proved above.

(2) Assume that 7 is not isotropic. To prove that 7 is similar to a Pfister form,
it suffices to prove that mp(,) is hyperbolic (see [12]).

Let F = F(n), 7 = Ty ¢ = o5, and Y = Y. Since dim ) < %dim m, Hoffmann’s
theorem implies that the form ) = Yp(r) is anisotropic. If we assume that b is
anisotropic, then we can apply item (1) of Proposition 1.1 to the F-forms qz, @Z, and
7. Then we conclude that 7 is hyperbolic. Now, we assume that ¢~5 = ¢r(x) 18 isotropic.

Since 7p(g) is hyperbolic and ¢p(,) is isotropic, it follows that mp(,) is hyperbolic.
Thus, the form 7p (. is hyperbolic in any case and the proposition is proved. O

CorOLLARY 1.2. (Fitzgerald, [3, Th. 1.6]). Let ¢ be an F-form, and let m €
W(F(¢)/F) be an anisotropic nonzero form of dimension < 2dim¢. Then m €
GP,.(F) and one of the following conditions holds:

e ¢ is a Pfister neighbor of ,

e ¢ is a half-neighbor of ,

Proof. Since m is anisotropic and 7p(4) is hyperbolic, the form ¢ is similar to a
subform of 7. Multiplying ¢ by a scalar, we may assume that ¢ C w. Let ¢ be
the complement of ¢ in w. Then all hypotheses of Proposition 1.1 hold. Since 7
is anisotropic, Proposition 1.1 implies 7 € GP.(F). The rest of the proof is an
immediate consequence of the definitions of Pfister neighbors and half-neighbors, and
the Cassels-Pfister subform theorem. O

COROLLARY 1.3. (cf. [12, Th. 8.9]). Let ¢ and n be anisotropic forms such that
dim ¢ > dimn and (¢r(p))an =~ (MF(g))an- Then either ¢ ~n or ¢ L —n € GP.(F).

Proof. Let » = —pand w1 = ¢ L —n = ¢ L 9. All the hypotheses of Proposition 1.1
hold. In the case where 7 is isotropic, Proposition 1.1 implies that 7 is hyperbolic.
Then ¢ = n in the Witt ring. Since ¢ and 7 are anisotropic, we have ¢ ~ n. If 7 is
anisotropic, Proposition 1.1 implies that ¢ 1L —n = 7 € GP.(F). O

2. MOTIVIC EQUIVALENCE OF ODD-DIMENSIONAL FORMS

DEFINITION 2.1. To any field F, let be assigned an equivalence relation ~p on the
set of all quadratic forms over F such that the following conditions hold:
(i) If ¢ and t are forms over F such that ¢ ~ ), then ¢ ~p 1.
(ii) If ¢ and 1 are forms over F such that ¢ ~p 1, then, for any extension E/F,
we have ¢E LE wE
(iii) If ¢ and 1) are forms over a field F such that ¢ ~p ¢, then dim ¢ = dim ¢ and
iw (¢) = iw (¥).
A collection of equivalence relations ~p satisfying properties (i)—(iii) will be
called a good equivalence relation on quadratic forms (over all fields).
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Below we will drop the index F at ~p and write simply ~.

DEFINITION 2.2. Let ¢ and ¢ be F-forms. We say that the quadratic form ¢ is
equivalent to the quadratic form 1 in the sense of Vishik if dim ¢ = dim and for
any field extension E/F we have iy (¢r) = iw(1r). In this case, we write ¢ ~ ).

The following lemma is obvious.

LEMMA 2.3. The equivalence relation ~ is a minimal good equivalence relation. More
precisely,

o The equivalence relation ~ is a good relation.

e For any good relation ~, the condition ¢ ~ 1 implies ¢ ~ 1). O

EXAMPLE 2.4. Let X be a smooth variety over F. By M(X) we denote the motive
of X in the category of Chow motives. Let us define the equivalence ~ of quadratic
forms ¢ and i as follows:

pRY if  M(Xy) = M(Xy).
Then < is a good equivalence relation.

