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Abstract. For an algebraic, normal-crossings degeneration over a

local �eld the local monodromy operator and its powers naturally

de�ne Galois equivariant classes in the `-adic (middle dimensional)

cohomology groups of some precise strata of the special �ber of a

normal-crossings model associated to the �ber product degeneration.

The paper addresses the question whether these classes are algebraic.

It is shown that the answer is positive for any degeneration whose

special �ber has (locally) at worst triple points singularities. These

algebraic cycles are responsible for and they explain geometrically the

presence of poles of local Euler L-factors at integers on the left of the

left-central point.
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Introduction

LetX be a proper and smooth variety over a local �eldK and let X be a regular

model of X de�ned over the ring of integers O

K

of K. When X is smooth over

O

K

, the Tate conjecture equates the `{adic Chow groups of algebraic cycles on

the geometric special �ber X

�

k

of X ! Spec(O

K

) with the Galois invariants in

H

2�

(X

�

K

;Q

`

(�)). One of the results proved in [2] (cf. Corollary 3.6) shows that

the Tate conjecture for smooth and proper varieties over �nite �elds together

with the monodromy{weight conjecture imply a generalization of the above

result in the case of semistable reduction. Namely, let } 2 Spec(O

K

) be a

1
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prime over which the special �ber X �Spec(k(})) = Y is a reduced divisor with

normal crossings in X (i.e. semistable �ber). Then, assuming the above two

conjectures, the `{adic groups of algebraic cycles modulo rational equivalence

on the r{fold intersections of components of Y (r � 1) are related with Galois

invariant classes on the Tate twists H

2��(r�1)

(X

�

K

;Q

`

(� � (r � 1))).

An interesting case is when one replaces X by X �

K

X , so that Galois in-

variant cycles may be identi�ed with Galois equivariant maps H

�

(X

�

K

;Q

`

) !

H

�

(X

�

K

;Q

`

(�)). Examples of such maps are the powers N

i

of the logarithm

of the local monodromy around }. The operators N

i

: H

�

(X

�

K

;Q

`

) !

H

�

(X

�

K

;Q

`

(�i)) determine classes [N

i

] 2 H

2d

((X � X)

�

K

;Q

`

(d � i)) (d =

dim X

�

K

) invariant under the decomposition group. In this paper we study in

detail the structure of [N

i

] when the special �ber Y of X has at worst triple

points as singularities. That is, we exhibit the corresponding algebraic cycles

on the (normal crossings) special �ber T = [

i

T

i

of a resolution Z of X �

O

K

X .

Denote by

~

N = 1
N +N 
 1 the monodromy on the product, and let F be

the geometric Frobenius. Then the classes [N

i

] naturally determine elements in

Ker(

~

N)\H

2d

((X�X)

�

K

;Q

`

(d�i))

F=1

. Assuming the monodromy{weight con-

jecture on the product (i.e. the monodromy �ltration L

�

on H

�

((X�X)

�

K

;Q

`

)

coincides{up to a shift{with the �ltration by the weights of the Frobenius

cf. [16]) and the semisimplicity of the action of the Frobenius on the inertia

invariants, the following identi�cations hold

(0.1) Ker(

~

N) \H

2d

((X �X)

�

K

;Q

`

(d� i))

F=1

'

�

(gr

L

2(d�i)

H

2d

(T;Q

`

))(d� i)

�

F=1

'

�

Ker(�

(2(i+1))

:H

2(d�i)

(

~

T

(2i+1)

;Q

`

)(d�i)!H

2(d�i)

(

~

T

(2(i+1))

;Q

`

)(d�i))

Image �

(2i+1)

�

F=1

:

Here

~

T

(j)

denotes the normalization of the j{fold intersection on the closed

�ber T . These isomorphisms show that the classes [N

i

] have representatives

in the cohomology groups of some precise strata of T . Moreover, the Tate

conjecture and the semisimplicity of the action of the Frobenius on the smooth

schemes

~

T

(j)

would imply that these classes are algebraic. We refer to x 1,

(1.6) for the description of the restriction maps � in (0.1).

To better understand the geometry related to the desingulatization process

Z ! X�

O

K

X , and to avoid at �rst, some technical complications connected to

the theory of the nearby cycles in mixed characteristic, we start by investigating

this problem in equal characteristic zero (i.e. for semistable degenerations over

a disk). There, one can take full advantage of many geometric results based

on the theory of the mixed Hodge structures. Under the assumption of the

monodromy{weight conjecture and using some techniques of [16], our results

generalize to mixed characteristic. The cycles we exhibit on

~

T

(2i+1)

explain

geometrically the presence of poles on speci�c local factors of the L{function
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related to the �ber product X � X . In fact, theorem 6.2 equates, under the

assumption of the semisimplicity of the action of the Frobenius F on the inertia

invariants H

�

((X � X)

�

K

;Q

`

)

I

, the rank of any of the groups in (0.1) with

ord

s=d�i

det(Id � FN(})

�s

jH

2d

((X � X)

�

K

;Q

`

)

I

). Here, N(}) denotes the

number of elements of the �nite �eld k(}).

A study of the local geometry of the normal{crossings special �ber T shows

that [N

i

] are represented by certain natural \diagonal cycles" on

~

T

(2i+1)

to-

gether with a cycle supported on the exceptional part of the stratum that

arises because the classes [N

i

] must belong to the kernel of the restriction map

�

(2(i+1))

(cf. (0.1)). This result is obtained via the introduction of a generalized

correspondence diagram for the map

N

i

: H

�

(Y; gr

L

r+i

R	(Q

X

))! H

�

(Y; (gr

L

r�i

R	(Q

X

))(�i)):(0.2)

This morphism describes the monodromy action on the E

1

{term of the spectral

sequence of weights for the �ltered complex of the nearby cycles (R	(Q

X

); L

�

)

(cf. x 2, (2.1)). For i > 0, the classes [N

i

] do not describe an algebraic cor-

respondence in the classical sense. In fact, the algebraic cycles representing

them are only supported on higher strata of the special �ber T (i.e. on

~

T

(2i+1)

)

and they do not naturally determine classes in the cohomology of T . This is a

consequence of the fact that for i > 0, the cocycle [N

i

] does not have weight

zero in the `{adic cohomology of the �ber product (X�X)

�

K

, as one can easily

check from (0.1). Nonetheless, we expect that each of these classes supplies a

re�ned information on the degeneration. Namely, we conjecture that the geo-

metric description that we obtain up to triple points can be generalized to any

kind of semistable singularity via a thorough combinatoric study of the toric

singularities of the special �ber of the �ber product resolution Z .

The correspondence diagram related to the map (0.2) is built up from the

hypercohomology of the Steenbrink �ltered resolution (A

�

X

; L

�

) of R	(Q

X

). In

x 3 we establish the necessary functoriality properties of the Steenbrink complex

and its L

�

{�ltration. A di�cult point in the description of the correspondence

diagram is related to the de�nition of a product structure on the E

1

{terms of

the spectral sequence of weights. Example 3.1 points out a problem related

to a canonical de�nition of a product structure for (A

�

X

; L

�

) in the �ltered

category. It comes out that the monodromy �ltration L

�

is not multiplicative

on the level of the �ltered complexes. A partial product, canonical only on the

E

2

= E

1

-terms is provided in the Appendix. This su�ces for purposes of our

paper.
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1. Notations and techniques from mixed Hodge theory

In this paragraph we introduce the main notations and recall some results on

the mixed Hodge theory of a degeneration.

We denote by X a connected, smooth, complex analytic manifold and we let

S be the unit disk. We write f : X ! S for a proper, surjective morphism and

we let Y = f

�1

(0) be its special �ber. We assume that f is smooth at every

point of X

�

= X r Y and that the special �ber Y is an algebraic divisor with

normal{crossings. The local description of f near a closed point y 2 Y is given

by:

f(z

1

; : : : ; z

m

) = z

e

1

1

� � � z

e

k

k

for k � m = dimX and fz

1

; : : : ; z

m

g a local coordinate system on a neighbor-

hood of y in X centered at y and e

i

2 Z; e

i

� 1. The �bers of f have then

dimension d = m� 1.

A normal{crossings divisor as above is said to have semistable reduction (strict

normal{crossings) if one has: e

i

= 1 8i, in the local description of f .

We �x a parameter t 2 S. For t 6= 0, let f

�1

(t) = X

t

be the �ber at t. Because

the restriction of f at S

�

= S r f0g is a C

1

, locally trivial �ber bundle, the

positive generator of �

1

(S

�

; t) ' Z induces an automorphism T

t

of H

�

(X

t

;Z),

called the local monodromy. We will always suppose throughout the paper

that T

t

is unipotent. This assumption, together with the local monodromy

theorem (cf. [7], Theorem 2.1.2), implies that (T

t

� 1)

i+1

= 0, on H

i

(X

t

;Z).

The unipotency condition of the local monodromy is for example veri�ed when

g.c.d.(e

i

; i 2 [1; k]) = 1, 8y 2 Y (cf. op.cit. ). Under these conditions, the

logarithm of the local monodromy is de�ned to be the �nite sum:

N

t

:= log T

t

= (T

t

� 1)�

1

2

(T

t

� 1)

2

+

1

3

(T

t

� 1)

3

� � � �

It is known (cf. [5]) that the automorphisms T

t

of H

i

(X

t

;C) (t 2 S

�

), are the

�bers of an automorphism T of the �ber bundle R

i

f

�

(


�

X=S

(log Y )) over S,

whose �ber at 0 is described as T

0

= exp(�2�iN

0

). By de�nition, the endomor-

phism N

0

is the residue at 0 of the Gauss-Manin connection r on the \canon-

ical prolongation" R

i

f

�

(


�

X=S

(log Y )) of the locally free sheaf R

i

f

�

(


�

X

�

=S

�

).

Because of the de�nition of T

0

, it makes sense to think of a nilpotent map

N := �

1

2�i

log T as the monodromy operator on the degeneration f : X ! S.

Via the canonical isomorphism (cf. [11], Thm. 2.18)(t 2 S):

R

i

f

�

(


�

X=S

(log Y ))


O

S

k(t)

'

! H

i

(X

t

;


�

X=S

(log Y )


O

X

O

X

t

)
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where k(t) is the residue �eld of O

S

at t, we can see the map N

0

as

an endomorphism of the hypercohomology of the relative de Rham com-

plex 


�

X=S

(log Y ) 


O

X

O

Y

. This complex represents in the derived cat-

egory D

+

(Y;C) of the abelian category of sheaves of C{vector spaces on

Y , the complex of the nearby cycles R	(C). Namely, there exists a non-

canonical quasi-isomorphism (i.e. depending on the choice of the parame-

ter t on S) 


�

X=S

(log Y ) 


O

X

O

Y

' R	(C

~

X

�

) := i

�1

Rk

�

C

~

X

�

(cf. [11],

x 2). This isomorphism, composed with the canonical map 


�

X=S

(log Y ) 


O

X

O

Y

! 


�

X=S

(log Y )


O

X

O

Y

red (Y

red

= reduced, induced structure scheme on

Y ), induces a quasi-isomorphism (i

�1

Rk

�

C

~

X

�

)

un

' 


�

X=S

(log Y ) 


O

X

O

Y

red

(cf. op.cit. x 4). Here, we denote by (i

�1

Rk

�

C

~

X

�

)

un

the maximal subobject of

i

�1

Rk

�

C

~

X

�

on which �

1

(S

�

) acts with unipotent automorphisms. We refer to

the following commutative diagram for the description of the maps:

~

X

�

k

����! X

i

 ���� Y

?

?

y

?

?

y

f

?

?

y

~

S

�

p

����! S  ���� f0g:

The space

~

S

�

= fu 2 C jIm u > 0g is the upper half plane, the map p :

~

S

�

! S

p(u) = exp(2�iu) = t, makes

~

S

�

in a universal covering of S

�

and

~

X

�

is the

pullback X �

S

~

S

�

of X along p. The morphism k is the natural projection. It

factorizes through X

�

by means of the injection j : X

�

! X . Finally, i is the

closed embedding.

Steenbrink, Guillen and Navarro Aznar and Masaiko Saito (cf. [11], [6], [12])

de�ned a mixed Hodge structure on the hypercohomology of the unipotent

factor of the complex of the nearby cycles H

�

(X;


�

X=S

(log Y ) 


O

X

O

Y

red
).

This is frequently referred as the limiting mixed Hodge structure.

We will assume from now on that f is projective. Then, the weight �ltration on

the limiting mixed Hodge structure is the one induced by the nilpotent endo-

morphism N , namely by the logarithm of the unipotent Picard-Lefschetz trans-

formation T that is already de�ned at the Q-level. This �ltration, which one

usually refers to as the monodromy{weight �ltration L

�

, is de�ned inductively.

On the limiting cohomology H

i

(

~

X

�

;Q), it is increasing and has lenght at most

2i. By the local monodromy theorem N

i+1

= 0, hence one sets L

0

= Im N

i

and L

2i�1

= Ker N

i

. The monodromy �ltration L

�

becomes a convolution

product of the kernel and the image �ltration relative to the endomorphism N .

These �ltrations are de�ned as

K

l

H

i

(

~

X

�

;Q) := Ker N

l+1

; I

j

H

i

(

~

X

�

;Q) := Im N

j

and their convolution is

L = K � I; L

k

:=

X

l�j=k

K

l

\ I

j

:(1.1)
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It is a very interesting fact that there is no explicit construction of the

monodromy-weight �ltration L

�

on 


�

X=S

(log Y )


O

X

O

Y

itself. The �ltration

L

�

is de�ned on a complex A

�

C

which is a resolution of 


�

X=S

(log Y )


O

X

O

Y

red .

More precisely, the complex 


�

X=S

(log Y )


O

X

O

Y

red
is isomorphic, in the de-

rived category D

+

(Y;C), to the complex A

�

C

of O

X

{modules supported on

Y . The complex A

�

C

is the simple complex associated to the double complex

(p; q � 0):

A

p;q

C

:= 


p+q+1

X

(log Y )=W

q




p+q+1

X

(log Y )

where W

�




�

X

(log Y ) is the weight �ltration by the order of log-poles

(cf. [3], x 3). The di�erentials on it are de�ned as follows

d

0

: A

p;q

C

! A

p+1;q

C

; d

0

(!) = d!

is induced by the di�erentiation on the complex 


�

X

(log Y ) and

d

00

: A

p;q

C

! A

p;q+1

C

; d

00

(!) = � ^ !

where � := f

�

(

dt

t

) =

P

k

i=1

e

i

dz

i

z

i

is the form de�ning the quasi-isomorphism we

mentioned before (cf. [11], x 4)




�

X=S

(log Y )


O

X

O

Y

red

^ �

! A

�

C

:

The total di�erential on A

�

C

is d = d

0

+d

00

. The weight �ltrationW

�




�

X

(log Y )

induces a corresponding �ltration on A

�

C

(r 2 Z):

W

r

A

p;q

X;C

=:W

r+q+1




p+q+1

X

(log Y )=W

q




p+q+1

X

(log Y ):(1.2)

The �ltration that W

r

A

�

C

induces on H

�

(Y;A

�

C

) ' H

�

(

~

X

�

;C) is the kernel

�ltration K (cf. (1.1))

K

r

H

�

(

~

X

�

;C) =W

r

H

�

(Y;A

�

C

) =: Im

�

H

�

(Y;W

r

A

�

C

)!H

�

(Y;A

�

C

)

�

=Ker N

r+1

:

The monodromy-weight �ltration is then de�ned as

L

r

A

p;q

:=W

2q+r+1




p+q+1

X

(log Y )=W

q




p+q+1

X

(log Y ):

Via Poincar�e residues, the related graded pieces have the following description

gr

L

r

A

�

C

'

M

k�max(0;�r)

(a

2k+r+1

)

�




�

~

Y

(2k+r+1)

[�r � 2k]:(1.3)

Here, we have denoted by

~

Y

(m)

the disjoint union of all intersections Y

i

1

\ : : :\

Y

i

m

for 1 � i

1

< : : : < i

m

� n (Y = Y

1

[ : : :[Y

n

). We write (a

m

)

�

:

~

Y

(m)

! X

for the natural projection.

The monodromy operator N is induced by an endomorphism ~� of A

�

C

which is

de�ned as (�1)

p+q+1

times the natural projection

� : A

p;q

C

! A

p�1;q+1

C

:
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The endomorphism ~� is characterized by its behavior on the L-�ltration,

namely

~�(L

r

A

�

C

) � L

r�2

A

�

C

and the induced map

~�

r

: gr

L

r

A

�

C

! gr

L

�r

A

�

C

(1.4)

is an isomorphism for all r � 0. The complex A

�

C

contains the subcomplex

W

0

A

�

C

= Ker(~�) that is known to be a resolution of C

Y

. The �ltration L

and the Hodge �ltration F on A

�

C

induce resp. the kernel and F �ltration on

W

0

A

�

C

. The resulting mixed Hodge structure on H

�

(Y;C) is the canonical

one. Similarly, the homology H

�

(Y;C) (i.e. H

�

Y

(X;C)) with its mixed Hodge

structure is calculated by the hypercohomology of the complex Coker(~�).

Because of the description given in (1.3), the spectral sequence of hyperco-

homology of the �ltered complex (A

�

C

; L) (frequently referred as the weight

spectral sequence of R	(C)) has the E

1

term given by

E

�r;n+r

1

=

M

k�max(0;�r)

H

n�r�2k

(

~

Y

(2k+r+1)

;C)

d

1

=

X

k

((�1)

r+k

d

0

1

+ (�1)

k�r

d

00

1

):

(1.5)

The explicit de�nition of the di�erentials, in the strict normal{crossings case

(i.e. semistable degeneration), is the following:

d

0

1

= �

(r+2k+2)

=

r+2k+2

X

u=1

(�1)

u�1

�

(r+2k+2)

u

d

00

1

= �


(r+2k+1)

=

r+2k+1

X

u=1

(�1)

u




(r+2k+1)

u

(1.6)

where

�

(r+2k+2)

u

= (�

(r+2k+2)

u

)

�

: H

n�r�2k

(

~

Y

(2k+r+1)

;C)! H

n�r�2k

(

~

Y

(2k+r+2)

;C)




(r+2k+1)

u

= (�

(r+2k+1)

u

)

!

: H

n�r�2k

(

~

Y

(2k+r+1)

;C)! H

n�r�2k+2

(

~

Y

(2k+r)

;C)

are the restrictions, resp. the Gysin maps, induced by the inclusions (u; t 2 Z)

�

(t)

u

: Y

i

1

\ � � � \ Y

i

t

! Y

i

1

\ � � � \ (Y

i

u

)

^

\ � � � \ Y

i

t

:

In the general normal{crossings case (i.e. �brations locally described by

f(z

1

; : : : ; z

m

) = z

e

1

1

� � � z

e

k

k

, e

i

� 1), the de�nition of d

0

1

has to take into ac-

count multiplicity factors �e

i

j

before each map (�

(t)

j

)

�

. The map d

0

1

is infact

induced from a \wedging" operation with the form � =

P

k

i=1

e

i

dz

i

z

i

(cf. last

page). The de�nition of d

00

1

is analogous to the one given in the strict normal{

crossings case.

Notice that the weight spectral sequence (1.5) is built up from a �ltered double

complex. This property distinguishes this weight spectral sequence from others
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as e.g. the spectral sequence of weights which de�nes the mixed Hodge structure

on a quasi{projective smooth complex variety (cf. [3]).

The complex A

�

C

is the complex part of a cohomological mixed Hodge complex

A

�

Q

whose de�nition is less explicit than A

�

C

and for which we refer to [7]. This

rational complex induces on H

�

(

~

X

�

;Q) a rational mixed Hodge structure. The

rational representative of the above spectral sequence (1.5) is

E

�r;n+r

1

=

M

k�max(0;�r)

H

n�r�2k

(

~

Y

(2k+r+1)

;Q)(�r � k):(1.7)

The index in the round brackets outside the cohomology refers to the Tate twist.

Both these spectral sequences degenerate at E

2

= E

1

and they converge to

H

n

(

~

X

�

;C) and H

n

(

~

X

�

;Q) respectively.

For curves (i.e. d = 1), the degeneration of the weight spectral sequence pro-

vides the exact sequences

0! E

�1;2

2

! H

0

(

~

Y

(2)

;Q)(�1)

d

�1;2

1

! H

2

(

~

Y

(1)

;Q)! H

2

(

~

X

�

;Q)! 0

and

0! H

0

(

~

X

�

;Q)! H

0

(

~

Y

(1)

;Q)

d

0;0

1

! H

0

(

~

Y

(2)

;Q)

�

! H

1

(

~

X

�

;Q):(1.8)

The di�erentials d

�1;2

1

and d

0;0

1

are de�ned as in (1.6) and the map � in (1.8)

is the edge map in the spectral sequence. We also have a non canonical decom-

position

H

1

(

~

X

�

;Q) = H

1

(

~

Y

(1)

;Q)�E

�1;2

2

�E

1;0

2

:

with E

1;0

2

= Im(�).

Steenbrink proved that the L{�ltration induced on the abutment of the spectral

sequence of the nearby cycles is the Picard-Lefschetz �ltration, hence it is

uniquely described by the following properties

N(L

n+r

H

n

(

~

X

�

;Q)) � (L

n+r�2

H

n

(

~

X

�

;Q))(�1)

and

N

r

: gr

L

n+r

H

n

(

~

X

�

;Q)

'

! (gr

L

n�r

H

n

(

~

X

�

;Q))(�r)

for r > 0. In the rest of the paper we will refer to it as the monodromy �ltration.

2. The monodromy operator as algebraic cocycle

We keep the notations introduced in the last paragraph. As n varies in [0; 2d]

(d = dimension of the �ber of f : X ! S) and i � 0, the power maps

N

i

: H

n

(

~

X

�

;Q)! H

n

(

~

X

�

;Q)(�i)

induced by the endomorphismN : R

n

f

�

(


�

X=S

(log Y ))! R

n

f

�

(


�

X=S

(log Y )),

de�ne elements

N

i

2 Hom(H

�

(

~

X

�

;Q); H

�

(

~

X

�

;Q)(�i))
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which are invariant for the action of the local monodromy group �

1

. They can

be naturally identi�ed with

N

i

2

M

n�0

�

H

2d�n

(

~

X

�

;Q)(d) 
H

n

(

~

X

�

;Q)(�i)

�

�

1

=

�

H

2d

(

~

X

�

�

~

X

�

;Q)(d�i)

�

�

1

:

The space

~

X

�

�

S

~

X

�

is the generic �ber of the product degeneration X�

S

X !

S. After a suitable sequence of blow-ups along Sing(Y � Y ) � Sing(X �

S

X):

Z ! � � � ! X �

S

X ! S

we obtain a normal{crossings degeneration h : Z ! S with Z non singular and

whose generic �ber is still

~

X

�

�

~

X

�

. Its special �ber T = h

�1

(0) = T

1

[� � �[T

N

has normal crossings singularities. The local description of h along T looks like:

h(w

1

; : : : ; w

2m

) = w

e

1

1

� � �w

e

r

r

for fw

1

; : : : ; w

2m

g a set of local parameters on Z and e

1

; : : : ; e

r

non-negative

integers.

The semistable reduction theorem (cf. [9]) assures that modulo extensions of the

basis S and up to a suitable sequence of blow-ups and down along subvarieties of

the special �ber T , we may eventually obtain from h a semistable degeneration

W ! S with W

0

=W

0

1

[ : : : [W

0

M

as special �ber.

Because of the assumption of the unipotency of the local monodromy on

H

�

(X

t

;C) (cf. x 1), the local monodromy � of h will be also unipotent. We then

call

~

N = log (�). By the K�unneth decomposition it results:

~

N = 1
N+N
1

and we have:

N

i

2

�

H

2d

(

~

X

�

�

~

X

�

;Q(d� i))

�

�

1

= Ker(

~

N) \H

2d

(

~

X

�

�

~

X

�

;Q(d� i)):

Let consider the monodromy �ltration L

�

relative to the degeneration h. We

denote by Hom

MH

(Q(0); V ) (Hom(Q; V ) shortly) the subgroup of Hodge cy-

cles of pure weight (0; 0) of a bi�ltered Q{vector space V : (V; L; F ), endowed

with the corresponding mixed Hodge structure. Then, we have the following

Proposition 2.1. For i � 1

N

i

2 Hom

MH

�

Q(0);Ker(

~

N) \H

2d

(

~

X

�

�

~

X

�

;Q(d� i))

�

�

� Hom

MH

�

Q(0);Ker(

~

N) \ (gr

L

2(d�i)

H

2d

(

~

X

�

�

~

X

�

;Q))(d� i)

�

'

' Hom

MH

�

Q(0); (gr

L

2(d�i)

H

2d

(T;Q))(d� i)

�

' Hom(Q; A);

A :=

Ker(�

2(i+1)

: H

2(d�i)

(

~

T

(2i+1)

;Q)(d� i)! H

2(d�i)

(

~

T

(2(i+1))

;Q)(d� i))

Image �

(2i+1)

:

Documenta Mathematica 4 (1999) 65{108



74 Caterina Consani

Here � is the restriction map on cohomology and by

~

T

(j)

we mean the disjoint

union of all ordered j{fold intersections of the components of T (cf. x1).

Proof. The identi�cation of N

i

with a Hodge cycle is a consequence of N

being a morphism in the category of Hodge structures. The �rst inclusion

derives from the well known facts that Ker(

~

N) has monodromic weight at

most zero and that its Hodge cycles are included (Hom being a functor left

exact on the second place) in the corresponding ones for the graded piece

(gr

L

2(d�i)

H

2d

(

~

X

�

�

~

X

�

;Q))(d�i) of Ker(

~

N)\

L

j

(gr

L

j

H

2d

(

~

X

�

�

~

X

�

;Q))(d�i).

The second isomorphism comes from the local invariant cycle theorem, namely

from the following exact sequence of pure Hodge structures (cf. [2], lemma 3.3

and corollary 3.4)

0! gr

L

2(d�i)

H

2d

(T;Q)! gr

L

2(d�i)

H

2d

(

~

X

�

�

~

X

�

;Q)

N

� gr

L

2(d�i�1)

H

2d

(

~

X

�

�

~

X

�

;Q)(�1)

Finally, the last isomorphism is a consequence of the description of the graded

piece (gr

L

2(d�i)

H

2d

(T;Q))(d� i) as sub{Hodge structure of (gr

L

2(d�i)

H

2d

(

~

X

�

�

~

X

�

;Q))(d� i) (cf. op.cit. lemma 3.3).

Proposition 2.1 shows how the operators N

i

can be detected by classes [N

i

]

in the cohomology of a �xed stratum of the special �ber T . Equivalently, we

can say that N

i

determine classes [N

i

] 2 H

2d

(T; (gr

L

�2i

R	

h

(Q))(d� i)) in the

(E

2i;2(d�i)

1

)(d� i)-term of the spectral sequence of weights for the degeneration

h. Here we write gr

L

�2i

R	

h

(Q) for gr

L

�2i

A

�

W;Q

.

The goal of this paper is to identify the class [N

i

] with an algebraic cocycle

related to the degeneration f : X ! S. In all those cases that we will consider

in the paper, this identi�cation is obtained via a \correspondence-type" map

(i � 0)

N

i

: H

�

(Y; gr

L

r

A

�

X;Q

)! H

�

(Y; (gr

L

r�2i

A

�

X;Q

)(�i)) = H

�

(Y; gr

L

r

(A

�

X;Q

(�i)))

which makes the following diagram commute

H

�

(T; gr

L

r

A

�

Z;Q

)

[N

i

] �

����!

E

�r+2i;�+r+2(d�i)

1

k

H

2d+�

(T; (gr

L

r�2i

A

�

Z;Q

)(d� i))

(p

1

)

�

x

?

?

?

?

y

(p

2

)

�

H

�

(Y; gr

L

r

A

�

X;Q

)

k

E

�r;�+r

1

N

i

����! H

�

(Y; gr

L

r

(A

�

X;Q

(�i)))

k

E

�r+2i;�+r�2i

1

(2.1)
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The projections p

1

; p

2

:

~

X

�

�

~

X

�

!

~

X

�

on the �rst and second factor, deter-

mine pullbacks and pushforwards on the hypercohomology as we shall describe

in x 3.

From the theory we will explain in the next paragraphs and in the Appendix

it will follow that N

i

has the expected shape. Namely, it is zero when N

i

= 0

and it is the identity when N

i

induces an isomorphism on E

�r;�+r

2

. Also, it

will result that p

�

1

, (p

2

)

�

and [N

i

] � all commute with the di�erential on E

1

.

That will imply an induced commutative diagram on E

2

.

For i = 0, i.e. when the correspondence map is the identity, proposition 2.1 can

be slightly generalized, using the theory developed in [2] (cf. lemma 3.3 and

corollary 3.4) and in [1] so that the identity operator is seen as an element in

Hom

MH

�

Q;

Ker(�

(2)

: H

2d

(

~

T

(1)

;Q)(d)! H

2d

(

~

T

(2)

;Q)(d))

Im (�i

�

� i

�

: H

2(d�1)

(T

(1)

;Q)(d� 1)! H

2d

(

~

T

(1)

;Q)(d)

�

'

' Hom

MH

�

Q;

Im(i

�

: H

2d

(T;Q)(d)! H

2d

(

~

T

(1)

;Q)(d))

Im (�i

�

� i

�

: H

2(d�1)

(T

(1)

;Q)(d� 1)! H

2d

(

~

T

(1)

;Q)(d)

�

:

Here the map i

�

(resp. i

�

) represents the pullback (resp. pushforward) relative

to the embedding T

(1)

! T . Proposition 2.1 shows this class as a Hodge cocycle

in H

2d

(

~

X

�

�

~

X

�

;Q(d)). That agrees with the classical theory of algebraic

correspondences describing the identity map via an algebraic correspondence

with the cycle diagonal. Namely, the identity is determined by the diagonal

�

~

X

�

�

~

X

�

�

~

X

�

seen as specialization of the cycle diagonal on X � X on the

�ber product

~

X

�

�

~

X

�

. (cf. [8]).

The cases described in the next paragraphs will also supply some evidence for

our expectation that [N

i

] can be always described by an algebraic (motivic)

cocycle. Finally, notice that the calculation on the E

1

involves the cohomology

of individual components of the strata and it is therefore in some sense local,

whereas E

2

introduces relations among components of strata, so that any cal-

culation on it becomes of global nature. That is the reason why the description

of the monodromy cycle is carried out mainly at a local level in this paper.

3. Functoriality of the Steenbrink complex and remarks on

products

Let g : Z ! X be a morphism between two connected, complex analytic

manifolds over a disk S. Let f : X ! S and h : Z ! S be the degeneration

maps. Let assume that both Z and X are smooth over C and they have

algebraic special �bers f

�1

(0) = Y and h

�1

(0) = T with normal crossings. We

have the following commutative diagram

T �! Y

# i

0

# i

Z

g

�! X

h& . f

S :
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Locally on the special �bers, f and h have the following description

f(z

1

; : : : ; z

m

) = z

e

1

1

� � � z

e

k

k

; h(w

1

; : : : ; w

M

) = w

e

0

1

1

� � �w

e

0

K

K

for fz

1

; : : : ; z

m

g and fw

1

; : : : ; w

M

g local parameters resp. on X and Z, 1 �

k � m; 1 � K �M and e

1

; : : : ; e

k

; e

0

1

; : : : ; e

0

K

integers.