Proof. Clearly, conditions (i) and (ii) in Definition 2.1 are fulfilled. We need to verify
only condition (iii). Let X = X, and let F' denote the algebraic closure of F. By [9,
Item (2.2) and Prop. 2.6] 3

e dim ¢ coincides with the largest integer m such that CH,,_»(X) # 0,

e the integer iw (¢) coincides with the largest integer m satisfying the conditions

m < £ dim ¢ and coker(CHp,—1(X) = CHp,—1 (X)) = 0.

Thus, it suffices to show that the groups coker(CH?(X) — CHY(X 7)) and CHY(X)
depend only on the motive of X. This can easily be proved if we observe that the
functor CHY is representable in the category of Chow motives. Namely, CH’ (X) =
Hompmy, (M (ptr)(j), M (X)), where M (ptr) is the motive of ptr = Spec(F') and the
object M (ptr)(4) is defined, e.g., in [24]. Thus, CH?(X) depends only on the motive
of X. Now, we consider the base change functor ® : MVp — MVjz. Since the
homomorphism CHY(X) — CHY(X7) coincides with the homomorphism

@ : Hom(M (ptr) (7), M (X)) — Hom(®(M (pt) (), (M (X)),

it, follows that the group coker(CH? (X) — CH? (X)) also depends only on M (X). O

THEOREM 2.5. Let ~ be a good equivalence relation. Let ¢ and v be odd-dimensional
quadratic forms over a field. Then the condition ¢ ~ 1) is equivalent to the condition

¢~
Proof. We start, the proof with three lemmas

LEMMA 2.6. Let ¢ and ¢ be odd-dimensional anisotropic forms of dimension > 3
such that dim ¢ = dimv and (dr(g))an = (Vr(¢))an- Then ¢ ~1p.

Proof. If ¢ # 1, Corollary 1.3 shows that ¢ L —¢ € GP,(F). Since dim ¢ = dim ¢,
we conclude that dim ) is a power of 2. Since dim > 3, we see that dim is even.
We get a contradiction to the assumption of the lemma. O

3see also [22, Prop. 2] and [25].
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The following lemma is obvious.

LEMMA 2.7. Let ¢ and ¢ be odd-dimensional forms such that dim ¢ = dimvy and
det ¢ = det . Then the condition ) ~ ¢ is equivalent to the condition ¢ ~ ¢. O

LEMMA 2.8. Let ¢ and v be odd-dimensional forms such that dim ¢, = dim ¥4, > 3.
Suppose that ¢p(,.) ~ VF(4.,)- Then ¢ ~ 1.

Proof. Replacing first ¢ and ¢ by ¢4, and v, respectively, we may assume that ¢
and 1 are anisotropic. Replacing then ¢ by Flwgb and ¢ by mw, we may assume
that det ¢ = 1 = det . Since ¢p(4) ~ Yp(g), Lemma 2.7 implies that ¢p(4) >~ Vr(y)-
By Lemma 2.6, we have ¢ ~ . O

Now, we return to the proof of Theorem 2.5. We use induction on n = dim ¢,, =
dim t,,. The case where n = 1 is obvious. So we may assume that n > 3. Since
é ~ 1), we have OF(pan) ~ YF(p.,)- By the induction assumption, we have ¢p(y,,.) ~
YF(4a,)- Now, Lemma 2.8 implies that ¢ ~ 1. O

COROLLARY 2.9. Let ¢ and 1) be odd-dimensional quadratic forms over a field. Then

pr A 9Ny iff ¢~
3. EVEN-DIMENSIONAL FORMS

In this section, we study the relation ~ in the case of even-dimensional forms. If
quadratic forms ¢ and v of dimension > 2 satisfy the condition ¢ ~ v, then Pr(y)
and ¢ (4) are isotropic (because ¢r(4) and Py are isotropic).

PROPOSITION 3.1. Let ¢ and ¢ be quadratic forms of dimension < 8. Then
p~ iff d~Y iff d~ .