Because g

�1

(Y ) = T , at any point y 2 g(T ) � Y (y = g(t), for some t 2 T )

where the local description of Y is z

e

1

1

� � � z

e

k

k

= 0, the pullback sections g

�

(z

i

j

)

(8 1 � i

j

� k) de�ne divisors on Z supported on T (not necessarily reduced or

irreducible).

Let order the components of Y as Y = Y

1

[ : : :[ Y

k

and let denote by

~

Y

(r)

the

disjoint union of all intersections Y

i

1

\ : : :\Y

i

r

for 1 � i

1

< � � � < i

r

� k. There

is a local system � of rank one on

~

Y

(r)

of standard orientations of r elements

(cf. [3]). The canonical morphism

g

�




�

X

(log Y )! 


�

Z

(log T )

is a map of bi�ltered complexes with respect to the weight and the Hodge

�ltrations on X and Z resp. (cf. op.cit. ). In particular it induces the following

map of bicomplexes of sheaves supported on the special �bers (r � 0)

g

�

(W

r

A

�

X;C

)! W

r

A

�

Z;C

where A

�

C

is the Steenbrink complex which represents in the derived category

the maximal subobject of the complex of nearby cycles where the action of the

monodromy is unipotent (cf. x 1). W

r

A

�

C

is the induced weight �ltration on

A

�

C

(cf. (1.2)). Because the weight �ltration on the complex A

�

C

is induced by

the weight �ltration on the de Rham complex with log-poles, g induces a map

in the derived category

g

�

(W

r

R	

f

(Q

X

))!W

r

R	

h

(Q

Z

):

Notice that g

�

(

dz

i

j

z

i

j

) 2 W

1




1

Z

(log T ), i.e. pullbacks preserve poles. Hence, we

deduce the functoriality of the monodromy �ltration

g

�

(L

r

A

�

X;C

)! L

r

A

�

Z;C

:

Because g

�1

is an exact functor, g determines on the graded pieces a pullback

map

g

�

: gr

L

r

A

�

X;C

! gr

L

r

A

�

Z;C

where

gr

L

r

A

�

Z;C

'

M

k�max(0;�r)

(a

2k+r+1

)

�




�

~

T

(2k+r+1)

(�

2k+r+1

)[�r � 2k]:

The functor g

�1

is also compatible with both di�erentials d

0

and d

00

on A

�

C

.

Hence, g

�

induces a morphism of bi�ltered mixed Hodge complexes (F

�

=

Hodge �ltration cf. [3])

g

�

: (A

�

X;C

; L; F )! (A

�

Z;C

; L; F )
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which in turn induces a map between the spectral sequences of weights

g

�

: E

�r;q+r

1

(X) =H

q

(Y; gr

L

r

A

�

X

)! H

q

(T; gr

L

r

A

�

Z

) = E

�r;q+r

1

(Z):

On the rational level this morphism between spectral sequences is described by

a direct sum of maps as

g

�

: H

q�r�2k

(

~

Y

(2k+r+1)

;Q)(�r � k)! H

q�r�2k

(

~

T

(2k+r+1)

;Q)(�r � k):

(3.1)

Both spectral sequences degenerate at E

2

= E

1

. Keeping track of the mul-

tiplicities and the signs for these pullbacks can be rather hard. Let suppose

that locally the de�ning equations for Y and T are t =

Q

i

z

e

i

i

and t =

Q

j

w

e

0

j

j

respectively, and we are given strata Y

I

= Y

i

1

\ : : : \ Y

i

p

(i

1

< : : : < i

p

) and

Y

J

= Y

j

1

\ : : : \ Y

j

p

. Then the computation of the multiplicities involved in

g

�

: H

�

(Y

I

;Q) ! H

�

(T

J

;Q) essentially amounts to determine the coe�cients

of

dw

j

1

w

j

1

^ : : : ^

dw

j

p

w

j

p

in g

�

(

dz

j

1

z

j

1

^ : : : ^

dz

j

p

z

j

p

). This technique will be frequently

used in the paper.

As an example, we describe the map (3.1) when f : X ! S is a degeneration

of curves with normal crossings singularities on its special �ber Y and Z is the

blow-up of X at a closed point P 2 Y . Let g : Z ! X be the blowing up map.

If P is a regular point in the special �ber, the number of components of the

special �ber T of Z will simply increase by one (the exceptional divisor E) and

the remaining components are the same as for Y . Hence g

�

: H

0

(

~

Y

(1)

;C) !

H

0

(

~

T

(1)

;C) is simply the map g

�

(1

Y

i

) = 1

T

i

+ 1

E

on the components.

Let suppose instead that P is singular. Since the description of g

�

is local

around each closed point, we may assume that the degeneration f is given, in

a neighborhood of P , by the equation z

e

1

1

z

e

2

2

= t, being t a chosen parameter

on the disk S and e

1

; e

2

positive integers. Let assume that e

1

� e

2

. Then,

locally around P :

~

Y

(1)

= Y

1

`

Y

2

. Set-theoretically one has Y

i

= fz

i

= 0g

(i = 1; 2) and

~

Y

(2)

= Y

1

\ Y

2

= fPg. Then,

~

T

(1)

= T

1

`

T

2

`

T

3

where T

1

and

T

2

are the strict transforms of the two components Y

i

, while T

3

represents the

exceptional divisor. We implicitly have �xed the standard orientation on

~

Y

(r)

(e.g.

~

Y

(2)

= Y

1

\ Y

2

= Y

12

). On

~

T

(r)

, we choose the orientation for which the

exceptional component T

3

is always considered as the last one.

There are only three graded complexes gr

L

�

A

�

C

non zero both on X and Z. On

X they have the following description

gr

L

�1

A

�

X;C

' (a

2

)

�




�

~

Y

(2)

[�1]

gr

L

0

A

�

X;C

' (a

1

)

�




�

~

Y

(1)

and via the isomorphism (1.4) one has:

~� : gr

L

1

A

�

X;C

'

! gr

L

�1

A

�

X;C

:

Hence E

1;q�1

1

=H

q

(Y; gr

L

�1

A

�

X;C

) = 0 unless q = 1, in which case we get

g

�

: H

0

(

~

Y

(2)

;C)! H

0

(

~

T

(2)

;C):
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To understand the description of this map, one has to look at the local geometry

of the blow-up at P . It is quite easy to check that Z is covered by two open

sets, say Z = U [V . To make the notations easier, let call t

1

=

z

1

z

2

and t

2

=

z

2

z

1

.

On U , described by t

e

2

2

=

t

z

e

1

+e

2

1

, one has coordinates ft

2

; z

1

g, T

red

2

= ft

2

= 0g

and T

red

3

= fz

1

= 0g. On V , described by t

e

1

1

=

t

z

e

1

+e

2

2

, one has coordinates

ft

1

; z

2

g, T

red

1

= ft

1

= 0g and T

red

3

= fz

2

= 0g. Then

~

T

(2)

= T

13

`

T

23

, here

we denote T

ij

= T

i

\ T

j

.

On U we have g

�

(

dz

1

z

1

^

dz

2

dz

2

) =

dz

1

dz

1

^

dt

2

t

2

, whereas on V one gets g

�

(

dz

1

z

1

^

dz

2

dz

2

) =

dt

1

dt

1

^

dz

2

z

2

. Hence, keeping in account the �xed orientation among the

components of T , the description of the pullback g

�

(1

~

Y

(2)

) = g

�

(1

Y

12

) is given

by

g

�

(1

Y

12

) = 1

T

13

� 1

T

23

:

The presence of a negative sign is due to the change of orientation. This

description de�nes the above map g

�

on H

0

. Similarly, we �nd that

g

�

: H

0

(

~

Y

(1)

;C)! H

0

(

~

T

(1)

;C)

is given by g

�

(1

Y

1

) = 1

T

1

+1

T

3

and g

�

(1

Y

2

) = 1

T

2

+1

T

3

. The description of g

�

on the terms H

1

goes in parallel.

Let now consider the proper map that g induces on the closed �bers. For

simplicity of notations we call it g : T ! Y . Let d = (dim T � dim Y ). The

above arguments have shown that g induces a pullback map g

�

between the

cohomologies of the strata: cf. (3.1). Since each stratum is a smooth projective

complex variety (not connected), we can use the Poicar�e duality to associate

to each pullback in (3.1) that contributes to the de�nition of the map g

�

its

dual so that we naturally obtain a dual pushforward on the E

1

{terms of the

spectral sequence of weights that is described by a direct sum of maps as

(3.2) g

!

: H

q�r�2(k�d)

(

~

T

(2k+r+1)

;Q)(�r � k + d)

! H

q�r�2k

(

~

Y

(2k+r+1)

;Q)(�r � k):

On each stratum g

!

is de�ned by the following formula

(

1

2�

p

�1

)

d�2k�r

Z

~

Y

(2k+r+1)

g

!

(�) [ � = (

1

2�

p

�1

)

2d�2k�r

Z

~

T

(2k+r+1)

� [ g

�

(�)

where

R

denotes the morphism trace described by the cap{product with the

fundamental class of each component of the stratum, for any chosen cou-

ple of elements � 2 H

q+2(2d�2k�r)

(

~

T

(2k+r+1)

;Q(2d � 2k � r)) and � 2

H

�q

(

~

Y

(2k+r+1)

;Q), q 2 Z; q � 0.

Notice that although we have a notion of bi�ltered pullback

g

�

: (A

�

X

; L; F )! (A

�

Z

; L; F )

this does not imply a canonical de�nition of a product structure on A

�

C

obtained

via pullback along the diagonal map � : X ! X �

S

X . In fact, the property

of f : X ! S to have normal crossings reduction is not preserved by the
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product map f � f : X �

S

X ! S. The space X �

S

X is in general not even

smooth over C! Finally, we remark that although the monodromy �ltration

is not multiplicative on the level of the �ltered complexes (A

�

C

; L) (the simple

example shown below will motivate this claim), it becomes multiplicative on

the limiting cohomology with its mixed Hodge structure.

Example 3.1.

Let f : P

1

S

! S be a P

1

-�bration over a disk S. We blow a closed point

P 2 P

1

0

= Y in the �ber P

1

0

over the origin f0g. The resulting map h : Z ! S

has a normal crossings special �ber h

�1

(0) = T = T

1

[ T

2

, where T

1

is the

strict transform of Y and T

2

is the exceptional component (i.e. P

1

). The

intersection Q = T

1

\ T

2

= T

12

is transverse. Locally around Q, h has the

following description

h(z

1

; z

2

) = z

1

z

2

:

Consider the subcomplex W

0

(A

�

Z;C

) of A

�

Z;C

�ltered by the monodromy �ltra-

tion L induced on it by the one on A

�

Z;C

(cf. x 1, (1.2)). Its hypercohomology

computes H

�

(T;C) and it can be determined in terms of the homology of the

complex

fC

�

: H

�

(

~

T

(1)

;C)

d

! H

�

(

~

T

(2)

;C)g =

fC

�

: H

�

(T

1

;C)�H

�

(T

2

;C)

d

! H

�

(T

12

;C)g

where C

�

sits in degrees zero and one. The di�erential d on C

�

is of \

�

Cech type"

i.e. it is an alternate sum of pullback maps as de�ned in (1.6). A product in

the �ltered derived category (A

�

Z;C

; L) if any exists, should induce a product

on C

�

. The tensor product C

�


 C

�

is a complex sitting in degrees zero, one

and two and it has the following description

fC

�


C

�

:

M

i;j2[1;2]

(H

�

(T

i

;C)
H

�

(T

j

;C))

d
d

!

2

M

i=1

f(H

�

(T

i

;C)
H

�

(T

12

;C))�

� (H

�

(T

12

;C)
H

�

(T

i

;C))g

d
d

! (H

�

(T

12

;C)
H

�

(T

12

;C))g:

However, there is no way to de�ne canonically the product

� : C

�


 C

�

! C

�

:

In fact, let's look for a possible description of it in each degree. In degree zero

a product should satisfy

H

�

(T

1

;C)
H

�

(T

1

;C) 7! H

�

(T

1

;C);

H

�

(T

2

;C)
H

�

(T

2

;C) 7! H

�

(T

2

;C);

H

�

(T

i

;C)
H

�

(T

j

;C) 7! 0; i; j = 1; 2:
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In degree one, one could start by setting

H

�

(T

1

;C)
H

�

(T

12

;C) 7! H

�

(T

12

;C);

H

�

(T

12

;C)
H

�

(T

2

;C) 7! H

�

(T

12

;C);

H

�

(T

2

;C)
H

�

(T

12

;C) 7! 0;

H

�

(T

12

;C)
H

�

(T

1

;C) 7! 0:

Notice however, that this de�nition is not at all canonical, as one could alter-

natively set

H

�

(T

2

;C)
H

�

(T

12

;C) 7! H

�

(T

12

;C);

H

�

(T

12

;C)
H

�

(T

1

;C) 7! H

�

(T

12

;C);

H

�

(T

1

;C)
H

�

(T

12

;C) 7! 0;

H

�

(T

12

;C)
H

�

(T

2

;C) 7! 0:

Finally, in degree two one would have

H

�

(T

12

;C)
H

�

(T

12

;C) 7! H

�

(T

12

;C)

4. Semistable degenerations with double points

This section is mainly devoted to the determination of [N ] for one{dimensional

semistable �brations with at worst double points as singularities. The descrip-

tion of [N ] is obtained via the introduction of the algebraic correspondence-type

square on the cohomology groups of the special �ber as described in (2.1). A

one{dimensional double point degeneration is the simplest example of a nor-

mal crossings �bration. The generalization of these results to double points

semistable degenerations of arbitrary dimension is done at the end of this para-

graph where we also report as an example of application of these results the

case of a Lefschetz pencil.

We keep the same notations as in x 3, in particular we denote by f : X ! S

a semistable �bration of �ber dimension one. Its special �ber is denoted by Y .

By de�nition, locally around a double point P 2 Y the description of f looks

like

f(z

1

; z

2

) = z

1

z

2

for fz

1

; z

2

g local parameters on X at P . For one dimensional �berings, the only

group where the local monodromy may act non trivially is gr

L

2

H

1

(

~

X

�

;Q), in

which case the identity map on the E

1

-terms of the weight spectral sequence

(1.5)

E

�1;2

1

= H

0

(

~

Y

(2)

;Q)(�1)

Id

! H

0

(

~

Y

(2)

;Q)(�1) = E

1;0

1

(�1)

determines an isomorphism of rational Hodge structures of weight two on the

related graded groups E

2

= E

1

. This isomorphism is induced by the action of
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the local monodromy N around the origin:

N : gr

L

2

H

1

(

~

X

�

;Q)

'

! (gr

L

0

H

1

(

~

X

�

;Q))(�1)

It is a well known consequence of the Clemens-Schmid exact sequence (consid-

ered as a sequence of mixed Hodge structures) that (cf. [9])

gr

L

2

H

1

(

~

X

�

;Q) 6= 0 ,

, Ker(�

(2)

: H

1

(

~

Y

(1)

;Q)! H

1

(

~

Y

(2)

;Q)) 6= 0 , h

1

(j�j) 6= 0

where h

1

(j�j) is the dimension of the �rst rational cohomology group of the

geometric realization of the dual graph of Y . It follows from proposition 2.1

that [N ] 2 H

2

(T; (gr

L

�2

A

�

Z;Q

)) = H

0

(

~

T

(3)

;Q) determines a Hodge class

(4.1) [N ] 2 Hom

MH

(Q(0); gr

L

0

H

2

(T;Q)) '

' Hom

MH

�

Q(0);

H

0

(

~

T

(3)

;Q)

Image(�

(3)

: H

0

(

~

T

(2)

;Q)! H

0

(

~

T

(3)

;Q))

�

:

Here T is the special �ber of a normal{crossings degeneration h : Z ! S.

The variety Z is a smooth threefold over C obtained via resolution of the

singularities of X �

S

X . Notice that no more than three components of T

intersect at the same closed point since dimZ = 3.

We shall determine the Hodge cycle [N ] 2 E

2;0

1

(Z) = H

0

(

~

T

(3)

;Q) by means of

a \correspondence type" map

N : H

�

(Y; gr

L

r

A

�

X;Q

)! H

�

(Y; (gr

L

r�2

A

�

X;Q

)(�1)) =H

�

(Y; gr

L

r

(A

�

X;Q

(�1)))

as we explained in (2.1). From the proof it will easily follow that the map N is

zero for � 6= 1 and is the identity for � = 1 = r. On the E

2

-level it will induce

(for � = 1 = r) a commutative diagram

gr

L

2

H

1

(

~

X

�

�

~

X

�

;Q)

[N ] �

����! gr

L

2

H

3

(

~

X

�

�

~

X

�

;Q) = E

1;2

2

(p

1

)

�

x

?

?

?

?

y

(p

2

)

�

E

�1;2

2

= gr

L

2

H

1

(

~

X

�

;Q)

N

����! (gr

L

0

H

1

(

~

X

�

;Q))(�1) = (E

1;0

2

)(�1)

The pullback p

�

1

and pushforward (p

2

)

�

are de�ned as in x 3. The above di-

agram will determine uniquely both [N ] 2 Hom

MH

(Q(0); gr

L

0

H

2

(T;Q)) and

the product [N ] �.

The following result de�nes the geometry of the model Z and the special �ber

T after resolving the singularities of X �

S

X and Y � Y .

Lemma 4.1. Let z

1

z

2

= w

1

w

2

be a local description of X �

S

X around the

point (P; P ), with P 2 Y = Y

1

[ Y

2

a double point of f and fw

1

; w

2

g a second

set of regular parameters on X at P . After a blow-up of X �

S

X with center

at the origin (z

1

; z

2

; w

1

; w

2

), the resulting degeneration h : Z ! S is normal{

crossings. Its special �ber T is the union of �ve irreducible components: T =

[

5

i=1

T

i

. We number them so that the �rst four are the strict transforms of the

irreducible components Y

i

�Y

j

of Y �Y , namely T

1

= (Y

1

�Y

1

)

~

, T

2

= (Y

1

�Y

2

)

~

,
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T

3

= (Y

2

� Y

1

)

~

, T

4

= (Y

2

� Y

2

)

~

. The last one T

5

represents the exceptional

divisor of the blow-up. We have

~

T

(1)

=

`

i

T

i

. The scheme Z is covered by

four a�ne charts U

j

. On each of them there are three non empty components

T

k

. The scheme

~

T

(3)

is the disjoint union of four zero dimensional schemes

(closed points): T

125

2 U

2

, T

135

2 U

4

, T

245

2 U

3

and T

345

2 U

1

, each of whose

supports projects isomorphically onto the diagonal �

12

: Y

12

! Y

12

� Y

12

.

Proof. The local description of X�

S

X around (P; P ) is given by the equations

z

1

z

2

= w

1

w

2

and z

1

z

2

= t, for t 2 S a �xed parameter on the disk. We

choose the standard orientation of the sets fz

1

; z

2

g and fw

1

; w

2

g and we write

w

0

i

1

=

w

i

z

1

, w

0

i

2

=

w

i

z

2

, w

ij

=

w

i

w

j

, z

0

i

1

=

z

i

w

1

, z

0

i

2

=

z

i

w

2

and z

ij

=

z

i

z

j

, for i; j = 1; 2.

After a single blow-up of X �

S

X at the origin (z

1

; z

2

; w

1

; w

2

), the resulting

model Z is non singular as one can see by looking at the �rst of the following

tables which describes Z on each of the four charts U

j

who cover it. In the

second table, we have collected for each U

j

, the description of the non empty

divisors T

k

2 T

(1)

there. We use the pullbacks p

�

1

(

dz

1

z

1

^

dz

2

z

2

) and p

�

2

(

dw

1

w

1

^

dw

2

w

2

)

to de�ne in the third table the pullbacks p

�

i

(1

Y

12

) 2 H

0

(

~

T

(2)

;Q).

Open sets Loc. coordinates and relations

U

1

fw

0

1

1

; w

0

2

1

; z

1

g; w

0

1

1

w

0

2

1

= z

21

U

2

fw

0

1

2

; w

0

2

2

; z

2

g; w

0

1

2

w

0

2

2

= z

12

U

3

fz

0

1

1

; z

0

2

1

; w

1

g; z

0

1

1

z

0

2

1

= w

21

U

4

fz

0

1

2

; z

0

2

2

; w

2

g; z

0

1

2

z

0

2

2

= w

12

Open sets Divisors

U

1

T

3

= fw

0

1

1

= 0g; T

4

= fw

0

2

1

= 0g; T

5

= fz

1

= 0g

U

2

T

1

= fw

0

1

2

= 0g; T

2

= fw

0

2

2

= 0g; T

5

= fz

2

= 0g

U

3

T

2

= fz

0

1

1

= 0g; T

4

= fz

0

2

1

= 0g; T

5

= fw

1

= 0g

U

4

T

1

= fz

0

1

2

= 0g; T

3

= fz

0

2

2

= 0g; T

5

= fw

2

= 0g
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Open sets p

�

1

(1

Y

12

) p

�

2

(1

Y

12

)

U

1

�1

T

35

� 1

T

45

�1

T

45

+ 1

T

35

+ 1

T

34

U

2

1

T

15

+ 1

T

25

�1

T

25

+ 1

T

15

+ 1

T

12

U

3

�1

T

45

+ 1

T

25

+ 1

T

24

�1

T

25

� 1

T

45

U

4

�1

T

35

+ 1

T

15

+ 1

T

13

1

T

15

+ 1

T

35

The global description of the pullbacks p

�

1

(1

Y

12

) and p

�

2

(1

Y

12

) is

p

�

1

(1

Y

12

) = (1

T

15

+ 1

T

25

� 1

T

35

� 1

T

45

) + 1

T

13

+ 1

T

24

p

�

2

(1

Y

12

) = (1

T

15

� 1

T

25

+ 1

T

35

� 1

T

45

) + 1

T

12

+ 1

T

34

:

Finally, notice that each U

j

is isomorphic to A

3

and in each of them one has

three non empty components T

k

.

The following result holds

Theorem 4.2. Let f : X ! S be the semistable degeneration of curves as de-

scribed above. Then, the following description of [N ] 2 H

0

(

~

T

(3)

;Q) (cf. (4.1))

holds:

[N ] = a

125

1

T

125

+ a

135

1

T

135

+ a

245

1

T

245

+ a

345

1

T

345

where the (rational) numbers a's are subject to the following requirement:

�2a

125

+ 2a

135

� 2a

245

+ 2a

345

= 1:

The induced class [N ] in gr

L

0

H

2

(T;Q) (i.e. modulo boundary relations via the

restriction map �

(3)

cf. (1.6)) determines a unique zero{cycle.

Proof. We determine [N ] as a cocycle making the following square commute

gr

L

2

H

1

(

~

X

�

�

~

X

�

;Q)

[N ] �

����! gr

L

2

H

3

(

~

X

�

�

~

X

�

;Q) = E

1;2

2

(p

1

)

�

x

?

?

?

?

y

(p

2

)

�

E

�1;2

2

= gr

L

2

H

1

(

~

X

�

;Q)

N

����! (gr

L

0

H

1

(

~

X

�

;Q))(�1) = (E

1;0

2

)(�1)

(4.2)

In terms of cohomologies of strata, we have to describe explicitly a representa-

tive of [N ] in E

2;0

1

(Z) that satis�es the commutativity of

H

0

(

~

T

(2)

;Q)(�1)

[N ] �

����! H

2

(

~

T

(2)

;Q)

p

�

1

x

?

?

?

?

y

(p

2

)

�

E

�1;2

1

= H

0

(

~

Y

(2)

;Q)(�1) H

0

(

~

Y

(2)

;Q)(�1) = E

1;0

1

(�1):

(4.3)

With the notations used in lemma 4.1 the description of [N ] is given by

[N ] = a

125

1

T

125

+ a

135

1

T

135

+ a

245

1

T

245

+ a

345

1

T

345

:
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For the standard choice of the orientations of fz

1

; z

2

g and fw

1

; w

2

g and the

numbering of the T

i

's de�ned in lemma 4.1, the local description of the pull-

backs p

�

i

(1

Y

12

) for i = 1; 2 is given in the third table of the above lemma.

Following the de�nition described in the Appendix (cf. (7.6)), the product

[N ] � p

�

1

(1

Y

12

(�1)) is then the following

[N ] � p

�

1

(1

Y

12

(�1)) =(4.4)

= [N ] � (1

T

15

(�1) + 1

T

15

(�1)� 1

T

35

(�1)� 1

T

45

(�1))

= a

125

(g

1

(1

T

125

� 1

T

15

(�1))� g

2

(1

T

125

� 1

T

25

(�1)))

+ a

135

(g

1

(1

T

135

� 1

T

15

(�1)) + g

3

(1

T

135

� 1

T

35

(�1)))

+ a

245

(g

2

(1

T

245

� 1

T

25

(�1)) + g

4

(1

T

245

� 1

T

45

(�1)))

+ a

345

(�g

3

(1

T

345

� 1

T

35

(�1)) + g

4

(1

T

345

� 1

T

45

(�1)))

= a

125

(1

T

25

� 1

T

15

) + a

135

(1

T

35

+ 1

T

15

)

+ a

245

(1

T

45

+ 1

T

25

) + a

345

(�1

T

45

+ 1

T

35

):

The maps g

1

, g

2

, g

3

and g

4

are the pushforwards as introduced in the Appendix.

The following formula illustrates the product 1

T

ijk

�

P

l;m

1

T

lm

(�1) following

the de�nition of it given in the Appendix:

1

T

ijk

�

X

l;m

1

T

lm

(�1) = 1

T

ijk

� (1

T

ik

(�1) + 1

T

jk

(�1))

= g

i

(1

T

ijk

� 1

T

ik

(�1))� g

j

(1

T

ijk

� 1

T

jk

(�1)) = g

i

(1

T

ijk

)� g

j

(1

T

ijk

)

2 Image

�

M

t

g

t

: H

0

(

~

T

(3)

;Q)(�1)! H

2

(

~

T

(2)

;Q)

�

:

In (4.4), we have denoted, for simplicity of notations, the di�erence g

i

(1

T

ijk

)�

g

j

(1

T

ijk

) with 1

T

jk

� 1

T

ik

. The map g

i

represents the pushforward on cycles

deduced from the embedding g

i

: T

ijk

! T

jk

. The de�nition of g

j

is similar.

Therefore, via the local de�nition of the pushforward (p

2

)

�

along the a�ne

charts (cf. x3 and third table in lemma 4.1), we obtain:

(p

2

)

�

([N ] � p

�

1

(1

Y

12

(�1))) = (�2a

125

+ 2a

135

� 2a

245

+ 2a

345

)1

Y

12

(�1):

The commutativity of (4.3) and hence of (4.2) is then equivalent to the re-

quirement

�2a

125

+ 2a

135

� 2a

245

+ 2a

345

= 1:

Hence, the operator [N ] is determined as a cocycle inH

0

(

~

T

(3)

;Q) by the setting

[N ] = a

125

1

T

125

+ a

135

1

T

135

+ a

245

1

T

245

+ a

345

1

T

345

;

� 2a

125

+ 2a

135

� 2a

245

+ 2a

345

= 1:

(4.5)

Up to boundary relations by means of the restriction map �

(3)

which connects

the elements 1

T

125

with 1

T

245

and 1

T

135

with 1

T

345

, (4.5) determines a unique

zero{cycle in the quotient E

2;0

2

(Z) (cf. (4.1)). Of course, if N = 0, this class

may be trivial.
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Remark 4.3.

The description of [N ] 2 E

2;0

1

(Z) as well as the relation among the coe�cients

a

ijk

in (4.5) is not unique in E

1

. In fact, it depends on the choice of the

desingularization process, as well as on the ordering of the components T

k

2

~

T

(1)

. For example, for the ordering of T

k

for which T

1

represents in each

chart the exceptional divisor of the blow-up (T

2

= (Y

1

� Y

1

)

~

, T

3

= (Y

1

� Y

2

)

~

,

T

4

= (Y

2

� Y

1

)

~

, T

5

= (Y

2

� Y

2

)

~

), the setting (4.5) becomes

[N ] = a

123

1

T

123

+ a

124

1

T

124

+ a

135

1

T

135

+ a

145

1

T

145

;

� a

123

+ a

124

� a

135

+ a

145

= 1:

If instead we choose to desingularize X �

S

X via a blowing-up along z

1

=

w

1

= 0 and we set the order among the T

k

's so that the exceptional divisor

is represented in each chart by the last component (i.e. T

1

= (Y

1

� Y

2

)

~

, T

2

=

(Y

2

� Y

1

)

~

, T

3

= (Y

2

� Y

2

)

~

, T

4

= (Y

1

� Y

1

)

~

,), then we would get

[N ] = a

134

1

T

134

+ a

234

1

T

234

;

� a

134

+ a

234

= 1:

It is a consequence of the uniqueness of the product structure on the correspond-

ing E

2

{terms that all these di�erent settings determine a unique description of

[N ] 2 E

2;0

2

(Z).

In what it follows we support some evidence for our belief that the description

of [N ] for a double points degeneration of higher �ber dimension (i.e. locally

described by f(z

1

; : : : ; z

n

) = z

i

z

j

, cf. below) is deducible from the case worked

out for curves. As already remarked, the description of [N ] in the cohomology

of the strata of the special �ber of the �ber product resolution is of local

nature, i.e. it can be described locally around each double point. For a higher

dimensional double points degeneration [N ] should be again described in terms

of a \diagonal" cocycle whose support projects isomorphically onto the diagonal

�

12

2 Y

12

� Y

12

as it was shown in theorem 4.2. In general, that \diagonal"

cocycle would be formally locally a bundle over the corresponding diagonal

cocycle which comes up for a degeneration of curves. This is a consequence of

the local description of the degeneration map around a double point. We give

now some details for these ideas.

Let f : X ! S be a semistable degeneration with double points of �ber dimen-

sion d over the disk S. Then, locally in a neighborhood of a double point P on

Y , f has the following description

f(z

1

; : : : ; z

n

) = z

i

z

j

for fz

1

; : : : ; z

n

g a set of regular parameters on X at P and suitable in-

dices i < j in I = f1; : : : ; ng. Let Y = Y

1

[ Y

2

be the local descrip-

tion of Y in a neighborhood of P 2 Y

1

\ Y

2

= Y

12

. Locally around P ,

fz

1

; : : : ; ẑ

i

; : : : ; ẑ

j

; : : : ; z

n

g are free parameters for this description. Hence,

the special �ber is locally around the point, formally isomorphic to A

d�1

�

^

Y

with

^

Y =

^

Y

1

[

^

Y

2

of dimension 1. In a formal neighborhood of P , Y

is de�ned by Spec

�

Cffz

1

; : : : ; ẑ

i

; : : : ; ẑ

j

; : : : z

n

gg[z

i

; z

j

]=z

i

z

j

�

. The model X
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is formally locally isomorphic to A

d�1

�

^

X, with

^

X of �ber dimension 1

and special �ber

^

Y . The formal description of X �

S

X is similar, namely

X �

S

X ' A

d�1

�A

d�1

� (

^

X �

S

^

X). Keeping the same notations introduced

before, we get a formal local description of the stratum

~

T

(3)

(containing the

cocycle [N ]) asA

d�1

�A

d�1

�

^

~

T

(3)

, with

^

~

T

(3)

collection of points. [N ] is a cycle

(of dimension d� 1) in

~

T

(3)

formally, locally described by �

A

d�1 �

^

~

T

(3)

. This

scheme is isomorphic to the formal completion of the diagonal �

Y

12

� Y

12

�Y

12

,

i.e.