Proof. In view of Corollary 2.9, we may assume that d = dim¢ = dim is even.
Thus, it suffices to consider the cases d = 2, 4, and 6. The implications ¢ ~ ¢ =
¢ ~ 1p = ¢ ~ 1 are obvious. Therefore, we must verify only that ¢ ~ i implies
¢ ~ 1. Since ¢ ~ 1, the forms dr(y) and Yp(g) are isotropic. In the case d = 2, this
obviously means that ¢ ~ . If d = 4, then ¢ ~ ¢ by Wadsworth’s theorem [28].
Thus, we may assume that d = 6. We need the following assertion concerning the
isotropy of 6-dimensional forms.

LEMMA 3.2. (see [4, 13, 16, 21]). Let ¢ and v be anisotropic 6-dimensional forms
such that ¢p(y) is isotropic. Then either ¢ ~ 1) or ¢ is a 3-fold Pfister neighbor. [

In view of this lemma, we may assume that ¢ is a Pfister neighbor of a 3-fold
Pfister form 7. Since ¢ p(4) is isotropic, it follows that mp(4) is isotropic. Hence ¢ is
a Pfister neighbor of 7. Therefore, ¢ ~ (7 — {(d+d))an and ¢ ~ (7 L — {d+ ) an-
Thus, it suffices to verify that di¢ = dr1p. This is a consequence of the following
chain of equivalent conditions

a=d+¢ < iw(dp(ya) =3 € iwWpm) =3 a=dyyp
The proof is complete. |

Now, we begin to study even-dimensional forms of dimension > 8.

LEMMA 3.3. (see, e.g., [27]). Let ¢ and ) be half-neighbors. Then ¢ ~ 1.
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For the reader’s convenience, we cite the proof (which, in fact, is trivial).

Proof. The condition ¢ o 1 means that dim ¢ = dim, and there exist s,r € F*
such that s¢ L r¢p = m € P.(F). Let L/F be a field extension. If both ¢7, and v,
are anisotropic, then iy (¢r,) = 0 = iw (¢r). If at least one of the forms ¢, or vy,
is isotropic, then 7y, is also isotropic. Taking into account the condition 7 € Py (F),
we conclude that 7y, is hyperbolic. Therefore, s¢y, = —riy in the Witt ring. Since
dim ¢ = dim ¢, we have s¢r, ~ —rir,. Hence iw (ér,) = iw (¢r1,)- O

The following lemma shows that there exist examples of nonsimilar half-
neighbors.

LEMMA 3.4. (see [6], [8]). For any n > 3, there exists a field F' and 2™-dimensional
half-neighbors ¢ and 1 such that ¢ + 1.

As a consequence of this result, we see that, for any n > 3, there exists a pair of
2" dimensional forms ¢ and ¢ such that ¢ ~ ¢» and ¢ 4 . In particular, Proposition
3.1 cannot always be generalized for 8-dimensional forms.

Nevertheless, for 8-dimensional forms with trivial determinant, we have the fol-
lowing

PROPOSITION 3.5. Let ¢ and ¢ be 8-dimensional forms with trivial determinant.
Then the following conditions are equivalent:

(1) ¢~ ;

(2) ¢r(y) and p(y) are isotropic;

(3) ¢ and ¢ are half-neighbors.

Proof. The implications (3)=-(1)=-(2) are obvious. The implication (2)=-(3) follows
immediately from the results of A. Laghribi [16], [15], [14]. O

4. GENERALIZED ALBERT FORMS

In this section, we construct examples of nonsimilar ~-equivalent forms based on
the so-called generalized Albert forms.

DEFINITION 4.1. A generalized Albert form (or n-Albert form) is a form of type
qg=m" L —7', where ' and 7' are pure parts of n-fold Pfister forms = and .

REMARK 4.2. e Any n-Albert form has dimension 2(2" — 1).

e Suppose that ¢ is an n-Albert form. By [2, Proof of Prop. 4.4], the anisotropic
part qq, looks like gon = {a1,-..,am)) q', where ¢’ is an anisotropic (n — m)-
Albert form. In particular, dim ¢,,, has dimension 2™-2(2"~"™—1) = 2(2" —2™),
where 0 < m < n. We say that m is the linkage number of the n-Albert from gq.

e Every 1-Albert form has the form ¢ = ((a))’ L — (b)) = (—a,b). Hence any
2-dimensional form is a 1-Albert form.

e Every 2-Albert form has the form

q = (a1,a2)’ L — (b1,b2)) = (—a1, —az,araz,bi, by, —bybs).