^

�

Y

12

' A

d�1

�

^

Y

12

, (dim

^

Y

12

= 0).

In this way, the description of [N ] would be deduced from a formal local de-

scription of the Lefschetz pencil of �ber dimension one f :

^

X ! Cfftgg. Hence,

one would get a formal local class representative of N as a bundle over the di-

agonal cocycle which describes [N ] in theorem 4.2. What said so far supports

evidence for the following

Conjecture 4.4. Let f : X ! S be a semistable double points degeneration of

�ber dimension d. Then, the local monodromy operator is described by a unique

algebraic cocycle of codimension d-1 in the stratum

~

T

(3)

(dim

~

T

(3)

= 2(d� 1))

i.e.

[N ] 2

CH

d�1

(

~

T

(3)

)

Image

�

�

(3)

: CH

d�1

(

~

T

(2)

)! CH

d�1

(

~

T

(3)

)

� :

The formal local description of [N ] is given by the algebraic cycle �

A

d�1�

^

~

T

(3)

.

Notice that for a double point degeneration of �ber dimension d > 1, [N ] may

represent the monodromy map acting non trivially on di�erent graded pieces

of the limiting cohomology. However, they are all of type gr

L

q+1

H

q

(

~

X

�

;Q) =

E

�1;q+1

2

(X) for q 2 [0; d]. In fact, for double point degenerations we have

always N = 0 on gr

L

q

H

q

(

~

X

�

;Q), and H

�

(Y; gr

L

i

A

�

X;C

) = 0 for i 6= �1; 0; 1

because no more than two components of Y intersect simultaneusly at the same

closed point.

As an example of application of these results we consider the case of a Lefschetz

pencil of �ber dimension at least three. The description of [N ] is the same to

the one just described for a degeneration with double points. We will only show

how to reduce in this case the study of [N ] to the previous one. A Lefschetz

pencil of �ber dimension greater than one is not even normal-crossings because

the special �ber is irreducible and singular. We will only consider the case of

odd �ber dimension since Lefschetz pencils of even �ber dimension have trivial

monodromy always.

Let f

0

: X ! S be such a pencil and let n = 2m + 1 be the dimension of its

�ber. Locally, in a neighborhood of the singular point of the special �ber Y ,

the pencil f

0

is described by

f

0

(z

0

; : : : ; z

n

) =

m

X

�=0

z

�

z

�+1+m
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where as usual fz

0

; : : : ; z

n

g represents a set of regular parameters on X . It is

clear from the de�nition that the special �ber Y is irreducible and singular at

the origin (z

0

; : : : ; z

n

). However, after a single blow-up at that point we get a

normal-crossings degeneration f : X ! S with special �ber locally described

by Y = Y

1

[ Y

2

. The component Y

1

is the exceptional divisor of the blow-up,

a projective space of dimension n which intersects the strict transform Y

2

of Y

along a quadric hypersurface Y

12

of dimension 2m. The component Y

1

appears

with multiplicity e

1

= 2 whereas Y

2

is reduced (i.e. e

2

= 1). Let h : X ! X

be the blow-up map. It is a (proper) map of S-schemes, therefore it induces a

morphism

g

�

R	

f

0

(Q

X

)! R	

f

(Q

X

)

of complexes of nearby cycles. This morphism induces in turn a homomorphism

between the corresponding hypercohomologies

g

�

: H

i

(Y ;R	

f

0

(Q))! H

i

(Y;R	

f

(Q))

In order to work with the resolution A

�

Q

of R	

f

(Q) which carries the mon-

odromy �ltration, we have to consider Y with its reduced structure (the ex-

ceptional divisor has multiplicity e

1

= 2 as algebraic cycle on X). Because

g:c:d:(e

1

; e

2

) = 1 8y 2 Y the action of the local monodromy on the complex of

sheaves R	

f

(Y;Q) is unipotent (cf. x 1). That implies that the monodromy

operator acts unipotently on cohomology.

Because f

0

is a Lefschetz pencil of �ber dimension n, the only group where N

acts non trivially is H

n

(

~

X

�

;Q). Also, [N ] determines an element in (H

2n

(

~

X

�

�

~

X

�

;Q(n� 1)))

�

1

and because the generic �bers of f

0

and f are the same, we

may as well consider [N ] 2 H

2n

(Y � Y;R	

f

(Q))

�

1

.

The map f is locally described by z

2

i

q(z

0

; : : : ; ẑ

i

; : : : ; z

n

) = t for some i 2

[0; n], t being a local parameter on S and q(z

0

; : : : ; ẑ

i

; : : : ; z

n

) an irreducible

quadratic polynomial. Via the extension of the basis S

0

! S � 7!

p

t, the

degeneration f is deformed to w

i

z

i

= � , with w

i

=

�

z

i

and w

2

i

= h. It is clear

that this procedure does not a�ect the special �bers (i.e. the reduced closed

�bers are the same). Hence, after a possible normalization of the resulting

model, we obtain a double point semistable degeneration h : Z ! S. Let

T = T

1

[ T

2

be its special �ber. Then [N ] can be seen as a Hodge cycle in

H

2n

(T �T;R	

h

(Q))

�

1

= Ker(

~

N)\H

2n

(

~

X

�

�

~

X

�

;Q), for

~

N = 1
N+N 
1.

The geometric description of [N ] is then the same as the one we have shown

before. The class [N ] represents the monodromy operator acting non trivially

only on gr

L

n+1

H

n

(

~

X

�

;Q).

5. Semistable degenerations with triple points

A semistable degeneration with triple points is the �rst case where both the

operators N and N

2

may be non trivial. In this paragraph we will mainly

consider a triple point degeneration of surfaces. The description of [N ] and

[N

2

] for higher dimensional triple points degenerations can be deduced from
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the one for surfaces using the same kind of arguments described in the last

paragraph for double points degenerations of higher �ber dimension.

Let f : X ! S be a surfaces degeneration with reduced normal crossings and

with triple points on its special �ber Y . We keep the basic notations as in the

previous sections. Then, locally around a triple point P 2 Y we may assume

that f has the following description:

f(z

1

; z

2

; z

3

) = z

1

z

2

z

3

:

As usual, fz

1

; z

2

; z

3

g is a regular set of parameters on X at P . Globally on

X , the special �ber can be the union of more than three components i.e. Y =

Y

1

[ : : : [ Y

N

, but at most three of them intersect at the same closed point.

The Clemens{Schmid exact sequence of mixed Hodge structures describes the

behavior of the operators N and N

2

in terms of some invariants on the special

�ber. Namely

Lemma 5.1. (Monodromy criteria) Let f : X ! S be a semistable degeneration

of surfaces, then

N = 0 on H

1

(

~

X

�

;Q), h

1

(j�j) = 0

N = 0 on H

2

(

~

X

�

;Q), h

2

(j�j) = 0 and �

(2)

: H

1

(

~

Y

(1)

;Q)� H

1

(

~

Y

(2)

;Q)

N

2

= 0 on H

2

(

~

X

�

;Q), h

2

(j�j) = 0:

Here h

i

(j�j) denotes the dimension of the ith-cohomology group of the geometric

realization of the dual graph of Y .

Proof. cf. [9].

A degeneration of K-3 surfaces with special �ber made by rational surfaces

intersecting along a cycle of rational curves, is an example for which both N

and N

2

are non zero (cf. [9]).

Let us suppose that at least one of the groups gr

L

2

H

1

(

~

X

�

; Q) and

gr

L

3

H

2

(

~

X

�

;Q) is non zero (for the above example it is well known that

gr

L

2

H

1

(

~

X

�

;Q) = 0, as H

1

(

~

X

�

;Q) = 0). The map N acts on them as an

isomorphism of pure Hodge structures

N : gr

L

2

H

1

(

~

X

�

; Q)

'

! (gr

L

0

H

1

(

~

X

�

;Q))(�1)

N : gr

L

3

H

2

(

~

X

�

;Q)

'

! (gr

L

1

H

2

(

~

X

�

;Q))(�1):

The only group where N

2

behaves as an isomorphism is gr

L

4

H

2

(

~

X

�

;Q). The

map N

2

is de�ned by the composition

gr

L

4

H

2

(

~

X

�

;Q)

N

! (gr

L

2

H

2

(

~

X

�

;Q))(�1)

N

! (gr

L

0

H

2

(

~

X

�

;Q))(�2):

The sequence is not exact in the middle. The map N on the left is injective and

the one on the right surjects (gr

L

2

H

2

(

~

X

�

;Q))(�1) onto (gr

L

0

H

2

(

~

X

�

;Q))(�2).

Its kernel, in term of the spectral sequence of weights is

�

Im(H

2

(Y; gr

W

1




�+1

X

(log Y ))
Q! H

2

(Y;A

�

X;Q

))

�

(�1) '
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'

Ker(�

(2)

: H

2

(

~

Y

(1)

;Q)(�1)! H

2

(

~

Y

(2)

;Q)(�1))

Im(


(2)

: H

0

(

~

Y

(2)

;Q)(�2)! H

2

(

~

Y

(1)

;Q)(�1))

:

We �rst consider N and its related class [N ]. Both gr

L

2

H

1

(

~

X

�

;Q) and

gr

L

3

H

2

(

~

X

�

;Q) are described in terms of cohomology classes on

~

Y

(2)

(cf. (1.7)).

The study of the correspondence-diagram (2.1) is similar for them. Namely,

once one has found an algebraic cycle representing [N ], it certainly makes both

the correspondence diagrams commute. For degenerations of surfaces it follows

from proposition 2.1 that

[N ] 2 (gr

L

2

H

4

(T;Q))(1) '

Ker(�

(4)

: H

2

(

~

T

(3)

;Q)(1)! H

2

(

~

T

(4)

;Q)(1))

Im(�

(3)

: H

2

(

~

T

(2)

;Q)(1)! H

2

(

~

T

(3)

;Q)(1))

(5.1)

where h : Z ! S is a normal crossings degeneration with special �ber T and

generic �ber

~

X

�

�

~

X

�

obtained via resolution of the singularities of X �

S

X .

Similarly, one has

[N

2

] 2 gr

L

0

H

4

(T;Q) '

H

0

(

~

T

(5)

;Q)

Im(�

(5)

: H

0

(

~

T

(4)

;Q)! H

0

(

~

T

(5)

;Q))

:(5.2)

Both [N ] and [N

2

] have the further property to be Hodge cycles in the co-

homologies of the corresponding strata. The following lemma determines the

geometry of the model Z and the special �ber T after resolving the singularities

of X �

S

X and Y � Y .

Lemma 5.2. Let z

1

z

2

z

3

= w

1

w

2

w

3

be a local description of X �

S

X around

the point (P; P ), being P 2 Y = [

3

i=1

Y

i

a triple point of f and fw

1

; w

2

; w

3

g

a second set of regular parameters on X at P . After three blows-up of X �

S

X with centers at z

i

= 0 = w

i

(i = 1; 2; 3) the resulting degeneration h :

Z ! S is normal{crossings. Its special �ber T is the union of nine irreducible

components: T = [

9

i=1

T

i

. We number them so that the �rst six are the strict

transforms of the irreducible components Y

i

� Y

j

of Y � Y : T

1

= (Y

1

� Y

2

)

~

,

T

2

= (Y

1

�Y

3

)

~

, T

3

= (Y

2

�Y

1

)

~

, T

4

= (Y

2

�Y

3

)

~

, T

5

= (Y

3

�Y

1

)

~

, T

6

= (Y

3

�Y

2

)

~

.

The last three components are the exceptional divisors of the three blows-up:

T

7

= (Y

1

� Y

1

)

~

, T

8

= (Y

2

� Y

2

)

~

, T

9

= (Y

3

� Y

3

)

~

. We have

~

T

(1)

=

`

i

T

i

.

The scheme Z is covered by eight a�ne charts, on each of them there are

at most �ve non empty components T

i

. Among the components T

ijk

whose

disjoint union de�nes the scheme

~

T

(3)

, T

178

and T

378

contain resp. the curves

\diagonal"

~

�

12

and �

12

whose supports project isomorphically onto the diagonal

�

12

: Y

12

! Y

12

�Y

12

. Similarly, T

279

and T

579

contain resp.

~

�

13

and �

13

whose

support projects isomorphically onto �

13

: Y

13

! Y

13

� Y

13

. Finally, T

489

and

T

689

contain

~

�

23

and �

23

whose support is isomorphic to �

23

. The exceptional

surface T

789

{intersection of the three exceptional divisors of h{is isomorphic to

the blow-up Bl of P

1

�P

1

at the points f(0; 1)� (1; 0)g and f(1; 0)� (0; 1)g.

Finally, the scheme

~

T

(5)

is the disjoint union of six irreducible components

(points). They are: T

12789

, T

16789

, T

24789

, T

34789

, T

35789

, T

56789

. Their support

maps isomorphically onto the (point) diagonal �

123

: Y

123

! Y

123

� Y

123

.
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Proof. The local description of X �

S

X at (P; P ) is given by the equations

z

1

z

2

z

3

= w

1

w

2

w

3

and z

1

z

2

z

3

= t, for t 2 S a �xed parameter on the disk. We

choose the standard orientation of the sets fz

1

; z

2

; z

3

g and fw

1

; w

2

; w

3

g and we

write w

0

i

=

w

i

z

i

, z

0

i

=

z

i

w

i

for i = 1; 2; 3. After three blows-up of X �

S

X along

the subvarieties z

i

= 0 = w

i

, the resulting model Z is non singular as one can

see by looking at the �rst of the following tables which describes Z on each

of the eight charts U

j

who cover it. In the second table, we have collected for

each U

j

, the description of the non empty divisors T

k

2 T

(1)

there and the third

table shows the \diagonal" curves � and

~

� de�ned in each chart. The remaining

charts describe the pullbacks p

�

1

(

dz

i

z

i

^

dz

j

z

j

), p

�

2

(

dw

i

w

i

^

dw

j

w

j

), p

�

1

(

dz

1

z

1

^

dz

2

z

2

^

dz

3

z

3

)

and p

�

2

(

dw

1

w

1

^

dw

2

w

2

^

dw

3

w

3

) in terms of the related descriptions by cocycles classes

in the corresponding cohomologies.