Thus, a 2-Albert form is the “classical” 6-dimensional Albert form.
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Our interest in n-Albert forms is motivated by the following observation of A.
Vishik (see [27]): if 1 and gz are n-Albert forms such that ¢ = ¢z (mod I"*1(F)),
then q1 ~ q2.-

The following question is due to Lam [18, Item (6.6), Page 28].

QUESTION 4.3. Let q; and go be n-Albert forms such that ¢ = q» (mod It (F)).
Is it always true that q1 ~ g2 ?

The answer to this question is obviously positive in the case n = 1. In the case
n = 2, the answer is also positive. This is a version of a Jacobson’s theorem (see, e.g.,
[19, Prop. 2.4]). In this section, we construct a counterexample to this question for
any n > 3.

THEOREM 4.4. There exists a field F' and anisotropic 3-Albert forms q1 and q> over
F such that ¢ = go (mod I'*(F)) and g1 # q>. In particular, the answer to Question
4.8 is negative in the case n = 3.

Proof. We need the following theorem of Hoffmann.

THEOREM 4.5. (see [6, Th. 4.3]). There exists a field k and anisotropic 8-dimensional
quadratic forms over k,

¢1 = s1{a1,b1)) L —k1 {1, d),

¢2 = 52 {(a2,02)) L —k2 (2, d2))
such that ¢y = ¢o (mod I*(k)), ind C'(¢1) = ind C(¢a) = 4 and ¢; # ¢o. O
REMARK 4.6. In fact, the formulation of Theorem 4.3 in [6] differs from the one
presented above. In his theorem, Hoffmann has constructed a pair ¢, € I*(k) of

8-dimension quadratic forms such that ¢ # ¢ and ¢ he 1. Clearly, changing 1 by
a scalar, we may always assume that ¢ = 1 (mod I'*(k)). To obtain Theorem 4.5,
it suffices to show that we may always take ¢ and 4 in the form of direct sums of
forms belonging to GP;(k). In the proof of [6, Theorem 4.3] it is so for the form ¢
(the explicit formula for ¢ in [6] shows that ¢ contains a subform a (1, z,y,zy)). The
required statement concerning v is obvious since iw (V=) = iw (¢p(y=z)) > 2-

Now we return to the proof of Theorem 4.4. Under the conditions of this theorem,
we obviously have (a1,b1) 4+ (c1,d1) = ¢(¢1) = c(d2) = (az,b2) + (2, d2). Hence there
exists an Albert form p (of dimension 6) such that ¢(¢1) = ¢(d2) = c(p). Hence
ind C(p) = ind C(#1) = 4. By an Albert’s theorem, p is anisotropic (see [1, Th. 3] or
[26, Th. 3]). Since (a;,b;) + (¢, d;) = c(p) for i = 1,2, there exist r; and r2 such that

(a1, 01)" L = {er,di)’ = rip,
(az,b2))" L = ez, do))’ = rap.
In the Witt ring W (k(t)), we have
tp — di = tri({ai, bi)) — (ei, di)) — (si (@i, bi)) — ki {ci, di))
=tri({a;, bi)) — tris; (a;, b)) — tri((ci, di)) — trik; {ci, i)
= tri((ai, bi, trisi) — (ci, di, trik:)).
We set ¢; = (a;, b;, trisi))' 1 —{ci, d;y triki»' and F' = k(t). Since tp—¢; = tr;q; in the
Witt ring W (F') and dim(tp L —¢;) = 6+ 8 = 14 = dim ¢;, we have tp L —¢; ~ tr;q;.
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Since p and ¢; are anisotropic, ¢; is also anisotropic by Springer’s theorem (see [17,
Ch. 6, Th. 1.4] or [23, Ch. 6, Cor. 2.6]).
Now, we need the following obvious assertion.