Open sets Loc. coordinates and relations

U

1

fw

0

1

; w

0

2

; w

0

3

; z

1

; z

2

; z

3

g; w

0

1

w

0

2

w

0

3

= 1

U

2

fw

0

1

; w

0

2

; z

1

; z

2

; w

3

g; w

0

1

w

0

2

= z

0

3

U

3

fw

0

1

; w

0

3

; z

1

; z

3

; w

2

g; w

0

1

w

0

3

= z

0

2

U

4

fz

0

2

; z

0

3

; z

1

; w

2

; w

3

g; z

0

2

z

0

3

= w

0

1

U

5

fw

0

2

; w

0

3

; z

2

; z

3

; w

1

g; w

0

2

w

0

3

= z

0

1

U

6

fz

0

1

; z

0

3

; z

2

; w

1

; w

3

g; z

0

1

z

0

3

= w

0

2

U

7

fz

0

1

; z

0

2

; z

3

; w

1

; w

2

g; z

0

1

z

0

2

= w

0

3

U

8

fz

0

1

; z

0

2

; z

0

3

; w

1

; w

2

; w

3

g; z

0

1

z

0

2

z

0

3

= 1
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Open sets Divisors

U

1

T

7

= fz

1

= 0g; T

8

= fz

2

= 0g; T

9

= fz

3

= 0g

U

2

T

5

= fw

0

1

= 0g; T

6

= fw

0

2

= 0g; T

7

= fz

1

= 0g,

T

8

= fz

2

= 0g; T

9

= fw

3

= 0g

U

3

T

3

= fw

0

1

= 0g; T

4

= fw

0

3

= 0g; T

7

= fz

1

= 0g,

T

8

= fw

2

= 0g; T

9

= fz

3

= 0g

U

4

T

3

= fz

0

2

= 0g; T

5

= fz

0

3

= 0g; T

7

= fz

1

= 0g,

T

8

= fw

2

= 0g; T

9

= fw

3

= 0g

U

5

T

1

= fw

0

2

= 0g; T

2

= fw

0

3

= 0g; T

7

= fw

1

= 0g,

T

8

= fz

2

= 0g; T

9

= fz

3

= 0g

U

6

T

1

= fz

0

1

= 0g; T

6

= fz

0

3

= 0g; T

7

= fw

1

= 0g,

T

8

= fz

2

= 0g; T

9

= fw

3

= 0g

U

7

T

2

= fz

0

1

= 0g; T

4

= fz

0

2

= 0g; T

7

= fw

1

= 0g,

T

8

= fw

2

= 0g; T

9

= fz

3

= 0g

U

8

T

7

= fw

1

= 0g; T

8

= fw

2

= 0g; T

9

= fw

3

= 0g
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Open sets \Diagonal" curves

U

1

none

U

2

�

13

= fw

0

1

= z

1

= w

3

= 0; w

0

2

= 1g � T

579

; �

13

\ T

8

6= ;

�

23

= fw

0

2

= z

2

= w

3

= 0; w

0

1

= 1g � T

689

; �

23

\ T

7

6= ;

U

3

�

12

= fw

0

1

= z

1

= w

2

= 0; w

0

3

= 1g � T

378

; �

12

\ T

9

6= ;

~

�

23

= fw

0

3

= z

3

= w

2

= 0; w

0

1

= 1g � T

489

;

~

�

23

\ T

7

6= ;

U

4

�

12

= fz

0

2

= z

1

= w

2

= 0; z

0

3

= 1g � T

378

; �

12

\ T

9

6= ;

�

13

= fz

0

3

= z

1

= w

3

= 0; z

0

2

= 1g � T

579

; �

13

\ T

8

6= ;

U

5

~

�

12

= fw

0

2

= z

2

= w

1

= 0; w

0

3

= 1g � T

178

;

~

�

12

\ T

9

6= ;

~

�

13

= fw

0

3

= z

3

= w

1

= 0; w

0

2

= 1g � T

279

;

~

�

13

\ T

8

6= ;

U

6

~

�

12

= fz

0

1

= z

2

= w

1

= 0; z

0

3

= 1g � T

178

;

~

�

12

\ T

9

6= ;

�

23

= fz

0

3

= z

2

= w

3

= 0; z

0

1

= 1g � T

689

;

~

�

23

\ T

7

6= ;

U

7

~

�

13

= fz

0

1

= z

3

= w

1

= 0; z

0

2

= 1g � T

279

;

~

�

13

\ T

8

6= ;

~

�

23

= fz

0

2

= z

3

= w

2

= 0; z

0

1

= 1g � T

489

;

~

�

23

\ T

7

6= ;

U

8

none

Denote by v

Y

ij

a class in H

�

(Y

ij

;C) and by v

T

lk

a class in H

�

(

~

T

(2)

;C). Then

we have

Open sets p

�

1

(v

Y

12

) p

�

2

(v

Y

12

)

U

1

v

T

78

v

T

78

U

2

v

T

78

v

T

56

+ v

T

58

� v

T

67

+ v

T

78

U

3

�v

T

37

� v

T

47

+ v

T

78

v

T

38

+ v

T

78

U

4

�v

T

37

+ v

T

78

v

T

78

+ v

T

38

+ v

T

58

U

5

v

T

18

+ v

T

28

+ v

T

78

v

T

78

� v

T

17

U

6

v

T

18

+ v

T

78

v

T

78

� v

T

17

� v

T

67

U

7

v

T

24

+ v

T

28

� v

T

47

+ v

T

78

v

T

78

U

8

v

T

78

v

T

78
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Hence, the global description of the pullbacks p

�

1

(v

Y

12

) and p

�

2

(v

Y

12

) are

p

�

1

(v

Y

12

) = (v

T

18

+ v

T

28

� v

T

37

� v

T

47

+ v

T

78

) + v

T

24

p

�

2

(v

Y

12

) = (�v

T

17

+ v

T

38

+ v

T

58

� v

T

67

+ v

T

78

) + v

T

56

:

Open sets p

�

1

(v

Y

13

) p

�

2

(v

Y

13

)

U

1

v

T

79

v

T

79

U

2

�v

T

57

� v

T

67

+ v

T

79

v

T

79

+ v

T

59

U

3

v

T

79

v

T

79

� v

T

47

+ v

T

39

+ v

T

34

U

4

�v

T

57

+ v

T

79

v

T

79

+ v

T

39

+ v

T

59

U

5

v

T

19

+ v

T

29

+ v

T

79

v

T

79

� v

T

27

U

6

v

T

16

+ v

T

19

� v

T

67

+ v

T

79

v

T

79

U

7

v

T

29

+ v

T

79

v

T

79

� v

T

27

� v

T

47

U

8

v

T

79

v

T

79

Hence we have the global descriptions

p

�

1

(v

Y

13

) = (v

T

19

+ v

T

29

� v

T

57

� v

T

67

+ v

T

79

) + v

T

16

p

�

2

(v

Y

13

) = (�v

T

27

+ v

T

39

� v

T

47

+ v

T

59

+ v

T

79

) + v

T

34

:

Open sets p

�

1

(v

Y

23

) p

�

2

(v

Y

23

)

U

1

v

T

89

v

T

89

U

2

�v

T

58

� v

T

68

+ v

T

89

v

T

89

+ v

T

69

U

3

v

T

39

+ v

T

49

+ v

T

89

v

T

89

� v

T

48

U

4

v

T

35

+ v

T

39

� v

T

58

+ v

T

89

v

T

89

U

5

v

T

89

v

T

89

� v

T

28

+ v

T

19

+ v

T

12

U

6

�v

T

68

+ v

T

89

v

T

89

+ v

T

19

+ v

T

69

U

7

v

T

49

+ v

T

89

v

T

89

� v

T

28

� v

T

48

U

8

v

T

89

v

T

89
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Finally we have

p

�

1

(v

Y

23

) = (v

T

39

+ v

T

49

� v

T

58

� v

T

68

+ v

T

89

) + v

T

35

p

�

2

(v

Y

23

) = (v

T

19

� v

T

28

� v

T

48

+ v

T

69

+ v

T

89

) + v

T

12

:

Using the above tables we deduce the following

Open sets p

�

1

(1

Y

123

) p

�

2

(1

Y

123

)

U

1

1

T

789

1

T

789

U

1

1

T

578

+ 1

T

678

+ 1

T

789

1

T

569

+ 1

T

589

� 1

T

679

+ 1

T

789

U

3

�1

T

379

� 1

T

479

+ 1

T

789

�1

T

348

+ 1

T

389

+ 1

T

478

+ 1

T

789

U

4

1

T

357

� 1

T

379

+ 1

T

578

+ v

T

789

1

T

389

+ 1

T

589

+ 1

T

789

U

5

1

T

189

+ 1

T

289

+ 1

T

789

1

T

127

� 1

T

179

+ 1

T

278

+ v

T

789

U

6

�1

T

168

+ 1

T

189

+ 1

T

678

+ 1

T

789

�1

T

179

� 1

T

679

+ v

T

789

U

7

1

T

249

+ 1

T

289

� 1

T

479

+ 1

T

789

1

T

278

+ 1

T

478

� v

T

789

U

8

1

T

789

1

T

789

We then obtain

p

�

1

(1

Y

123

) = (1

T

189

+ 1

T

249

+ 1

T

289

� 1

T

379

� 1

T

479

+ 1

T

789

)

� 1

T

168

+ 1

T

357

+ 1

T

578

+ 1

T

678

p

�

2

(1

Y

123

) = (�1

T

179

+ 1

T

389

+ 1

T

569

+ 1

T

589

� 1

T

679

+ 1

T

789

)

+ 1

T

127

+ 1

T

278

� 1

T

348

+ 1

T

478

:

Notice that with the exception of U

1

and U

8

that are open sets in A

5

on which

only the exceptional components T

7

, T

8

and T

9

are non empty, all the remaining

charts U

j

are isomorphic to A

5

and in each of them one has �ve components

T

k

non empty.

On U

3

\ U

4

the surface T

378

contains the curve �

12

, and on U

5

\ U

6

, T

178

contains the curve

~

�

12

. The curves �

12

and

~

�

12

are di�erent: i.e. T

1

= ; on

U

3

and U

4

, but their supports map isomorphically onto the same diagonal

�

12

: Y

12

! Y

12

� Y

12

.

Similarly, U

2

\ U

4

contains �

13

whose support maps isomorphically onto �

13

,

whereas U

5

\ U

7

contains

~

�

13

, whose support maps still isomorphically onto

�

13

: �

13

\

~

�

13

= ;.

Finally, �

23

� U

2

\ U

6

, �

23

' �

23

, while

~

�

23

� U

3

\ U

7

,

~

�

23

' �

23

and

�

23

\

~

�

23

= ;.

The blow-up Z

1

of X�

S

X at z

1

= 0 = w

1

is the strict transform of X�

S

X in

the blow-up of A

6

along the corresponding linear subvariety. Let (~z

1

; ~w

1

) be a
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couple of homogeneus coordinates. The exceptional divisor, say E

(1)

1

, is locally

aP

1

(~z

1

; ~w

1

)

{bundle over fz

1

= 0 = w

1

g. Then, the intersectionE

(1)

1

\Z

1

is locally

de�ned on E

(1)

1

by z

2

z

3

~z

1

�w

2

w

3

~w

1

= 0. The blow E

(2)

1

of P

1

�fz

1

= 0 = w

1

g

on P

1

� fz

1

= z

2

= w

1

= w

2

= 0g de�nes the strict transform of E

(1)

1

after

the second blow-up along fz

2

= w

2

g. Said E

(2)

2

the exceptional divisor of the

second blow-up and (~z

2

; ~w

2

) another couple of homogeneus coordinates, one

has E

(2)

1

\E

(2)

2

= P

1

(~z

1

; ~w

1

)

�P

1

(~z

2

; ~w

2

)

�fz

1

= z

2

= w

1

= w

2

= 0g. Finally, after

the third blowing at fz

3

= 0 = w

3

g the three exceptional divisors E

(3)

1

, E

(3)

2

and E

(3)

3

will intersect the strict transform Z of X �

S

X along the exceptional

surface T

789

. This surface is described by the equation ~z

1

~z

2

~z

3

� ~w

1

~w

2

~w

3

= 0 in

E

(3)

1

\E

(3)

2

\E

(3)

3

= P

1

(~z

1

; ~w

1

)

�P

1

(~z

2

; ~w

2

)

�P

1

(~z

3

; ~w

3

)

�fz

1

= z

2

= z

3

= w

1

= w

2

=

w

3

= 0g = (P

1

)

3

, (~z

3

; ~w

3

) being a third couple of homogeneus coordinates. Let

consider the projection T

789

! P

1

(~z

2

; ~w

2

)

�P

1

(~z

3

; ~w

3

)

. The �ber of this map over a

given point in the base (P

1

)

2

is de�ned by a linear equation as �z

1

��w

1

= 0.

If either � or � (or both) is not zero, then this �ber is reduced to a single

point, so the projection map is locally an isomorphism. On the other hand,

� = 0 = � happens over the two points (1; 0)� (0; 1) and (0; 1)� (1; 0), where

the �ber is a P

1

. Since T

789

is non singular, these two copies of P

1

are Cartier

divisors, so by the universal property of blow-ups the map factors through the

blow-up Bl of (P

1

)

2

at the two points (i.e. T

789

! Bl ! (P

1

)

2

). It is easy to

see from this description that T

789

' Bl.

It is straighforward to verify from the second table the description of

~

T

(5)

on

each chart U

j

and the statement concerning its support.

The following result generalizes the description of [N ] given in theorem 4.2 for

double points degenerations.

Theorem 5.3. Let f : X ! S be a semistable degeneration of surfaces as

we have considered above. With the same notations as in lemma 5.2, let � :

Bl ! P

1

�P

1

be the morphism de�nying the blow-up of P

1

�P

1

at the points

f(0; 1)� (1; 0)g and f(1; 0)� (0; 1)g, being Bl ' T

789

. Let F

1

= �

�

(fptg �P

1

)

and F

2

= �

�

(P

1

� fptg) be the two fundamental �bers and let E

1

and E

2

be

the two exceptional divisors of �. The following description of [N ] 2 Ker �

(4)

(cf. (5.1)) holds:

[N ] = a

178

~

�

12

+ a

279

~

�

13

+ a

378

�

12

+ a

489

~

�

23

+ a

579

�

13

+ a

689

�

23

+ �:

The 1-cycle � � Bl and the (rational) numbers a's are subject to the following

requirements:

� = xF

1

+ yF

2

+ zE

1

+ wE

2

; with w = z � 1; x; y; z; w 2 Q

a

178

� a

378

= a

279

� a

579

= a

489

� a

689

= 1
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and the relations among them are given by the following set of equalities

a

178

= �w; a

279

= �(y + w); a

378

= �z;

a

489

= x+ z; a

579

= �(y + z); a

689

= x+ w:

Furthermore, for those degenerations with N

2

6= 0, the class [N

2

] 2 E

0;4

1

(Z) =

H

0

(

~

T

(5)

;Q) (cf. (5.2)) can be exhibited as:

[N

2

] = b

12789

T

12789

+ b

16789

T

16789

+ b

24789

T

24789

+ b

34789

T

34789

+ b

35789

T

35789

+ b

56789

T

56789

:

The (rational) numbers b's must satisfy the following equation:

�b

12789

+ b

16789

� b

24789

+ b

34789

� b

35789

� b

56789

= 1:

Hence, the induced classes of [N ] in gr

L

2

H

4

(T;Q)(1) and of [N

2

] in

gr

L

0

H

4

(T;Q) (i.e. modulo boundary relations via the restriction maps �

(3)

and

�

(5)

cf. (1.6)) determine algebraic cocycles of dimension one and zero respec-

tively.

Proof. We will determine [N ] as a cocycle making the following square commute

(i.e. this is the one one has to study for a degeneration of K-3 surfaces of the

type mentioned above)

gr

L

3

H

2

(

~

X

�

�

~

X

�

;Q)

[N ] �

����! gr

L

5

H

6

(

~

X

�

�

~

X

�

;Q)(1) = (E

1;5

2

)(1)

(p

1

)

�

x

?

?

?

?

y

(p

2

)

�

E

�1;3

2

= gr

L

3

H

2

(

~

X

�

;Q)

N

����! (gr

L

1

H

2

(

~

X

�

;Q))(�1) = (E

1;1

2

)(�1)

Note that besides the commutativity of the square, one has to impose another

condition on [N ] in order for it to represent the operator N . That arises from

(5.1). Namely, the representative of N in (E

2;2

1

)(1) = H

2

(

~

T

(3)

;Q)(1) must

belong to the kernel of the related restriction map �

(4)

. This condition was

automatically satis�ed for double point degenerations since T

(4)

= ; always in

that case. We will explicitly describe a representative [N ] of N in (E

2;2

1

)(1)

that satis�es the commutativity of the following square

H

1

(

~

T

(2)

;Q)(�1)

[N ] �

����! H

5

(

~

T

(2)

;Q)(1)

p

�

1

x

?

?

?

?

y

(p

2

)

�

H

1

(

~

Y

(2)

;Q)(�1) H

1

(

~

Y

(2)

;Q)(�1):

(5.3)

With the notations introduced in lemma 5.2 we �rst remark that the cocycles

[�

ij

] = (�

ij

)

�

(1

Y

ij

) (i; j = 1; 2; 3, i 6= j), �

ij

: Y

ij

! Y

ij

� Y

ij

being the

diagonal embedding, evidently satisfy the cohomological equality

(p

2

)

�

(�

�

(1

Y

ij

) � (p

1

)

�

(v)) = (p

2

)

�

(�

�

�

�

p

�

1

(v)) = (p

2

)

�

(�

�

(v)) = v

for 1

Y

ij

2 H

0

(Y

ij

;Q) and any element v 2 H

1

(

~

Y

(2)

;Q)(�1). However, since a

simple linear combination as a

178

~

�

12

+ a

279

~

�

13

+ a

378

�

12

+ a

489

~

�

23

+ a

579

�

13

+

a

689

�

23

(the coe�cients a's are integers) does not satisfy the requirement of
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being in the kernel of the restriction map �

(4)

(cf. (5.1) and (1.6)), we have

to add to the above \diagonal" de�nition a 1-cocycle � � T

789

, so that the

completed linear combination de�nes an element in (E

2;2

2

)(1) representing N .

Notice that since the exceptional surface T

789

projects down via p

2

, onto the

triple point P , this modi�cation by � does not spoil the commutativity of (5.3),

once we have checked it for the partial representative of [N ] given in terms of

the above diagonals.

The 1-cycle � will be described as a combination of the generators

F

1

; F

2

; E

1

; E

2

of the Neron-Severi group NS(T

789

). First of all, let consider

the six curves T

k789

for k = 1; : : : ; 6. They are elements of

~

T

(4)

. We describe

them using the generators of NS(T

789

). Because �(T

1789

) = f(0; 1) � (1; 0)g,

T

1789

= E

2

. Similarly, we have T

3789

= E

1

, as �(T

3789

) = f(1; 0)� (0; 1)g. The

remaining four curves are described using the projection formula. For example,

we know that �(T

2789

) = (0; 1)�P

1

and that �

�

((0; 1)�P

1

) = F

1

= E

2

+T

2789

.

Hence we have T

2789

= F

1

� E

2

. With a similar procedure we obtain

T

4789

= F

2

� E

1

, T

5789

= F

1

� E

1

and T

6789

= F

2

� E

2

. The geometry of

the intersections among the generators of NS(T

789

) is well known, namely

E

1

� E

2

= E

1

� F

2

= E

1

� F

1

= E

2

� F

1

= E

2

� F

2

= F

1

� F

1

= F

2

� F

2

= 0,

E

1

� E

1

= �1 = E

2

�E

2

and F

1

� F

2

= 1.

Let � = xF

1

+yF

2

+zE

1

+wE

2

be an element of NS(T

789

), with x; y; z; w 2 Q.

Then, we must solve

[N ] = a

178

~

�

12

+ a

279

~

�

13

+ a

378

�

12

+ a

489

~

�

23

+ a

579

�

13

+ a

689

�

23

+ �

for � subject to the condition that [N ] is in ker �

(4)

, for �

(4)

=

P

4

u=1

(�1)

u�1

�

(4)

u

(cf. (1.6)). For example we have �

(4)

(a

178

~

�

12

) = �a

178

(

~

�

12

� T

9

), while

�

(4)

(a

279

~

�

13

) = a

279

(

~

�

13

� T

8

). Following these rules we obtain the system

a

178

= � � T

1789

= �w; a

279

= �� � T

2789

= �(y + w)

a

378

= � � T

3789

= �z; a

489

= � � T

4789

= x+ z

a

579

= �� � T

5789

= �(y + z); a

689

= � � T

6789

= x+ w:

(5.4)

For the standard choice of the orientations of fz

1

; z

2

; z

3

g and fw

1

; w

2

; w

3

g and

the numbering of the T

i

's setted in lemma 5.2, the local description of the

pullbacks

dz

i

z

i

^

dz

j

z

j

and

dw

i

w

i

^

dw

j

w

j

(i 6= j, i; j = 1; 2; 3) in terms of cohomol-

ogy classes v

T

ij

and v

T

ijk

, is given following the tables shown in the proof of

lemma 5.2.

Let v

ij

2 H

1

(

~

Y

(2)

;Q)(�1), then via the multiplicative rule described in the

Appendix (cf. the similar calculation done in the proof of theorem 4.2) we

obtain

[N ] � p

�

1

(v

12

+ v

13

+ v

23

) =

= [N ] � (v

T

18

+ v

T

78

+ v

T

29

+ v

T

79

+ v

T

49

+ v

T

89

) =

= a

178

g

1

(

~

�

12

� v

T

18

)� a

378

g

7

(�

12

� v

T

78

) + a

279

g

2

(

~

�

13

� v

T

29

)� a

579

g

7

(�

13

� v

T

79

)+

+a

489

(g

4

(

~

�

23

� v

T

49

)� a

689

(g

8

(�

23

� v

T

89

) =

= a

178

v

78

(1)� a

378

v

38

(1) + a

279

v

79

(1)� a

579

v

59

(1) + a

489

v

89

(1)� a

689

v

69

(1)
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where g

j

are the pushforward maps de�ned in the Appendix. Applying the

map (p

2

)

�

we have

(p

2

)

�

([N ] � p

�

1

(v

12

+ v

13

+ v

23

))

= (a

178

� a

378

)v

12

+ (a

279

� a

579

)v

13

+ (a

489

� a

689

)v

23

:

The commutativity of the diagram (5.3) is then equivalent to the requirement

a

178

� a

378

= a

279

� a

579

= a

489

� a

689

= 1(5.5)

The linear system (5.4) may be then read as z � w = 1. Therefore, any curve

� = xF

1

+ yF

2

+ zE

1

+wE

2

satisfying the condition z �w = 1 can be used in

the description of [N ] 2 (E

2;2

1

)(1).

The description of [N

2

] is similar. For instance, from proposition 2.1 we have

[N

2

] 2 gr

L

0

H

4

(T;Q) '

H

0

(

~

T

(5)

;Q)

Im(�

(5)

: H

0

(

~

T

(4)

;Q)! H

0

(

~

T

(5)

;Q))

Via the procedure described in (2.1), [N

2

] is then determined in terms of the

commutativity of the following square

gr

L

4

H

2

(

~

X

�

�

~

X

�

;Q)

[N

2

] �

����! gr

L

4

H

6

(

~

X

�

�

~

X

�

;Q) = E

2;4

2

(p

1

)

�

x

?

?

?

?

y

(p

2

)

�

E

�2;4

2

= gr

L

4

H

2

(

~

X

�

;Q)

N

2

����! (gr

L

0

H

2

(

~

X

�

;Q))(�2) = (E

2;0

2

)(�2):

The related E

1

description is

H

0

(

~

T

(3)

;Q)(�2)

[N

2

] �

����! H

4

(

~

T

(3)

;Q)

p

�

1

x

?

?

?

?

y

(p

2

)

�

H

0

(

~

Y

(3)

;Q)(�2) H

0

(

~

Y

(3)

;Q)(�2):

The scheme

~

T

(5)

is the disjoint union of the zero dimensional schemes T

12789

,

T

16789

, T

35789

and T

56789

. Their support map all isomorphically onto the di-

agonal �

123

: Y

123

! Y

123

� Y

123

. With a similar procedure as the one used

above to describe [N ], we write

[N

2

] = b

12789

T

12789

+ b

16789

T

16789

+ b

24789

T

24789

+ b

34789

T

34789

+ b

35789

T

35789

+ b

56789

T

56789

for some integers b's. Imposing the commutativity of the above diagram, by

means of the description of the pullbacks p

�

1

(1

Y

123

) and p

�

2

(1

Y

123

) as shown in

the last table appearing in the proof of lemma 5.2, we �nally get the condition

�b

12789

+ b

16789

� b

24789

+ b

34789

� b

35789

� b

56789

= 1:

It is straightforward to verify that both [N ] and [N

2

] make diagrams like (2.1)

commute, for any choice of the indices � and r.
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Remark 5.4.

It is easy to verify that the description of [N ] and [N

2

] given in theo-

rem 5.3 holds also for a normal{crossings degeneration (not semistable) like

f(z

1

; : : : ; z

n

) = z

2

i

z

j

, i; j 2 [1; n], i 6= j. This applies in particular to the case

of normal{crossings degenerations of curves with triple points as described

above. The desingularization process of the threefold X �

S

X is obtained via

two blow-ups along z

i

= 0 = w

i

and z

j

= 0 = w

j

by analogy to what we

have done in Remark 4.3. For the description of [N ] we also refer to the same

Remark.

6. An arithmetic interpretation of the monodromy operator in

mixed characteristic

The calculations on the geometric description of [N

i

] that we have done in

the previous sections only involve the (local) geometry of the special �ber of a

degeneration. Hence they equally hold in mixed characteristic also, i.e. for a

degeneration f : X ! Spec(�) = S, where � is a Henselian discrete valuation

ring with � and v as its generic and closed points respectively. In analogy

with the classical case, the model X is assumed to be proper and the map

f is supposed to be 
at, smooth over the generic point � and with a normal{

crossings special �ber Y de�ned over the �nite �eld k(v) of characteristic p > 0.

Locally, for the �etale topology X is S-isomorphic to S[x

1

; : : : ; x

n

]=(x

e

1

1

� � �x

e

k

k

�

�), where � is a uniformizing parameter in � and e

i

2 Z; 8i = 1; : : : ; k. For

simplicity, we also assume that � is a �nite extension of Z

`

or Q

`

, where l 6= p

is a prime number.

The complex of nearby cycles is then de�ned as R	(�) :=

�

i

�1

R

�

j

�

�. Here

i : Y ! X (resp. j : X

�

! X ) is the natural closed (resp. open) embedding

that one \extends" to the algebraic closure k(�v) of k(v) (resp. a separable

closure k(��) of k(�)). Assume that the multiplicities e

i

are prime to ` and

g:c:d:(e

i

; p) = 1. Then, the wild inertia acts trivially on R	(�) and the theory

exposed in [16] shows that the nearby cycle complex has an abstract description

in the derived categoryD

+

(Y;�[Z

`

(1)]) of the abelian category of complexes of

sheaves of �[Z

`

(1)]{modules on Y , by a complex A

�

X ;�

, supported on Y . A

�

X ;�

can be interpreted as the analogue of the Steenbrink resolution in the classical

case. Therefore, the related study of it goes in parallel with the classical one

in equal characteristic zero. We refer to op.cit. and [7] (e.g. Th�eor�eme 3.2) for

further detail.

The power maps (n 2 [0; 2d], i � 0, d = dim X

�

) N

i

: H

n

(X

��

;�) !

H

n

(X

��

;�)(�i) de�ne elements

N

i

2

M

n�0

�

H

2d�n

(X

��

;�)(d)
H

n

(X

��

;�)(�i)

�

G

=

�

H

2d

(X

��

�X

��

;�)(d� i)

�

G

invariant for the action of the Galois group G = Gal(��=�) on the cohomology of

the product X

��

�X

��

. Assume that f : X ! S has at worst triple points. Then,

the singularities of both X �

S

X and Y � Y can be resolved locally around
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each singular point by a sequence of at most three blows-up, as we described in

details in xx 2,4,5. The resulting degeneration h : Z ! S is normal{crossings

with special �ber T = T

1

[ : : :[T

N

. Let X

��

�X

��

= Z

��

be its geometric generic

�ber. Denote by

~

N = 1 
N + N 
 1 the logarithm of the local monodromy

on the product degeneration h. Then, the analogue of proposition 2.1 is the

following

Proposition 6.1. Assume the monodromy-weight conjecture on H

�

(Z

��

;�)

and the semisimplicity of the Frobenius on the inertia invariants. Then

N

i

2

�

Ker(

~

N) \H

2d

(Z

��

;�(d� i))

�

F=1

'

�

Ker(

~

N) \ (gr

L

2(d�i)

H

2d

(Z

��

;�))(d � i)

�

F=1

'

�

(gr

L

2(d�i)

H

2d

(T;�))(d� i)

�

F=1

'

�

Ker(�

(2(i+1)

: H

2(d�i)

(

~

T

(2i+1)

;�)(d�i)! H

2(d�i)

(

~

T

(2(i+1))

;�)(d�i))

Image �

�

F=1

where F is the geometric Frobenius.

The following result shows the relation of proposition 6.1 with the arithmetic

of the degeneration h

Theorem 6.2. Assume the monodromy-weight conjecture on Z

��

and the

semisimplicity of the action of the frobenius F on H

�

(Z

��

;�)

I

. Then, for i > 0

and d = dim X

��

ord

s=d�i

det(Id� FN(v)

�s

jH

2d

(Z

��

;�)

I

) =

rk

�

Ker(�

2(i+1)

:H

2(d�i)

(

~

T

(2i+1)

;�)(d�i)! H

2(d�i)

(

~

T

(2(i+1))

;�)(d�i))

Image �

�

F=1

:

N(v) is the number of elements of the �nite residue �eld k(v).

Proof. cf. [2], theorem 3.5.

This result explains geometrically the pole of the local factor at v of the L-

function L(H

2d

(Z

��

;Q

`

); s) at the points s = d � 1 and s = d � 2, with the

presence of the \diagonal" cycles representing the monodromy powers on the

strata of T as we previously described.

7. Appendix (by Spencer Bloch)

Our objective in this appendix is to de�ne a multiplication between the to-

tal complex of E

1

-terms of the Steenbrink spectral sequence and the graded

complex

H

�

(Y

(�)

); � = restriction(7.1)
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which is the E

1

complex converging to the cohomology of the special �ber

Y . We order the components Y = Y

1

[ : : : [ Y

N

and write a

i

0

;:::;i

m

2

H

�

(Y

i

0

;:::;i

m

;Q). The E

1

-terms of the Steenbrink spectral sequence can be

arrayed in a triangular diagram (compare [7], (2.3.8.1)) where each � denotes

some H

�

(Y

(m)

;Q(n)).

�

" -

�  �

" - " -

�  �  �

.

.

. �

wt0

.

.

. �

wt1

.

.

.

.

.

.

�  �  �  �

(7.2)

Here the horizontal arrows are Gysin maps and the vertical arrows are re-

striction maps. The diagonal arrows are (upto twist) the maps N which, on

the level of E

1

are either the identity or 0. The Steenbrink E

1

-terms, i.e. the

H

�

(Y; gr

L

r

R	(Q)), are direct sums of terms on a NE-SW diagonal, with weight

r meeting the "x-axis" at x = r. The complex H

�

(Y

(�)

) is embedded as the left

hand column, and the resulting multiplication on it is the usual (associative)

product

a

i

0

;:::;i

m


 b

j

0

;:::;j

n

7!

(

0 i

m

6= j

0

(a � b)

i

0

;:::;i

m

;j

1

;:::;n

n

i

m

= j

0

(7.3)

The bottom row is a quotient complex calculating the homology of the closed

�ber H

�

(Y ) (with appropriate twist). Our multiplication induces an action of

the left hand column on the bottom row, which we will show induces the cap

product ([14], p. 254)

H

q

(Y )
H

n

(Y )! H

n�q

(Y ):(7.4)

This module structure, unifying and extending the classical cocycle calculations

for cup and cap product, is of independent interest. Quite possibly it can

be extended to a product on the whole E

1

-complex, but the daunting sign

calculations involved have prevented us from working it out.

We will apply this construction to calculate the product

[N

i

] � : H

�

(T; gr

L

r

A

�

Z;Q

)! H

�+2d

(T; gr

L

r�2i

A

�

Z;Q

(d� i))(7.5)

from (2.1).

We return to the situation in section 2. In particular, Z ! X �

S

X is a

resolution, and T � Z is the special �ber, which we assume is a normal crossings

divisor. We write E

1

(Z) for the Steenbrink spectral sequence associated to the

degeneration Z=S.

Lemma 7.1. There exists a class [N

i

] in E

1

(Z) satisfying
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1. d

1

[N

i

] = 0, and the induced class in E

2

is the i-th power of the mon-

odromy operator

N

i

2 gr

L

2(d�i)

H

2d

(

~

X

�

�

~

X

�

;Q(d� i))

2. N([N

i

]) = 0, i.e. in the diagram (7.2), [N

i

] lies in the left hand vertical

column.