LEMMA 4.7. (see, e.g., [6, Lemma 3.1]). Let p1, 2, v1,v2 be anisotropic quadratic
forms over k. Suppose that the form pi L tvy is similar to us L tvs over the field of
rational functions k(t). Then

o cither puy ~ po and vy ~ v,
® or g ~ Vs and vy ~ 3. O

Since ¢ % ¢2 and dimp < dim¢; = dim ¢, Lemma 4.7 shows that (tp L
—¢1) £ (tp L —¢o). Hence q; # go. On the other hand, the conditions q;,qs € I?(F)
and ¢1 = ¢» (mod I*(F)) imply that

a=triqr=(p L —¢1) = (tp L —ps) =tragy = g2 (mod I*(F)).

Thus, we have proved that ¢; and ¢y are anisotropic 3-Albert forms such that g¢; = ¢
(mod I*(F)) and q; # ¢2. The theorem is proved. O

COROLLARY 4.8. For any n > 3, there ezists a field E and n-Albert forms v, and
over E such that v, = 72 (mod I (E)) and 1 # v2. In other words, the answer
to Question 4.3 is negative for any n > 3.

Proof. Let ¢1, g2 and F be as in Theorem 4.4. We write ¢; and ¢ in the form ¢; =
m L =7, ¢ =7 L —71 with my, 72, 71,72 € P3(F) and put E = F(x1,...,Zn—3)
and

= (m (@1, 2n3) L (11 (21, ..o, 2as)),
Y2 = (77'2 «1'1, e ,CEn_3>>)I 1 _(T2 «3171, e ,iL”n_g»)l.

Obviously, v; = ¢; {1, - . -, Zn—3)) in the Witt ring W (E). Since ¢; = ¢» (mod I'*(F)),
we have 71 = 72 (mod I""(E)). Since q1 # ¢2, we have q1 (%1,...,Zn_3) #
g2 (z1,-..,2n_3) (see, e.g., Lemma 4.7). Hence vy, # 7. O

We have constructed a pair of n-Albert forms 4, and 7, such that y; ~ 4 and
Y1 # 2. Obviously, in our example, we have dim(7;)a, = 2" 2 -14 =27"3(23 - 2) =
2(2" — 273). In other words, both n-Albert forms ; and + are (n — 3)-linked. We
can generalize this example as follows.

THEOREM 4.9. For any n > 3 and m such that 0 < m < n — 3, there exists a field F
and n-Albert forms q and qz over F such that ¢ = g (mod I"TY(F)), q1 # q2, and
dim(q1)an = dim(g2)an = 2(2™ — 2™).

Here we only outline the proof of the theorem.

Step 1. Tt suffices to prove this theorem only in the case m = 0 (this means that
q1 and ¢o are anisotropic). After this, the general case can be obtained in the same
way as Corollary 4.8.

Step 2. Consider a field E and n-Albert forms v; and 7, as in Corollary 4.8.
Since v; = ¥ (mod I"t!(E)), there exist my,...,mn € Pny1(E) for some integer N
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such that y3 — 72 = Zf\il ;. We consider the quadratic forms

ql = <<1'17---7xn>>, 1 - <<yla"'ayn»,7
Go= (21, zn) L —((t1,...,ta),
T :J_ﬁil «Ui,l, ey ui,n+1>> .

over the field of rational functions
E=E(@1,...,%n, Y1, 1 Yns 215> Znstis ooy bny Ur 1, o, UN 1)

Obviously there exists a place § : E — E such that §; Y1, G2 — 72, and
(uwiny. - sUimyr)) — m for all i = 1,...,N. Since 74 — 12 = Zi\il 7;, the form
5.(G1 L —¢> L —7) is hyperbolic.

Step 3. We define the field F' as a “generic” extension F/ E such that (G,)r —
(G2)F = Tr. More precisely, we set F = Ej,, where Ey, Ey,..., Ej is the generic
splitting tower for the E-form §; L —g, L —7. We claim that the F-forms ¢, Def (G1)F

and ¢ Dot (G1)F satisfy the hypotheses of Theorem 4.9. Since ¢; — ¢» = 75, we have
q1 = ¢2 (mod I"T(F)). Thus, it suffices to verify that ¢ and go are anisotropic and
q * Q.

Step 4. Using properties of generic splitting fields (see [23, Ch. 4, Cor. 6.10] or
[11, Th. 5.1]), we can extend § : E — Etoaplace s : F — E. Obviously, s.(q1) =1
and s.(g2) = 2. Therefore, the condition 7, # ~2 implies g1 # ¢o.

Step 5. To prove that ¢; and ¢o are anisotropic, it suffices to construct a field
extension K/E with the same key property as F (i.e., (§i)x — (G2)x = 7x) and
such that () and (¢2)x are anisotropic. Since F/E is a “generic” extension,
we necessarily get that ¢¢ = (¢1)r and ¢ = (¢2)F are anisotropic. The following
extension K/ F has the required properties:

KZE( ﬂ,..., w—n, 27..., yl,,/ul71,...,,/uN71).
zZ1 Zn t1 tn

The “sketch” of the proof is complete. In fact, Steps 4 and 5 are the most difficult
points. We refer the reader to the paper [7, Proof of Lemma 2.2], where similar
arguments (as in Step 5) are presented with complete proofs.

COROLLARY 4.10. For any m and n such that 0 < m < n — 3, there exists a field
F and anisotropic 2(2"™ — 2™)-dimensional forms q1 and q» over F such that ¢ ~ ¢»
and q1 # qo.

5. OPEN QUESTIONS

Obviously, Theorem 4.9 cannot be generalized to the cases m =n—1and m =n
because in these cases the anisotropic parts of n-Albert forms either belong to G P, (F')
or are zero. There is only one case, where we cannot say anything definite. Namely,
m = n — 2. For this reason, we propose the following modification of Lam’s Question
4.3.

CONJECTURE 5.1. Let 1 and g2 be Albert forms (i.e., 6-dimensional forms with triv-
ial discriminants). Let ¢1 = {(a1,...,ar) ¢1 and ¢o = ((b1,...,b;)) 2. Suppose that
¢1 = ¢2 (mod Ik+3(F)) Then ¢1 ~ ¢2.
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We note that, in this conjecture, we always may assume that a; = b; for i =
1,...,k. Indeed, putting m = ({a1,...,ax)), we obtain (¢2)r(r) = (¢1)r(x) = 0
(mod I**1(F(7))). By the Arason—Pfister theorem, we conclude that ¢, is hyperbolic
over the field F(r). Hence ¢5 has the form ¢» = wgh = (a1, ..., ar) ¢5. Comparing
dimensions, we get dimgq) = 6. Let us write ¢} in the form ¢5 = (c1,...,c6) and
set ¢ = (c1,...,¢5,¢5), where ¢ = —¢y ...c5. We have 7 (cg, —cf) = wgh — wqhy =
b2 — gy € IFT2(F) + I*(F)-I1*(F) = I*2(F). Since dim 7 (cg, —cj) = 2F -2 < 2k+2,
the Arason—Pfister theorem shows that 7 (cg, —c§) is hyperbolic. Hence mgh = wqh.
Therefore, ¢o = 7@y = {ai,...,ar)) ¢¥. Since ¢4 is an Albert form, we have proved,
that the conjecture reduces to the case where b; = a;. O

Another question concerning the ~-equivalence is motivated by the results of §3
and §4. First of all, in view of Lemma 3.4 and Corollary 4.10, we have the following
assertion.

PROPOSITION 5.2. Let d be an integer belonging to the set
{2"n > 3yu {22 —1}i>1,j > 3}

Then there exist anisotropic d-dimensional quadratic forms ¢ and ¢ over a suitable

field such that ¢ ~ 1) and ¢ £ 1. O
Here we state the following

PROBLEM 5.3. Describe the set VE of all integers d for which there exist anisotropic
d-dimensional quadratic forms ¢ and ¢ over a suitable field such that ¢ ~ ¢ and

¢ # 1.

We know almost the full answer to this problem. The results of the previous
sections imply that V& C {8,10,12,...,2i,...}. Besides, we can prove that any even
integer > 8 (except possibly 12) belongs to VE.
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