Proof. We see from proposition (2.1) that the class of N

i

is killed by N in

E

2

(Z). Let M denote the map on E

1

which is inverse to N insofar as possible,

i.e. M maps down and to the right in diagram (7.2). M is zero on the bottom

line. Let x 2 E

1

represent N

i

in E

2

. Then Nx = d

1

y. (Here d

1

= d

0

+ d

00

is

the total di�erential.) Since N commutes with d

0

and d

00

, and Nx has no term

on the bottom row, it follows that [N

i

] := x � d

1

My is supported on the left

hand column, i.e. killed by N .

Here is some notation. The special �ber will be Y =

S

Y

i

, with 0 � i � N .

Write H

�

(Y ) for cohomology in some �xed constant ring like Z or C.

I = fi

0

; : : : ; i

m

g; J = fj

0

; : : : ; j

n

g (strictly ordered); Y

I

=

\

i

k

2I

Y

i

k

We will say the pair I; J is admissible if

9p such that i

m

= max(I) = j

p

and fj

0

; : : : ; j

p

g � I:

In this case, write j

0

= i

b

0

; : : : ; j

p�1

= i

b

p�1

. De�ne

a(I; J) := b

0

+ : : :+ b

p�1

+mp:

With I; J admissible as above, write

J

0

= fj

0

; : : : ; j

p

g; J

00

= fj

p

; : : : ; j

n

g; J = J

0

[ J

00

; J

0

\ J

00

= fj

p

g = fi

m

g

Write

I

0

= J

0

; I

00

= (I � J

0

) [ fi

m

g; I = I

0

[ I

00

; fi

m

g = I

0

\ I

00

Let K = I

00

[ J

00

, and de�ne

�(I; J) : H

�

(Y

I

)
H

�

(Y

J

)! H

�+�+2p

(Y

K

)(7.6)

�(I; J)(x 
 y) := (�1)

a(I;J)

g

j

0

� � � � g

j

p�1

(x � y):(7.7)

Here x � y 2 H

�+�

(Y

I[J

), the g

j

are Gysin maps, and

g

j

0

� � � � g

j

p�1

: H

�

(Y

I[J

)! H

�+2p

(Y

I

00

[J

00

):

If the pair I; J is not admissible, de�ne �(I; J) = 0. De�ne for I as above and

0 � k � N

�(I; k) := #fi 2 I j i < kg

For k =2 I we have the restriction rest

k

: H

�

(Y

I

)! H

�

(Y

I[fkg

). De�ne

d

0

:=

X

k=2I

(�1)

�(I;k)

rest

k

: H

�

(Y

I

)!

M

k=2I

H

�

(Y

I[fkg

)
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Similarly, for k 2 I we have the Gysin g

k

: H

�

(Y

I

)! H

�+2

(Y

I�fkg

). We de�ne

d

00

=

X

k2I

(�1)

�(I;k)

g

k

: H

�

(Y

I

)!

M

k2I

H

�+2

(Y

I�fkg

):

Theorem 7.2. With notation as above (I; J not necessarily admissible) the

following diagram is commutative:

H

�

(Y

I

)
H

�

(Y

J

)

�(I;J)

����! H

�

(Y

K

)

?

?

y

d

0


1+(�1)

m

1
(d

0

+d

00

)

?

?

y

d

0

+d

00

L

~

I;

~

J

H

�

(Y

~

I

)
H

�

(Y

~

J

)

�(

~

I;

~

J)

����!

L

~

K=

~

I

00

[

~

J

00

H

�

(Y

~

K

)

Remark 7.3.

A priori the theorem does not su�ce to determine the desired mapping

H

�

(Y

�

)
E

1

! E

1

a
 b 7! a � b

because a given H

�

(Y

K

) occurs many times in the diagram (2.1) (at every point

along a NW pointing diagonal). However, if we add the condition that the

weights (SW-NE diagonals in (7.2)) should be added, the mapping is de�ned.

It has the property that

a �Nb = N(a � b)

In particular, there is an induced action on E

1

=NE

1

which we identify with the

bottom row in (7.2). This simple complex calculates H

�

(Y ), and the product

coincides with the cap product. To see this, one notes that the product is

correct for two elements in weight 0, and that if each H

�

(Y

I

) is replaced by Z,

the acyclic model theorem ([14], p. 165) can be applied.

proof of theorem. The proof consists of many separate cases. In each case we

will check the sign carefully (this is the delicate part) and omit checking that

the maps coincide set-theoretically (which is straightforward).

case: i

m

=2 J .

In this case, the pair I; J is not admissible, so �(I; J) = 0. We must show

�

~

I;

~

J

�(

~

I;

~

J) � (d

0


 1 + (�1)

m

1
 (d

0

+ d

00

)) = 0:(7.8)

We may ignore non-admissible

~

I;

~

J . The only way admissible

~

I;

~

J can occur in

this situation is if for some p � 0 we have j

p�1

< i

m

< j

p

and fj

0

; : : : ; j

p�1

g �

I . (If a subscript for j doesn't fall in f0; : : : ; ng, ignore it, i.e. take j

�1

=

�1; j

n+1

= +1.) Assume these conditions hold. Then the pair I [ fj

p

g; J

is admissible and occurs in the image of d

0


 1. Also the pair I; J [ fi

m

g

is admissible and occurs in the image of (�1)

m

(1 
 d

0

). We must show these

two contributions cancel. Suppose j

0

= i

b

0

; : : : ; j

p�1

= i

b

p�1

. Then the sign
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condition we need to verify is

�(I; j

p

) + b

0

+ � � �+ b

p�1

+ p(m+ 1) �

1 +m+ �(J; i

m

) + b

0

+ � � �+ b

p�1

+ pm mod (2)

This is correct because �(I; j

p

) = m+ 1 and �(J; i

m

) = p.

case: i

m

= j

p

2 J; fj

0

; : : : ; j

p�1

g 6� J .

This is the other case where I; J is not admissible, so �(I; J) = 0. To get

admissible

~

I;

~

J we must have

9k; 0 � k � p� 1 such that j

k

=2 I; fj

0

; : : : ;

^

j

k

; : : : ; j

p�1

g � I:

Assume this. Then the pairs (I[fj

k

g; J) and (I; J�fk

k

g) are admissible. The

�rst occurs in �(I[fj

k

g; J)�(d

0


1) and the second in (�1)

m

�(I; J�fj

k

g)�1
d

00

.

The necessary sign condition for cancellation is

�(I; j

k

) + a(I [ fj

k

g; J)

?

� m+ 1 + k + a(I; J � fj

k

g) mod (2):

To check this sign condition write j

r

= i

b

r

for 0 � r � p� 1; r 6= k. Then

a(I; J � fj

k

g) = b

0

+ � � �+ b

k�1

+ b

k+1

+ � � �+ b

p�1

+ (p� 1)m

a(I [ fj

k

g; J) = b

0

+ � � �+ b

k�1

+ �(I; j

k

) + (b

k+1

+ 1) +

+ � � �+ (b

p�1

+ 1) + p(m+ 1):

This yields the necessary congruence.

For the rest of the proof we assume I; J is admissible. We examine the various

terms in (7.8) and show they occur with the same signs in (d

0

+ d

00

) � �(I; J).

We �rst consider terms coming from d

0


 1, so the target is labelled by

~

I =

I [ fkg;

~

J = J .

case: k < i

m

= j

p

. In this case, since j

p

= min J

00

and k =2 I � J

0

, we have

k =2 J . The pair

~

I = I [ fkg; J is admissible with

~

I

00

= I

00

[ fkg and the same

decomposition J = J

0

[J

00

. Let

~

K =

~

I

00

[J

00

= K[fkg. Since k < j

p

= min J

00

,

we have

�(K; k) = �(I

00

; k) = �(I; k)� �(J

0

; k)

What we must show, therefore, is that

a(I; J)� a(

~

I; J) � �(J

0

; k) mod (2)

Write

~

I = f

~

i

0

; : : : ;

~

i

m+1

g; j

0

=

~

i

~

b

0

; : : : ; j

p�1

=

~

i

~

b

p�1

;

a(

~

I; J) =

~

b

0

+ � � �+

~

b

p�1

+ (m+ 1)p

I = fi

0

; : : : ; i

m

g; j

r

= i

b

r

; 0 � r � p� 1

a(I; J) = b

0

+ � � �+ b

p�1

+mp

where

~

b

`

=

(

b

`

i

b

`

< k

b

`

+ 1 i

b

`

> k
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Thus

a(

~

I; J)� a(I; J) = p�#fj 2 J

0

� fj

p

g j j > kg =

#fj 2 J

0

j j < kg = �(J

0

; k):

This is the desired congruence.

We continue to consider the contribution of d

0


 1 with I; J admissible.

case: k > i

m

; k 6= j

p+1

.

In this case I [ fkg; J is not admissible so �(

~

I; J) = 0.

case: k = j

p+1

.

Here

~

I := I [ fkg;

~

J := J is admissible with

~

J

0

= fj

0

; : : : ; j

p+1

g = J

0

[ fkg = J

0

[ fj

p+1

g

~

J

00

= fj

p+1

; : : : ; j

n

g = J

00

� fj

p

g;

~

K =

~

I

00

[

~

J

00

= K � fj

p

g

Note in this case k > i

m

so �(I; k) = m+1. The claim is here that the diagram

H

�

(Y

I

)
H

�

(Y

J

)

�(I;J)

����! H

�

(Y

K

)

?

?

y

(�1)

m+1

rest.
1

?

?

y

(�1)

�(K;j

p

)

Gysin

j

p

H

�

(Y

~

I

)
H

�

(Y

J

)

�(

~

I;J)

����! H

�

(Y

~

K

)

commutes. Note that the right hand vertical arrow (with the sign) is part of

1
 d

00

. To verify the signs we need

a(I; J) + �(K; j

p

) � m+ 1 + a(

~

I; J):

Since K = I

00

[ J

00

and k = max(I

00

) = min(J

00

) it is clear that

�(K; j

p

) = #I

00

� 1 = m� p:

Also j

p

= i

m

so with the usual notation j

r

= i

b

r

we get

a(

~

I; J) = b

0

+ � � �+ b

p�1

+m+ (m+ 1)(p+ 1):

Now the desired congruence becomes

b

0

+ � � �+ b

p�1

+ pm+m� p � b

0

+ � � �+ b

p�1

+m+ (m+ 1)(p+ 1) +m+ 1

This is correct.

We now consider terms occurring in (�1)

m

(1 
 d

0

) on the left of the diagram

in the statement of the theorem. We assume given k =2 J .

case: k > j

p

.

Note in this case k =2 I . Taking

~

J = J [fkg;

~

K = K[fkg, I claim the diagram

below is commutative:

H

�

(Y

I

)
H

�

(Y

J

)

�(I;J)

����! H

�

(Y

K

)

?

?

y

(�1)

m+�(J;k)

1
rest

?

?

y

(�1)

�(K;k)

rest

H

�

(Y

I

)
H

�

(Y

~

J

)

�(I;

~

J)

����! H

�

(K

~

K

)

Documenta Mathematica 4 (1999) 65{108



106 Caterina Consani

(In other words, the contribution in this case is to d

0

on the right.) Set

~

J = J

0

[

~

J

00

;

~

J

00

= J

00

[ fkg; K = I

00

[ J

00

:

We have

a(I; J) = a(I;

~

J)

�(J; k) = �(J

00

; k) + p+ 1

�(K; k) = �(J

00

; k) + #I

00

= �(J

00

; k) +m+ 1� p

It follows that

m+ �(J; k) + a(I;

~

J) � �(K; k) + a(I; J) mod (2)

which is the desired sign relation in this case.

case: k < j

p

; k =2 I .

In this case, the pair I; J [ fkg is not admissible, so the contribution is zero.

case: k < j

p

; k 2 I .

In this case the pair I;

~

J is admissible with

~

J := J [ fkg =

~

J

0

[ J

00

;

~

J

0

= J

0

[ fkg

I =

~

I =

~

J

0

[

~

I

00

;

~

I

00

= I

00

� fkg;

~

K = K � fkg =

~

I

00

[ J

00

The term in question contributes to d

00

on the right, and the diagram which

commutes is:

H

�

(Y

I

)
H

�

(Y

J

)

�(I;J)

����! H

�

(Y

K

)

?

?

y

(�1)

m+�(J;k)

rest

?

?

y

(�1)

�(K;k)

Gysin

k

H

�

(Y

I

)
H

�

(Y

~

J

)

�(I;

~

J)

����! H

�

(Y

~

K

)

The signs will be correct if

a(I; J) + �(K; k) � m+ �(J; k) + �(I;

~

J) mod (2)

Write

~

J = f

~

j

0

; : : : ;

~

j

m+1

g and

~

j

r

= i

~

b

r

; r � p. The desired congruence reads

b

0

+ � � �+ b

p�1

+mp+ �(K; k)

?

� m+ �(J; k) +

~

b

0

+ � � �+

~

b

p

+ (p+ 1)m

We have

~

b

`

=

8

>

<

>

:

b

`

` < �(J

0

; k)

�(I; k) ` = �(J

0

; k)

b

`�1

` > �(J

0

; k)

The condition becomes

�(K; k)

?

� �(J; k) + �(I; k) = �(J

0

; k) + �(J

0

; k) + �(I

00

; k);

which is true.

Finally we consider terms coming from (�1)

m

(1
 d

00

) in the lefthand vertical

Documenta Mathematica 4 (1999) 65{108



Local Monodromy 107

arrow in the diagram of the theorem. In what follows j 2 J .

case: j 2 J

00

; j 6= j

p

. De�ne

~

J = J � fjg; K = I

00

[ J

00

;

~

K = K � fjg = I

00

[

~

J

00

:

The diagram which commutes is:

H

�

(Y

I

)
H

�

(Y

J

)

�(I;J)

����! H

�

(Y

K

)

?

?

y

1
(�1)

m+�(J;j)

Gysin

j

?

?

y

(�1)

�(K;j)

Gysin

j

H

�

(Y

I

)
H

�

(Y

~

J

)

�(I;

~

J)

����! H

�

(Y

~

K

)

The sign condition to be checked is

m+ �(J; j) + a(I;

~

J)

?

� a(I; J) + �(K; j) mod (2):

Our conditions imply j > j

p

so a(I; J) = a(I;

~

J). Also,

#I

00

+#J

0

= m+ 2 � m mod (2);

so

�(K; j) = #I

00

+ �(J

00

; j)� 1 � m+#J

0

+ �(J

00

; j)� 1

�(J; j) = �(J

0

; j) + �(J

00

; j)� 1 = #J

0

� 1 + �(J

00

; j):

This is the desired condition.

case: j = j

p

.

In this case, I; J � fjg is not admissible, so we get no contribution.

case: j 2 J; j < j

p

.

In this case, j 2 J

0

; j 6= j

p

. Set

~

J = J � fjg;

~

J

0

= J

0

� fjg;

~

J

00

= J

00

~

I = I ;

~

I

00

= I

00

[ fjg; I =

~

I =

~

J

0

[

~

I

00

K = I

00

[ J

00

;

~

K =

~

I

00

[

~

J

00

= K � fjg:

The sign condition to show we gat a contribution to d

00

on the right is

a(I; J) + �(K; j)

?

� m+ �(J; j) + a(

~

I;

~

J) mod (2):

Writing j = j

`

= i

b

`

the condition becomes

b

0

+ � � �+ b

p�1

+mp+ �(K; j)

?

�

b

0

+ � � �+

^

b

`

+ b

`+1

+ � � �+ b

p�1

+m(p� 1) +m+ �(J; j)

This is true because

b

`

= �(I; j) = �(I

00

; j) + �(J

0

; j)

�(K; j) = �(I

00

; j); �(J; j) = �(J

0

; j):

The proof is completed by checking that all the terms on the right in the theo-

rem (i.e. in d

0

+ d

00

) are accounted for precisely once in the above enumeration

of cases.
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